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Jérôme Feret
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Abstract

We present an Abstract Interpretation-based framework for automatically analyz-
ing programs containing digital filters. Digital filtering consists in implementing
numerical recursions: the value of a variable S (the output) is computed from a
fixed finite number of the last consecutive values of the variable S and from a fixed
finite number of the last consecutive values of another variable E (the input). Our
framework allows us to refine existing analyses so that they can handle given classes
of digital filters. We only have to design a class of symbolic properties that describe
the invariants throughout filter iterations and to describe how these properties are
transformed by filter iterations. Then, the analysis allows both inference and proofs
of the properties about the program variables that are tied to any such filter. In case
of linear filters, we propose a systematic method for designing the abstract domain
by using interval and elliptic constraints.

Key words: Abstract Interpretation, symbolic domains, numerical domains,
digital filtering, synchronous systems, critical systems, embedded systems.

1 Introduction

Digital filters are widely used in real-time embedded systems (as found in au-
tomotive, aeronautic, and aerospace applications) since they allow modeling
behaviors previously ensured by analogical filters into software . A filter trans-
forms an input stream of floating-point values into an output stream. Existing
analyses are very imprecise in bounding the range of the output stream, be-
cause of the lack of precise linear properties that would entail that the output
is bounded. The lack of precise domains when analyzing digital filters was in-
deed the cause of almost all the remaining warnings (potential floating-point

1 This work was partially supported by the ASTRÉE RNTL project.
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overflows) in the certification of a critical software family with the astrée

analyzer [1, 2, 7].

In this paper, we propose an Abstract Interpretation-based framework for de-
signing new abstract domains which handle filter classes. Human intervention
is required for discovering the general shape of the properties that are required
in proving the stability of such a filter. Roughly speaking, filter properties are
mainly an abstraction of the input stream, from which we deduce bounds on
the output stream. Our framework can be used to build such abstract domains
and to propagate all the abstract properties throughout the abstract compu-
tations of programs. Our approach is not syntactic, so that loop unrolling,
filter reset, boolean control, and trace (or state) partitioning are dealt with
for free and any filter of the class (for any setting) is analyzed precisely.

Given a generic form of recursive sequence (such as Sn+2 = aSn+1 + bSn +
cEn+2+dEn+1+eEn) computed in the floating-point world, an abstract prop-
erty relates some variables (here Sn+2, Sn+1, En+2, and En+1) to some abstract
values. Such a property means that, up to rounding errors, the variables Sn+2

and Sn+1 are associated with two consecutive values of the recursive sequence
while the variables En+2 and En+1 are associated with the last two input val-
ues (the input value En is not relevant, since it will not be used in the next
iteration of the filter). The abstract domain captures an abstraction of the
input stream (En), initial conditions S0 and S1, and the overall contribution
of rounding errors. The most difficult part lies in refining interval constraints
using filter constraints.

We give a systematic method to build abstract domains for analyzing linear
filters. Formally, the output can be split into three summands: the contribution
of the last N inputs if the digital filter were computed in the real field, the
contribution of the initial outputs and of the other inputs if the digital filter
were computed in the real field, and the difference between the result of the
computation in the floating-point world and the result of the computation
in the real field. The integer N is a parameter of the approximation. The
first summand can be symbolically computed as a known function from the
last input values into the real field. The second and the third summands
both satisfy the simplified recursion S ′

n+2 = aS ′
n+1 + bS ′

n + E ′
n and S ′′

n+2 =
a.S ′′

n+1+bS ′′
n+E ′′

n. Absolute rounding errors (E
′′
n) at each filter iteration can be

bounded by using Antoine Miné’s framework [16]. Thus, we are left to design
an abstract domain to deal with simplified filters. In our case, the simplified
recursion is of the form Sn+2 = aSn+1+bSn+Fn. We can use elliptic invariants
of the form S2

n+2 − aSn+1Sn − bS2
n ≤ k2 to discover a bound on the output

stream Sn. Then, we can compute an approximated reduced product with
the already existing abstract domains. Reduction steps are performed when
necessary in order not to lose accuracy. Intervals and equality constraints can
be collected on the fly to capture the initial conditions of each filter.
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In the general case, we can bound the output of simplified linear filters (i.e. fil-
ters that implement recursions of the form Sn+p = a1Sn+ . . .+apSn+p−1+Fn)
by splitting the recursion as a sum of second order recursions and of first
order recursions. We require a factorization of the linear recursion character-
istic polynomial into irreducible (in the real field) polynomials (we only need
a sound approximation of the coefficient of each polynomial). We also need
that the characteristic polynomial has only single roots. Then, we can bound
second order summands by using elliptic constraints [2], while first order sum-
mands can be bounded by using interval constraints [4]. These bounds can
be discovered iteratively by using simple transfer functions. We have given
in [9] necessary conditions (taking into account rounding errors) for proving
the convergence of first and second order filters, and we have given explicit
bounds that can be used to accelerate abstract iterations. Nevertheless only
the soundness of the transfer function is required to prove the soundness of
the analysis [9]: the analysis is sound even if the acceleration is not sound.
In the case when these necessary conditions are not satisfied, we can use the
arithmetic-geometric progression domain [10] in order to compute bounds that
depend of the program life time.

The framework was fully implemented in OCaml [13] and plugged into the
astrée [2,7] analyzer. We have obtained bounds that are very close to sample
experimental results, which has allowed solving nearly all of our remaining
warnings.

Previous works. To our knowledge, our analysis [9] is the first analysis that
abstracts filter output invariants. Nevertheless, some work has been done in
filter optimization. In [12], affine equality relationships [11] among variables
at the beginning and at the end of loop iterations are used to factorize filters
at compile time. In our case, because of floating-point rounding errors, there
are no such affine equality relationships, so a more complex domain such as
polyhedra [8] is required to perform the same task. Moreover, our programs
involve complex boolean control flows. Thus, filter factorization cannot be
performed without a highly expensive partitioning. Furthermore, our goal is
just to prove the absence of error at runtime, and not to describe precisely the
global behavior of filters.

Outline. In Sect. 2, we present two case studies. In Sect. 3, we present
the syntax and semantics of our language. In Sect. 4, we describe a generic
abstraction for this language. In Sect. 5, we define a generic extension for
refining existing abstractions. In Sect. 6, we give numerical abstract domains
for describing sets of real numbers. In Sect. 7, we describe abstract domains
to deal with first order and second order simplified filters. In Sect. 8, we show
how to refine an abstract domain for a given class of simplified filters of a given
order so that it can deal precisely with more complex filters of the same order.
In these complex filters, more than one output is involved at each iteration.
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V ∈ R; E1 := 0;S := 0;

while (V ≥ 0) {
V ∈ R; T ∈ R;

E0 ∈ [−1;1];

if (T ≥ 0) {S := 0}
else {S := 0.999× S + E0 − E1}
E1 := E0;

}
Fig. 1. A high bandpass filter.

In Sect. 9, we show how to build abstract domains for any class of simplified
filters. In Sect. 10, we describe the impact of these extensions on the analysis
results. In Sect. 11, we conclude and discuss some of the basic ideas of our
framework.

2 Case studies

In this section, we present two examples of digital filter implementations. With
a view to simplifying, we consider that these programs are computed in real
arithmetics, although the case of floating-points arithmetics will be considered
later.

2.1 The high bandpass filter

A high bandpass filter can be encoded by the program 2 given in Fig. 1.
Roughly speaking, 0.999 is a coefficient of the filter. Variables V and T allow
control flow enforcement. At each loop iteration, the variable S denotes the
value of the current filter output, the variable E0 denotes the value of the
current filter input, and the variable E1 denotes the value of the previous fil-
ter input. Depending on the value of the variable T , the filter is either reset
(i.e., the output is set to 0), or iterated (i.e., the value of the next output is
calculated from the last output value and the last two input values).

We now describe the behavior of a usual analyzer based on the use of interval

2 The notation V ∈ I where V is a variable and I is an interval means that a
random value picked in the interval I is assigned to the variable V .
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constraints. First, the analyzer infers the following sound counterpart F
♯ ∆
=

X 7→ convex-hull({0.999s + e0 + e1 | s ∈ X ∪ {0}, e0, e1 ∈ [−1; 1]}) to the
loop body. Then, the analyzer starts iterating the abstract transfer function
F
♯ until it discovers a post-fixpoint. This gives the following iteration:

• X
♯
0 = ∅;

• X
♯
1 = F

♯(X♯
0) = [−2; 2];

• X
♯
2 = F

♯(X♯
1) = [−3.998; 3.998].

The iteration cannot reach a post-fixpoint this way. In order to extrapolate a
post-fixpoint, we use a widening operator [5]. We propose the use of a widening
with thresholds. This widening consists in replacing each unstable interval
bound with the next bound in a finite list of thresholds. In our example, we
consider that the thresholds are the numbers of the form 10n.

Thus the analyzer tries each threshold until it discovers a post-fixpoint:

• X
▽

3 = [−10; 10], but F♯([−10; 10]) 6⊆ [−10; 10];
• X

▽

4 = [−100; 100], but F♯([−100; 100]) 6⊆ [−100; 100];
• X

▽

5 = [−1000; 1000], but F♯([−1000; 1000]) 6⊆ [−1000; 1000];
• X

▽

6 = [−10000; 10000] and F
♯([−10000; 10000]) ⊆ [−10000; 10000].

Finally, we keep on iterating to refine the solution:

• X
△

0 = [−10000; 10000],
• X

△

1 = [−9992; 9992],
• X

△

2 = [−9984.008; 9984.008],

Of course, better results could have been obtained by driving the analysis, as
stated by Thm. 1:

Theorem 1 (High bandpass filter (history-insensitive version))
Let D ≥ 0, m ≥ 0, a, X and Z be real numbers such that: |X| ≤ D and
aX −m ≤ Z ≤ aX +m. We have:

(1) |Z| ≤ |a|D +m;

(2) if |a| < 1 and D ≥ m

1−|a|
, then |Z| ≤ D.

PROOF. Let D ≥ 0, m ≥ 0, a, X and Z be real numbers such that |X| ≤ D

and aX −m ≤ Z ≤ aX +m.

(1) Since m ≥ 0, we have |Z| ≤ |a||X| +m. Since |a| ≥ 0 and |X| ≤ D, we
conclude that: |Z| ≤ |a|D +m.

(2) We assume that both |a| < 1 and D ≥ m
1−|a| . We have 1 − |a| > 0, so
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m ≤ (1−|a|)D. Then |Z| ≤ |a|D+m ≤ |a|D+(1−|a|)D. So we conclude
that |Z| ≤ D. 2

In Thm. 1, the variable a is a parameter of the filter. The variable X denotes
the current output of the filter, which ranges between the value −D and the
value D. The current input ranges between the value −m and the value m.
Then, the next output Z is picked within the interval [aX − m; aX + m].
Thm. 1 states that: if the filter is contracting (i.e. |a| < 1), then the value
m

1−|a| is an inductive bound on the absolute value of the output stream. In our
example, we have m

1−|a| = 2000. so we can get a more precise analysis when
the number 2000 is chosen as a threshold.

Nevertheless, the number 2000 is not the best accurate bound. We have lost
information when abstracting away the cancellation effect in the sub-term
E0 − E1. To take into account this cancellation effect, we propose to express
the value of the current output as a linear combination of all previous inputs
and of the value of the output at filter initialization. We obtain the following
theorem:

Theorem 2 (High bandpass filter (history-sensitive version))
Let a ∈ [1

2
; 1[, i, and m ≥ 0 be real numbers. Let En be a sequence of real num-

bers, such that ∀k ∈ N, Ek ∈ [−m;m]. Let Sn be the sequence of real numbers,
defined by: S0 = i and Sn+1 = aSn + En+1 − En. We have: |Sn| ≤ 2m+ |i|.

PROOF. Let a ∈ [1
2
; 1[, i, and m ≥ 0 be real numbers. Let En be a sequence

of real numbers, such that ∀k ∈ N, Ek ∈ [−m;m]. Let Sn be the sequence
of real numbers, defined by: S0 = i and Sn+1 = aSn + En+1 − En. We first
prove, by induction over n ∈ N, that, for any natural number n ∈ N, we have
Sn = ani+ En − anE0 +

∑n−1
l=1 (a− 1)al−1En−l:

• We have S0 = i = a0i+ E0 − a0E0.
• We suppose that there exists n0 ∈ N such that Sn0 = an0i+En0 − an0E0 +
∑n0−1

l=1 (a − 1)al−1En0−l. We have Sn0+1 = aSn0 + En0+1 − En0 , so Sn0+1 =

En0+1−En0 + a
(

an0i+ En0 − an0E0 +
∑n0−1

l=1 (a− 1)al−1En0−l

)

. So Sn0+1 =

an0+1i+En0+1−an0+1E0+
(

∑n0−1
l′=1 (a− 1)a(l

′+1)−1En0+1−(l′+1)

)

+(a−1)En0 .

We replace l′+1 with l to conclude that Sn0+1 = an0+1i+En0+1−an0+1E0+
∑n0+1−1

l=1 (a− 1)al−1En0+1−l.

So, for any natural number n ∈ N, we have Sn = ani+En − anE0 +
∑n−1

l=1 (a−
1)al−1En−l. Then, |Sn| ≤ |a|n|i|+|En|+|a|n|E0|+

∑n−1
l=1 |(a−1)al−1||En−l|. Since

0 < a < 1 and |Ei| < m, we have |Sn| ≤ an|i|+m+anm+(1−a)m
∑n−1

l=1 al−1.
So, |Sn| ≤ an|i| + m(1 + an + 1 − an). We conclude that |Sn| ≤ an|i| + 2m.
Since a < 1, we conclude that |Sn| ≤ 2m+ |i|. 2
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V ∈ R;

E1 := 0; E2 := 0; S0 := 0; S1 := 0; S2 := 0;

while (V ≥ 0) {
V ∈ R; T ∈ R;

E0 ∈ [−1; 1];

if (T ≥ 0) {S0 := 0;S1 := 0;E1 := 0}
else {S0 := 1.5× S1 − 0.7× S2 + 0.5× E0 − 0.7× E1 + 0.4× E2};
E2 := E1; E1 := E0;

S2 := S1; S1 := S0

}
Fig. 2. A second order filter.

In Thm. 2, a is a parameter of the filter. The variable i denotes the value of the
output at the initialization of the filter. The sequence (En) denotes the input
stream and the sequence (Sn) denotes the output stream. First, we expand
the current output as a linear combination of the initial output and of all
previous inputs. Then we can simplify this expression to get a bound which
only depends on the initial output and on the bound on the input stream.
By using Thm. 2, we can build an accurate domain that discovers that 2 is a
correct bound on the value of |S|.

So, we have seen that we can analyze a program which contains a high band-
pass filter quite easily. Even an interval-based analysis will bound the output.
The bound can be refined by driving the analysis. Nevertheless, we need to
formally expand the output as a linear combination of all previous inputs in
order to get a better accuracy.

2.2 The second order filter

The case of the second order filter is much more interesting, because the output
of such a filter cannot be bound without relational information. Moreover,
existing relational domains are not likely to provide inductive invariants.

The program given in Fig. 2 implements a second order filter. Roughly speak-
ing, the numbers 1.5, −0.7, 0.5, −0.7, and 0.4 are the coefficients of the filter.
Variables V and T allow control flow enforcement. At each loop iteration, the
variable S0 denotes the value of the current filter output, variables S1 and S2

denote the last two values of the filter output, the variable E0 denotes the
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X U F(X)

X
F(X)

(a) Linear constraints.

F(X)
X

X U F(X)
(b) Elliptic constraints.

Fig. 3. Transformation induced by the body of the loop.

value of the current filter input, and variables E1 and E2 denote the last two
values of the filter input. Depending on the value of the variable T , either the
filter is reset (i.e., both the current and the previous outputs are set to the
same value), or iterated (i.e., the value of the next output is calculated from
the last two output values and the last three input values).

