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Abstract

The induction of a signaling pathway is characterized by transient complex for-
mation and mutual posttranslational modification of proteins. To faithfully
capture this combinatorial process in a mathematical model is an important
challenge in systems biology. Exploiting the limited context on which most
binding and modification events are conditioned, attempts have been made to
reduce the combinatorial complexity by quotienting the reachable set of molecu-
lar species, into species aggregates while preserving the deterministic semantics
of the thermodynamic limit. Recently we proposed a quotienting that also
preserves the stochastic semantics and that is complete in the sense that the
semantics of individual species can be recovered from the aggregate semantics.
In this paper we prove that this quotienting yields a sufficient condition for weak
lumpability (that is to say that the quotient system is still Markovian for a given
set of initial distributions) and that it gives rise to a backward Markov bisim-
ulation between the original and aggregated transition system (which means
that the conditional probability of being in a given state in the original sys-
tem knowing that we are in its equivalence class is an invariant of the system).
We illustrate the framework on a case study of the epidermal growth factor
(EGF)/insulin receptor crosstalk.
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1. Introduction

Often a few elementary events of binding and covalent modification [39] in
a biomolecular reaction system give rise to a combinatorial number of non-
isomorphic reachable species or complexes [22, 23]. Instances of such systems
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are signaling pathways, polymerizations involved in cytoskeleton maintenance,
the formation of transcription factor complexes in gene-regulation.

For such biomolecular systems, traditional chemical kinetics face fundamen-
tal limitations, that are related to the question of how biomolecular events are
represented and translated into a mathematical model [30]. More specifically,
chemical reactions can only operate on a collection of fully specified molecular
species and each such species gives rise to one differential equation, describing
the rate of change of that species’ concentration. Many combinatorial systems do
not permit the enumeration of all molecular species and thus render their tradi-
tional differential description prohibitive. However, even if one could enumerate
them, it remains questionable whether chemical reactions are the appropriate
way to represent and to reason about such systems.

As the dynamics of a biomolecular reaction mixture comes about through
the repeated execution of a few elementary events one may wonder about the
effective degrees of freedom of the reaction mixture’s dynamics. If the velocity
of all events – or their probabilities to occur per time-unit per instance – are
different for all molecular species (w.r.t. modification) and pairs of molecular
species (w.r.t. binding) to which the events can apply to, then the degrees of
freedom would equal to the number of molecular species. However, due to the
local nature of physical forces underlying molecular dynamics, the kinetics of
most events appear to be ignorant with respect to the global configuration of
the molecular species they are operating on. More provocatively, one may say
that even if there would be variations of kinetics of an event from one context
to another, experimental biology does not – and most likely never will – have
the means to discern between all different contexts. For instance, fluorescence
resonance energy transfer (FRET), may report on a specific protein-binding
event and even its velocity, however we have no means to determine whether
the binding partners are already part of a molecular species – not to speak of
the composition and modification state of these species. To this end, molecular
species remain elusive and appear to be inappropriate entities of descriptions.

To align with the mentioned experimental insufficiencies and with the under-
lying biophysical locality, rule-based descriptions were introduced as a frame-
work to encode such reaction mixtures succinctly and to enable their mathe-
matical analysis [10, 3]. The biochemical structure of proteins and molecular
species is modeled in a transparent way as a graph where nodes are proteins
and have a set of binding sites which can be bound pair-wise. Moreover, rules
exploit the limited context on which most elementary events are conditioned.
They just enumerate that part of a molecular species that is relevant for a rule
to be applicable. Thus, in contrast to chemical reactions, a molecular species is
not just a name, but documents its biochemical structure and rules can operate
on a collection of partially specified molecular species. Consequently, one region
of a molecular species being in a particular state may, or may not influence the
state of another region of molecular species. The notion of influence is captured
by the relation among the sites of molecular species, which we will call flow
of information. An approximation of such flow of information, formalized as
a binary relation over sites, can be derived by only looking at the contexts of
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rules. The flow of information should not include those pairs of states, whose
correlation is irrelevant when tracking the dynamics of the system. As a result,
we identify sets of partially specified species – or fragments – that allow for
a self-consistent description of the rule-set’s dynamics. Naturally, as partially
specified species usually encompass many fully specified species, the cardinality
of that set is less than of the set of molecular species. In [14, 7], these ap-
proaches have been used to obtain a self-consistent fragment dynamics based on
ordinary differential equations. These equations describe the dynamics in the
thermodynamic limit of stochastic kinetics when scaling species multiplicities to
infinity while maintaining a constant concentration (multiplicity per unit vol-
ume) [27]. In many applications in cellular biology this limiting dynamics is an
inappropriate model due to the low multiplicities of some molecular species –
think of transcription factor - DNA binding events. Thus stochastic semantics,
which takes into account the case of finite populations in finite volume, are often
preferred. Yet, the flow of information depends on the chosen semantics, and
as illustrated in [13], the flow of information is sparser in semantics based on
ordinary differential equations than in stochastic semantics. As a consequence,
the obtained differential fragments cannot be used to describe stochastic kinet-
ics [15]. Instead, we can derive stochastic fragments that represent the effective
degrees of freedom in the stochastic case. In contrast to the differential case,
stochastic fragments have the property that the probability of being in a con-
crete state (a state which is counting copy numbers of molecular species) can
be recovered from the probability of being in an abstract state (a state which
is counting copy numbers of partially specified species). Stochastic fragments
could be used to reduce the semantics based on ordinary differential equations,
but they would give bigger reduced systems than the ones obtained thanks to
differential fragments.

In this paper we translate our abstraction method [15] into the language of
well-established contexts of abstraction for probabilistic systems – lumpability
and bisimulation. Lumpability is mostly considered from a theoretical point of
view in the theory of stochastic processes [24, 17, 36, 33, 34, 4]. A Markov chain
is lumpable with respect to a given aggregation (quotienting) of its states, if the
lumped chain preserves the Markov property [25]. This property may depend
on the initial distribution of the Markov chain. A given Markov chain can be
lumpable with respect to a given aggregation of its states for a non-empty sub-
set of initial distributions, in such a case we refer to weak lumpability [4, 37].
Whenever a Markov chain is lumpable with respect to a given aggregation of its
states for any initial distribution, we refer to strong lumpability. Approximate
aggregation techniques for Markov chains of biochemical networks are discussed
in [19]. Probabilistic bisimulation was introduced as an extension to classic
bisimulation in [28]. It is extended to continuous-state and continuous-time in
[11] and, for the discrete-state case, to weak bisimulation [2]. For instance, in
[11] the authors use bisimulation of labelled Markov processes, the state space
of which is not necessarily discrete, and they provide a logical characterization
of probabilistic bisimulation. Another notion of weak bisimulation was recently
introduced in [12]. Therein two labeled Markov chains are defined to be equiva-
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Figure 1: Contact map of the rule-set modeling the crosstalk between the EGF receptor and
insulin receptor pathways.

lent if every finite sequence of observations has the same probability of occurring
in the two chains. Herein we recognize the sound aggregations of [15] as a form
of backward Markov bisimulations on weighted labeled transition systems, and
we show it to be equivalent to the notion of weak lumpability on Markov chains.

The rest of the paper is organized as follows. In the next section, we illus-
trate on an informal example what the flow of information between the different
regions of molecular species is, and how it can be used to reduce the combinato-
rial complexity of some biological systems. Then, we formalize these intuitions.
In Sect. 3, we introduce weighted labeled transition systems and their trace se-
mantics. In Sect. 4, we define the rule-based language, and we assign a weighted
labelled transition system (WLTS) to a Kappa specification. In Sect. 5, we give
a general procedure to compute stochastic fragments from a set of rules. In
Sect. 6, we introduce the characterizations of sound and complete abstractions
on weighted labeled transition systems as a backward Markov bisimulation.
Moreover, we define it being equivalent to the weak lumpability on Markov
chains.

2. Case study

In this section, we informally explain how fragmentation works on a given
example. We consider the model of a crosstalk between the EGF receptor and
the insulin receptor pathways, described in [7]. Two kinds of receptors, EGF
receptor (EGFR) and insulin receptor (IR) can recruit a protein called Sos.

We give in Fig. 1 a summary of the proteins, and of the potential bindings
between proteins, by the mean of a contact map, which will be formalized in
Sect. 5. A contact map can be extracted automatically from a model written in
Kappa [10]. The nodes of a contact map describe the different types of proteins
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of the model. Each kind of proteins is associated with a set of sites, for instance,
the protein EGFR has four sites named a ,b ,c , and d . In the contact map, an
edge between the sites of two or of the same protein(s) denotes a potential
binding between the sites of two instances of this(these) protein(s). Thus, the
edge between the site a of EGF and the site a of EGFR denotes the fact that
the site a of any instance of protein of type EGF can be connected to the site
a of any instance of protein of type EGFR. The edge between the site d of
EGFR and itself denotes the fact that the sites d of two instances of proteins
of type EGFR can be bound together. We also notice that some sites are in
competition (or in concurrency), since they can be connected to different kinds
of sites (as the site a of Grb for instance).

The receptors EGFR and IR have each their own pathway, but these two
pathways share some common proteins. We postpone the formal description of
the model in Sect. 4, in which the language Kappa is introduced. Firstly, we
describe how a receptor EGFR can recruit a transport molecule Grb. EGFR
can be activated by binding with a ligand EGF on site a. Moreover, two EGFRs
can bind with each other via their site b and form a dimer. The kinetic rate
of the binding between two receptors EGFR may depend on the fact that the
receptors are connected or not to some ligand(s) EGF . Then, a receptor EGFR
in a dimer can recruit an adapter molecule called Shc and phosphorylate it (the
rate depends on the fact whether the receptor is still in a dimer, or not). Shc
can then recruit a transport molecule Grb. Yet, each receptor has a shorter way
to recruit a transport molecule. The site c of a receptor EGFR in a dimer can
be phosphorylated and then recruit Grb directly. Secondly, we describe how an
insulin receptor IR can recruit Grb. A receptor IR can recruit insulin molecules
Ins on two sites a and b (the rate may depend on the fact whether an insulin
molecule has already been recruited). The site c of the IR can be phosphorylated
at a rate which depends on the number of recruited insulin molecules. Then,
IR can recruit an adapter Shc. Whenever IR is also bound to two insulin
molecules, Shc can be phosphorylated. Shc can then recruit Grb. But IR can
also recruit Grb by another way. The site d of IR can recruit another adapter
called IRS which can be activated when the insulin receptor is bound to two
insulin molecules. Then, IRS can recruit Grb. Lastly, Grb can independently
recruit a protein Sos. And Sos can be phosphorylated at the rate which may
depend on the fact whether it is bound to a Grb, or not. Moreover, all these
interactions are reversible.

In this model, 2, 768 different molecular species may occur. This number
is mainly due to the fact that each dimer made of two proteins EGFR has 4
sites (the sites b and c for each receptor EGFR) to recruit a protein Grb, which
induces a small combinatorial blow up. To break down this combinatorial blow
up, we investigate the flow of information between different areas of molecular
species. The flow of information describes the sites whose state value has an
influence of the behavior of other sites. Indeed, this abstraction is based on the
fact that the biochemical structure of species is described explicitly in Kappa,
and thus we can extract directly from the interaction rules the sites whose state
may influence the behavior (values) of the other sites. We summarize the flow
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Figure 2: Approximation of the flow of information for the stochastic semantics.

of information by a binary (oriented) relation among the sites of the contact
map. A formal description of the flow of information will be given in Sect. 5.
Intuitively, a path between two sites indicates that the state of the site at the
source of the path may have an influence of the behavior of the state of the
site at the target of the path. This information can be used to cut species into
fragments of species. Indeed, when two sites have an influence on the behavior
of the state of a given site, then the correlation between the state of these two
sites may have an influence on the behavior of this third site. Otherwise, this
correlation can be safely abstracted away. Moreover, if the state of a given site
influences the behavior of two sites, then the state of the latter two sites may be
correlated, but it is not necessarily the case. Thus the flow of information can
be used to detect invariants (the absence of correlation), and to detect useless
information (when a corelation can be safely abstracted away).