When analyzing such a program, we usually look for a post-fixpoint of the fol-

lowing sound counterpart F♯ ∆
= (X, Y ) 7→ (convex-hull({1.5x− 0.7y + 0.5e0 +

0.7e1 + 0.5e2 | x ∈ X, y ∈ Y, e0, e1, e2 ∈ [−1; 1]}), X) to the loop body.
Unfortunately, the only post-fixpoint is R

2 itself. So we fail in discovering a
bound on the filter output. More generally, whenever we apply the body of
the loop to a set of points, first the set is enlarged according to one direction,
then it is contracted according to another direction, and finally the solution
rotates around the origin. So an abstract domain should take care of both
the rotation and the enlargement in order to find an inductive invariant. Lin-
ear constraints are very unlikely to provide invariants because of the corners
(Cf. Fig. 3(a)). Following Thm. 3, elliptic constraints are much convenient to
discover inductive invariants 3 (Cf. Fig. 3(b)).

Theorem 3 (second order filter (history insensitive version))
Let a, b, k ≥ 0, m ≥ 0, X, Y , Z be real numbers that satisfy: a2 + 4b < 0,
X2 − aXY − bY 2 ≤ k2, and aX + bY −m ≤ Z ≤ aX + bY +m. We have:

(1) Z2 − aZX − bX2 ≤
(√

−bk +m
)2
;

3 Of course, the polygons that are close enough from a stable ellipse are also stables.
But such polygons would be as difficult to discover as the ellipse itself.
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(2) if
√
−b < 1 and k ≥ m

1−
√
−b
, then Z2 − aZX − bX2 ≤ k2.

PROOF. Let a, b, k ≥ 0, m ≥ 0, X, Y , Z be real numbers that satisfy:
a2 +4b < 0, X2 − aXY − bY 2 ≤ k2, and aX + bY −m ≤ Z ≤ aX + bY +m.

(1) Let t = Z − aX − bY . We have Z2 − aZX − bX2 = (t + aX + bY )2 −
a(t+ aX + bY )X − bX2. So Z2 − aZX − bX2 = −b(X2 + (a− 2a)XY −
bY 2)+2btY +(t+aX)2−a(t+aX)X. Then Z2−aZX−bX2 = −b(X2−
aXY − bY 2) + t(2bY + t + 2aX − aX). We obtain that Z2 − aZX −
bX2 = −b(X2 − aXY − bY 2) + t(t + 2bY + aX). Moreover, we have:
(aX +2bY )2 = −4b( a2

−4b
X2 − aXY − bY 2). Since 4b < 0 and a2 +4b < 0,

we obtain that (aX+2bY )2 ≤ −4b(X2−aXY −bY 2). Then, since 4b < 0
and X2 − aXY − bY 2 ≤ k2, we deduce that (aX + 2bY )2 ≤ −4bk2.
Since −4b > 0, we conclude that |aX + 2bY | ≤ 2k

√
−b. Then, we have

t(t+ 2bY + aX) ≤ |t|(|t|+ |aX + 2bY |). Since |t| ≤ m and |aX + 2bY | ≤
2k

√
−b, we conclude that t(t+ 2bY + aX) ≤ m(m+ 2k

√
−b). Moreover,

we know that X2−aXY − bY 2 ≤ k2 and b < 0. Since Z2−aZX− bX2 =
−b(X2 − aXY − bY 2) + t(t + 2bY + aX), we have Z2 − aZX − bX2 ≤
−bk2+m(m+2k

√
−b). We conclude that Z2−aZX−bX2 ≤ (k

√
−b+m)2.

(2) We assume that both
√
−b < 1 and k ≥ m

1−
√
−b
. We have 1−

√
−b > 0, so

m ≤ (1−
√
−b)k. Then, since 0 ≤

√
−bk+m, we have: Z2−aZX−bX2 ≤

(√
−bk + (1−

√
−b)k

)2
. So we can conclude that Z2−aZX− bX2 ≤ k2.

2

In Thm. 3, the variables a and b are two parameters of the filter. The variable
X denotes the current output of the filter. The variable Y denotes the previous
output. The current input ranges between the value -m and the value m. Then,
the next output Z is picked within the interval [aX + bY −m; aX + bY +m].

Thm. 3 suggests to study the value of the expression
√

|V 2 − aV U − bU2|
where U and V denote two successive outputs. At each iteration of the filter,
an affine transformation is applied to this value. When

√
−b < 1, the filter

output stays within a stable ellipse: in such a case an interval analysis of

the value of the expression
√

|V 2 − aV U − bU2| will succeed in bounding the
filter output. Otherwise, the filter diverges: in such a case we may use the
arithmetic and geometric progression domain [10], to relate the ellipse ratio
to the execution time of the program. In our example, the filter is convergent:
a driven interval analysis discovers that the number 23 is a correct bound on
the values of output stream.

Once again, the number 23 is not the most accurate bound. We have lost
information when abstracting away the cancellation effect in the sub-term
0.5×E0−0.7×E1+0.4×E2. To take into account this cancellation effect, we
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express the value of the current output as a linear combination of all previous
inputs and of the value of the output at filter initialization. The expression that
we obtain cannot be simplified as we did in the case of the high bandpass filter
(Cf. Sect. 2.1). Nevertheless, we can choose a parameter N and express each
filter output as a linear combination of the last N inputs and of a residue.
We will see in Sect. 8 that the residue may be bound by using the history
insensitive approximation. This approach is more generic than the one we use
in the case of the high bandpass filter and can be applied with any linear
filters. With this approach, our analysis detects and proves that the absolute
value of any output of our filter is bounded by 1.42.

3 Language

In this section we introduce both the syntax and the semantics of the language
that we want to analyze.

We analyze a subset of C without dynamic memory allocation nor side-
effect. Moreover, the use of pointer operations is restricted to call-by refer-
ence. For the sake of simplicity, we introduce an intermediate language to
describe programs that are interpreted between the concrete and an abstract
level. Data structures have been translated by using a finite set of abstract
cells (see [2, Sect. 6.1]). Non-deterministic branching over-approximates all
the memory accesses (array accesses, pointer dereferencing) that are not fully
statically resolved. Furthermore, floating-point expressions have been conser-
vatively approximated by linear forms with real interval coefficients. These
linear forms include both the rounding errors and some expression approx-
imations (see [16]). We also suppose that the occurrence of runtime errors
(such as floating-point overflows) can be described by interval constraints on
the memory state.

3.1 Syntax

Let V be a finite set of variables. Let clock 6∈ V be an extra variable which
is associated with a clock counter. The clock counter is explicitly incremented
when a command tick is executed. The system stops when the clock counter
overflows a maximum value which is defined by the end-user. We denote by I
the set of all real number intervals (including R itself). We define inductively
the syntax of programs in Fig. 4. We denote by E the set of expressions E.
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V ∈ V , I ∈ I
E := I | V | I × V + E

P := V = E | skip | tick | if (V ≥ 0) {P} else {P} | while (V ≥ 0) {P} | P ;P

Fig. 4. Syntax.

(|I|)(ρ) = I, (|V |)(ρ) = {ρ(V )}
(|I × V + E|)(ρ) = {b× ρ(V ) + a | a ∈ (|E|)(ρ), b ∈ I}

JV = EK
mc
(ρ) = {ρ[V 7→ x] | x ∈ (|E|)(ρ)}

JskipK
mc
(ρ) = {ρ}

JtickK
mc
(ρ) =

{

{ρ[clock 7→ ρ(clock) + 1]} if ρ(clock) < mc

∅ otherwise

Jif (V ≥ 0) {P1} else {P2}Kmc(ρ) =
{

JP1Kmc(ρ) if ρ(V ) ≥ 0

JP2Kmc(ρ) otherwise

Jwhile (V ≥ 0) {P}K
mc
(ρ) = {ρ′ ∈ Inv | ρ′(V ) < 0}

where Inv = lfp (X 7→ {ρ} ∪ (
⋃{JP K

mc
(ρ′) | ρ′ ∈ X, ρ′(V ) ≥ 0}))

JP1;P2Kmc(ρ) =
⋃{JP2Kmc(ρ

′) | ρ′ ∈ JP1Kmc(ρ)}

Fig. 5. Concrete semantics.

3.2 Semantics

We describe the semantics of these programs in a denotational way. An en-
vironment (ρ ∈ V ∪ {clock} → R) denotes a memory state. It maps each
variable, including the clock variable, to a real number. We denote by Env
the set of all environments. The semantics of an expression E is a function
(|E|) ∈ Env → I mapping each environment to an interval. Given a max-
imum value mc for the clock, the semantics of a program P is a function
JP K

mc
∈ Env → ℘(Env) mapping each environment ρ to the set of the envi-

ronments that can be reached when applying the program P starting from
the environment ρ. Returning a set of environments allows the description of
both non-determinism and program halting (when the clock has reached its
maximum value). The functions (| |) and J K

mc
are defined by induction on the

syntax of programs in Fig. 5. Loop semantics requires the computation of a
loop invariant, which is the set of all environments that can be reached just
before the guard of this loop is tested. This invariant is well-defined as the
least fixpoint of a ∪-complete endomorphism 4 f ∈ ℘(Env) → ℘(Env). Nev-
ertheless, such a fixpoint is usually not computable, so we give a decidable
approximate semantics in the next section.

4 In fact, we only use the monotonicity of f .
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3.3 examples

We describe our two filter examples in our language. Unlike in Sect. 2, we also
describe rounding errors.

Example 4 A high bandpass filter can be encoded by the following program:

V = R; E1 = [0; 0]; S = [0; 0];

while (V ≥ 0) {
V = R; T = R; E0 = I;

if (T ≥ 0) {S = [0; 0]}
else {S = A× S + E0 + (−E1) + F};
E1 = E0;

}

Roughly speaking, the interval I denotes the range of filter entries. Floating-
point rounding errors are captured by the range of both intervals A and F . The
interval A describes the filter coefficient and satisfies A ⊆ [1

2
; 1[. Variables V

and T allow control flow enforcement. At each loop iteration, the variable S

denotes the value of the current filter output, the variable E0 denotes the value
of the current filter input, and the variable E1 denotes the value of the previous
filter input. Depending on the value of T , the filter is either reset (i.e., the
output is set to 0), or iterated (i.e., the value of the next output is calculated
from the last output value and the two last input values). The analysis described
in [2] only discovers inaccurate bounds for the variable S. It works as if the
expression A× S + E0 − E1 + F were approximated by A× S + (2× I + F ).
The analysis discovers the first widening threshold l (see [1, Sect. 2.1.2]) such
that l is greater than 2×i+f

1−a
, for any (i, f, a) ∈ I × F × A. It proves that l is

stable, and then successive narrowing iterations refine the value l. Thus, the
cancellation effects of E0 − E1 are ignored. 2

Example 5 A second order digital filter can be encoded as follows:
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V = R; E1 = [0; 0]; E2 = [0; 0]; S0 = [0; 0]; S1 = [0; 0]; S2 = [0; 0];

while (V ≥ 0) {
V = R; T = R; E0 = I;

if (T ≥ 0) {S0 = E0; S1 = E0}
else {S0 = A× S1 + B × S2 + C × E0 +D × E1 + E × E2 + F};
E2 = E1; E1 = E0; S2 = S1; S1 = S0

}

Roughly speaking, the interval I denotes the range of filter entries. Intervals A,
B, C, D and E denote filter coefficients and satisfy A ⊆ [0;∞[, B ⊆]−1; 0[ and
∀(a, b) ∈ A × B, a2 + 4 × b < 0. Floating-point rounding errors are captured
by the range of intervals A, B, C, D, E and F . Variables V and T allow
control flow enforcement. At each loop iteration, the variable S0 denotes the
value of current filter output, variables S1 and S2 denote the last two values of
filter output, the variable E0 denotes the value of the current filter input, and
variables E1 and E2 denote the last two values of filter input. Depending on
the value of T , either the filter is reset (i.e., both the current and the previous
outputs are set to the same value), or iterated (i.e., the value of the next output
is calculated from the last two output values and the last three input values).
The analysis described in [2] fails to discover any bound for the variables S0,
S1, S2. 2

4 Underlying domain

We use the Abstract Interpretation framework [3, 5, 6] to derive a generic
approximate semantics. An abstract domain Env♯ is a set of properties about
memory states. Each abstract property is related to the set of the environments
which satisfy it via a concretization map γ. An operator ⊔ allows the gathering
of information about different control flow paths. To effectively compute an ap-
proximation of concrete fixpoints, we introduce an iteration basis ⊥, a widen-
ing operator ▽, and a narrowing operator △. The primitives assign, guard,
and tick are sound counterparts to concrete assignments, guards, and clock
ticks. Several abstract domains collaborate and use simple constraints to refine
each other. We introduce two domains of simple constraints. The domain of
intervals V∪{clock} → I and the domain of equality relationship ℘(V2). The
interval constraints encoded by a map ρ♯ ∈ V ∪ {clock} → I are satisfied by
the environment set γI(ρ♯) = {ρ ∈ Env | ρ(X) ∈ ρ♯(X), ∀X ∈ V ∪ {clock}}.
The constraints encoded by a subset R ⊆ V2 are satisfied by the environment
set γ=(R) = {ρ ∈ Env | ∀(X, Y ) ∈ R, ρ(X) = ρ(Y )}. The primitives range
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and equ capture simple constraints about the values that are associated with
variables by weakening the abstract elements of Env♯. These constraints are
useful in refining the filter domains. Conversely, a primitive red uses the con-
straints that have been computed by the filter domains in order to refine the
underlying domain.

Def. 6 formalizes the definition of a generic abstraction.

Definition 6 (Generic abstraction) An abstraction is defined by a tuple
(Env♯,γ,⊔,⊥,▽,△,assign,guard,tick,range,red,equ) such that:

(1) structure:
• Env♯ is a set of properties;
• γ ∈ Env♯ → ℘(Env) is a concretization map;
• ∀a, b ∈ Env♯, γ(a) ∪ γ(b) ⊆ γ(a ⊔ b);

(2) extrapolation primitives:
• ⊥ is an abstract element in Env♯;
• ▽ is a widening operator such that: ∀a, b ∈ Env♯, γ(a)∪γ(b) ⊆ γ(a▽b);
and ∀k ∈ N, ρ

♯
1, . . . , ρ

♯
k ∈ (V ∪ {clock} → I), (ai) ∈ (Env♯)N, the

sequence (a▽i ) defined by a▽0 = r(a0) and a▽n+1 = r(a▽n▽an+1) with r =

[X 7→ red(ρ♯k, X)] ◦ . . . ◦ [X 7→ red(ρ♯1, X)], is ultimately stationary;
• △ is a narrowing operator such that: ∀a, b ∈ Env♯, γ(a)∩γ(b) ⊆ γ(a△b);
and ∀k ∈ N, ρ

♯
1, . . . , ρ

♯
k ∈ (V ∪ {clock} → I), (ai) ∈ (Env♯)N, the

sequence (a△i ) defined by a△0 = r(a0) and a△n+1 = r(a△n△an+1), with

r = [X 7→ red(ρ♯k, X)]◦. . .◦[X 7→ red(ρ♯1, X)], is ultimately stationary;
(3) transfer functions:

• ∀a ∈ Env♯, X ∈ V , E ∈ E , ρ ∈ γ(a),
JX = EK

mc
(ρ) ⊆ γ(assign(X = E, a));

• ∀a ∈ Env♯, X ∈ V ∪ {clock}, I ∈ I,
{ρ ∈ γ(a) | ρ(X) ∈ I} ⊆ γ(guard(X, I, a));

• ∀a ∈ Env♯, {ρ[clock 7→ ρ(clock) + 1] | ρ ∈ γ(a)} ⊆ γ(tick(a));
(4) conversion primitives:

• ∀a ∈ Env♯, ρ♯ ∈ (V ∪ {clock} → I), γ(a) ∩ γI(ρ♯) ⊆ γ(red(ρ♯, a));
• ∀a ∈ Env♯, γ(a) ⊆ γI(range(a)) and γ(a) ⊆ γ=(equ(a)).

Least fixpoint approximation is performed in two steps [5]: we first com-
pute an approximation using the widening operator; then we refine it us-
ing the narrowing operator. More formally, let f be a monotonic map in
℘(Env) → ℘(Env) and f ♯ ∈ Env♯ → Env♯ be an abstract counterpart of f sat-
isfying ∀a ∈ Env♯, (f ◦γ)(a) ⊆ (γ ◦f ♯)(a). It is worth noting that the abstract
counterpart f ♯ is usually not monotonic with respect to the partial order ⊑♯

that is defined by a ⊑♯ b ⇐⇒ γ(a) ⊆ γ(b). The abstract upward iteration (C▽

n )
of f ♯ is defined by C▽

0 = ⊥ and C▽

n+1 = C▽

n▽f ♯(C▽

n ). The sequence (C▽

n ) is
ultimately stationary and we denote its limit by C▽

ω . Then the abstract down-
ward iteration (D△

n ) of f ♯ is defined by D△

0 = C▽

ω and D△

n+1 = D△

n△f ♯(D△

n ).
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The sequence (D△

n ) is ultimately stationary and we denote its limit by D△

ω .
We define 5 lfp♯(f ♯) by the limit D△

ω of the abstract downward iteration of f ♯.
We introduce some lemmas in order to prove that lfp(f) ⊆ γ(D△

ω ):

Lemma 7 We have f(γ(C▽

ω )) ⊆ γ(C▽

ω ).

PROOF. C▽

ω is the limit of the upward-iteration, so C▽

ω = C▽

ω▽f ♯(C▽

ω ). By
Def. 6.(2) of the widening, we obtain that γ(f ♯(C▽

ω )) ⊆ γ(C▽

ω ). By soundness
of f ♯, we also have f(γ(C▽

ω )) ⊆ γ(f ♯(C▽

ω )). So f(γ(C▽

ω )) ⊆ γ(C▽

ω ). 2

Lemma 8 For any a ∈ ℘(Env) and x ∈ Env♯, a ⊆ γ(x) =⇒ a ∩ f(a) ⊆
γ(x△f ♯(x)).

PROOF. Let a ∈ ℘(Env) and x ∈ Env♯ such that a ⊆ γ(x). Since f is
monotonic, we have f(a) ⊆ f(γ(x)). Then by soundness of f ♯, we have
f(γ(x)) ⊆ γ(f ♯(x)). Thus f(a) ⊆ γ(f ♯(x)). So a ∩ f(a) ⊆ γ(x) ∩ γ(f ♯(x)).
By Def. 6.(2), we have γ(x) ∩ γ(f ♯(x)) ⊆ γ(x△f ♯(x)). We conclude that
a ∩ f(a) ⊆ γ(x△f ♯(x)). 2

Lemma 9 For any a ∈ ℘(Env), f(a) ⊆ a =⇒ f(f(a) ∩ a) ⊆ f(a) ∩ a.

PROOF. Let a ∈ ℘(Env) such that f(a) ⊆ a. Since f is monotonic, we
have f(f(a)) ⊆ f(a). Moreover, we have f(a) ∩ a = f(a). We conclude that
f(f(a) ∩ a) = f(f(a)) ⊆ f(a) = f(a) ∩ a. 2

Lemma 10 (transfinite kleenean iteration)
For any a ∈ ℘(Env), we have: f(a) ⊆ a =⇒ lfp(f) ⊆ a.

Theorem 11 We have lfp(f) ⊆ γ(D△

ω ).

PROOF. We introduce the sequence (un) that is defined by u0 = γ(C▽

ω ) and
un+1 = un ∩ f(un) for any n ∈ N. We can prove by induction that ∀n ∈ N, we
have both un ⊆ γ(D△

n ) and f(un) ⊆ un:

• When n = 0: by definition, we have u0 = γ(C▽

ω ) = γ(D△

0 ) and thanks to
Lemma 7, we have f(u0) ⊆ u0.

• We now suppose there exists n ∈ N such that un ⊆ D△

n and f(un) ⊆ un.
(1) We have un+1 = un∩f(un) and un ⊆ γ(D△

n ). By Lemma 8, we have un+1 ⊆
γ(D△

n△f ♯(D△

n )). By definition of D△

n+1, we obtain that un+1 ⊆ γ(D△

n+1).

5 lfp♯(f ♯) is an approximation of the concrete least fixpoint; it may not be a least
fixpoint of the abstract counterpart f ♯ which is not supposed to be monotonic.
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JV = EK♯mc(a) = assign(V = E, a)

JskipK♯mc(a) = a

JtickK♯mc(a) = guard(clock, [0; mc],tick(a))

Jif (V ≥ 0) {P1} else {P2}K♯mc(a) = a1 ⊔ a2,

where

{

a1 = JP1K
♯
mc(guard(V, [0; +∞[, a))

a2 = JP2K
♯
mc(guard(V, ]−∞; 0[, a))

Jwhile (V ≥ 0) {P}K♯mc(a) = guard(V, ]−∞; 0[, Inv♯),

where Inv♯ = lfp♯
(

X 7→ a ⊔ JP K♯mc(guard(V, [0; +∞[, X))
)

JP1;P2K
♯
mc(a) = JP2K

♯
mc(JP1K

♯
mc(a))

Fig. 6. Abstract semantics.

(2) We have f(un+1) = f(un∩f(un)) and f(un) ⊆ un. By Lemma 9, we obtain
that f(un+1) ⊆ un+1.

Then let n ∈ N be a natural such that D△

ω = D△

n . We have un ⊆ γ(D△

ω ) and
f(un) ⊆ un. By lemma 10, we have lfp(f) ⊆ γ(D△

ω ). 2

The abstract semantics of a program is given by a function (J K♯
mc

∈ Env♯ →
Env♯) in Fig. 6. Its soundness can be proved by induction on the syntax:

Theorem 12 For any program P , environment ρ, abstract element a, and
maximum clock value mc, we have: ρ ∈ γ(a) =⇒ JP K

mc
(ρ) ⊆ γ

(

JP K♯
mc
(a)
)

.

PROOF. The proof is made by induction over the syntax of P :

• In the case when P matches V = E: For any environment ρ ∈ γ(a), we have
JP K

mc
(ρ) ⊆ γ(assign(V = E, a)) (Def. 6.(3)).

• In the case when P matches skip: For any environment ρ ∈ γ(a), we have
JP K

mc
(ρ) = {ρ} and JskipK♯

mc
(a) = a, so JP K

mc
(ρ) ⊆ γ(a).

• In the case when P matches tick: For any environment ρ ∈ γ(a),
(1) when ρ(clock) < mc, we have JP K

mc
(ρ) = {ρ[clock 7→ ρ(clock) + 1]},

then, by Def. 6.(3), {ρ[clock 7→ ρ(clock) + 1]} ⊆ γ(tick(a)); since
ρ(clock) + 1 ∈ [0; mc] and by Def. 6.(3), we conclude that {ρ[clock 7→
ρ(clock) + 1]} ⊆ γ(guard(clock, [0; mc],tick(a)));

(2) otherwise, we have JP K
mc
(ρ) = ∅, then JP K

mc
(ρ) ⊆ γ(JtickK♯

mc
(a)).

• In the case when P matches if (V ≥ 0) {P1} else {P2}:
For any environment ρ ∈ γ(a):

(1) when ρ(V ) ≥ 0, by Def. 6.(3), we have ρ ∈ guard(V, [0; +∞[, a); then,
by structural induction, JP1Kmc(ρ) ⊆ γ(JP1K

♯
mc
(guard(V, [0; +∞[, a)));

(2) when ρ(V ) < 0, the same proof applies if we replace [0; +∞[ with ]−∞; 0]
and P1 with P2.
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• In the case when P matches while (V ≥ 0) {P ′}: For any environment
ρ ∈ γ(a): we introduce f = X 7→ {ρ} ∪ (

⋃{JP ′K
mc
(ρ′) | ρ′ ∈ X, ρ′(V ) ≥ 0})

and f ♯ = X 7→ a⊔JP ′K♯
mc
(guard(V, [0; +∞[, X)); the map f is a ∪-complete

endomorphism, moreover, by structural induction and thanks to Def. 6.(3)
and Def. 6.(1), we have (f ◦ γ)(a) ⊆ (γ ◦ f ♯)(a) for any a ∈ Env♯; then
by Thm. 11, we have lfp(f) ⊆ γ(lfp♯(f ♯)); let ρ′ be an environment in
Jwhile (V ≤ 0) {P ′}K

mc
(ρ), we have ρ′ ∈ γ(lfp♯(f ♯)) and ρ′(V ) < 0, so by

Def. 6.(3), we have ρ′ ∈ γ(Jwhile (V ≥ 0) {P ′}K♯
mc
(ρ)).

• In the case when P matches P1;P2: For any environment ρ ∈ γ(a), by struc-
tural induction, we have JP1Kmc(ρ) ⊆ γ(JP1K

♯
mc
(a)); then, for any environment

ρ′ ∈ JP1Kmc(ρ), by structural induction, JP2Kmc(ρ
′) ⊆ γ(JP2K

♯
mc
(JP1K

♯
mc
(a));

thus, JP1;P2Kmc(ρ) ⊆ γ(JP2K
♯
mc
(JP1K

♯
mc
(a)). 2

5 Generic extension

We now show how an analysis can be extended to take into account a given
class of digital filters. First we give an intuitive description of what we want to
do. Then we introduce all the primitives that we need to build such a domain.
Next we define a generic domain of constraints, this domain is independent
from the other abstract domains which are handled with by the analysis. At
last, we build an approximate reduced product between our generic domain
and an underlying domain.

5.1 Intuitions

A filter class is given by: the number p of outputs and the number q of inputs
that are involved in the computation of the next output, a (generic/symbolic)
description of the recursive function with parameters, and some conditions
over these parameters.

For instance, in the case of the second order filter, the next output depends on
the last two outputs (i.e. p = 2) and on the last three inputs (i.e. q = 3), the
next output is given by a function F where F (Sn−1, Sn−2, En, En−1, En−2) =
aSn−1 + bSn−2 + cEn + dEn−1 + eEn−2 where a, b, c, d, and e are parameters;
moreover, the parameters should satisfy a2 + 4b < 0.

To analyze the behavior of such a filter, we have to consider some generic
properties that tie the variables that are involved in two successive iterations
of the filter (in our example, just before the filter iteration our property re-
lates the values of variables Sn−1, Sn−2, En−1, and En−2, whereas, after the
filter iteration, our property relates the values of variables Sn, Sn−1, En, and
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En−1). The abstract property also contains the generic description of the fil-
ter that is iterated (i.e. the definition of F ) and an abstraction of the input
stream. The abstraction of the input stream is parametric: the more concrete
choice is a set of input streams; when computing a history-sensitive abstrac-
tion (to take into account the cancellation effect), we can abstract a set of
input streams by a bound on their absolute value; last, when computing a
history-insensitive abstraction we only keep invariants about the variables that
are involved in the output stream (here a bound on the value of the expres-

sion
√

|S2
n−1 − aSn−1Sn−2 − bS2

n−2| just before the iteration of the filter and a

bound on the value of the expression
√

|S2
n − aSnSn−1 − bS2

n−1| just after the
iteration of the filter).

In Fig. 7, we describe both control flow patterns that have to be taken into
account when dealing with a given filter. In this figure, the symbols X and X ′

denote two tuples of variables. More precisely, the symbol X denotes the tuple
of the variables that are tied before an iteration of the filter and the symbol
X ′ denotes the tuple of the variables that are tied after an iteration of the
filter. The instruction X ′ = F (X) computes an iteration of the filter. In the
abstract, the abstract property that relates the variables in the tuple X before
the instruction gives another abstract property that relates the variables in
the tuple X ′ after the instruction. If, when we encounter an instance of the
instructionX = F (X ′), we have no constraint over the tuple of variablesX, we
have to build such a constraint by weakening the constraints that we have in
the underlying domain. This way, we capture filters re-initializations. Between
two iterations of the filter, the variables are shifted which is described by the
instruction X ′ = X. In Fig. 7(a), at the first iteration of the filter, we have no
constraints over X, so we build such a constraint by weakening the constraints
in the underlying domain. Then we iterate the filter to obtain a constraint
over the variables in the tuple X ′. The filter iteration is followed by a shift
instruction. We get back a constraint that relates the variables in the tuple
X. Then, for each next iteration of the filter, a constraint over the variables
in the tuple X is available. First it is translated into a constraint over the
variables in X ′ when iterating the filter. Then it gives back a constraint over
the variables in X when shifting the variables. Each filter may be reset. Filter
resets are taken into account when merging control flow paths. In Fig. 7(b),
the right branch corresponds to a regular filter iteration whereas the left one
describes a filter reset. When we merge the two control flow paths, we have a
constraint that ties the variables in the tuple X ′ in the right control flow path
whereas we have no corresponding constraint in the left control flow path. So
we build the missing constraint by weakening the constraints that we have in
the underlying domain.

This way, to deal with filters, we only have to compute sound counterpart
to filters iteration and variables shift. We also require a primitive to weaken
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X ′ = F (X)

X ′ = F (X)

X ′

⇐ filter initialisation

⇐ filter iteration

⇐ shift

⇐ shift

⇐ filter iteration

X = X ′

X = X ′

X

X ′

X

X

(a) filter iterations.

X

X ′ X ′

X ′ = F (X)
filter
iteration⇐

filter
reset

⇒

(b) filter reset.

Fig. 7. Filter implementation control flow.

the constraints of the underlying domain to compute the constraints that are
missing before a filter iteration or when merging control flow paths.

In the next subsection, we describe a generic domain to describe both filter
constraints and primitives to handle with these constraints.

5.2 Domain and primitives

A filter domain collects constraints that relate some variables, some parame-
ters, and abstract ranges. The variables in such constraints are the variables
that will be used again at the next filter iteration. The parameters are the
filter parameters. The abstract ranges provide an approximation of both filter
input and output. Depending on the abstraction, abstract ranges may en-
code the input stream itself, a bound on the input stream, or some abstract
properties about the last outputs (which is in some sense also an approxi-
mation of the input stream). For instance, in the case of the second order
filter, the variables may be the last two outputs, the parameters some direct-
ing coefficients, and the abstract range a radius inferred during the analysis.
Let m be the number of variables to be used and n the number of the fil-
ter parameters. The abstract domain maps tuples in T = Vm × R

n to ele-
ments in the set B of abstract ranges. In case of diverging filters, the abstract
range may be related with the clock counter. So we introduce a concretiza-
tion γB that relates the filter parameters and an abstract range to a subset
of ℘({xi | 1 ≤ i ≤ m} ⊎ clock → R). The variable xi denotes the value of
the i-th variable involved in the computation of the next output whereas the
variable clock denotes the value of the clock counter. The set of environments
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that satisfy a constraint c = ((X1, . . . , Xm, α1, . . . , αn), b) ∈ T × B is given by
the concretization ΓB(c) that is defined as the set of all environments ρ for
which there exists a function f ∈ γB((α1, . . . , αn), b) such that ρ(Xi) = f(xi)
for any i between 1 and m and such that ρ(clock) = f(clock). An operator
⊔B ∈ B × B → B is used to merge constraints related to the same tuple, but
coming from distinct flows. Another operator ⊓B ∈ ℘(B) \ {∅} → B is used to
take the meet of constraints related to the same tuple 6 .

In order to perform abstract iterations, we introduce an element ⊥B ∈ B that
provides the basis of iterations. We also use extrapolation operators ▽B ∈
B × B → B and △B ∈ B × B → B to approximate concrete post-fixpoint.