The flow of information is a semantics notion. It may thus be different,
when observing the differential, and when observing the stochastic semantics of a
model. In Fig. 3, we give the contact map annotated with an over-approximation
of the flow of information for the differential semantics. We notice that the flow
of information is sparser in the differential semantics than in the stochastic se-
mantics. We refer to [13] for a list of toy examples, illustrating the difference
between the two notions of flow of information. Moreover, the approxima-
tion of the flow of information that we use, is a syntactic over approximation
(which is extracted directly from the interaction rules in Kappa), and this over-
approximation is qualitative, i.e. it does not take into account the values of the
kinetic rates of the rules. Indeed, interaction rules in Kappa already encode
how much an interaction depends on its context of application, from which we
define our abstraction of the flow of information. This abstraction is sound for
any given values of the kinetic rates.

In the remaining part of the paper, we formalize the concepts that were
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Figure 3: Approximation of the flow of information for the differential semantics.

sketched in this section, and we relate the used abstractions to the notions of
lumpability and bisimulation.

3. Weighted labelled transition systems

We define the stochastic semantics of a biochemical network by a continuous-
time time-homogeneous Markov chain (CTMC) on a countable state space. Our
abstractions that we intend to do, are based on relationships between the poten-
tial transitions that update the state of the system. So as to describe explicitly
these transitions, we use weighted labelled transition system (WLTSs) as a re-
finement of CTMCs. We will assign a WLTS to a given Kappa specification,
and we manipulate that object when reasoning about abstractions.

3.1. CTMC and WLTS

We will observe the CTMC that is generated by a WLTS on a countable
state space. We define the CTMC of a WLTS, by defining the Borel σ-algebra
containing all cylinder sets of traces [26] that can occur in the system, and the
corresponding probability distribution among them. We also introduce the stan-
dard notation of a rate matrix, which we will use when analyzing the lumpability
and bisimulation properties in Sect. 6.

Definition 1. (WLTS) A weighted-labelled transition system W is a tuple
(X ,L, w, π0), where

• X is a countable state space;

• L is a set of labels;

• w : X × L × X → R+
0 is a weighting function, it maps two states and a

label to a real value;
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Figure 4: An example of a set of chemical reactions, specified in a rule-based language. Two
kinds of proteins, A and B, can change their internal state from being phosphorylated (denoted
by a symbol ?) to unphosphorylated (no symbol), and back. This is depicted in columns (a)
and (b); Moreover, a protein of type A, and a protein of type B may bind to form a complex
AB, and the complex may be unbound again (depicted in column (c)).

• π0 : X → [0, 1] is an initial probability distribution.

We assume that the label fully identifies the transition, i.e. for any x ∈ X
and l ∈ L, there is at most one x′ ∈ X , such that w(x, l, x′) > 0. Moreover,
we assume that the system is finitely branching, in the sense that (i) the set
{x ∈ X | π0(x) > 0} is finite, and (ii) for arbitrary x̂ ∈ X , the set {(l, x′) ∈
L × X | w(x̂, l, x′) > 0} is finite.

The activity of the state xi, denoted a : X → R+
0 is the sum of all weights

originating at xi, i.e.

a(xi) :=
∑
{w(xi, l, xj) | xj ∈ X, l ∈ L}.

Example 3.1. We do not describe extensionally the WLTS associated to the
example of Sect. 2, because its combinatorial complexity is too high. Thus, we
focus on a simpler example, that we will use a running example all along this
section. We consider two kinds of proteins, A and B. Each protein can be
unphosphorylated, or phosphorylated. Moreover, a protein A and a protein B
may form a complex AB. We use the symbol ? as a superscript when a protein
is phosphorylated. This way, a fully phosphorylated complex is denoted by A?B?.

The behavior of a chemical soup can be described by the twenty chemical
reactions which are given in Fig. 4. Each reaction is made of a set of reactants,
a set of products, and a rate constant, which denotes the likelihood that such a
reaction happens. Our reactions are bidirectional. Moreover, we have assumed
that all reactions are purely local. That is to say that the kinetic of phospho-
rylation and dephosphorylation of both the protein A (see first column) and the
protein B (see second column) depends neither on the fact that the protein is in
a complex, or not, nor (if it is in a complex) on the phosphorylation state of the
other protein in the complex. Moreover, the kinetic of complex formation and
dissociation does not depend on the phosphorylation state of the two proteins in
a given complex (see third column).
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w((nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?), r1, (nA − 1, nA? + 1, nB , nB? , nAB , nA?B , nAB? , nA?B?)) = k1nA

w((nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?), r2, (nA, nA? , nB , nB? , nAB − 1, nA?B + 1, nAB? , nA?B?)) = k1nAB

w((nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?), r3, (nA, nA? , nB , nB? , nAB , nA?B , nAB? − 1, nA?B? + 1)) = k1nAB?

w((nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?), r4, (nA + 1, nA? − 1, nB , nB? , nAB , nA?B , nAB? , nA?B?)) = k2nA?

w((nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?), r5, (nA, nA? , nB , nB? , nAB + 1, nA?B − 1, nAB? , nA?B?)) = k2nA?B

w((nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?), r6, (nA, nA? , nB , nB? , nAB , nA?B , nAB? + 1, nA?B? − 1)) = k2nA?B?

w((nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?), r7, (nA, nA? , nB − 1, nB? + 1, nAB , nA?B , nAB? , nA?B?)) = k3nB

w((nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?), r8, (nA, nA? , nB , nB? , nAB − 1, nA?B , nAB? + 1, nA?B?)) = k3nAB

w((nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?), r9, (nA, nA? , nB , nB? , nAB , nA?B − 1, nAB? , nA?B? + 1)) = k3nA?B

w((nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?), r10, (nA, nA? , nB + 1, nB? − 1, nAB , nA?B , nAB? , nA?B?)) = k4nB?

w((nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?), r11, (nA, nA? , nB , nB? , nAB + 1, nA?B , nAB? − 1, nA?B?)) = k4nAB?

w((nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?), r12, (nA, nA? , nB , nB? , nAB , nA?B + 1, nAB? , nA?B? − 1)) = k4nA?B?

w((nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?), r13, (nA − 1, nA? , nB − 1, nB? , nAB + 1, nA?B , nAB? , nA?B?)) = k5nAnB

w((nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?), r14, (nA, nA? − 1, nB − 1, nB? , nAB , nA?B + 1, nAB? , nA?B?)) = k5nA?nB

w((nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?), r15, (nA − 1, nA? , nB , nB? − 1, nAB , nA?B , nAB? + 1, nA?B?)) = k5nAnB?

w((nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?), r16, (nA, nA? − 1, nB , nB? − 1, nAB , nA?B , nAB? , nA?B? + 1)) = k5nA?nB?

w((nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?), r17, (nA + 1, nA? , nB + 1, nB? , nAB − 1, nA?B , nAB? , nA?B?)) = k6nAB

w((nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?), r18, (nA, nA? + 1, nB + 1, nB? , nAB , nA?B − 1, nAB? , nA?B?)) = k6nA?B

w((nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?), r19, (nA + 1, nA? , nB , nB? + 1, nAB , nA?B , nAB? − 1, nA?B?)) = k6nAB?

w((nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?), r20, (nA, nA? + 1, nB , nB? + 1, nAB , nA?B , nAB? , nA?B? − 1)) = k6nA?B?

w( , , ) = 0

Figure 5: Weight function for the system specified in Fig. 4. The state of the system,
x = (nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B? ), is an 8-tuple of natural numbers, which
encodes the number of instances of chemical species A, A?, B, B?, AB, A?B, AB?, A?B?.
By applying the law of mass action, we obtain the weighting function for each of the reactions
that can be applied to the state x.

We associate a WLTS to this system. The state of the system is a 8-tuple
of natural numbers, which encodes the number of instances of chemical species
A, A?, B, B?, AB, A?B, AB?, A?B?. We apply the law of mass action [18]
to obtain the weighting function of the WLTS, which is given in Fig. 5. The
law of mass action stipulates that the likelihood that a given reaction happens is
proportional to the product of the numbers of instances of the reactants and to
the rate constant of the reaction. Last, we give the activity of the system. Given
a state x = (nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?), we have:

a(x) = k1(nA + nAB + nAB?) + k2(nA? + nA?B + nA?B?)
+k3(nB + nAB + nA?B) + k4(nB? + nAB? + nA?B?)
+k5(nA + nA?)(nB + nB?) + k6(nAB + nA?B + nAB? + nA?B?).

The definition of a WLTS implicitly defines a transition relation →⊆ X ×X ,
such that (xi, xj) ∈→, if and only if there exists a non-zero transition from state
xi to state xj , i.e. the total weight over all labels is strictly bigger than zero,
written

∑{w(xi, l, xj) | l ∈ L} > 0. Moreover, we can differentiate the
initial set of states I ⊆ X , such that their initial probabilities are positive,
i.e. I = {x ∈ X | π0(x) > 0}.

Definition 2. (Rate matrix of a WLTS) Given a WLTS W = (X ,L, w, π0),
we assign it the CTMC rate matrix R : X × X → R, given by R(xi, xj) =∑{w(xi, l, xj) | l ∈ L}.
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R((nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?), (nA − 1, nA? + 1, nB , nB? , nAB , nA?B , nAB? , nA?B?)) = k1nA

R((nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?), (nA, nA? , nB , nB? , nAB − 1, nA?B + 1, nAB? , nA?B?)) = k1nAB

R((nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?), (nA, nA? , nB , nB? , nAB , nA?B , nAB? − 1, nA?B? + 1)) = k1nAB?

R((nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?), (nA + 1, nA? − 1, nB , nB? , nAB , nA?B , nAB? , nA?B?)) = k2nA?

R((nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?), (nA, nA? , nB , nB? , nAB + 1, nA?B − 1, nAB? , nA?B?)) = k2nA?B

R((nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?), (nA, nA? , nB , nB? , nAB , nA?B , nAB? + 1, nA?B? − 1)) = k2nA?B?

R((nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?), (nA, nA? , nB − 1, nB? + 1, nAB , nA?B , nAB? , nA?B?)) = k3nB

R((nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?), (nA, nA? , nB , nB? , nAB − 1, nA?B , nAB? + 1, nA?B?)) = k3nAB

R((nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?), (nA, nA? , nB , nB? , nAB , nA?B − 1, nAB? , nA?B? + 1)) = k3nA?B

R((nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?), (nA, nA? , nB + 1, nB? − 1, nAB , nA?B , nAB? , nA?B?)) = k4nB?

R((nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?), (nA, nA? , nB , nB? , nAB + 1, nA?B , nAB? − 1, nA?B?)) = k4nAB?

R((nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?), (nA, nA? , nB , nB? , nAB , nA?B + 1, nAB? , nA?B? − 1)) = k4nA?B?

R((nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?), (nA − 1, nA? , nB − 1, nB? , nAB + 1, nA?B , nAB? , nA?B?)) = k5nAnB

R((nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?), (nA, nA? − 1, nB − 1, nB? , nAB , nA?B + 1, nAB? , nA?B?)) = k5nA?nB

R((nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?), (nA − 1, nA? , nB , nB? − 1, nAB , nA?B , nAB? + 1, nA?B?)) = k5nAnB?

R((nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?), (nA, nA? − 1, nB , nB? − 1, nAB , nA?B , nAB? , nA?B? + 1)) = k5nA?nB?

R((nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?), (nA + 1, nA? , nB + 1, nB? , nAB − 1, nA?B , nAB? , nA?B?)) = k6nAB

R((nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?), (nA, nA? + 1, nB + 1, nB? , nAB , nA?B − 1, nAB? , nA?B?)) = k6nA?B

R((nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?), (nA + 1, nA? , nB , nB? + 1, nAB , nA?B , nAB? − 1, nA?B?)) = k6nAB?

R((nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?), (nA, nA? + 1, nB , nB? + 1, nAB , nA?B , nAB? , nA?B? − 1)) = k6nA?B?

R( , ) = 0

Figure 6: Rate matrix for the system specified in Fig. 4.

The consequence is that we do not enforce R(xi, xi) = −∑{R(xi, xj) | i 6=
j}, as it is usual for the generator matrix of CTMCs. This however does not
affect the transient, nor the steady-state behavior of the CTMC [1]. We do so
for the following reason. When abstracting the WLTS by partitioning the state
space, we get another WLTS. If the two states x and x′ which have a transition
between each other were aggregated in the same partition class x̃, it will result
as a prolongation of the residence time in the abstract state x̃, i.e. we will have
a self-loop in the abstract WLTS.

Example 3.2 (Ex. 3.1 continued). We give in the Fig. 6 the rate matrix of the
WLTS. Since there exists no pair of distinct transitions between the same pair
of states, the rate matrix is obtained directly by removing the transition labels.

Now we refer to the generated stochastic Markov process, which is written
as a continuous-time random variable {Xt}t∈R+

0
, over the countable state space

X . We write Pr(Xt = xi), the probability that the process takes the value xi
at time point t. It thus holds that Pr(X0 = xi) = π0(xi), and, when dt > 0
converges toward 0,

Pr(Xt+dt = xj | Xt = xi) = R(xi, xj)dt when i 6= j,

Pr(Xt+dt = xi | Xt = xi) = R(xi, xi)dt+ (1−
∑
{R(xi, xj′)dt | xj′ ∈ X}).

The second equation can be simplified as follows:

Pr(Xt+dt = xi | Xt = xi) = 1−
∑
{R(xi, xj′)dt | j′ 6= i}.
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Pr(Xt+dt = (nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?)) =
k1(nA + 1)Pr(Xt = (nA + 1, nA? − 1, nB , nB? , nAB , nA?B , nAB? , nA?B?))

+k1(nAB + 1)Pr(Xt = (nA, nA? , nB , nB? , nAB + 1, nA?B − 1, nAB? , nA?B?))
+k1(nAB? + 1)Pr(Xt = (nA, nA? , nB , nB? , nAB , nA?B , nAB? + 1, nA?B? − 1))
+k2(nA? + 1)Pr(Xt = (nA − 1, nA? + 1, nB , nB? , nAB , nA?B , nAB? , nA?B?))
+k2(nA?B + 1)Pr(Xt = (nA, nA? , nB , nB? , nAB − 1, nA?B + 1, nAB? , nA?B?))
+k2(nA?B? + 1)Pr(Xt = (nA, nA? , nB , nB? , nAB , nA?B , nAB? − 1, nA?B? + 1))
+k3(nB + 1)Pr(Xt = (nA, nA? , nB + 1, nB? − 1, nAB , nA?B , nAB? , nA?B?))
+k3(nAB + 1)Pr(Xt = (nA, nA? , nB , nB? , nAB + 1, nA?B , nAB? − 1, nA?B?))
+k3(nA?B + 1)Pr(Xt = (nA, nA? , nB , nB? , nAB , nA?B + 1, nAB? , nA?B? − 1))
+k4(nB? + 1)Pr(Xt = (nA, nA? , nB − 1, nB? + 1, nAB , nA?B , nAB? , nA?B?))
+k4(nAB? + 1)Pr(Xt = (nA, nA? , nB , nB? , nAB − 1, nA?B , nAB? + 1, nA?B?))
+k4(nA?B? + 1)Pr(Xt = (nA, nA? , nB , nB? , nAB , nA?B − 1, nAB? , nA?B? + 1))
+k5(nA + 1)(nB + 1)Pr(Xt = (nA + 1, nA? , nB + 1, nB? , nAB − 1, nA?B , nAB? , nA?B?))
+k5(nA? + 1)(nB + 1)Pr(Xt = (nA, nA? + 1, nB + 1, nB? , nAB , nA?B − 1, nAB? , nA?B?))
+k5(nA + 1)(nB? + 1)Pr(Xt = (nA + 1, nA? , nB , nB? + 1, nAB , nA?B , nAB? − 1, nA?B?))
+k5(nA? + 1)(nB? + 1)Pr(Xt = (nA, nA? + 1, nB , nB? + 1, nAB , nA?B , nAB? , nA?B? − 1))
+k6(nAB + 1)Pr(Xt = (nA − 1, nA? , nB − 1, nB? , nAB + 1, nA?B , nAB? , nA?B?))
+k6(nA?B + 1)Pr(Xt = (nA, nA? − 1, nB − 1, nB? , nAB , nA?B + 1, nAB? , nA?B?))
+k6(nAB? + 1)Pr(Xt = (nA − 1, nA? , nB , nB? − 1, nAB , nA?B , nAB? + 1, nA?B?))
+k6(nA?B? + 1)Pr(Xt = (nA, nA? − 1, nB , nB? − 1, nAB , nA?B , nAB? , nA?B? + 1))
−k1(nA + nAB + nAB?)Pr(Xt = (nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?))
−k2(nA? + nA?B + nA?B?)Pr(Xt = (nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?))
−k3(nB + nAB + nA?B)Pr(Xt = (nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?))
−k4(nB? + nAB? + nA?B?)Pr(Xt = (nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?))
−k5(nA + nA?)(nB + nB?)Pr(Xt = (nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?))
−k6(nAB + nA?B + nAB? + nA?B?)Pr(Xt = (nA, nA? , nB , nB? , nAB , nA?B , nAB? , nA?B?))

Figure 7: Chemical master equation for the system specified in Fig. 4.

We notice that Pr(Xt+dt = xj | Xt = xi) is a well defined distribution of
probability if for any xj 6= xi, R(xi, xj) 6= 0 =⇒ dt < 1

R(xi,xj) . Since we have

assumed that our WLTSs are finitely branching, it is always possible to find a
real number ε > 0 such that this constraint is satisfied for any state xj and any
dt in the interval (0, ε).

Example 3.3 (Ex. 3.1 continued). The differential equation which relates the
probability that the system is in a given state at time t is called the chemical
master equation and is given in Fig. 7.

Now we define the traces of the system. Each trace observes for a given
execution the sequence of visited states, the labels that were assigned to the
executed transitions, and the time points of when each transition happened.

Definition 3. (A trace of a WLTS) Let us observe the WLTSW = (X ,L, w, π0)
and its CTMC. Given a number k in N, we define a trace of length k as τ ∈
(X × L× R+

0 )k ×X , written

τ = x0
l1,t1→ x1 . . . xk−1

lk,t1+...+tk→ xk.

If the trace τ is such that (i) π0(x0) > 0, and (ii) for all i, 0 ≤ i ≤ k, we have
that w(xi, li, xi+1) > 0, then we say that τ belongs to the set of traces of W,
and we write it τ ∈ T (W).
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The ‘time stamps’ on each of the transitions denote intuitively the absolute
time of the transition, from the moment when the system was started (t = 0).
Yet, since the likelihood that a particular event occurs exactly at a given time,
the probability of a given trace is always 0. We thus introduce the cylinder set
of traces, where each event occurs within an interval of times.

Definition 4. (Cylinder set of traces) If IR is the set of all nonempty intervals
in R+

0 , then a cylinder set of traces τIR is an element in (X ×L× IR)k ×X . A
cylinder set of traces is denoted as follows:

τIR = x0
l1,I1→ x1 . . . xk−1

lk,Ik→ xk. (1)

and it denotes the set of all traces τ = x0
l1,t1→ x1 . . . xk−1

lk,t1+...+tk→ xk, such
that ti ∈ Ii, 1 ≤ i ≤ k. If the cylinder of traces τIR is such that π0(x0) > 0,
and for all i = 0, ..., k− 1, we have that w(xi, li, xi+1) > 0, then we say that τIR
belongs to the cylinder set of traces of W, and we write τIR ∈ TIR(W).

In the previous definition, each interval Ii gives a lower bound and an up-

per bound for the waiting time between the transition xi−2
li−1→ xi−1 (or the

beginning of the trace whenever i = 1), and the transition xi−1
li→ xi.

Let Ω(TIR(W)) be the smallest Borel σ-algebra that contains all the cylinder
sets of traces in TIR(W) (i.e. the smallest set of sets of traces that contains the
cylinder sets of traces, and that is closed upon countable unions and comple-
mentation [35]). We define a probability measure over Ω(TIR(W)) as follows.

Definition 5. (Trace density semantics on a WLTS) Given a WLTS W =
(X ,L, w, π0), and a number k in N, the probability of the cylinder set of traces
τIR ∈ TIR(W), specified as in expression (1), is given by:

π(τIR) = π(x0
l1,I1→ x1 . . . xk−1

lk,Ik→ xk)

:= π0(x0)
∏k
i=1

w(xi−1,li,xi)
a(xi−1)

(
e−a(xi−1)·inf(Ii) − e−a(xi−1)·sup(Ii)

)
.

Note that
∫
Ii
a(xi−1)e−a(xi−1)·tdt = e−a(xi−1)·inf(Ii) − e−a(xi−1)·sup(Ii) is the

probability of exiting the state xi−1 in a time interval Ii−1, since the probability
density function of the residence time of xi−1 is equal to a(xi−1)e−a(xi−1).

Example 3.4 (Ex. 3.1 continued). We consider the following cylinder of traces.
We start from the state x0 = (4, 0, 4, 0, 0, 0, 0, 0) that contains exactly four in-
stances of the protein A and four instances of the protein B. We assume that
the first reaction happens between the time t1 = 10−3 s and t2 = 0.1 s and
that this reaction binds a protein A and a protein B, thus, we get the state
x1 = (3, 0, 3, 0, 1, 0, 0, 0, 0). Then, we assume that the next reaction is a phos-
phorylation of a free A, and that the duration between the two first reactions is
between t3 = 0.01 s and t4 = 0.1 s.

Thus, we obtain the following cylinder of traces:
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Figure 8: Numerical simulations, with the rates k1 = k2 = k3 = k4 = k5 = k6 = 1s−1 and the
initial state nA = nB = 4, nA? = nB? = nAB = nA?B = nAB? = nA?B? = 0. In Fig. 8(a),
we plot both the expectation of the number of fully phosphorylated dimers A?B? along the
time, and its empiric value on a stochastic simulation. In Fig. 8(b), we plot the probability
along the time that there is exactly p instances of A?B?, for p = 0, 1, 2, 3. For p = 4, the
probability is always less than 0.0005 which is too low to be plotted.

τIR = x1
r1,[t1,t2]→ x2

r7,[t3,t4]→ x3.

By definition, π(τIR) is equal to:

π0(x0)
w(x1, r1, x2)

a(x1)
(e−t1a(x1) − e−t2a(x1))

w(x2, r7, x3)

a(x2)
(e−t3a(x2) − e−t4a(x2)).

Thus, we get that:

π(τIR) = π0(x0)
48k1k5

(4(k1 + k3) + 16k5)(4(k1 + k3) + 9k5 + k16)
δ1δ2,

where δ1 = (e−(4(k1+k3)+16k5)t1 − e−(4(k1+k3)+16k5)t2),
and δ2 = (e−(4(k1+k3)+9k5+k16)t3 − e−(4(k1+k3)+9k5+k16)t4).

Now we assume that π0(x0) = 1 and k1 = k2 = k3 = k4 = k5 = k6 = 1s−1.
Under these assumptions, we get that:

π(τIR) =
1

9
(e−0.0024 − e−0.24)(e−0.018 − e−0.18).

We notice that: (e−0.0024 − e−0.24) ≈ 0.89 and (e−0.018 − e−0.18) ≈ 0.67. More-
over, the density probability of the cylinder τIR of traces is approximately equal
to 0.066.