When computing assignment X = E in the abstract, we need to know which
constraints are required in the precondition. For that purpose, we introduce
a primitive rlvt ∈ E 7→ ℘(T). The set rlvt(E) denotes the set of tuples
corresponding to the constraints that are modified by this assignment (usually
the tuples containing some variables that occurs in the expression E). Then
each constraint associated with a tuple in rlvt(E) provides another constraint
that tied another tuple of variables. To compute this constraint we need to
extract some information from the expression E, such as the filter coefficients
and a bound on the current input. To achieve this goal, we may have to use the
constraints in the underlying domain. We introduce the set info of the data
that can be collected from an assignment. Then we introduce the primitive pt
that takes an assignment, a tuple t of variables and of filter parameters in T,
and interval constraints ρ♯ ∈ V ∪ {clock} → I from the underlying domain.
Then the primitive pt returns a pair made of a tuple of variables and of filter
parameters, and the information that is required to compute the iteration of
the filter. Last, we introduce a primitive δ ∈ info × B → B. The primitive
δ collects the information given by the primitive pt and the current abstract
ranges of the filter. Then it updates the abstract ranges. When computing
a filter iteration, some abstract properties may constrain the same tuple of
variables: in such a case we use the abstract primitive ⊓B to take the meet of
these constraints.

To deal with diverging filters, filter constraints may relate some values to the
clock counter. In such a case, we introduce an abstract primitive clock ∈ B →
B to simulate the increment of the clock counter.

Last primitives describe the interaction between a filter domain and the un-
derlying domain. A primitive build ∈ R

n ×{xi | 1 ≤ i ≤ m} → I × {xi | 1 ≤
i ≤ m}2 → B receives the filter parameters, some ranges for both the filter
initial inputs and the filter initial outputs, and equality constraints from the

6 In practice, the result of a meet operator may depend on the order of the argu-
ments, so a function from B+ (where B+ denotes the set of finite and non empty
sequences of elements in B) into B would have been more appropriate.
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underlying domain about these initial values. Then it builds an abstract range
for the filter. It is useful either at the filter initialization, or when the filter is
reset. Conversely, the function to ∈ R

n × B × I → ({xi | 1 ≤ i ≤ m} → I)
extracts information about the range of the output stream to be passed to the
underlying domain. To deal with diverging filters, it is necessary to relate the
range of the output stream to the clock counter. In to(p, a, i), p encodes the
filter parameters, a denotes some abstract ranges for the filter output, and i

is the range of the clock counter.

Def. 13 formalizes the definition of these primitives and gives their soundness
requirements.

Definition 13 (Generic extension) An abstract extension is given by a tu-
ple (T,B, γB ,⊔B ,⊓B ,⊥B ,▽B ,△B ,rlvt, info, pt, δ,tick,build,to) so that:

(1) structure:
• T = Vm × R

n, where m,n ∈ N;
• B is a set of abstract ranges;
• γB ∈ R

n × B → ℘({xi | 1 ≤ i ≤ m} ⊎ {clock} → R) is a concretization
map;

• ∀p ∈ R
n, ∀a, b ∈ B, γB(p, a) ∪ γB(p, b) ⊆ γB(p, a ⊔B b);

• ∀p ∈ R
n, ∀A ∈ ℘(B) \ {∅}, ⋂{γB(p, a) | a ∈ A} ⊆ γB(p,⊓BA);

(2) extrapolation primitives:
• ⊥B is an abstract element in B;
• ▽B is a widening operator such that: ∀a, b ∈ B, ∀p ∈ R

n, γB(p, a) ∪
γB(p, b) ⊆ γB(p, a▽Bb); and ∀ (ai) ∈ BN, the sequence (a▽i ) defined by
a▽0 = a0 and a▽i+1 = a▽i ▽Bai+1 is ultimately stationary;

• △B is a narrowing operator such that: ∀a, b ∈ B, ∀p ∈ R
n, γB(p, a) ∩

γB(p, b) ⊆ γB(p, a△Bb); ∀ (ai) ∈ BN, the sequence (a△i ) defined by a△0 =
a0 and a△i+1 = a△i △Bai+1, is ultimately stationary;

(3) transfer functions:
• assignments: rlvt maps an expression E ∈ E to a subset T of T;
info is a set of filter parameters; ∀X ∈ V,E ∈ E ,t ∈ T ,ρ♯ ∈ V → I,
we have pt(X = E, t, ρ♯) ∈ T × info and ∀t ∈ rlvt(E), a ∈ B, such
that ρ ∈ ΓB(t, a) ∩ γI(ρ♯), we have 7 JX = EK

mc
(ρ) ⊆ ΓB(t′, δ(info, a)),

with (t′, info) = pt(X = E, t, ρ♯);
• clock ticks: tickB ∈ B → B satisfies: for any tuple of parameters
p ∈ R

n, for any abstract range a ∈ B, we have {f [clock 7→ f(clock+
1)] | f ∈ γB(p, a)} ⊆ γB(tickB(p, a)).

(4) conversion primitives:
• filter constraint synthesis from the underlying domain:

7 We recall that ΓB(((Xi), p), a)) is defined as the set of all environments ρ for
which there exists a function f ∈ γB(p, b) such that ρ(Xi) = f(xi) for any i between
1 and m and such that ρ(clock) = f(clock).
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∀p ∈ R
n, ∀(fI ,R) ∈ ({xi | 1 ≤ i ≤ m} → I) × {xi | 1 ≤ i ≤ m}2, for

any mapping f ∈ {xi | 1 ≤ i ≤ m}⊎{clock} → R, if f(xi) ∈ fI(xi) for
each i such that 1 ≤ i ≤ m and if f(xi) = f(xj) for each (xi, xk) ∈ R,
then the mapping f belongs to the concretization γB(p,build(p, fI ,R));

• interval constraint synthesis:
to ∈ R

n × B × I → ({xi | 1 ≤ i ≤ m} → I) and for any tuple p ∈ R
n

of parameters, any abstract range a ∈ B, and any interval I for the
clock counter, for any mapping f ∈ {xi | 1 ≤ i ≤ m}⊎{clock} → R, if
f ∈ γB(p,B) and if f(clock) ∈ I, then we have f(xi) ∈ to(p, a, I)(xi)
for any integer i between 1 and m.

The next subsection describes how to build an autonomous abstract domain
from these primitives.

5.3 Abstract domain

We now build an abstraction from a generic extension. We first enrich the set
B with an extra element ⊤ 6∈ B. That element denotes the fact that a tuple
is tied to no constraint. We set γB(p,⊤) = {xi | 1 ≤ i ≤ m} ⊎ {clock} → R

and to(t,⊤, I) = [ 7→ R]. We also lift other primitives of the domain so that
they return ⊤ as soon as one of their arguments is ⊤. We also extend the
definition of ⊓B by ⊓B(∅) = ⊤. The abstract domain Env♯F = (T → B) is
related to ℘(Env) by the concretization function γF which maps f ∈ Env♯F to
the set of environments

⋂{ΓB(t, f(t)) | t ∈ T} that satisfy all the constraints
encoded by f . The operator ⊔F applies component wise the operator ⊔B . The
⊥F element maps each tuple to the element ⊤. The operators (▽F ,△F ) are
defined component wise. The abstract assignment may require information
about variable ranges in order to extract filter parameters (in particular the

input values). The abstract assignment assign
ρ♯

F (X = E, f) of an abstract
element f under the interval constraints ρ♯ ∈ V → I, is given by the abstract
element f ′ where:

(1) if E is a variable Y , each constraint containing Y gives a constraint for
X: we take f ′(t) = f(σt), where σ substitutes each occurrence of X by
Y in the tuple t of variables and of parameters;

(2) otherwise, we remove each constraint involving X, and add each con-
straint corresponding to some filter iteration: we define f ′(t) as f(t)
whenever t ∈ (V \ {X})m × R

n, otherwise, we define 8 f(t) as:

⊓B{δ(info, f(t−1)) | (t, info) = pt(X = E, t−1, ρ
♯)}.

8 We recall that, by definition, ⊓B(∅) = ⊤
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Since filter invariants do not rely on guards, we set guardF (X, I, f) = f . Each
tick of clock is applied with each filter constraint, so we define the primitive
tickF component-wise.

We have no information about the clock counter, so the function rangeF (f)
maps each variable X to the interval:

⋂



























toF ((ai), f(t),R)(xi)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∃i ∈ N, ∃t ∈ T, 1 ≤ i ≤ m,

t matches (Y1, . . . , Ym, a1, . . . , an),

Yi = X



























;

since filters do not generate syntactic equality constraints, we take equF = ∅.
We also set assignF (X = E, f) = assign

rangeF (f)
F (X = E, f). We also ig-

nore the constraints that are passed by the other domains, this way we take
redF (ρ

♯, a) = a. We define the tupleAF as: (Env♯F ,γF ,⊔F ,⊥F ,▽F ,△F ,assignF ,
guardF ,tickF ,rangeF ,redF ,equF ).

Theorem 14 The tuple AF is an abstraction.

5.4 Product and approximate reduced product

Unfortunately the abstraction AF cannot compute any constraint, mainly be-
cause of inaccurate assignments and guards, and because abstract iterations
always return the top element. Hence we use a reduced product between this
abstraction and an existing underlying abstraction to refine and improve the
analysis.

Let (Env♯0,γ0,⊔0,⊥0,▽0,△0,assign0,guard0,tick0,range0,red0,equ0)
be an abstraction that we denote by A0. We first introduce the product of
the two abstractions. The abstract domain Env♯ is the Cartesian product
Env♯0 × Env♯F . The operator ⊔, the extrapolation operators (⊥,▽,△), the
transfer functions (assign,guard,tick), the function red and are all de-
fined pairwise. The concretization and the remaining refinement primitives are
defined as follows:















γ(a, f) = γ0(a) ∩ γF (f),

equ(a, f)(X, Y ) ⇐⇒ equ0(a)(X, Y ) or equF (f)(X, Y ),

range(a, f)(X) = range0(a)(X) ∩ A(X),
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where A(X) is defined as follows:

⋂







































toF ((pj), f(t),range0(a)(clock))(xi)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∃i ∈ N, 1 ≤ i ≤ m,

∃t ∈ T, t matches

((Yj)1≤j≤m, (pj)1≤j≤n)

and Yi = X







































,

which corresponds to taking the meet of collected information. We notice that
we have take into account the value of the clock counter when abstracting the
range of the output stream.

We refine abstract assignments and binary operators:

• we want to compute the assignment X = E, starting from the precondition
(a, f):
· before the assignment, we synthesize the filter constraints that are relevant
for the assignment and that are missing: so we define f ′(t) where tmatches
((Xk)1≤k≤m, (pk)1≤k≤n) as follows:







build((pi), φ,R) if t ∈ rlvt(E) and f(t) = ⊤,

f(t) otherwise,

where φ = [xk 7→ range0(a)(Xk)] and (xk, x
′
k) ∈ R if and only if

(Xk, X
′
k) ∈ equ0(a);

· during the assignment, we use the underlying constraints to interpret the
expression: so we define (a′′, f ′′) as follows:

(assign0(X = E, a),assign
range0(a)
F (X = E, f ′));

· and after the assignment, we use the filter constraints to refine the prop-
erties in the underlying domain: so we define assign′(X = E, (a, f)) by
(red0(range(a

′′, f ′′), a′′), f ′′).
• we want to apply a binary operator ⊛

′ (where ⊛ ∈ {⊔,△,▽}) with two
abstract elements (a1, f1) and (a2, f2):
· before applying the binary operator, we refine the filter constraints so
that both arguments constrain the same set of tuples: so for i ∈ {1; 2}, we
define f ′

i(t) where t matches ((Xk)1≤k≤m, (pk)1≤k≤n) as follows:







build((pi), φi,Ri) if fi(t) = ⊤ and f2−i(t) 6= ⊤,

fi(t) otherwise,

where φi = [xk 7→ range0(ai)(Xk)] and (xk, x
′
k) ∈ Ri if and only if

(Xk, X
′
k) ∈ equ0(ai);
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· we then apply the classical operator: we define (a′′, f ′′) as (a1⊛0 a2, f
′
1⊛F

f ′
2);

· after applying the binary operator, we use the filter constraints to re-
fine the underlying domain properties: we define (a1, f1) ⊛

′ (a2, f2) by
(red0(range(a

′′, f ′′), a′′), f ′′).

We set A = (Env♯, γ,⊔′,⊥,▽′,△′,assign′,guard,tick,range, equ,red).

Theorem 15 The tuple A is an abstraction.

PROOF. We sketch the proof of Th. 15: all soundness requirements come
from the soundness of both the underlying domain and the filter domain.
During an extrapolation iteration (ascending or descending), the set of fil-
ter constraints (i.e., the set of the tuples of variables and of filter parameters,
that are not mapped into ⊤) is ultimately stationary (since the number of con-
straints is increasing, whereas V is finite); then each sequence of constraints
associated to a given tuples of variables and of parameters is ultimately sta-
tionary; once the information that refines the underlying domain is fixed, the
underlying domain termination criteria in Def. 6.(2) apply. 2

6 Numerical abstract domains

6.1 Abstracting real numbers

Until now, we have only used real numbers. In order to implement numerical
abstract domains, we use a finite subset F of real numbers (such as the floating-
point numbers) that contains the set of numbers {0, 1} and that is closed
under negation. The set F is obtained by enriching the set F with two extra
elements +∞ and −∞ that respectively describe the reals that are greater
(resp. smaller) than the greatest (resp. smallest) element of F. We denote the

set {x ∈ F | x ≥ 0} by F
+ and the set F

+ ∪ {+∞} by F
+
. The result of a

computation on elements of F may be not in F. So we suppose that we are
given a rounding function ⌈ ⌉ ∈ R → F such that ⌈x⌉ ≥ x, for any x ∈ R. We
also suppose that ⌈x⌉ ≤ 0, for any x ≤ 0. Then we define the rounding function
⌊ ⌋ ∈ R → F as ⌊x⌋ = −⌈−x⌉. Thanks to the properties of the function ⌈ ⌉,
we know that for any element x ∈ R, we have ⌊x⌋ ≤ x and that for any x ≥ 0,
we have ⌊x⌋ ≥ 0. In the following, we will often divide some expressions by
other expressions of the form 1−α when 0 < α < 1. In order to achieve these
kind of computation steps, we assume that for any x > 1, ⌊x− 1⌋ > 0 and
that for any x < 1, ⌊1− x⌋ > 0. Roughly speaking it means that there are at
least as many representable numbers around 0 as around 1 which is usually
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true in floating-point arithmetics because of denormalized numbers. The set
F is also endowed with a finite widening ramp L [2, Sect. 7.1.2]. For any two
elements a and b in F we set a▽

F
b = min{l ∈ L ∪ {a; +∞} | max(a, b) ≤ l}.

We now introduce two integers q and r in order to tune our extrapolation
strategy. We introduce the domain Fq,r as the set F×Z. In a pair (e, k) ∈ Fq,r,
the representable number e denotes a set of real numbers whereas the integer
k encodes an abstraction of the extrapolation history of the constraint. More
precisely, when in upward iteration, the number k encodes the number of
time the constraint has been unstable without having been widened. When
in downward iteration, it counts the number of time the constraint has been
narrowed. The domain Fq,r is related to the concrete domain ℘(R) via the
concretization γFq,r that maps any pair (e, k) into the set of the reals r such
that |r| ≤ e. The bottom element ⊥Fq,r is (−∞, 0). The binary operators ⊔Fq,r ,
▽Fq,r , and △Fq,r are defined as follows:

• (a1, k1) ⊔Fq,r (a2, k2) = (max(a1, a2), 0);

• (a1, k1)▽Fq,r(a2, k2) =















(a1, k1) if a1 ≥ a2

(a2, k1 + 1) if a2 > a1 and k1 < q

(a1▽F
a2, 0) otherwise;

• (a1, k1)△Fq,r(a2, k2) =







(a1, k1) if a1 ≤ a2 or k1 ≤ (−r)

(a2,min(k1, 0)− 1) if a2 < a1 and k1 > (−r);

A constraint is only widened if it has been unstable q times since its last
widening. On the other side, narrowing stops after r iterations.