Example 3.5 (Ex. 3.1 continued). For a small initial population, we can make
some numerical experimentations about the density distribution of the traces of
our system. In Fig. 8(a), we plot the number of instances of fully phosphory-
lated dimers A?B?, along a stochastic simulation [9] of the model. We also plot
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the expectation of the number of A?B? which we have obtained in solving the
chemical master equation. In Fig. 8(b), we plot the probability that the system
contains exactly respectively 0, 1, 2, and 3 instances of A?B? along the time.
The simulation has been performed by using the simulator KaSim [9, 32], while
the other computations have been done by solving the chemical master equation
in Maple [29]. Graphs have been generated by using Gnuplot [16].

4. Kappa

We present Kappa in a process-like notation. We start with an operational
semantics, then define the stochastic semantics of a Kappa model.

4.1. Syntax

We assume a finite set of agent names A, representing different kinds of
proteins; a finite set of sites S, corresponding to protein domains; a finite set
of internal states I, and Σι,Σλ two signature maps from A to ℘(S)4, listing the
domains of a protein which can bear respectively an internal state and a binding
state. We denote by Σ the signature map that associates to each agent name
A ∈ A the combined interface Σι(A) ∪ Σλ(A).

Example 4.1. We will use a running example all along this section, so as to
illustrate the different features of Kappa. In this running example, the set of
agent names is given by A := {A}, the set of sites is given by S := {a, b}, the
set of internal states is given by I := {u, p} (u stands for unphosphorylated,
whereas p stands for phosphorylated). Moreover, the signature maps are defined
by Σι(A) := {a, b} and Σλ(A) := {a}. Thus, the site a can bear both a binding
an an internal state, while the site b can only bear an internal state.

Definition 6. (Kappa agent) A Kappa agent A(σ) is defined by its type A ∈ A
and its interface σ. In A(σ), the interface σ is a sequence of sites s in Σ(A), with
internal states (as subscript) and binding states (as superscript). The internal
state of the site s may be written as sε, which means that either it does not have
internal states (when s ∈ Σ(A) \Σι(A)), or it is not specified. A site that bears
an internal state m ∈ I is written sm (in such a case s ∈ Σι(A)). The binding
state of a site s can be specified as sε, if it is free, otherwise it is bound (which
is possible only when s ∈ Σλ(A)). There are several levels of information about
the binding partner: we use a binding label i ∈ N when we know the binding
partner, or a wildcard bond − when we only know that the site is bound. The
detailed description of the syntax of a Kappa agent is given by the following

4Given a set X, ℘(X) denotes the power set of X (i.e. the set of all subsets of X).
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grammar:
a ::= N(σ) (agent)
N ::= A ∈ A (agent name)
σ ::= ε | s,σ (interface)
s ::= nλι (site)
n ::= x ∈ S (site name)
ι ::= ε | m ∈ I (internal state)
λ ::= ε | − | i ∈ N (binding state)

We generally omit the symbol ε.

Definition 7. (Kappa expression) Kappa expression E is a set of agents A(σ)
and fictitious agents ∅. Thus the syntax of a Kappa expression is defined as
follows:

E ::= ε | a , E | ∅ , E.
Example 4.2 (Ex. 4.1 continued). The following Kappa expression

A
(
a1
u,bp

)
, A
(
a1
p,bu

)
denotes a soup of two agents A. In this expression, the first agent has the site a
unphosphorylated, and the site b phosphorylated, whereas the second agent has
the site a phosphorylated and the site b unphosphorylated. Moreover, the two
agents are connected through their site a.

The structural equivalence ≡, defined as the smallest binary equivalence
relation between expressions that satisfies the rules given as follows

E , A(σ,s,s′,σ′) , E′ ≡ E , A(σ,s′,s,σ′) , E′

E , a , a′ , E′ ≡ E , a′ , a , E′

E ≡ E , ∅
i, j ∈ N and i does not occur in E

E[i/j] ≡ E
i ∈ N and i occurs only once in E

E[ε/i] ≡ E
stipulates that neither the order of sites in interfaces nor the order of agents
in expressions matters, that a fictitious agent might as well not be there, that
binding labels can be injectively renamed and that dangling bonds can be re-
moved.

Example 4.3 (Ex. 4.1 continued). Since neither the order of agents, nor the
order of sites, nor the choice of binding labels matter, the following Kappa ex-
pression

A
(
a1
u,bp

)
, A
(
a1
p,bu

)
is ≡-equivalent to the following one:

A
(
a3
p,bu

)
, A
(
bp,a

3
u

)
.
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Definition 8. (Kappa pattern, Kappa mixture) A Kappa pattern is a Kappa
expression which satisfies the following five conditions: (i) no site name occurs
more than once in a given interface; (ii) each site name s in the interface of
the agent A occurs in Σ(A); (iii) each site s which occurs in the interface of the
agent A with a non empty internal state occurs in Σι(A); (iv) each site s which
occurs in the interface of the agent A with a non empty binding state occurs in
Σλ(A); and (v) each binding label i ∈ N occurs exactly twice if it does at all
— there are no dangling bonds. A mixture is a pattern that is fully specified,
i.e. each agent A documents its full interface Σ(A), a site can only be free or
tagged with a binding label i ∈ N, a site in Σι(A) bears an internal state in I,
and no fictitious agent occurs.

Example 4.4 (Ex. 4.1 continued). We notice that the following expression

A
(
a1
u,bp

)
, A
(
a1
p,bu

)
is indeed a mixture.

Definition 9. (Kappa rule) A Kappa rule r is defined by two Kappa patterns
E` and Er, and a rate k ∈ R+

0 , and is written: r = E` → Er@k.
A rule r is well-defined, if the expression Er is obtained from E` by finite

application of the following operations: (i) creation (some fictitious agents ∅
are replaced with some fully defined agents of the form A(σ), moreover σ doc-
uments all the sites occurring in Σ(A) and all site in Σι(A) bears an internal
state in I), (ii) unbinding (some occurrences of the wild card and binding la-
bels are removed), (iii) deletion (some agents with only free sites are replaced
with fictitious agent ∅), (iv) modification (some non-empty internal states are
replaced with some non-empty internal states), (v) binding (some free sites are
bound pair-wise by using binding labels in N).

Example 4.5 (Ex. 4.1 continued). Now we introduce the following two rules:

A() → ∅ @1
A(a−u ) → A(au) @1.

The first rule deletes an agent A whatever the states of its sites are, whereas the
second rule releases the binding stemming from the unphosphorylated site a of
an agent A. The rate of both rules is 1.

From now on, we assume all rules to be well-defined. We sometimes omit
the rate of a rule. Moreover, we denote by E` ↔ Er@k1, k2 the two rules
E` → Er@k1 and Er → E`@k2.

Definition 10. (Kappa system) A Kappa system R = (πR0 , {r1, . . . , rn}) is
given by finite distribution over initial mixtures πR0 : {M01 , . . . ,M0k

} → [0, 1],
and a finite set of rules {r1, . . . , rn}.
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r01: EGF (a ) , EGFR(a ,d ) ←→ EGF
(
a1
)

, EGFR
(
a1,d

)
r02: EGF (a ) , EGFR(a ,d−) ←→ EGF

(
a1
)

, EGFR
(
a1,d−

)
r03: EGFR(a ,d ) , EGFR(a−,d ) ←→ EGFR

(
a ,d1

)
, EGFR

(
a−,d1

)
r04: EGFR(a ,d ) , EGFR(a ,d ) ←→ EGFR

(
a ,d1

)
, EGFR

(
a ,d1

)
r05: EGFR(a−,d ) , EGFR(a−,d ) ←→ EGFR

(
a−,d1

)
, EGFR

(
a−,d1

)
r06: EGFR(bu,d ) ←→ EGFR

(
bp,d

)
r07: EGFR(bu,d−) ←→ EGFR

(
bp,d

−)
r08: EGFR

(
bp
)

, Shc(a ) ←→ EGFR
(
b1
p

)
, Shc

(
a1
)

r09: EGFR
(
b1
p,d
)

, Shc
(
a1,bu

)
←→ EGFR

(
b1
p,d
)

, Shc
(
a1,bp

)
r10: EGFR

(
b1
p,d
−) , Shc

(
a1,bu

)
←→ EGFR

(
b1
p,d
−) , Shc

(
a1,bp

)
r11: Grb(a ) , Shc

(
bp
)
←→ Grb

(
a1
)

, Shc
(
b1
p

)
r12: EGFR(cu,d ) ←→ EGFR

(
cp,d

)
r13: EGFR(cu,d−) ←→ EGFR

(
cp,d

−)
r14: EGFR

(
cp,d

)
, Grb(a ) ←→ EGFR

(
c1
p,d
)

, Grb
(
a1
)

r15: EGFR
(
cp,d

−) , Grb(a ) ←→ EGFR
(
c1
p,d
−) , Grb

(
a1
)

r16: IR(a ,b) , Ins(a ) ←→ IR
(
a1,b

)
, Ins

(
a1
)

r17: IR(a ,b−) , Ins(a ) ←→ IR
(
a1,b−

)
, Ins

(
a1
)

r18: IR(a ,b) , Ins(a ) ←→ IR
(
a ,b1

)
, Ins

(
a1
)

r19: IR(a−,b) , Ins(a ) ←→ IR
(
a−,b1

)
, Ins

(
a1
)

r20: IR(a ,b ,cu) ←→ IR
(
a ,b ,cp

)
r21: IR(a−,b ,cu) ←→ IR

(
a−,b ,cp

)
r22: IR(a ,b−,cu) ←→ IR

(
a ,b−,cp

)
r23: IR(a−,b−,cu) ←→ IR

(
a−,b−,cp

)
r24: IR

(
cp
)

, Shc(a ) ←→ IR
(
c1
p

)
, Shc

(
a1
)

r25: IR
(
a−,b−,c1

)
, Shc

(
a1,bu

)
←→ IR

(
a−,b−,c1

)
, Shc

(
a1,bp

)
r26: IR(a ,b ,du) ←→ IR

(
a ,b ,dp

)
r27: IR(a−,b ,du) ←→ IR

(
a−,b ,dp

)
r28: IR(a ,b−,du) ←→ IR

(
a ,b−,dp

)
r29: IR(a−,b−,du) ←→ IR

(
a−,b−,dp

)
r30: IR

(
dp
)

, IRS (a ) ←→ IR
(
d1
p

)
, IRS

(
a1
)

r31: IR
(
a−,b−,d1

)
, IRS

(
a1,bu

)
←→ IR

(
a−,b−,d1

)
, IRS

(
a1,bp

)
r32: Grb(a ) , IRS

(
bp
)
←→ Grb

(
a1
)

, IRS
(
b1
p

)
r33: Grb(b) , Sos(du) ←→ Grb

(
b1
)

, Sos
(
d1
u

)
r34: Grb(b) , Sos

(
dp
)
←→ Grb

(
b1
)

, Sos
(
d1
p

)
r35: Grb

(
b1
)

, Sos
(
d1
u

)
←→ Grb

(
b1
)

, Sos
(
d1
p

)
r36: Sos(du) ←→ Sos

(
dp
)

r37: Shc(bu) ←→ Shc
(
bp
)

r38: IRS (bu) ←→ IRS
(
bp
)