6.2 Approximating the iterates of numerical functions

When analyzing filters, we iterate functions f ∈ R
2 → R of the form f(i, x) =

αx + i. In f(i, x), the variable i encodes some information about the input
stream, whereas the variable x encodes some information about the output
stream. This way, an iteration of f is a sequence of the form u0 = i0, un+1 =
f(in+1, un), for a given input sequence (in).

When |α| < 1, for any i ∈ R the function [x 7→ (i, x)] is convex and we know
explicitly a real fl(i) such that f(i, fl(i)) ≤ fl(i). In such a case, we can use
the function fl to accelerate the abstraction of the iterates of f . We propose a
solution which is sound (even if the function fl is not implemented correctly)
and accurate (we do not jump to the limit during the first unrolled iterates
and we do not jump above the limit when the input stream is constant) and
terminates.

When the function is not convex, the iterates may diverge. Nevertheless, we
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can use the arithmetic-geometric progression domain [10] to relate the value
of the iterates to the value of the clock counter.

6.2.1 Generic domain

We now define a parametric domain for abstracting the iterates of a function
f of the form f(x, i) = αx + i. The abstract domain F∗ is a generic abstract
domain to establish relations between the clock counter and a real value.
Thus, it is related to ℘(R2) via a concretization map γF∗ . The domain F∗ is
fitted with the following binary operators: an abstract union ⊔F∗ , a widening
operator ▽F∗ , and a narrowing operator △F∗ . It also contains a bottom element
⊥F∗ that is the basis of abstract iterations. An operator ⊓F∗ takes the meet
of abstract elements. We also require two primitives affF∗ and tickF∗ to
handle respectively with the iteration of affine functions and with the clock
counter increment. Last, the primitive c

F→F∗ convert a representable number
into a property in the domain F∗. Conversely, the primitive cF∗→F

weakens an
abstract property in F∗ to get a sound bound in F over the abstracted value
(this bound depends on the range for the clock counter).

Definition 16 (Iteration domain) An iteration domain is given by a tuple
(F∗, γF∗ ,⊔F∗ ,⊓F∗ ,⊥F∗ ,▽F∗ ,△F∗ ,affF∗ ,tickF∗ ,c

F→F∗ ,cF∗→F
) which satis-

fies:

(1) structure:
• F∗ is an abstract domain of properties;
• γF∗ ∈ F∗ → ℘(R2) is a concretization map;
• ∀a, b ∈ F∗, γF∗(a) ∪ γF∗(b) ⊆ γF∗(a ⊔F∗ b);
• ∀A ∈ ℘(F∗) \ ∅, ⋂{γF∗(a) | a ∈ A} ⊆ γF∗(⊓F∗A);

(2) extrapolation primitives:
• ⊥F∗ is an element in F∗;
• ▽F∗ is a widening operator such that: ∀a, b ∈ F∗, γF∗(a) ∪ γF∗(b) ⊆
γF∗(a▽F∗b); and ∀ (ai) ∈ F∗N, the sequence (a▽i ) defined by a▽0 = a0
and a▽n+1 = a▽n▽F∗an+1 is ultimately stationary;

• △F∗ is a narrowing operator such that: ∀a, b ∈ F∗, γF∗(a) ∩ γF∗(b) ⊆
γF∗(a△F∗b); ∀ (ai) ∈ F∗N, the sequence (a△i ) defined by a△0 = a0 and
a△n+1 = a△n△F∗an+1, is ultimately stationary;

(3) transfer functions:
• function iteration: for any real numbers α and β such that α > 0
and β ≥ 0, affF∗ [α, β] is a function in F∗ → F∗ such that: for any
a ∈ F∗,(vc, x) ∈ γF∗(a), we have: (vc, αx+ β) ∈ γF∗(affF∗ [α, β](a));

• clock ticks: tickF∗ is a function in F∗ → F∗ such that: ∀a ∈ F∗,
{(n+ 1, x) | (n, x) ∈ γF∗(a)} ⊆ γF∗(tickF∗(a)).

(4) conversion primitives:
• c

F→F∗ is a function in F → F∗ such that for any representable number
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f ∈ F, we have (R+ × {r | |r| ≤ f}) ⊆ γF∗(c
F→F∗(f));

• cF∗→F
is a function on F∗ ×I → F such that for any abstract element

a ∈ F∗ and any interval I ∈ I for the clock counter, any real number
r such that there exists a clock value vc ∈ I such that (vc, r) ∈ γF∗(a),
we have |r| ≤ cF∗→F

(a, I).

6.2.2 A domain for accelerating the iterates of convex functions

We introduce an abstract domain F∗
q,r to accelerate the iterates of convex

functions. The domain F∗
q,r is the Cartesian product between F0,r and Fq,0. It

is related to ℘(R2) via a concretization map γF∗

q,r
that maps elements (a, b) to

R×(γF0,r(a)∩γFq,0(b)). This way, it ignores the clock counter and each abstract
elements describe two constraints. The element ⊥F∗

q,r
is the pair (⊥F0,r ,⊥Fq,0).

Abstract union, abstract intersection, and narrowing are defined pairwise. The
widening operator is defined as follows:

((a1, k1), (b1, l1))▽q,r((a2, k2), (b2, l2)) = ((min(a3, b3), 0), (b3, l3)),

where (a3, k3) = (a1, k1)▽F0,r(a2, k2) and (b3, l3) = (b1, l1)▽Fq,0(b2, l2).

The elements a and b in the pair (a, b) are intended to describe the same set of
reals. Nevertheless, they will be iterated using distinct extrapolation strategies
and distinct transfer functions. The element a will be computed via a transfer
function f ∈ F → F, whereas b will be computed via a relaxed transfer
function that try to guess the fixpoint of f . The element b is used to refine
the element a after widening, in case it becomes more precise. This allows
computing arbitrary thresholds during iterations. To ensure termination, it is
necessary also to widen b, but this is not done at each iteration.

We now define transfer functions and conversion primitives.

(1) affine transformations: We first introduce two functions f ∈ R
2 → F → F

and g ∈ R
2 → F. The function f computes an affine transformation in

floating-point arithmetics, that is to say that we define f by f(α, β)(x) =
⌈⌈⌈a⌉x⌉+ ⌈b⌉⌉. The function g gives an inductive limit to an affine trans-
formation. It should satisfy f(α, β)(g(α, β)) ≤ g(α, β). If there would be
no rounding errors in the computation of f , the function g could be
defined as g(α, β) =

⌈

β
⌊1−α⌋

⌉

whenever |α| ≤ 1, and as g(α, β) = +∞ oth-
erwise. Nevertheless, because of the rounding errors in the computation
of f , we would have f(α, β)(g(α, β)) 6≤ g(α, β). So g would provide sound
limits, but the analyzer would be unable to prove its soundness. Such a
choice would lead to an error-prone implementation of the domain. So
we propose to relax the definition of g, so that it provides a bound that
the analyzer can check. For that purpose, we suppose that the difference
between any computation step in floating-point arithmetics and the same
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computation step in the real fields in always bounded by a maximal error
which is an affine function of the result of the computation step in the
real field (this property is satisfied in floating-point arithmetics whenever
computation steps do not overflow [16]). As a consequence, we can pro-
vide two coefficients εa > 0 and εM > 0, such that for any representable
number x ∈ F, we have ⌈αx+ β⌉ − (αx + β) ≤ εa(αx + β) + εM and
(αx + β) − ⌊αx+ β⌋ ≤ εa(αx + β) + εM (these coefficients are only de-
fined by the size of the floating point number representation). Then, we
can define g(α, β) as β+εM

1−|α|−εa
whenever |α|+εa < 1, and as g(α, β) = +∞

otherwise.
We define the primitive affF∗

q,r
as follows:

affF∗ [α, β]((a, k), (b, l)) = (f(α, β)(a),max{f(α, β)(b), g(α, β)}).

Thus if g provides sound bounds, the second domain jumps directly at
an inductive bound. The transfer function is sound even if the function g

is not. In the case when g is not sound, the second domain will no jump
directly at the limits, so some extrapolation will be necessary to find an
inductive invariants which will cause a loss of accuracy. Before the begin
of the extrapolation process, the first domain is more precise which gives
crucial information during the first iterates.

(2) clock ticks: Abstract properties do not depend on the clock, so we set
tickF∗(a) = a.

We now describe conversion primitives. We define the abstract element syn-
thesis as c

F→F∗

q,r
(m) = ((m, 0), (m, 0)). Then, given an abstract element, each

component encodes a sound bound, so we define cF∗

q,r→F
(((a, k), (b, l)), I) =

min{a, b}

We define the tuple Aq,r as:

(F∗
q,r, γF∗

q,r
,⊔F∗

q,r
,⊓F∗

q,r
,⊥F∗

q,r
,▽F∗

q,r
,△F∗

q,r
,affF∗

q,r
,tickF∗

q,r
,c

F→F∗

q,r
,cF∗

q,r→F
).

Theorem 17 The domain Aq,r is an iteration domain.

6.3 The arithmetic-geometric progression domain

We introduce the domain F∗
d as the set of the 5-tuples (M,a, b, a′, b′) ∈ (F

+
)5.

The domain F∗
d is ordered by the product order ⊑F∗

d
. Intuitively, an element

(M,a, b, a′, b′) of this domain encodes an arithmetic-geometric progression.
The real M is a bound on the initial value of the progression. The affine
transformation [X 7→ a′X + b′] over-approximates the composition of all the
affine transformations that can be applied to a value between two consecutive
clock ticks. Finally, the affine transformation [X 7→ aX+b] over-approximates
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the composition of all the affine transformations that have been applied to a
value since the last clock tick. Thus, given a clock value vc ∈ N, we can define
the concretization γvcF∗

d
(d) of such a tuple d = (M,a, b, a′, b′) ∈ F∗

d by the

set of all the elements X ∈ R such that |X| ≤ [X 7→ aX + b](([X 7→ a′X +
b′])(vc)(M)). The element ⊥F∗

d
is defined as (0, 0, 0, 0, 0). The join operator ⊔F∗

d

(resp. the widening operator ▽F∗

d
, resp. the narrowing operator △F∗

d
applies the

maximum function (resp. the widening operator ▽
F
, resp. the first projection)

component wise.

We now define transfer functions and conversion primitives:

(1) The primitive affF∗

d
applies an affine transformation with an element

in F∗
d . Let d = (M,a, b, a′, b′) be an element in F∗

d , let α and β0 be
two real coefficients. We define the element affF∗

d
[α, β](d) ∈ F∗

d by
(M, ⌈a× |α|⌉ , ⌈b+ |β|⌉ , a′, b′), when α 6= 0, and by (⌈|beta|⌉ , 1, 0, 1, 0),
otherwise.

(2) The primitive tickd ∈ F∗
d → F∗

d simulates clock ticks. It maps any ele-
ment d = (M,a, b, a′, b′) into the element (M, 1, 0,max(a, a′),max(b, b′)) ∈
F∗

d . Thus, just after the clock tick, the arithmetic-geometric progression
that has been applied since the last clock tick is the identity. The progres-
sion between two clock ticks is chosen by applying the worst case among
the progression between the last two clock ticks, and the progression be-
tween any other two consecutive clock ticks.

(3) The arithmetic and geometric constraints synthesis is defined as follows:

c
F→F∗

d
(m) = (M, 1, 0, 1, 0);

(4) The interval cF∗

d
→F

((M,a, b, a′, b′), [m
vc
;M

vc
]) is given by [−l; l] where:

• l = max(umvc
, uMvc

);
• u

vc
= ⌈⌈a× v

vc
⌉+ b⌉;

• v
vc

=







⌈M + ⌈vc× b′⌉⌉ if a′ = 1,
⌈

c+1 + c+2

⌉

otherwise;

•






exp−
0 = 1, exp−

2×n = ⌊exp−
n × exp−

n ⌋ ,
exp−

2×n+1 = ⌊⌊exp−
n ×(exp−

n )⌋ × a′⌋ ;

•






exp+
0 = 1, exp+

2×n = ⌈exp+
n × exp+

n ⌉ ,
exp+

2×n+1 = ⌈⌈exp+
n × exp+

n ⌉ × a′⌉ ;

• c+1 =







⌈

exp+
vc
×
⌈

M − c−2
⌉⌉

if M ≥ c−2
⌈

exp−
vc
×
⌈

M − c−2
⌉⌉

otherwise;

• c−2 =
⌊

b′

⌈1−a′⌉

⌋

and c+2 =
⌈

b′

⌊1−a′⌋

⌉

.
Remark 18 In the implementation, we use memoization to avoid com-
puting the same exponential twice.
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We define the tuple Aq,r as:

(F∗
q,r, γF∗

q,r
,⊔F∗

q,r
,⊓F∗

q,r
,⊥F∗

q,r
,▽F∗

q,r
,△F∗

q,r
,affF∗

q,r
,tickF∗

q,r
,c

F→F∗

q,r
,cF∗

q,r→F
).

Theorem 19 The domain Aq,r is an iteration domain.

PROOF. See [10]. 2

In the rest of the paper, we do not mention the extrapolation strategy param-
eters p and q anymore. So we denote by F our domain for abstracting bounds
on real numbers (i.e. we use this domain to collect bounds on input streams)
and by F∗ our domain for abstracting the iterates of affine functions (either
as a pair of real bounds, or as an arithmetic and geometric progression).

7 Simplified basic filters

Now, we propose a framework to build filter extension in the case of linear
filters. First, we show how to build a history insensitive abstraction of the
output stream of the first order filters and of the second order filters. Then,
we show how we can refine a history insensitive abstraction in order to obtain
a history sensitive one. Last, we show how the abstraction of first order filters
and of second order filters can be used as basic blocks to build the abstraction
of higher order filters.

To get the rough abstraction, we forget any historical information about the
inputs during the filter iterations, so that each output is computed as an affine
combination of the previous outputs. The constant term is an approximation of
the contributions of both the previous inputs and the floating-point rounding
errors.

7.1 Simplified high passband filter

A simplified high passband filter relates an input stream En to an output
stream defined by Sn+1 = aSn + En.

Theorem 20 (Simplified first order filter (with rounding errors))
Let εa ≥ 0, D ≥ 0, m ≥ 0, a, X and Z be real numbers such that |X| ≤ D and
aX − (m+ εa|X|) ≤ Z ≤ aX + (m+ εa|X|). We have: |Z| ≤ (|a|+ εa)D+m.
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PROOF. We apply Thm. 1 by replacing m with m + εa|X|: we obtain that
|Z| ≤ |a|D + (m+ εa|X|). Then, we conclude that |Z| ≤ (|a|+ εa)D +m. 2

We derive the following extension:

(1) structure and extrapolation primitives:
• a constraint relates the current output, the coefficient a of the filter,
a relative error coefficient, and an abstract range: thus we set Tr1 =
(V × F

2);
• abstract ranges are abstracted in any domain for iterating linear func-
tions: we set (Br1 ,⊥r1 ,⊔Br1

,▽Br1
,△Br1

) = (F∗,⊥F∗ ,⊔F∗ ,▽F∗ ,△F∗);
• the concretization maps the abstract range to a set of values for the
variable x1 according to the value of the clock counter: a function f ∈
{x1, clock} → R is in the concretization γBr1

((a, εa), e) if and only if
there exists (vc,m) ∈ γF∗(e) such that f(clock) = vc and |f(x1)| ≤ m;

(2) assignments:
• to compute transfer function, we need the filter coefficient, the relative
error coefficient, and a bound on the current input: thus, we set info =
F
2 × F

• rlvtr1 maps each expression E to the set of the tuples (X, a, εa), such
that E matches I ×X + E ′ with I ⊆ [1

2
; 1[ and I = [a− εa; a+ εa];

• then we shift variables and collect a bound on the current input: we set
ptr1(Z = I ×X +E ′, (X, a, εa), ρ

♯) = ((Z, a, εa), (a, εa,m)) where m is
a bound on the absolute value of the expression E ′ in any environment
in the concretization of ρ♯;

• then we update the abstract range thanks to the domain F∗: we define
δr1((a, εa,m), r) as affF∗ [⌈|a|+ |εa|⌉ ,m] (r);

(3) clock ticks:
the abstraction of a clock tick is obtained by applying the clock tick on
the abstract range: we set tickBr1

= tickF∗ ;
(4) conversion primitives:

• the primitive buildr1 just collect the abstraction of initial output value:
we set buildr1((a, εa), f,R) = cR→F∗(max{⌈−i⌉ , s}), where f(x1) =
[−i, s].