Table 1: Rule set for the EGFR/Insulin crosstalk. We omit the rate constants because the
reduction procedure (introduced in Sect. 5) does not depend on the choice of rate constants.
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Example 4.6 (case study (Sect. 2) continued). We give in Table 1 the set of
rules for the model of crosstalk between the EGF receptor and the insulin re-
ceptor pathways. We leave the signature of the model implicit. Rules ( r01,r02)
describe the (un)binding between a ligand EGF and the site a of a receptor
EGFR. We have used two rules to encode EGF/EGFR binding, in order to
model the fact that the rate of association may depend on whether EGFR is in
a dimer, or not. Rules ( r03,r04,r05) describe dimer formation and dissocia-
tion. We notice that the rate of dimer formation/dissociation depends on the
number of ligands that are bound to the receptors. Rules ( r06,r07) describe the
(de)phosphorylation of the site b of EGFR at a rate which depends on whether
the receptor is in a dimer, or not. The rule ( r08) describes the (un)binding be-
tween EGFR and Shc. Rules ( r09,r10) describe the (de)phosphorylation of Shc
by EGFR (the rate depends on the fact whether the receptor is still in a dimer,
or not). Rule ( r11) describes the recruitment of a transport molecule Grb by
Shc. Rules ( r12,r13) describe the (de)phosphorylation of the site c of EGFR
and rules ( r14,r15) describe the recruitment of Grb directly by EGFR at rates
which depends on whether or not EGFR is in a dimer. Rules ( r16,r17,r18,r19)
describe the (un)binding between an insulin receptor (IR) and insulin molecule
(the rate may depend on the fact whether an insulin molecule has already been
recruited). Rules ( r20,r21,r22,r23) describe the (un)phosphorylation of the site c
of the IR at a rate which depends on the number of recruited insulin molecules (in
practice the rates of rules r21 and r22 are the same). Rule ( r24) describes the
(un)binding between IR and Shc. Rule ( r25) describes the (un)phosphorylation
of Shc by IR. Rules ( r26,r27,r28,r29) describe the (un)phosphorylation of the
site d of IR at a rate which depends on the number of recruited insulin molecules.
Rule ( r30) describes the (un)binding between IR and IRS. Rule ( r31) describes
the (un)phosphorylation of IRS. Rule ( r32) describes the (un)binding between
IRS and Grb. Rules ( r33,r34) describe the (un)binding between Grb and Sos at
a rate which depends on whether or not Sos is phosphorylated. Rules ( r35,r36)
describe the (un)phosphorylation of Sos at a rate which depends on whether or
not it is bound to Grb. Rule ( r37) describes the spontaneous dephosphorylation
of Shc and rule ( r28) the spontaneous dephosphorylation of IRS.

4.2. Operational semantics

In order to apply a rule r := E` → Er@k to a mixture M , we use the
structural equivalence ≡ to bring the participating agents to the front of E
(with their sites in the same order as in E`), rename binding labels if necessary
and introduce a fictitious agent for each agent that is created by r. This yields
an equivalent expression E′ that matches the left hand side (lhs) E`, which is
written E |= E`, defined as follows:
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E |= ε
a |= a` ∧ E |= E` =⇒ (a , E) |= (a` , E`)

∅ |= ∅
σ |= σ` =⇒ N(σ) |= N(σ`)

σ |= ε
s |= s` ∧ σ |= σ` =⇒ (s, σ) |= (s`, σ`)

ι |= ι` ∧ λ |= λ` =⇒ nλι |= nλ`
ι`

ι` ∈ {ε, ι} =⇒ ι |= ι`
λ = λ` ∨ [λ 6= ε ∧ λ` = −] =⇒ λ |= λ`

Note that in order to find a matching, we only use structural equivalence on
E, not E`. We then replace E′ by E′[Er] which is defined as follows:

E[ε] = E
(a , E)[ar , Er] = a[ar] , E[Er]

∅[ar] = ar
ar[∅] = ∅

N(σ)[N(σr)] = N(σ[σr])
σ[ε] = σ

(s, σ)[sr, σr] = s[sr], σ[σr]
λ[−] = λ

nλι [nλr
ιr ] = n

λ[λr]
ι[ιr]

ιr ∈ I =⇒ ι[ιr] = ιr
λr ∈ N ∪ {ε} =⇒ λ[λr] = λr

This may produce dangling bonds (if r unbinds a wildcard bond or destroys an
agent on one side of a bond) or fictitious agents (if r destroys agents), so we use
≡ to resolve them.

Definition 11 (rule application). Given a Kappa rule r = E` → Er and a
Kappa mixture E. We assume that E is ≡-equivalent to a Kappa expression E′

such that E′ |= E`. Then, the Kappa expression E′[Er] is well-defined and ≡-
equivalent to some mixtures. Let E′′ be a Kappa mixture which is ≡-equivalent
to E′[Er]. The Kappa mixture E′′ is called the potential result of an application
of r with E, which is denoted as follows:

E →r E
′′.

Example 4.7 (Ex. 4.1 continued). The rule

r1 := A()→ ∅

can be applied with the mixture

A
(
a1
u,bp

)
, A
(
a1
p,bu

)
in two different ways.
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1. We have:
A
(
a1
u,bp

)
, A
(
a1
p,bu

)
|= A().

Thus, we can apply r1 with the agent A
(
a1
u,bp

)
and replace this agent with

the fictitious agent ∅ (as stated in the rhs of r1), as done in the following
computation: (

A
(
a1
u,bp

)
, A
(
a1
p,bu

))
[∅] = ∅ , A

(
a1
p,bu

)
.

Yet, the Kappa expression

∅ , A
(
a1
p,bu

)
is not a Kappa mixture, but it is ≡-equivalent to the following Kappa
mixture

A
(
ap,bu

)
.

(We notice that we have cleaned the dangling bond 1.) Thus we get:

A
(
a1
u,bp

)
, A
(
a1
p,bu

)
→r1 A

(
ap,bu

)
.

2. But, we also have:

A
(
a1
u,bp

)
, A
(
a1
p,bu

)
≡ A

(
a1
p,bu

)
, A
(
a1
u,bp

)
.

and:
A
(
a1
p,bu

)
, A
(
a1
u,bp

)
|= A().

Thus, we can also apply r1 with the agent A
(
a1
p,bu

)
and replace this agent

with the fictitious agent ∅ (as stated in the rhs of r1), as done in the
following computation:(

A
(
a1
p,bu

)
, A
(
a1
u,bp

))
[∅] = ∅ , A

(
a1
u,bp

)
.

Yet, the Kappa expression

∅ , A
(
a1
u,bp

)
is not a Kappa mixture, but it is ≡-equivalent to the following Kappa
mixture

A
(
au,bp

)
.

Thus we get:
A
(
a1
u,bp

)
, A
(
a1
p,bu

)
→r1 A

(
au,bp

)
.

Example 4.8 (Ex. 4.1 continued). The rule

r2 := A
(
a−u
)
→ A(au)

can be applied with the mixture

A
(
a1
u,bp

)
, A
(
a1
p,bu

)
only by aligning the first agent of the lhs of the rule to the first agent of the
mixture.
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1. We have:
A
(
a1
u,bp

)
, A
(
a1
p,bu

)
|= A

(
a−u
)

and
A
(
a1
u,bp

)
, A
(
a1
p,bu

)
[A(au)] = A

(
au,bp

)
, A
(
a1
p,bu

)
.

Yet, the Kappa expression

A
(
au,bp

)
, A
(
a1
p,bu

)
is not a Kappa mixture, but it is ≡-equivalent to the following Kappa
mixture

A
(
au,bp

)
, A
(
ap,bu

)
(We notice that we have cleaned the dangling bond 1 this way.) Thus we
get:

A
(
a1
u,bp

)
, A
(
a1
p,bu

)
→r2 A

(
au,bp

)
, A
(
ap,bu

)
.

4.3. Population-based stochastic semantics

In addition to the rate constants k, careful counting of the number of times
each rule can be applied to a mixture is required to define the system’s quan-
titative semantics correctly [8, 31]. Thus we define the notions of embedding
between patterns. Let Z = a1 , . . . , am and Z` = c1, . . . , cn be two patterns
with no occurrence of the fictitious agent and such that there exists a pattern
Z ′ = b1, . . . , bm that satisfies both Z ≡ Z ′ and Z ′ |= Z` (and so, in particular,
n ≤ m). The agent permutations used in the proof that Z ≡ Z ′ allow us to
derive a permutation p such that ap(i) ≡ bi. The restriction φ of p to the inte-
gers between 1 and n is called an embedding between Z` and Z. This is written
Z`�φZ. There may be several embeddings between Z` and Z for the same Z ′; if
so, this influences the relative weight of the reaction in the stochastic semantics.
We denote by [Z,Z ′] the set of embeddings between Z and Z ′. This notion
of embedding is extended to patterns (including fictitious agents) by defining
Z` �φ Z if, and only if, (↓∅ Z`) �φ (↓∅ Z), where ↓∅ removes all occurrences of
the fictitious agent in patterns.

We assume that E` is the lhs of a rule r := E` → Er@k and Z is a mixture
such that E`�φZ. Let Z = a1, . . . , am and ↓∅ E` = c1, . . . cn. Given Z ′ ≡ Z (we
write ↓∅ Z ′ = b1, . . . , bm) and a bijection p such that we have Z ′ |= E`, bi ≡ ap(i)
for 1 ≤ i ≤ m and φ(j) = p(j) for 1 ≤ j ≤ n. The result of applying r along
φ to the mixture Z is defined (modulo ≡) as any mixture that is ≡-equivalent
to Z ′[Er]. In other words the embedding φ between E` and Z fully defines the
action of r on Z up to structural equivalence.

We are now ready to define the stochastic semantics by the mean of a WLTS.
In this semantics, the state is a soup of agents, that is to say that we do not
care about the order of agents in mixture. So the states of the system are the
class of ≡-mixture.

Defining species as connected mixture, the state of the system can be seen
as a multi-set of species. The formal definition of a Kappa species is as follows:
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Definition 12. (Kappa species) A pattern E is reducible whenever E ≡ E′, E′′
for some non-empty patterns E′, E′′; A Kappa species is the ≡-equivalence class
of an irreducible Kappa mixture.

Example 4.9 (Ex. 4.1 continued). The Kappa species are the following:

[A
(
ax1

,bx2

)
]≡

for any x1, x2 ∈ {u, p} and

[A
(
a1
x1

,b1
x2

)
, A
(
a1
x3

,b1
x4

)
]≡,

for any x1, x2, x3, x4 ∈ {u, p}. Thus there are 4+ 16−4
2 +4 = 14 Kappa species.

As explained earlier, the action of a rule r on a mixture E is fully defined
(up to ≡) by an embedding φ between the lhs E` of the rule r and the mixture.
So as to consider computation steps over ≡-equivalent of mixtures, we introduce
an equivalence relation ≡L over triples (r, E, φ) where φ is an embedding of the
lhs E` of r into E. We say that (r1, E1, φ1) ≡L (r2, E2, φ2) if, and only if, (i)
r1 = r2 and (ii) there exists an embedding ψ ∈ [E1, E2] such that φ2 = ψ ◦ φ1.

Definition 13. (WLTS of a Kappa system) Let R = (πR0 , {r1, . . . , rn}) be a
Kappa system. We define the WLTS WR = (X ,L, w, π0) where:

1. X is the set of all ≡-equivalent classes of mixtures;

2. L is the set of all ≡L-equivalence classes of triples (r, E, φ) such that φ is
an embedding between the lhs E` of r and E;

3. w(x, l, x′) =
k

|[E`,E`]|
whenever there exist a rule r = E` → Er@k, two

mixtures E and E′, and an embedding φ ∈ [E`, E], such that x = [E]≡,
l = [r, E, φ]≡L , x′ = [E′]≡, and E′ is the result (up to ≡) of the application
of r along φ to the mixture E; otherwise w(x, l, x′) = 0;

4. π0(x) =
∑{πR0 (E′) | E′ ∈ Dom(πR0 ) ∩ x}.

The stochastic semantics of a Kappa system R is then defined as the trace
distribution semantics of the WLTS WR.

Example 4.10 (Ex. 4.1 continued). We now give an example. Consider the
mixture E which is defined as follows:

E := A(au,bu) , A(au,bu) , A
(
au,bp

)
,

and the following rule:
A(au)→ A

(
ap
)
@k.

The rule r can be applied on [E]≡ in three ways, which gives three distinct labels:

1. Taking l1 as the ≡L-equivalent class of (r, E, [1 7→ 1]), we get:

[E]≡
l1→ [A

(
ap,bu

)
, A(au,bu) , A

(
au,bp

)
]≡.
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2. Taking l2 as the ≡L-equivalent class of (r, E, [1 7→ 2]), we get:

[E]≡
l2→ [A(au,bu) , A

(
ap,bu

)
, A
(
au,bp

)
]≡.

3. Taking l3 as the ≡L-equivalent class of (r, E, [1 7→ 3]), we get:

[E]≡
l3→ [A(au,bu) , A(au,bu) , A

(
ap,bp

)
]≡.

One notices that:

A
(
ap,bu

)
, A(au,bu) , A

(
au,bp

)
≡ A(au,bu) , A

(
ap,bu

)
, A
(
au,bp

)
,

thus the first two transitions give the same result. Using distinct labels for the
transitions allows counting precisely the number of embeddings between the lhs of
a rule and a mixture, which is crucial for defining sound quantitive semantics.

5. Reduction procedure

In this section, we describe an approximation of the flow of information
between the different regions of molecular species. Then we use it to define
stochastic fragments. This framework is a simplification of the one which is
described in [15]. To make the things easier, we assume, without any loss of
generality that, in this section, Σι and Σλ are disjoint sets. This can always be
achieved by taking two disjoint copies Sι and Sλ of S and using site names in
Sι to bear internal states, and site names in Sλ to bear binding states.

We introduce contact maps which summarize the agents of a model and their
potential bindings. More formally, a contact map is a graph, the nodes of which
itemize the different types of agents of the model. Each node is documented by
the set of sites in the interface of the agent. Then, an edge between the sites of
two or of the same protein(s) denotes a potential binding between the sites of
two instances of this/these protein(s).

Definition 14. (Contact map) Given a Kappa system R, a contact map (CM)
is a graph object (N , E), where the set of nodes N are agent types equipped with
the corresponding interface, and the edges are specified between the sites of the
nodes.

Formally, we have that:

N := {(A,Σ(A)) | A ∈ A},
E ⊆ {((A, s), (A′, s′)) | A,A′ ∈ A and s ∈ Σ(A), s′ ∈ Σ(A′)},

and there is an edge between (A, s) and (A′, s′) (i.e. ((A, s), (A′, s′)) ∈ E) if and
only if the site s of an agent of type A and the site s′ of an agent of type A′

bear the same binding label in the rhs Er of a rule.
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(b) Annotated contact map

Figure 9: Maps for the EGFR/Insulin crosstalk. (a) A contact map summarizes the potential
bindings between proteins (b) The contact map is annotated by partitioning the set of sites:
two sites are in the same annotation class, if their values are correlated by the flow of infor-
mation in the stochastic dynamics of the model. For example, the sites a and b of protein Grb
not being in the same annotation class means that the values of these two sites are modified
independently of each other.

Example 5.1 (case study (Sect. 2) continued). We give again, in Fig. 9(a),
the contact map for the EGF/Insulin crosstalk. We can notice that some sites
are in competition (or in concurrency), since they can be connected to different
kind of sites: this is the case with the site a of Grb for instance. Moreover, a
site in a contact map can be connected with itself (which encodes the fact that
the sites of two instances of the same agent can be connected together), as the
site d of EGFR for instance.

An annotated contact map is obtained by annotating a contact map with
information about the flow of information between the states of the different
sites. In the stochastic semantics, it turns out that our over-approximation of
the flow of information is symmetric, that is to say that whenever we detect a
potential flow from a site to another one, then we also detect a potential flow in
the converse direction. Moreover, the flow of information is transitive. Thus, we
can describe the flow of information between the same sites of an agent thanks to
a binary equivalence relation. Moreover, there is no need to describe explicitly
the flow of information across bindings, because in our approximation, whenever
two sites can be bound together, there is a potential flow of information from
one to the other, as soon as none of their equivalence class is a singleton.

Now we can formally define the annotated contact map.

Definition 15. (Annotated Contact map) Given a Kappa system R, a valid
annotated contact map (ACM) is a contact map where all agents are annotated
with respect to the rule set R. The annotation on the agent of type A ∈ A is
given by an equivalence relation on its set of sites ≈A⊆ Σ(A)×Σ(A) such that:
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• If a rule r tests5 the sites s1 and site s2 of agents a1,a2 (it is possible that
a1 = a2) of type A, then s1 ≈A s2;

• If a rule r creates an agent a of type A, then all the sites of Σ(A) are in
the same equivalence class, i.e. ≈A= Σ(A)× Σ(A);

Note that there can be several annotations of the agent type A ∈ A which sat-
isfy the conditions. More precisely, if the equivalence relation ≈A meets the
conditions, then any coarser equivalence relation satisfies them as well. This
allows to define the smallest such equivalence relation ≈A which we call the
minimal annotation of agent A. An ACM is minimal whenever each agent type
is annotated by its minimal annotation.

Example 5.2 (case study (Sect. 2 continued)). We give in Fig. 9(b) an anno-
tated contact map which is compatible with the rules in Table 1. We notice that
the hypothesis that for any agent A ∈ A,Σι(A) ∩ Σλ(A) = ∅, is not satisfied.
Indeed, we assume implicitly, that whenever a site s belongs to Σι(A) ∩ Σλ(A),
for a given agent type A ∈ A, then there is a flow of information between the
internal state and the binding state (and conversely) of the instance of the site s
in A. Unlike in Fig. 2, we have described the approximation of the information
flow thanks to equivalence classes, and not with oriented edges. One can get
back the annotation of Fig. 2, by putting an oriented edge between (i) any two
sites which belong to the same equivalence class, and between (ii) any two sites
that can be bound together and such that the equivalence class of none of them
is a singleton.

Now we justify the annotation of the contact map. Sites a and d of EGFR
are both tested in the rules r01, r02, r03, r04, and r05 (one rule would have
been enough), so they should belong to the same ≈EGFR-equivalence class. The
sites b and d of EGFR are both tested in the rules r06, r07, r09, and r10, so
we should have b ≈EGFR d. The sites c and d of EGFR are both tested in the
rules r12, r13, r14, and r15, so we should have c ≈EGFR d. The sites a and b
of Shc are both tested in the rules r09, r10, r25. So we should have a ≈Shc b.
The sites a and b of IR are both tested in the rules r16, r17, r18, r19, so we
should have a ≈IR b. Moreover, the sites a, b, and c of IR are all tested in the
rules r20, r21, r22, r23, r25, so they should belong to the same ≈IR-equivalence
class. And the sites a, b, and d of IR are all tested in the rules r26, r27, r28,
r29, r31, so they should belong to the same ≈IR-equivalence class. The sites a
and b of IRS are both tested in the rule r31, thus we should have a ≈IRS b.

Importantly, we notice that the sites a and b of Grb occur in no rule together.
Thus, they can be in two distinct ≈Grb-equivalence class. Thanks to this, our
reduction procedure will simplify the system, by cutting each instance of Grb into
two parts.

Let r be a rule and let us consider an ACM which is valid with respect

5We say that the site s of the agent a is tested by the rule r, if it occurs in the lhs of r.
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to the singleton {r}. For any agent type A ∈ A, either A does not occur in
the lhs of r, or A occurs but all occurrences of A have an empty interface, or A
occurs, tests some sites which are all ≈A-equivalent. In the latter case, we define
testACM

r (A) = C where C is the ≈A-equivalent class of the sites, otherwise, we
define testACM

r (A) = ∅.
The meaning of the ACM is to summarize the dependences between sites

that can occur during the simulation of a Kappa system. If the two sites s and
s′ in the Σ(A) are related by the relation ≈A, i.e. s ≈A s′, it suggests that
they are dependent in the following way. We must not aggregate in the same
equivalence class any two states x and x′, such that they contain the agent
A in a different evaluation of the sites s and s′. On the other hand, if the
two sites s and s′ are not related by ≈A, then we may aggregate the states by
the ’marginal’ criteria, i.e. the condition which involves only one of the sites.
Therefore, the less states are related by (≈A)A∈A, the better the reduction
will be. To numerically justify this, we can imagine having an agent of type
A whose interface has n different sites s1, ..., sn, and each of them has two
possible internal state modifications. Let us observe the two limiting relations
≈A, i.e.≈A= {(si, sj) | 1 ≤ i ≤ n, 1 ≤ j ≤ n}, and≈′A= {(si, si) | 1 ≤ i ≤ n}.
The annotation ≈A enforces at least to 2n states to describe all modifications of
the agent A, whereas the annotation ≈′A suggests that it is enough to use only
2 · n of them.

The ACM can be used to identify parts of Kappa species that we call frag-
ments.

Definition 16. (Kappa fragments) A fragment is the ≡-equivalent class of a
non empty irreducible pattern E such that: (i) the set of sites in the interface σ
of an agent A(σ) in E is an equivalence class of ≈A, (ii) sites can only be free
or tagged with a binding label i ∈ N and sites in Σι are tagged with an internal
state in I, (iii) there is no occurrence of fictitious agent ∅.
Example 5.3 (case study (Sect. 2 continued)). Since, we do not have a ≈Grb b,
each instance of a Grb is cut into two parts. For instance the molecular species:

EGFR
(
a ,bu,c1

p,d
2
)

, EGFR
(
a ,bp,c

3
p,d

2
)

, Grb
(
a1,b

)
, Grb

(
a3,b4

)
, Sos

(
d4
u

)
is cut into three fragments:

1. EGFR
(
a ,bu,c1

p,d
2
)

, EGFR
(
a ,bp,c

3
p,d

2
u

)
, Grb

(
a1
)

, Grb
(
a3
)
;

2. Grb(b);

3. Grb
(
b1
)

, Sos
(
d1
u

)
;

as shown in Fig. 10.
In this case study, 2, 768 different molecular species may occur at run time.

Since in the reduced model, each instance of a protein Grb can be safely cut into
two parts, we get only 609 stochastic fragments.

We can use fragments to abstract the WLTS WR, by identifying the mix-
tures which have the same (multi-)set of fragments. To reach that goal, we first

26



u

GrbGrb

Sos

EGFR EGFR

p

u

p

p

c

b

d

a

b

a

c

b

a

b

a

d

d
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Figure 10: A fragmentation. A chemical species is cut into three fragments, by splitting each
Grb into two parts and abstracting away which parts belong to the same protein.

overload the definition of ≡ in order to identify mixtures having the same frag-
ments. We introduce the binary relation ≡] as the smallest equivalence relation
over patterns which is compatible with ≡ and such that:

(A(σ) , A(σ′) , E) ≡] (A(↑C σ′, ↑Σ(A)\C σ) , A(↑C σ, ↑Σ(A)\C σ′) , E)

for any agent type A ∈ A, σ,σ′ interfaces, E pattern, and C an ≈A-equivalence
class of sites. For any set of sites X ⊆ S, the projection function ↑X over
interfaces keeps only the sites in X, formally ↑X is defined by ↑X ε = ε, ↑X
(sλι ,σ′) = (sλι , ↑X σ′) whenever s ∈ X, and ↑X (sλι ,σ′) =↑X σ′ otherwise.

Now we define the relation ∼L] which stipulates that the rule r1 applies on
E1 along φ1 the same way as the rule r2 on E2 along φ2. More formally, we write
(r1, E1, φ1) ∼L] (r2, E2, φ2) whenever the following properties are all satisfied:

1. r1 = r2;
2. E1 ≡] E2;
3. φ2 = ψ◦φ1, where ψ is the permutation which tracks how the sub-interface
↑testACM

r (Ai) (Ai(σi)) is moved in the proof that E1 ≡] E2, for any agent
Ai(σi) occurring in E1.
More precisely, the transposition [ii+1] is associated to an agent permuta-
tion of the agents at position i and i+1; the transposition [12] is associated
to a step which permutes the sub-interface testACM

r (A) of two agents of
type A, for any agent type A ∈ A; any other step is associated with the
identity function (over N). The function ψ is defined as the composition
of all the permutations (in the reverse order) which are associated to the
elementary steps in the proof that E1 ≡] E2.