• conversely, the primitive tor1 collects the range for the clock counter
and extracts a bound for the output: we define tor1((a, εa), e, I) as the
function [x1 7→ [−cF∗→R(e, I);cF∗→R(e, I)]].

We define the tuple Gr1 as (Tr1 ,Br1 , γBr1
,⊔Br1

,⊓Br1
,⊥Br1

,▽Br1
,△Br1

,rlvtr1 ,

infor1 , ptr1 , δr1 ,tickr1 ,buildr1 ,tor1).

Theorem 21 The tuple Gr1 is a generic extension.
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7.2 Simplified second order filter

A simplified second order filter relates an input
stream En to an output stream defined by:

Sn+2 = aSn+1 + bSn + En+2.

Thus we experimentally observe, in Fig. 8, that start-
ing with S0 = S1 = 0 and provided that the input
stream is bounded, the pair (Sn+2, Sn+1) lies in an el-
lipse. Moreover, this ellipse is attractive, which means
that an orbit starting out of this ellipse, will get closer
of it. This behavior is explained by Thm. 22.
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Fig. 8: Orbit.

Theorem 22 Let a, b, εa ≥ 0, εb ≥ 0, k ≥ 0, m ≥ 0, X, Y be real numbers,
such that a2+4b < 0, and X2−aXY −bY 2 ≤ k2. Let Z be a real number such
that: aX + bY − (m+ εa|X|+ εb|Y |) ≤ Z ≤ aX + bY + (m+ εa|X|+ εb|Y |).

Let δ be 2
εb+εa

√
−b√

−(a2+4b)
, we have:

(1) |X| ≤ 2k

√

√

√

√

b

a2+4b
and |Y | ≤ 2k

√

√

√

√

−1

a2+4b
;

(2) Z2 − aZX − bX2 ≤
(

(
√
−b+ δ)k +m

)2
;

PROOF.

(1) We have 4b < a2, so b < 0.

• We have X2−aXY −bY 2 = −b
(

Y − a
2b
X
)2
+
(

1− a2

b

)

X2. Since b < 0,

4b + a2 < 0, k ≥ 0, and X2 − aXY − bY 2 ≤ k2, we obtain that

|X| ≤ 2k
√

b
a2+4b

;

• We have X2−aXY −bY 2 =
(

X − a
2
Y
)2−

(

4b+a2

4

)

Y 2. Since 4b+a2 < 0,

k ≥ 0, and X2 − aXY − bY 2 ≤ k2, we obtain that |X − a
2
Y | ≤ k and

|Y | ≤ 2k
√

−1
a2−4b

.

(2) We apply Thm. 3 by replacing m with m+ εa|X|+ εb|Y |. We obtain that

Z2 − aZX − bX2 ≤
(√

−bk + (m+ εa|X|+ εn|Y |)
)2
. Moreover, since√

−bk + (m + εa|X| + εn|Y |) ≥ 0, εa ≥ 0, and εb ≥ 0, we conclude that

Z2 − aZX − bX2 ≤
(√

−bk +
(

m+ εa2k
√

b
a2+4b

+ εb2k
√

−1
a2−4b

))2
. Then,
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(a) Abstracting the underlying con-
straints into an ellipse.
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(b) Abstracting an ellipse into inter-
val ranges.

Fig. 9. Reduction between abstract domains.

Z2 − aZX − bX2 ≤
((√

−b+ 2
εb+εa

√
−b√

−(a2+4b)

)

k +m

)2

. 2

Remark 23 Because of rounding errors, some filters that would be stable
when computed in real arithmetics may diverge when computing in floating
points arithmetics. Nevertheless, we can prove that a second order filter con-

verge when
√
−b+ δ < 1 (where δ = 2

εb+εa
√
−b√

−(a2+4b)
).

We derive the following abstract extension:

(1) structure and extrapolation operator:
• a constraint relates the last two outputs, the coefficients a and b of
the filter, relative error coefficients, and an abstract range: thus we set
Tr2 = (V2 × F

4);
• abstract ranges are abstracted in any domain for iterating linear func-
tions: we set (Br2 ,⊥r2 ,⊔Br2

,▽Br2
,△Br2

) = (F∗,⊥F∗ ,⊔F∗ ,▽F∗ ,△F∗);
• the abstract range encodes the ratio of an ellipse: this way, the con-
cretization γBr2

((a, εa, b, εb), e) is given by the set of maps f for which
there exists a pair (vc,m) ∈ γF∗(e) such that: f(clock) = vc and
(f(x1))

2 − af(x1)f(x2)− b(f(x2))
2 ≤ m.

(2) assignments:
• to compute transfer functions, we need the filter coefficients, the relative
error coefficients, and a bound on the current input: thus, we set info =
F
4 × F;

• rlvtr2 maps each expression E to the set of the tuples (X, Y, a, εa, b, εb),
such that E matches Ix ×X + Iy × Y + E ′ with Ix = [a − εa; a + εa],
Iy = [b− εb; b+ εb], and a2 + 4b < 0;

• then we shift variables and collect a bound on the current input: we
define the pair ptr2(Z = Ix ×X + Iy × Y +E ′, (X, Y, a, εa, b, εb), ρ

♯) as
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((Z, Y, a, εa, b, εb), (a, εa, b, εb,m)) where m is a bound on the absolute
value of the expression E ′ in the abstract environment ρ♯ (i.e. in any
environment in the concretization of ρ♯);

• then we update the abstract range thanks to the domain F∗: we define

δr2((a, εa, b, εb,m), r) as affF∗













⌈√
−b
⌉

+









2









⌈εb+⌈εa⌈√−b⌉⌉⌉
⌊√

−⌈⌈a2⌉+⌈4b⌉⌉
⌋

























,m



 (r);

(3) clock ticks:
the abstraction of a clock tick is obtained by applying the clock tick on
the abstract range: we set tickBr2

= tickF∗ ;
(4) conversion primitives:

• to build an abstraction of the initialization state, we distinguish two
cases in accordance with the fact that initial outputs are equal, or not;
this is illustrated in Fig. 9(a) where we obtain two ellipses depending
the fact that we know whether x and y are equal, or not; thus we define
the abstract range buildr2((a, εa, b, εb), f,R) as cR→F∗(⌈√m⌉),

where m =











































⌈√

⌈⌈1− ⌊a+ b⌋⌉ ⌈x2⌉⌉
⌉







if (x1, x2) ∈ R
and 1− a− b ≥ 0;

⌈√

⌈⌈⌈a+ b⌉ − 1⌉ ⌈x2⌉⌉
⌉







if (x1, x2) ∈ R
and a+ b− 1 > 0;

⌈⌈⌈x2⌉+ ⌈⌈|a|x⌉ y⌉⌉+ ⌈|b| ⌈y2⌉⌉⌉ otherwise

and x = max{⌈−ix⌉ , ⌈sx⌉}, x = f(x1), y = max{⌈−iy⌉ , ⌈sy⌉}, y =
f(x2);

• an ellipse can then be enclosed inside a rectangle (e.g. see Fig. 9(b));
thus, if ⌈⌈a2⌉+ ⌈4b⌉⌉ < 0, we define tor2((a, εa, b, εb), e, I) as [x1 7→
[−m1;m1], x2 7→ [−m2,m2]],

where































m1 = cR→F∗













⌈2cF∗→R(e, I)⌉








√

√

√

√

−b

−⌈⌈a2⌉+⌈4b⌉⌉



















 ,

m2 = cR→F∗













⌈2cF∗→R(e, I)⌉








√

√

√

√

1

⌊−⌈⌈a2⌉+⌈4b⌉⌉⌋



















 ;

otherwise, we set tor2((a, εa, b, εb), e, I) = [x1, x2 7→ R].

We define the tuple Gr2 as (Tr2 ,Br2 , γBr2
,⊔Br2

,⊓Br2
,⊥Br2

,▽Br2
,△Br2

,rlvtr2 ,

infor2 , ptr2 , δr2 ,tickr2 ,buildr2 ,tor2).

Theorem 24 The tuple Gr2 is a generic extension.

8 Formal expansion

In this section, we propose a framework to refine the history insensitive ab-
stractions of filters. Thus we propose abstractions that take care of the can-
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cellation effects between the inputs involved in the computation of several
consecutive outputs. To achieve this goal, we split each output value into
three summands: the contribution of the last N inputs if the digital filter were
computed in the real field, the contribution of the initial outputs and of the
other inputs if the digital filter were computed in the real field, and the dif-
ference between the result of the computation in the floating-point world and
the result of the computation in the real field. The integer N is a parameter
of the approximation. Then, the first summand can be symbolically computed
as a known function from the last input values into the real field. The sec-
ond and the third summands both satisfy simplified recursions, so they can
be analyzed by using history insensitive abstractions (we recall that the ab-
stract domains for first and second order simplified filters are given in Sect. 7,
abstract domains for simplified higher order filters are given in Sect. 9).

More formally, our goal is to bound the iterates of a sequence of real num-
bers defined as: Sn = in, for any n such that 0 ≤ n < p, and Sn+p =
F (Sn, . . . , Sn+p−1) + G(En+p+1−q, . . . , En+p) + ǫn+p. Thus, in this section, we
gather all rounding errors in the computation of the value of an expression into
one single value. In this definition, p is the number of consecutive inputs which
are involved in the computation of the next output (i.e. the order of the filter),
q is the number of successive inputs which are involved in the computation
of the next input, the sequence (En)p−q<n is the input stream, the sequence
(Sn)n≥0 is the output stream, and the sequence (εn)n≥p denotes the sequences
of the rounding errors that are performed at each iteration of the filter. The
tuple (in)0≤n<p of real numbers denotes the initial values of the output. The
function F and G are linear (i.e. that is to say that H(λx) = λH(x) and that
H(x+y) = H(x) +H(y), for any H ∈ {F ;G}, any tuple x,y of real numbers
(of correct length), and any real number λ).

8.1 Bounding the contribution of rounding errors

The first step consists in isolating the contribution of rounding errors. We
define the sequence (Rn) as Rn = in, for any n such that 0 ≤ n < p, and
Rn+p = F (Rn, . . . , Rn+p−1) + G(En+p+1−q, . . . , En+p). The sequence (Rn) de-
notes the ideal behavior of the filter (i.e. when it were computed in the real
field). Then we introduce the sequence (εn) which is defined as εn = Sn −Rn,
for any n ∈ N. The sequence (εn) denotes the overall contribution of rounding
errors in the n-th output.

Proposition 25 The sequence (εn) satisfies: εn = 0 for any integer n ∈ N

such that 0 ≤ n < p, and εn+p = F (εn, . . . , εn+p−1) + ǫn+p for any integer
n ∈ N.
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PROOF. We introduce the sequence ε′n of real numbers that is defined as:
ε′n = 0 for any integer n ∈ N such that 0 ≤ n < p, and ε′n+p =F (ε′n, . . . , ε

′
n+p−1)

+ǫn+p for any integer n ∈ N. We prove by induction over n that εn = ε′n for
any n ∈ N.

(1) for any n < p, we have εn = Sn −Rn = in − in = 0 = ε′n;
(2) we suppose that there exists n0 ∈ N such that n0 ≥ p and such that

for any integer n ∈ N that satisfies n < n0 we have εn = ε′n. By
definition, we have εn0 = Sn0 − Rn0 . So εn0 = F (Sn0−p, . . . , Sn0−1) +
G(En0+1−q, . . . , En0) + ǫn0 − F (Rn0−p, . . . , Rn0−1)−G(En0+1−q, . . . , En0).
Then, εn0 = F (Sn0−p, . . . , Sn0−1)− F (Rn0−p, . . . , Rn0−1) + ǫn0 . Since F is
linear, we obtain that εn0 = F (Sn0−p − Rn0−p, . . . , Sn0−1 − Rn0−1) + ǫn0 .
By definition of (εn), we have εn0 = F (εn0−p, . . . , εn0−1) + ǫn0 . By induc-
tion hypotheses, we conclude that εn0 = F (ε′n0−p, . . . , ε

′
n0−1)+ ǫn0 . So, by

definition of (ε′n), we conclude that εn0 = ε′n0
.

So for any integer n ∈ N, we have εn = ε′n. 2

Thanks to Prop. 25, we can bound the contribution of the rounding errors by
using the corresponding simplified filter domain.

8.2 Expanding the output of the ideal filter

To refine the output, we need to bound the sequence Rn. For that purpose,
we express each output Rn as a linear combination of the previous inputs and
of the initial outputs:

Definition 26 (Expansion coefficients) We define the family (cnk)(n,k) of
real numbers indexed by the pairs (n, k) ∈ N

2 of integers such that n ∈ N and
k ≥ p+ 1− q as follows 9 :







cnk = 0 when n < p or k > n,

cnk = F (cn−p
k , . . . , cn−1

k ) +G(δn−q+1
k , . . . , δnk ) otherwise;

and the family (dnk)(n,k) of real numbers indexed by the pairs (n, k) ∈ N
2 of

integers that satisfies k < p as follows:







dnk = δnk when n < p,

dnk = F (dn−p
k , . . . , dn−1

k ) otherwise.

9 The symbol δ denotes the Kronecker function, i.e. δji is equal to 1 if i = j and δ
j
i

is equal to 0 otherwise.
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Proposition 27 (Formal expansion) For any integer n ∈ N, the n-th out-
put of the ideal filter satisfies: Rn =

∑p−1
k=0 d

n
k ik +

∑n
k=p+1−q c

n
kEk.

PROOF. By induction over the integer n ∈ N. 2

Roughly speaking, the coefficient cnk denotes the overall contribution of the k-
th input in the value of the n-th output whereas the coefficient dnk denotes the
overall contribution of the k-th initial output in the value of the n-th output.

Proposition 28 For any pair (k, l) of integers such that p + 1 − q ≤ k ≤ p

and l ≥ 0, we have c
p
k = c

p+l
k+l; for any pair (k, l) of integers such that k ≥ 0

and l ≥ 0, we have c
p+k
p+1−q = c

p+k+l
p+1−q+l.

PROOF. We prove that cpk = c
p+l
k+l by induction first over the integer p− k ∈

N, then over the integer l ∈ N. We prove that cp+k
p+1−q = c

p+k+l
p+1−q+l by induction

first over the integer p+ k ∈ N, then over the integer l ∈ N. 2

8.3 Bounding the contribution of the last inputs

To compute an accurate bound on the value of the sequence (Rn), we propose
to isolate the contribution of the last inputs. First, we fix an integer parameter
N ∈ N such that both N ≥ p and N ≥ q. Then, we define the contribution
last(N, n) of last N inputs in the n-th output as

∑n
k=n+1−N cnkEk and the

contribution tail(N, n) of both the other inputs and the initial inputs as Rn−
last(N, n).

Proposition 29 If n > N + p, we have last(N, n) =
∑p

k=p+1−N c
p
kEk+n−p.