4. the result of the application of r1 to E1 along φ1 is ≡-equivalent to the
result of the application of r2 to E2 along φ2.

Definition 17. (Abstract WLTS of a Kappa system) Let R = (πR0 , {r1, . . . , rn})
be a Kappa system. We define the WLTS W̃R = (X̃ , L̃, w̃, π̃0) where:
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• X̃ is the set of all ≡]-equivalent class of mixture;

• L̃ is the set of all ≡]L-equivalent class of triples (r, E, φ) such that φ is an
embedding between the lhs E` of r and E;

• w̃(x̃, l̃, x̃′) is equal to
k

|[E`,E`]|
whenever there exist a rule r = E` → Er@k,

two mixtures E and E′, and an embedding φ ∈ [E`, E], such that x̃ =
[E]≡] , l̃ = [r, E, φ]≡]

L
, x̃′ = [E′]≡] , and E′ is the result (up to ≡) of the

application of r along φ to the mixture E; otherwise w̃(x̃, l̃, x̃′) = 0;

• for any x̃ ∈ X̃ , π̃0(x̃) =
∑
E′∈Dom(πR0 )∩x̃ π

R
0 (E′).

We define the relation ∼ over X by [E1]≡ ∼ [E2]≡ if, and only if, E1 ≡] E2

and the relation ∼L over L by [λ1]≡L ∼L [λ2]≡L if, and only if, λ1 ≡]L λ2. The
pair (∼,∼L) of relations induces an abstraction of WR as formalized in Sect. 6.

6. Abstraction

We introduce abstractions on WLTS by aggregating the states and labels
into partition classes. We obtain a new WLTS defined over the aggregated
states and labels. Each non-trivial abstraction is a loss of information. However
some of them are such that it is possible to do the stochastic analysis on the
aggregates rather than on concrete states. We address the problem of character-
izing when this is possible, and if so, how the weights in the abstracted system
are computed. We also discuss the reverse process - given the abstracted system,
and a particular probability distributions over the aggregates, whether we can
make conclusions about the traces in the concrete system. We do the general
theoretical analysis of the abstractions on WLTS, and afterwards we show the
relation with the reduction of Kappa systems, that is presented in Sect. 5.

6.1. Abstraction of WLTS

Definition 18. (Abstraction) Consider a WLTS W = (X ,L, w, π0), and a pair
of equivalence relations (∼,∼L) ∈ X 2 × L2, such that each ∼-equivalence class
and each ∼L-equivalence class is finite. We denote the equivalence classes by x̃,
l̃, and we write x ∈ x̃, to indicate that x belongs to the equivalence class x̃, and
l ∈ l̃ to indicate that the label l belongs to the equivalence class l̃. Moreover, we
denote by X/∼ and by L/∼L the set of equivalence classes of X and L.

A WLTS of the form W̃ = (X/∼,L/∼L , w̃, π̃0), where π̃0(x̃) =
∑{π0(x) |

x ∈ x̃} is called an abstraction of W, induced by the pair of equivalence relations
(∼,∼L). Note that several abstractions can be induced by W, depending on how
w̃ is defined.

Moreover, for any two cylinder sets of traces τ̃IR ∈ TIR(W̃) and τIR ∈ TIR(W),

we say that τ̃IR = x̃0
l̃1,I1→ x̃1 . . . x̃k−1

l̃k,Ik→ x̃k is an abstraction of τIR = x0
l1,I1→

x1 . . . xk−1
lk,Ik→ xk, and we write it τIR ∈ τ̃IR.
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Definition 19. (Sound abstraction: Aggregation) We say that the abstraction
W̃ is a sound abstraction of W, if the probability of any cylinder set of traces
τ̃IR ∈ TIR(W̃) is equal to the sum of the probabilities of all the cylinder sets of
traces τIR ∈ TIR(W), whose abstraction is τ̃IR:

π(τ̃IR) =
∑
{π(τIR) | τIR ∈ τ̃IR}.

We introduce a function γ : X/∼ → (X → [0, 1]) which assigns to each
partition class x̃ ∈ X/∼ a probability distribution over the states x ∈ x̃ of this
partition class. The set of all such vectors γ, denoted by ΓX ,∼, is defined as:

{γ | γ : X/∼ → (X → [0, 1]) ∧ ∀x̃ ∈ X̃ ,
∑
x∈x̃

γ(x̃, x) = 1}.

We can think of the value γ(x̃, x) as the conditional probability of being in the
state x, knowing that we are in state x̃, i.e. Pr(Xt = x | Xt ∈ x̃) = γ(x̃, x). We
note that, when thinking of γ as the conditional probability, it should be a time-
dependent value. However, we refer to γ as to a single, constant distribution.
This will be justified in Lem. 1.

Definition 20. (Complete abstraction: Deaggregation) We say that the ab-
straction W̃ is a complete abstraction of W for γ ∈ ΓX ,∼, if the following holds.
Given the probability of an arbitrary abstract cylinder set of traces of length
k ≥ 1, that ends in the abstract state x̃k (written τ̃IR → x̃k), we can recompute
the probability of ending the trace in the concrete state xk ∈ x̃k as follows:

π(τ̃IR → xk) = γ(x̃k, xk) · π(τ̃IR → x̃k).

Sound and complete abstractions W̃ cannot be induced by any pair of re-
lations (∼,∼L), because there might not exist a weighting function w̃ : X/∼ ×
L/∼L × X/∼ → R, such that the conditions from Dfn. 19 and Dfn. 20 are met.
Moreover, even if such w̃ exists, the remaining question is whether the informa-
tion on the abstract system is enough to compute them.

We now restate the main Theorem from [15], that the abstractions for Kappa
systems, that we resumed in Sect. 5, are sound and complete.

Theorem 1. (The abstraction induced by the ACM is sound and complete)
Given a Kappa system R = (πR0 , {r1, ..., rn}), and a valid ACM for the rule set
R, the abstraction W̃R = (X/∼,L/∼ , w̃, π̃0) induced by the pair of equivalence
relations (∼,∼L) ⊆ X 2×L2, as proposed in the Def. 17 is a sound and complete
abstraction of the WR = (X ,L, w, π0), provided that for any two mixtures M
and M ′ such that M ≡] M ′, we have:

π0([M ]≡) · |[M ′,M ′]| = π0([M ′]≡) · |[M,M ]|.

We consider a mixture M . We denote by x ∈ X the equivalence class [M ]≡,
and by x̃ ∈ X̃ the equivalence class [M ]≡] = [x]∼. The conditional probability
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γ(x̃, x) is computed as the ratio of the number of automorphisms of x (embedding
between x and x) and the sum of the number of automorphisms of any ∼-
equivalent state. Thus we have:

γ(x̃, x) =
|[x, x]|∑{|[x′, x′]| | x ∼ x′} .

The reader can find the detailed proof in [15].
Interestingly, our reduction procedure does not depend on the kinetic rates

of the rules. Indeed, rules describe explicitly which context can impact on
the kinetic of some interactions. This information is enough to define a sound
approximation of the flow of information. Thus our analysis is semi-quantitative,
it provides properties that are correct whatever the valuation of the kinetic rates
is. That is why, we do not give the values to the kinetic rates in our case study.
Last, one can notice that, given some additional hypotheses on the rate of some
rules, the models could be refined further. For instance, in the case of study
(Sect. 2), if the rules r21 and r22 have the same kinetic rates, then the sites
a and b of IR have a symmetric role in the system. We could consider this
symmetry to reduce the set of considered fragments, for instance, by identifying
the fragments IR

(
a1,b

)
, Ins

(
a1
)

and IR
(
a ,b1

)
, Ins

(
a1
)
, as done in [6].

6.2. Lumpability

Now we define different versions of lumpability and investigate the relation-
ship with sound and complete abstractions.

Definition 21. (Lumped process) Given a WLTS W = (X ,L, w, π0), where
X = {x1, x2, ...}, and a partition ∼⊆ X × X on its state space, we observe the
continuous-time stochastic process {Xt}t∈R+

0
, that is generated by W (Dfn. 2).

We define the lumped process {Yt} on the state space X/∼ = {x̃1, x̃2, ...} (denoted
by capital indices, i.e. x̃I , x̃J) and with initial distribution π̃0, so that

Pr(Yt = x̃J | Y0 = x̃0) = Pr(Xt ∈ x̃J | X0 ∈ x̃0).

The lumped process is not necessarily a Markov process.

Definition 22. (Lumpability) Given a WLTS W = (X ,L, w, π0) that generates
the process {Xt}, we say that it is lumpable with respect to the equivalence
relation ∼⊆ X×X if and only if its lumped process {Yt} has the Markov property.

The evolution of a process depends on the initial distribution, and so does
the lumpability property. We thus define the set of initial distributions, for
which the lumpability holds. We denote the set of all probability distributions
over X as PX :

PX = {π | π : X→[0, 1] and
∑
xi∈X

π(xi) = 1}.
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Moreover, we denote the set of initial distributions that produce a chain lumpable
with respect to the given equivalence relation ∼ by PIX ,∼:

PIX ,∼ =

{
π

∣∣∣∣ the lumped process initialized with π
is lumpable with respect to ∼

}
.

Whenever a distribution π ∈ PX is positive on the equivalence class x̃,
i.e.

∑{π(x) | x ∈ x̃} > 0, we denote by π|x̃(x), the conditional distribution
over the states of x̃: π|x̃(x) = π(x)/π(x̃), when x ∈ x̃, and π|x̃(x) = 0, otherwise.

Definition 23. (Strong and weak lumpability) Given a WLTSW = (X ,L, w, π0)
that generates the process {Xt}, and an equivalence relation ∼⊆ X ×X , we say
that {Xt} is:

• strongly lumpable with respect to ∼, if the lumped process {Yt} is Markov
with respect to any initial distribution, i.e. PIX ,∼ = PX ;

• weakly lumpable with respect to ∼, if there exists an initial distribution
that makes the lumped process {Yt} Markov, i.e. PIX ,∼ 6= ∅.

Note that the definitions of strong and weak lumpability involve the quanti-
fiers ”for all” and ”exists” over the probability distributions over a set of states.
Thus, checking for either of them involves in general an infinite number of
checks. People have given sufficient conditions of strong and weak lumpability
on discrete-time Markov chains (DTMC’s) [25, 33]. The results had been ex-
tended to the continuous-time case [4, 34]. We rephrase the sufficient conditions
stated therein.

In order to understand the sense of the weak lumpability characterization,
we discuss the meaning of γ. We recall the semantics of a WLTSW by observing

the cylinder sets of traces, i.e. τIR = x0
l1,I1→ x1 . . . xk−1

lk,Ik→ xk ∈ TIR(W). The
abstraction W̃ of W, induced by (∼,∼L) generates an abstract cylinder set of

traces, denoted τ̃IR = x̃0
l1,I1→ x̃1 . . . x̃k−1

lk,Ik→ x̃k ∈ TIR(W̃).
For any cylinder set of traces τ̃IR ∈ TIR(W̃), we denote by γτ̃IR the distribution

of the conditional probabilities over the lumped state x̃k, knowing that the
abstract cylinder of traces τ̃IR, which ends in the abstract state x̃k, was observed,
i.e.

γτ̃IR(xk) =
π(τ̃IR → xk)

π(τ̃IR)
.

The definition of the complete abstraction suggests that, if γτ̃IR was independent
of the traces on which it is conditioned, i.e. τ̃IR, then the completeness would
hold.