PROOF. We suppose that n > N + p. For any integer k such that k ≥
n + 1 − N , thanks to Prop. 28, since n ≥ p, we have cnk = c

p
k−n+p. So

last(N, n) =
∑n

k=n+1−N c
p
k−n+pEk. Then we set k′ = k − n + p and we con-

clude that last(N, n) =
∑p

k′=p+1−N c
p
k′Ek′+n−p. 2

In practice, our abstraction collects a bound m on the input stream (i.e. such
that |En| ≤ m for any integer n ≥ p + 1 − q). Then, it can deduce that
|last(N, n)| ≤ m

∑N−1
k=0 |cpp−k|. This way, we can compute a bound on the con-

tribution last(N, n) of the last inputs that does not depend on the integer
n.
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8.4 Bounding the tail

We are left to bound the value of the expression |Rn − last(N, n)|. For any
integer n ∈ N, we denote tail(N, n) = Rn − last(N, n).

Proposition 30 Whenever n ≥ 2p (we recall that we have supposed that
N ≥ q), we have tail(N, n) = A+ B, where:

• A = F (tail(N, n− p), . . . , tail(N, n− 1)),
• B = F (

∑p−1
k=0 c

p
2p−N−kEn−N−k, . . . ,

∑p−p
k=0 c

p
p+1−N−kEn−N−k).

PROOF. Let n ∈ N such that N ≥ q and n ≥ 2p. By definition, we have
tail(N, n) =

∑p−1
k=0 d

n
k ik +

∑n−N
k=p+1−q c

n
kEk. For any k such that p+ 1− q ≤ k ≤

n−N , we have k < n−q+1. Moreover, we have n ≥ p. So by Def. 26, we have
tail(N, n) =

∑p−1
k=0 F (dn−p

k , . . . , dn−1
k )ik+

∑n−N
k=p+1−q F (cn−p

k , . . . , cn−1
k )Ek. By lin-

earity of F , we get that tail(N, n) = F (
∑p−1

k=0 d
n−p
k ik +

∑n−N
k=p+1−q c

n−p
k Ek, . . . ,

∑p−1
k=0 d

n−1
k ik +

∑n−N
k=p+1−q c

n−1
k Ek). Then we deduce that tail(N, n) is equal to

F (tail(N, n − p) +
∑n−N

k=n−p−N+1 c
n−p
k Ek, . . . , tail(N, n − 1) +

∑n−N
k=n−N cn−1

k Ek).
By linearity, we get that tail(N, n) is equal to F (tail(N, n− p), . . . , tail(N, n−
1)) + F (

∑n−N
k=n−p−N+1 c

n−p
k Ek, . . . ,

∑n−N
k=n−1−N+1 c

n−1
k Ek). Then, by setting k′ =

n−N − k, we obtain that tail(N, n) = F (tail(N, n− p), . . . , tail(N, n− 1)) +
F (
∑p−1

k′=0 c
n−p
n−N−k′En−N−k′ , . . . ,

∑p−p
k′=0 c

n−1
n−N−k′En−N−k′). By Prop. 28 and since

n − p ≥ p, we get that tail(N, n) = F (tail(N, n − p), . . . , tail(N, n − 1)) +
F (
∑p−1

k=0 c
p
2p−N−kEn−N−k, . . . ,

∑p−p
k=0 c

p
p+1−N−kEn−N−k). 2

This way, to compute a bound on tail(N, n), we only require an abstraction of
the input stream and a filter domain for analyzing the corresponding simplified
filter.

8.5 Summary

The result that are required for bounding the output of filters are summarized
in Thm. 31.

Theorem 31 We suppose that N is bigger than both p and q. For any integer
n ∈ N such that n > N+p, we have Sn = last(N, n)+tail(N, n)+εn. Moreover,
we have:

(1) for any integer n ∈ N such that 0 ≤ n < p, we have Sn = ik;
(2) for any integer n ∈ N such that p ≤ n ≤ N+p, we have Sn =

∑p−1
k=0 d

n
k ik+

∑n
k=p+1−q c

n
kEk;
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(3) the sequence (εn) satisfies: εn = 0 for any k ∈ N such that 0 ≤ k < p,
and εn+p = F (εn, . . . , εn+p−1) + ǫn+p;

(4) for any integer n ∈ N such that n > N + p, we have last(N, n) =
∑p

k=p+1−N c
p
kEk+n−p;

(5) for any integer n ∈ N, if n > N + p and N ≥ q, then tail(N, n) = A+B,

where







A = F (tail(N, n− p), . . . , tail(N, n− 1)),

B = F (
∑p−1

k=0 c
p
2p−N−kEn−N−k, . . . ,

∑p−p
k=0 c

p
p+1−N−kEn−N−k).

Moreover, for any integer n ∈ N such that p ≤ n < 2p, we know that
tail(N, n) =

∑p−1
k=0 d

n
k ik +

∑n−N
k=p+1−q c

n
kEk.

8.6 Computing the coefficients of the formal expansion

Then to build an abstract domain in order to analyze our filters, we have to
compute the coefficients that are involved in Thm. 31. Unfortunately, they
are all real parameters and we cannot afford computation in the real field.
To solve this problem, we propose to compute them by using floating point
interval arithmetics. After each atomic step, we use the functions ⌈ ⌉ and ⌊ ⌋
to round results toward the correct direction.

If the coefficients were computed in the real field, the abstract gain (i.e. the
ratio between the range of the output stream found by the analyzer and the
range of the input stream) would converge exponentially to the concrete gain
(i.e. the behavior of the filter in concrete computations) when N increases
toward +∞. But, because of the rounding errors in the computation of the
parameters, first the accuracy increases until we cannot decide the sign of the
coefficients anymore. Then it decreases exponentially. In Fig. 10, we give the
abstract gain that we found when analyzing the example given in Exa. 5 with
respect to the parameter N . The first graph describes the whole evolution of
the abstract gain, whereas the second one focuses arround the best choice for
the parameter N .

In the astrée analyzer, filters are not all expanded with the same parameter
N . For each filter, we choose the parameter N as the last integer such that
the sign of the coefficients is known. Moreover, since the computation of the
coefficients is quite expensive, we use memoisation to avoid computing these
coefficients twice.

We now suppose that we have a sound bound on each coefficient. This way,
we suppose that we have some coefficients tail input♯(F,G), tail init♯∅(F,G),

tail init♯=(F,G), last♯(F,G), first outputs♯∅(F,G), and first outputs♯=(F,G) such
that:

(1) the coefficient tail input♯(F,G) is a bound on the value of expression
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Fig. 10. Abstract gain with respect to the parameter N .

|F (
∑p−1

k=0 c
p
2p−N−kxk, . . . ,

∑p−p
k=0 c

p
p+1−N−kxk)| for any tuple (xi) ∈ {−1; 1}p;

it encodes a correcting multiplicative coefficient to be applied to the
bound on the input stream when we compute the contribution of the
inputs that are not exactly described in the formal expansion;

(2) the coefficient tail init♯0(F,G) is a bound on the value of
∑n−N

k=0 |cnk | +
∑p−1

k=0 |dnk | for any integer n between N and N + p; this coefficient is
used to collect the initial abstraction of the tail of the filter (i.e. the
contribution of both the first n−N + 1 inputs and of the initial outputs
in the case when we have no equality relationship among the initial inputs
and among the initial outputs);

(3) the coefficient tail init♯1(F,G) is a bound on the value of |∑q−2
k=0 c

n
k +

∑p−1
k=0 d

n
k | +

∑n−N
k=q−1 |cnk | for any integer n between N and N + p; this

coefficient is used to collect the initial abstraction of the tail of the filter
(i.e. the contribution of the first n−N + 1 inputs and of the initial out-
puts in the case when the first q− 1 inputs and the first p outputs are all
equal);

(4) the coefficient last♯(F,G) is a bound on the value of
∑p

k=p+1−N |cpk|; it is a
multiplicative coefficient to be applied on the bound on the input stream
to get an over-approximation of the contribution of the last N inputs;

(5) the coefficient first outputs♯0(F,G) is a bound on the value of expression
max{1;∑p−1

k=0 |dnk |+
∑n

k=0 |cnk |} for any integer n between 0 and N +p; this
is a multiplicative coefficient to get a bound on the first N + p outputs
with which the formal expansion cannot be applied yet; this coefficient
is used when we have no equality relationship about the initial outputs
and the initial inputs;

(6) the coefficient first outputs♯1(F,G) is a bound on the value of expression
max{1, |∑p−1

k=0 d
n
k +

∑q−2
k=0 c

n
k | +

∑n
k=q−1 |cnk |} for any integer n between 0

and N + p; this is a multiplicative coefficient to get on bound on the first
N + p outputs in the case when we know that the first p outputs and the
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first q − 1 inputs are equal.

8.7 Abstract extension

We derive the following abstract extension:

(1) structure and extrapolation operators:
• a constraint relates the last p outputs, the last q − 1 inputs, and the
p+ q parameters; thus we set Tp,q = (Vp+q−1 × F

p+q);
• for each tuple of variables and of parameters, we collect the fact that
the filter is well-initialized (i.e. the value of the initial output and of
the initial outputs are equal), a bound on the input stream, an abstract
range for the contribution of rounding errors, and an abstract range for
the tail of the output stream; thus we define Bp,q as ({0, 1}×F ×F∗×
F∗);

• the cup operator and the extrapolation operators are defined component-
wise (for booleans, the cup operator is max whereas the extrapolation
operators are given by the tuple (1,max,min));

• γBp,q((a1, . . . , ap, b1, . . . , bq), (b,m, kε, ktail)) is the set of functions f such
that there exists:
(a) an integer n ∈ N, two finite sequences (Rk)0≤k≤n and (Ek)p−q+1≤k≤n,
(b) a tuple (εi)1≤i≤p,
such that:

· for any integer k such that 0 ≤ k < p, we have |Rk| ≤ fst(m);
· for any integer k such that p− q ≤ k ≤ n, we have |Ek| ≤ fst(m);
· for any integer k such that p ≤ k, we haveRk = F (Rk−p, . . . , Rk−1)+
G(Ek−q+1, . . . , Ek);

· if b, thenX = Y for anyX, Y ∈ {Rk | 0 ≤ k < p}∪{Ek | p−q−1 ≤
k ≤ p};

· |f(xi)−Rn+1−i| ≤ εi for any integer i such that 1 ≤ i ≤ p;
· f(xi+p) = En−i+1 for any integer i such that 1 ≤ i < q;
· [xi 7→ εi, 1 ≤ i ≤ p] ∈ γBrp

(kε);

· [xi 7→ Rn−i+1 −
∑N−1

k=0 cn−i+1
n−k−i+1En−k−i+1, 1 ≤ i ≤ p] ∈ γBrp

(ktail);
roughly speaking, (En) encodes the input stream, (Rn) the ideal output
stream, and (εn) the stream of the overall contribution of rounding
errors; first we assume that m is bound on both the initial outputs and
the initial inputs; then, we state that (Rn) is the ideal output stream
obtained by iterating the filter on the input stream (En); the boolean b

abstract the initialization condition; then, we state that up to rounding
errors, xi, for 1 ≤ i ≤ p, is the n − i + 1-th output, and, for any
1 ≤ i ≤ q − 1, xi + p is the n− i + 1-th input; last, we states that the
last p contribution of rounding errors are related by the abstract range
kε and that the last p value of the tail of output stream are related by
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the abstract range ktail; this way, the concretization contains enough
information to make the induction;

(2) assignments:
• info = F

p+q × F × F (the first coefficient in F denotes a bound on the
current input and the second coefficient encodes a bound on the sum
of any atomic rounding errors in the expression that is computed to
iterate the filter);

• the primitive rlvtp,q is defined by pattern matching the expression in
order to detect whether it corresponds to a filter iteration, or not; when
a filter is iterated, the primitive ptp,q shifts the variables and collects
a bound M on the current inputs and a bound ǫ on the sum of each
atomic rounding error in the computation of the expression;

• δp,q(((ai), (bj),M, ǫ), (b,m, kε, ktail)) = (b′,m′, k′
ε, k

′
tail), where:

· F (X1, . . . , Xp) =
∑

akXk and G(X1, . . . , Xq) =
∑

bkXk;
· b′ = b;
· m′ = m ⊔F (M, 0);
· k′

ε = δrp((a1, 0, . . . , ap, 0, ǫ), kε),

· k′
tail = δrp((a1, 0, . . . , ap, 0, fst(m

′)× (tail input♯(F,G))), ktail);
this way, we keep the abstraction about the initialization of the filter,
then we compute a new bound on the input stream (we take into ac-
count the new encountered input values), we update the abstract range
for the contribution of rounding errors, and we we update the abstract
range for the tail (to do this we apply the corrective coefficient).

(3) clock tick: to simulate ticks of clock, we just update the abstract ranges
of the contribution of rounding errors and of the output stream tail; thus,
we define tickBp,q(b,m, kε, ktail) as (b,m,tickBrp

(kε),tickBrp
(ktail));

(4) conversion primitives:
• buildp,q((ai)1≤i≤p+q, fI ,R) is given by (b,m, kε, ktail) where:

· F (X1, . . . , Xp) =
∑

akXk and G(X1, . . . , Xq) =
∑

ak+pXk;
· b = 1 if and only if (xi, xj) ∈ R for any pair of integers such that
1 ≤ i < j < p + q − 1; this way, b encodes the fact that the filter
is initialized with equal initial values;

· m is a bound in F such that for any integer i such that 1 ≤ i < p+q

we have fI(xi) ⊆ [−m;m]; it provides a bound on initial values;
· kε = buildrp((ai)1≤i≤p, [xi 7→ 0], {xi | 1 ≤ i ≤ p}2); it provides the
abstract range for the overall contribution of rounding errors;

· ktail = buildrp((ai)1≤i≤p, [xi 7→ [−mtail;mtail]], ∅), where mtail =

tail init♯b(F,G); it provides the abstract range for the tail of the
output stream;

• top,q((ai)1≤i≤p+q, (b,m, kε, ktail), I) is given by [xi 7→ [−S∞;S∞]] where
S∞ = max(S≤N+p + Sε, S>N+p + Sε) where:

· S≤N+p = first outputs♯b(F,G) × m: this is a bound on the first
outputs;

· S>N+p = torp((ai)1≤i≤p, ktail, I)+m× last♯(F,G): this is the bound
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on the next outputs;
· Sε = torp((ai)1≤i≤p, kε, I): this is a bound on the contribution of
rounding errors;

· F (X1, . . . , Xp) =
∑

akXk;
· G(X1, . . . , Xq) =

∑

ak+pXk.

We define the tuple Gp,q as (Tp,q,Bp,q, γBp,q ,⊔Bp,q ,⊓Bp,q ,⊥Bp,q ,▽Bp,q ,△Bp,q ,rlvtp,q,

infop,q, ptp,q, δp,q,tickp,q,buildp,q,top,q).

Theorem 32 The tuple Gp,q is a generic extension.

9 Higher order filter

We now explain how to deal with higher order filters. We focus on history
insensitive abstractions (i.e. we only consider one input per iteration), but
the framework that is described in the previous section may be used to refine
the abstraction to get a history sensitive one. The main idea to analyze a
simplified higher order filter is to decompose this filter into a sum of some
first order filters and of some second order filters.

9.1 Background

A simplified filter of class (k, l) computes sequences (Sn) defined by the relation
Sn+p = a1Sn+ . . .+apSn+p−1+En+p, where the polynomial P (that is defined
as Xp−apX

p−1− . . .−a1X
0) has no multiple roots (in C) and can be factored

into the product of k second order irreducible polynomials X2−αiX −βi and
l first order polynomials X − δj.

Then, there exists sequences (xi
n)n∈N for any integer i such that 1 ≤ i ≤ k,

and (yjn)n∈N for any integer j such that 1 ≤ j ≤ l, such that:



















Sn = (
∑

1≤i≤k
xi
n) + (

∑

1≤j≤l
yjn)

xi
n+2 = αi.x

i
n+1 + βi.x

i
n + F i(En+2, En+1)

y
j
n+1 = δj.y

j
n +Gj(En+1).

where (F i)1≤i≤k and (Gj)1≤j≤l are families of linear functions.

The families of initial outputs (xi
0)1≤i≤k, (x

i
1)1≤i≤k, and (yj0)1≤j≤l, and sub-

filter inputs (given by the families of functions (F i)1≤i≤k and (Gj)1≤j≤l) can
be computed by solving the system of symbolic linear relations that is obtained
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by applying the equation Sn = (
∑k

i=1 x
i
n) + (

∑l
j=1 y

j
n) for any integer n such

that 1 ≤ n ≤ 2× p. The solution only depends on the roots of P .

9.2 Computing the decomposition

So each time we will encounter a higher order filter, we will decompose it
into a sum of first order filters and of second order filters. As we did for the
formal expansion, we do not consider relative error coefficients. This way, we
consider expressions of the form τ = a1X1 + . . .+ anXn + Iε where Iε encodes
the contribution of rounding errors in the evaluation of the expression (i.e. it
depends on the environment ρ).

To decompose the filter, we require to factorize the characteristic polynomial.
Since it is a complex procedure, we do not want to rely on the soundness of
the factorization. So we suppose that we have an algorithm that maps the
characteristic polynomial P = a1X

0+ . . .+anX
n−1 to a factorized polynomial

P ′. Then we expand P ′ and compute a bound on the difference between P

and P ′ in any environment satisfying the interval constraints that held in our
precondition. This bound is included inside the input of the filter. Thanks to
this artifact, we avoid relying on the soundness of the factorization algorithm
by adding some imprecision over the input stream. To find the initial outputs
((xi

0)1≤i≤k, (x
i
1)1≤i≤k, and (yj0)1≤j≤l) of each sub-filter and the corrective map-

pings ((F i)1≤i≤k and (Gj)1≤j≤l) to compute their input stream, we solve the
symbolic system of 2p equations (that relates the first 2p output of the higher
order filter, to the 2p outputs of the sub-filters. Then we compute initial out-
puts and the corrective mappings in floating point interval arithmetics. In the
case when we cannot solve the system or when the polynomial have multiple
roots, we can perturb the polynomial P ′ to avoid these particular cases. As a
result, we add some imprecision to be added into the input stream.

Let us fix some coefficients F = (ai)1≤i≤p. Let k(F ) and l(F ) be some integers.
Let (αi(F ))1≤i≤k(F ), (βi(F ))1≤i≤k(F ), and (δj(F ))1≤j≤l(F ) be some families of
coefficients such that the pairs (αi(F ), βi(F )) are distinct pair wise and such
that the coefficients (δj(F )) are distinct pair wise. We denote (a′i(F ))1≤i≤p the
family of coefficients such that Xp − (a′p(F )Xp−1 + . . .+ a′1(F )X0) = Π(X2 −
αi(F )X − βi(F ))×Π(X − δj(F )). We introduce the families (cx1i (F ))1≤i≤k(F ),
(cx2i (F ))1≤i≤k(F ), and (cyj(F ))1≤j≤l(F ) of coefficients and the families of linear
functions in R

p → R (f 0
i (F ))1≤i≤k(F ), (f

1
i (F ))1≤i≤k(F ), and (gj(F ))1≤j≤l(F ) such

that: for any input stream (En) and any output stream (Sn) that satisfy
Sn+p = a′1(F )Sn + . . . + a′p(F )Sn+p−1 + En+p for any n ≥ 0, the sequences
(xi

n) and (yin) that are defined by:

• for any i such that 1 ≤ i ≤ k(F ),
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













xi
0 = f 0

i (F )(s0, . . . , sp−1),

xi
1 = f 1

i (F )(s0, . . . , sp−1),

xi
n+2 = αi(F )xi

n+1 + βi(F )xi
n + cx1i (F )En+2 + cx2i (F )En+1;

• for any j such that 1 ≤ j ≤ l(F ),






y
j
0 = gj(F )(s0, . . . , sp−1)

y
j
n+1 = δi(F )yin + cyj(F )En+1;

satisfy: Sn =
∑

xi
n +

∑

yjn, for any n ∈ N.

The existence of these coefficients and of these linear functions will be useful
to discover an inductive invariant for the filter output. More precisely, they
are used in the definition of the concretization. It is worth noting, that, having
fixed the roots of the polynomial (i.e. the coefficients αi(F ), βi(F ), and δi(F )),
there is at most one solution for the other coefficients. This solution can be
found by solving a linear system of equations (i.e. by looking at the first 2p
outputs of the filters).

To compute transfer functions and conversion primitives, we require to have
some interval approximation of the solution of this system. So for any coef-
ficient c(F ), we introduce an interval Ic(F ) = [c′(F ) − cε(F ); c′(F ) + cε(F )]
such that c(F ) ∈ Ic(F ). Moreover, for any linear function f ∈ R

p 7→ R, we
introduce a function If ∈ R

p 7→ I, such that for any tuple t ∈ R
p, we have

f(t) ∈ If (t). We have some algorithms to compute these intervals and these
interval functions effectively. This way, we can use them in the definition of
the transfer functions and of the conversion primitives.

9.3 Abstract extension

We derive the following abstract extension:

(1) structure and extrapolation operators:
• a constraint relates the last p outputs and the p parameters; but, in
order to keep the notations compatible with the ones in Sect. 7, we
insert p fictitious 0 parameters, so we consider 2p parameters; thus we
set T

r
k(F ),l(F )
p

= (Vp × F
2p);

• for each filter, we collect a bound on the input stream and an abstract
range for each sub-filter; thus we define B

r
k(F ),l(F )
p

as (F × F∗k(F )+l(F ));

• the cup operator and the extrapolation operators are defined component-
wise;

• γB
r
k(F ),l(F )
p

((a1, 0, . . . , ap, 0), (m, (ei)1≤i≤k(F )+l(F ))) is the set of functions

f such that there exists:
(a) an integer n ∈ N,
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(b) several finite sequences (So)0≤o≤n, (Eo)0≤o≤n, ((x
i
o)0≤o≤n)1≤i≤k, and

((yjo)0≤o≤n)1≤j≤l

such that:
· |Eo| ≤ fst(m), for any o such that 0 ≤ o ≤ n;
· So+p = a′1(F )So + . . . + a′p(F )So+p−1 + Eo+p, for any o such that
p ≤ o ≤ n;

· So =
∑

xi
o +

∑

yjo, for any o such that 0 ≤ o ≤ n;
· for any i such that 1 ≤ i ≤ k(F ),















xi
0 = f 0

i (F )(S0, . . . , Sp−1),

xi
1 = f 1

i (F )(S0, . . . , Sp−1),

xi
n+2 = αi(F )xi

n+1 + βi(F )xi
n + cx1i (F )En+2 + cx2i (F )En+1;

· for any j such that 1 ≤ j ≤ l(F ),






y
j
0 = gj(F )(S0, . . . , Sp−1)

y
j
n+1 = δi(F )yin + cyj(F )En+1;

· [x1 7→ xi
n, x2 7→ xi

n−1] ∈ γBr2
((α′

i(F ), αǫ
i(F ), β′

i(F ), βǫ
i (F )), ei) for

any integer i such that 1 ≤ i ≤ k(F );
· [x1 7→ yin] ∈ γBr1

((δ′i(F ), δǫi (F )), ei+k) for any integer i such that
1 ≤ i ≤ l(F );

where F = (ai); roughly speaking, (En) encodes the input stream of
the composite filter, (Sn) encodes the output stream, and each stream
(xi

n) and (yjn) encodes the output stream of a sub-filter; the abstract
element m encodes a bound on the input stream; each abstract range
(ei) encodes a bound on the output stream of a sub-filter; we state that
the output stream is obtained by iterating the filter with the coefficient
(a′i(F )); we state that the whole filter is the sum of all sub-filters; then,
we state that abstract ranges abstract the last outputs of each sub-
filter; this way, the concretization contains enough information to make
the induction;

(2) assignments:
• info = F

2p × F

• the primitive rlvt
r
k(F ),l(F )
p

is defined by pattern matching the expression

in order to detect whether it corresponds to a filter iteration; in such
a case, the primitive pt

r
k(F ),l(F )
p

shifts the variables and collects the

current input (including rounding errors), that is to say, that we collect
a bound M on the expression E− (a′1(F )X1 + . . .+ a′p(F )Xn) when we
want to iterate a filter with parameters F = (a1, . . . , ap);

• δ
r
k(F ),l(F )
p

((a1, 0, . . . , ap, 0,M), (m, (ei))) = (m′, (e′i)) where

· m′ = m ⊔F (M, 0),
· e′i = δr2((α

′
i(F ), αǫ

i(F ), β′
i(F ), βǫ

i (F ), Einf), ei) for any integer i such
that 1 ≤ i ≤ k, where Einf is a representable number such that
the interval fst(m′) × (Icx1

i
(F ) + Icx2

i
(F )) is included in the interval

[−Einf ;Einf ]
· e′j+k = δr1((δ

′
j(F ), δǫj(F ), Einf), ei+p) for any integer i such that
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1 ≤ i ≤ l, where Einf is a representable number such that the
interval fst(m′)× Icyj(F ) is included in the interval [−Einf ;Einf ];

(3) clock ticks: we define tickB
r
k(F ),l(F )
p

(m, (ei)) as follows:

(m, (tickBr2
(ei)1≤i≤k(F )), (tickBr1

(ej+k)1≤j≤l(F )));
(4) conversion primitives:

• build
r
k(F ),l(F )
p

((ai)1≤i≤p+q, fI ,R) = ((m, 0), (ei)), where:

· m is a bound on |fI(xi)|, for any i ∈ N such that 1 ≤ i ≤ p;
· for any i such that 1 ≤ i ≤ k(F ):

ei = buildr2((α
′
i(F ), αǫ

i(F ), β′
i(F ), βǫ

i (F )), fi, ∅),

where fi =







x1 7→ If0
i
(F )((fI(xi))1≤i≤p),

x2 7→ If1
i
(F )((fI(xi))1≤i≤p);

· for any j such that 1 ≤ j ≤ l(F ):

ej+k(F ) = buildr2((δ
′
j(F ), δǫj(F )), [x1 7→ Igi(F )((fI(si))1≤i≤p)], ∅));

• to
r
k(F ),l(F )
p

((ai)1≤i≤p+q, (m, (ei)), I) is defined as follows:
∑

tor2((α
′
i(F ), αǫ

i(F ), β′
i(F ), βǫ

i (F )), ei, I) +
∑

tor1((δ
′
j(F ), δǫj(F )), ej+p, I).

We denote by G
r
k(F ),l(F )
p

the tuple that we obtain.

Theorem 33 The tuple G
r
k(F ),l(F )
p

is a generic extension.

10 Benchmarks

Our framework is integrated within the astrée analyzer [1,2,7]. We now give
experimental results. We tested our framework with several programs, all given
by the same end-user. These programs belong to two families, that correspond
to two different generations of critical embedded software written in C. The
first family contains a program that has been widely used since ten years. The
second family contains different versions of a program in development.

For each program we tested the astre [2] analyzer with the classical domains
(intervals [5], octagons [14], decision trees, and arithmetic-geometric progres-
sion domain [10]). We perform three analyses with several levels of accuracy
for the abstraction of filters. First, we use no filter abstraction; then we only
use history insensitive abstractions; finally we use history sensitive abstrac-
tions. For each of these analyses, we report in Fig. 11 the analysis time, the
number of iterations for the main loop, and the number of warnings (in poly-
variant function calls). These results have been obtained on a 2.8 GHz, 8 Gb
RAM PC.
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lines of C 70,000 216,000 379,000 570,000

iterations 106 109 50 105 77 61 124 144 133 126 189 119

analysis time 1h45 2h20 1h12 6h 7h15 5h30 12h 22h20 17h 20h 42h 26h

warnings 292 3 0 203 0 0 788 0 0 1417 25 22

Fig. 11. Some statistics.

Fig. 12. The astrée interface.

With the history sensitive abstraction, the astrée analyzer reports a lot of
useful information about the behavior of each filter. For each filter constraint,
it gives which variables encode the current outputs, which variables encode the
current inputs, which values the filter parameters take. It gives the parameter
N of the formal expansion. It also gives a bound on the overall contribution of
rounding errors, a bound on the input stream, a bound on the first outputs,
a bound on the contribution of the last inputs, and a bound on the tail. In
Fig. 12, we show a capture of the astrée interface. The astrée interface has
been made by Antoine Miné.

11 Conclusion

We have proposed a highly generic framework to analyze programs with digi-
tal filtering. We have also given a general approach to instantiate this frame-
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work in the case of linear filtering. We have enriched an existing analyzer,
and obtained results that were far beyond our expectations. As a result, we
solved nearly all remaining warnings when analyzing an industrial program
of 570, 000 lines of C: we obtain a sufficiently small number of warnings to
allow manual inspection, and we discovered they could be eliminated without
altering the functionality of the application by changing only three lines of
code.

Linear filtering is widely used in the context of critical embedded software,
so we believe that this framework is crucial to achieve full certification of the
absence of runtime error in such programs.

11.1 Short discussions

11.1.1 About filter detections

In the presentation of our abstract domains, we use pattern matching to detect
the use of filters. It works because in the programs that we analyze each filter
iteration is encoded into one expression. A more general detection can be done
by performing some symbolic handling of expressions (e.g. [15]). This way, we
can deal with filters where the output is computed by scanning some arrays for
instance. Then, an even more general detection can be obtained by considering
any abstract properties that held after each assignment. This approach would
be fully semantics, i.e. such a framework would rely on the properties of the
environments instead of the instructions in the program. The drawback of this
approach is the cost, since the inference of simple constraints such as linear
equalities is cubic with respect to the number of variables. It prevents us to
use this approach in an analyzer such as astrée which aims at scaling up.

11.1.2 About floating point numbers

In the design of abstract domains, floating point numbers occur twice. First,
they occur in the concrete semantics. Then they occur in the implementation
of abstract domains. The handling of these two kinds of floating point numbers
are somehow orthogonal. To get rid of floating point numbers that occurs in
the concrete semantics, we use the framework of Antoine Miné [16]. Applying
the IEEE norm, we can enclose rounding errors inside intervals, then we are
left with computation in the real field. This is essential to design abstract
domains, since abstract domains rely on the nice structure of the real field.
Then we are left with the floating point numbers that are encountered when
implementing domains. We cannot afford real number computations, so we
compute an over approximation of the real numbers that we need, by using
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floating point number intervals. To compute the bounds of these intervals, we
round each bound toward the correct direction.

11.1.3 About complex mathematical objects

The domains of expanded filters and of higher-order filters handle with com-
plex mathematical objects. The existence of these objects are required to prove
that some properties are inductive. So in the concretization, we handle with
exact objects. We know that these objects exist, but we cannot, or we do not
want to, compute these objects. For instance, in the case of higher order filters,
we know that the output stream lies in an affine space of dimension k. We now
how to characterize a decomposition of this affine space into lower dimension
affine spaces. The existence of the decomposition is used in the concretization
function to prove that we handle inductive invariants. Nevertheless, we never
compute the exact decomposition. We only approximate some coefficients,
when we want to weaken some filter constraints to compute a bound on some
variables. Another point is that we have noticed that when we need to approxi-
mate a complex mathematical function (such as the polynomial factorization),
it is usually possible not to rely on the soundness of the implementation of the
corresponding algorithm, at the cost of a loss of accuracy in the analysis. In
our example, our factorization may be not correct, but we compute an error
term to be combined with the input stream.

11.2 Future works

Digital filters play an important role in critical embedded software. They usu-
ally correspond to continuous differential non-linear equations in a physical
model. Usually, these equations have been discretized and linearized before
the code synthesis. But, we would like to extend our framework to deal with
non-linear filters, so that we could analyze software which would be closer
to the physical model. The analysis of non-linear filters should also be useful
when considering the dynamic systems such as biological systems.
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Rival.

51



References

[1] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
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[15] A. Miné. Symbolic methods to enhance the precision of numerical abstract
domains. In VMCAI’06, number 3855 in LNCS, pages 348–363. Springer, 2002.
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