Theorem 2. (Lumpability on CTMCs) Let us observe a WLTSW = (X ,L, w, π0)
that generates the process {Xt}, and an equivalence relation ∼⊆ X × X . We
consider the rate matrix R : X ×X → R. If the lumped process is Markov, then
we denote its rate matrix by R̃ : X/∼ × X/∼ → R. Then we have the following

characterizations about the lumped process {X̃t}:
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• If for all xi1 , xi2 ∈ X such that xi1 ∼ xi2 , and for all x̃J ∈ X/∼, we have
that ∑

xj∈x̃J

R(xi1 , xj) =
∑
xj∈x̃J

R(xi2 , xj), (2)

then {Xt} is strongly lumpable with respect to ∼; We have:

R̃(x̃I , x̃J) =
∑
{R(xi1 , xj) | xj ∈ x̃J};

• If there exists a family of probability distributions over the lumped states,
γ ∈ ΓX ,∼, such that for all xj1 , xj2 ∈ X such that xj1 ∼ xj2 and for all
x̃I ∈ X/∼, we have that

a(xj1) = a(xj2) and

∑
xi∈x̃i

R(xi, xj1)

γ(x̃J , xj1)
=

∑
xi∈x̃I

R(xi, xj2)

γ(x̃J , xj2)
, (3)

then

1. If the distribution γ is in accordance with π0, i.e. π0|X/∼ = γ, then for

any finite sequence of states (x0, . . . , xk) ∈ X k+1 and any sequence of
time intervals (I1, . . . , Ik) ∈ IRk, we consider the set τ̃IR of the traces

of the form x′0
l1,t1→ x′1 . . . x

′
k−1

lk,t1+...+tk→ x′k. For all i, 0 ≤ i ≤ k and
xi ∼ x′i, and for all i, 1 ≤ i ≤ k, ti ∈ Ii and li ∈ L, we have that:
if π(τ̃IR) > 0 then γτ̃IR = γ.
In other words, knowing that we are in state x̃I , the conditional prob-
ability of being in state x ∈ x̃I is invariant of time.

2. The process {Xt} is weakly lumpable with respect to ∼. Moreover, we
have:

R̃(x̃I , x̃J) =

∑{R(xi, xj2) | xi ∈ x̃I}
γ(x̃J , xj2)

;

One shall notice that Thm. 2 gives a weaker condition than the completeness
of WLTS abstraction (eg see Dfn. 20). The main reason is that we do not ’track’
transition labels, in the sense that we observe the abstraction on the cylinder sets
of traces induced only by ∼, and not also by ∼L. Yet, in the particular case when
states fully define the transition labels (ie, if w(x1, l1, x

′
1) > 0, w(x2, l2, x

′
2) > 0,

x1 ∼ x2, and x′1 ∼ x′2, then l1 ∼L l2), the given condition for weak lumpability
coincides with the definition of the complete abstraction of WLTS.

The characterization of weak (resp. strong) lumpability given in Thm. 2 is
sufficient, but not a necessary condition: there exist systems which are strongly
or weakly lumpable, but do not satisfy the conditions given in the theorem.
Interestingly, there are systems, such that the characterization from Thm. 2
would detect as strong, but not weakly lumpable, which is counter-intuitive
with the terminology. This is indeed a consequence of the fact that we have
strengthened our conditions: whereas the strong lumpability (in Def. 23) implies
weak lumpability (in Def. 23), neither strong lumpability (in Def. 23), nor the
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(a) W ′: the concrete system.
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(b) W̃ ′1; ∼1∈ PS ∩ PW ∩ CS ∩ CW .
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(c) W̃ ′2; ∼2∈ (CW \ CS) ∩ (PW \ PS).
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(d) W̃ ′3; ∼3∈ CS \ CW .

Figure 11: Different abstractions of the same system: (a) W ′, a concrete WLTS; (b) W̃ ′1 is
derived by aggregating the state space with the equivalence relation ∼1. The Markov chain
of W is strongly and weakly lumpable with respect to the relation ∼1 (∼1∈ PS ∩ PW ).
Moreover, it also satisfies the conditions for weak and strong lumpability given by Thm. 2:
∼1∈ CS ∩CW ; (c) ∼2 is an example of weak, and not strong lumping; (d) ∼3 is an example
of strong, but not weak lumping. More detailed discussion on these examples is in the proof
of Lem. 1. The summary of possible relations between properties PS, PW , CS, CW is given
in Fig. 13. 33
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(a) W: the concrete system.

x̃x1 α
1/2

1 x2

(b) W̃; ∼∈ (PS\CS) ∩ (PW\CW ).

Figure 12: The system W is abstracted by the relation ∼ to a system W̃. Aggregating all the
states of a WLTS is trivially both strongly and weakly lumpable (Dfn. 23). Yet, none of the
criteria from Thm. 2 are met. In other words, in Thm. 2, only sufficient conditions for strong
(weak) lumpability are stated.

strengthened version of strong lumpability (in Thm. 2) implies the strengthened
version of weak lumpability (in Thm. 2).

One shall also notice that the conditions of Thm. 2 imply that: in order to
aggregate two states in the CTMC, they must not have different waiting times
until the next transition (e.g. they should have the same activity). It is stated
explicitly in the characterization of weak lumpability and it can be obtained by
summation over the outgoing class in the characterization of strong lumpability.

We consider a WLTS W = (X ,L, w, π0), and the set of all equivalence
relations ∼ on X , denoted PTX . We introduce the subsets of PTX , denoted
PS, PW , CS, CW in the following meaning: (i) PS -the set of all equivalence
relations such that {Xt} is strongly lumpable with respect to ∼; (ii) PW - the
set of all equivalence relations such that {Xt} is weakly lumpable with respect
to ∼; (iii) CS - the set of all equivalence relations such that {Xt} satisfies the
condition for strong lumpability given in the Thm. 2; (iv) CW - the set of all
equivalence relations such that {Xt} satisfies the condition for weak lumpability
given in the Thm. 2.

Example 6.1. We give in Figs. 11 and 12 some examples of equivalence re-
lations over a WLTS, and check whether or not they belong to PS, PW , CS,
and/or CW . The result will be shown later in the proof of Lem. 1.

Lemma 1. (Relations on lumpability properties and conditions) Consider an
arbitrary WLTS W = (X ,L, w, π0) and the equivalence relation ∼⊆ X ×X . We
have the following relations: (1a) if ∼∈ CS then ∼∈ PS; (1b) if ∼∈ CW then
∼∈ PW ; (1c) if ∼∈ PS then ∼∈ PW , (2a) If ∼∈ PS, that does not imply
∼∈ CS; (2b) If ∼∈ PW , that does not imply ∼∈ CW ; (2c) If ∼∈ PW , that
does not imply ∼∈ PS; (2d) If ∼∈ CW , that does not imply ∼∈ CS; (2e)
If ∼∈ CS, that does not imply ∼∈ CW . These relations are summarized in
Fig. 13.

Proof. The statements (1a), (1b), and (1c) trivially follow from the Dfn. 22 and
Thm. 2.

34



PTX
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PS
∼

∼1

∼2

∼3

Figure 13: Graphical illustration of Lemma 1: Among all the partitions on the state space X ,
the sets PW , CW , CS, PS relate as following: CS is a subset of PS, CW is a subset of PW
and PS is a subset of PW . Moreover, none of the relations hold in the opposite direction, and
the witnesses for this are ∼ (defined in Fig. 12), and ∼2 (defined in Fig. 11). Furthermore,
CW and CS intersect properly: neither is a subset of another. The witnesses for this are
relations ∼2 and ∼3 (both defined in Fig. 11).

To show (2a) and (2b), we notice that in every WLTS, if we lump all the
states, then both strong and weak lumpability holds. This is because a process
that has only one state necessarily satisfies the Markovian property. In other
words, to show (2a) and (2b), it is thus enough to consider a WLTS with two
states which have different activity, and an equivalence relation which relates
each pair of states. We give such an example in Fig. 12.

To show (2c), (2d) and (2e), we consider the WLTS W ′ specified in the
Fig. 11(a), with the state space X = {x, y1, y2, y3, z1, z2, z3}. Let ∼1 be an
equivalence relation on X , such that y1 ∼1 y2 and z1 ∼1 z2. By lumping the
states by ∼1, we get the system W̃ ′1, as shown in Fig. 11(b). It is easy to check
that ∼1∈ CS. Moreover, we have that ∼1∈ CW , since for

γ =

(
x y12 y3 z12 z3

1 (0.5, 0.5) 1 (0.5, 0.5) 1

)
the weak lumpability condition is satisfied, so ∼1∈ CS ∩ CW . It follows from
(1a) and (1b) that ∼1∈ CS ∩ CW ∩ PS ∩ PW .

We further lump the states y12 and y3, by taking the transitive closure of
the relation ∼1 union (y1, y3), denoted ∼2= tc(∼1 ∪(y1, y3)) (Fig. 11(c)). This
lumping is such that ∼2 /∈ CS because we have

y1 ∼ y3, but w(y1, l, z12) > 0, and w(y3, l, z12) = 0.

On the other hand, for

γ =

(
x y123 z12 z3

1 (1/3, 1/3, 1/3) (0.5, 0.5) 1

)
we argue that ∼2∈ CW (which proves (2d)). Therefore, if the initial distribution
is in accordance with γ, the abstraction W̃ ′2 is sound and complete. Since
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∼2∈ CW , it follows from (1b) that ∼2∈ PW . But ∼2 6∈ PS, since the W ′ is not
lumpable with respect to ∼2 for the initial distribution which maps the state y3

to 1, and any other state to 0. This proves (2c).
If we rather lump z1 and z2, by ∼3, the transitive closure of (∼1 ∪(z1, z3)),

we get the system W̃ ′3 (Fig. 11(d)). This system is such that ∼3∈ CS \ CW .
More precisely, we cannot find a γ which would witness ∼3∈ CW : if such a
γ existed, we would have γ({x})(x) = 1, and consequently γ(y12) = (0.5, 0.5),
and γ(y3) = 1. This implies that the conditional distribution γ(z123) cannot
be invariant of time - it will alternate between the distributions (0, 0, 1) and
(0.5, 0.5, 0), depending on the choice made in x. Note that, since ∼3∈ CS, it
follows that ∼3∈ PS, and this implies ∼3∈ PW (which proves (2e)).

This discussion indicates that if we decide to check for weak lumpability
instead of for strong by using the characterization from Thm. 2, it might happen
that we eliminate the aggregations that are strongly lumpable. In the case of
reductions of Kappa systems, we will use the weak lumpability characterization.

6.3. Bisimulations

Aiming to define the algorithm that is abstracting the WLTS of a Kappa
system, we start by redefining the lumpability properties in the bisimulation
notions. Bisimulation is typically defined by logically characterizing the distin-
guishing property of the states that may be aggregated.

We define three kinds of bisimulation relations on the WLTS, which are based
on the lumpability characterizations given in Thm. 2. We adopt the terminology
of [5]. The forward bisimulations arise from the characterization for strong
lumpability: the bisimilar states have the same forward behavior in the sense
that they are each targeting any other lumped state with the same total affinity
(total outgoing rate). This concept is well established for dependability or
performance analysis [21, 20]. What we use in the abstractions of Kappa systems
is backward bisimulation. The bisimilar states have the same backward behavior
in the sense that they are reached by the predecessors from one lumped state
with the same probabilistic quantity, which becomes the rate in the abstract
system. It is however less established and only applied in very few approaches
for stochastic modelling [38]. The backward uniform bisimulation is an instance
of a backward bisimulation with an additional constraint that only the equally-
probable states may be aggregated.

Definition 24. Given a WLTS W = (X ,L, w, π0), we define the function δF :
X × ℘(L)× ℘(X )→ R+

0 as follows:

δF (xi, L,X) =
∑
{|w(xi, l, xj)| | l ∈ L and xj ∈ X}.

Furthermore, given an equivalence relation ∼ over X and a family of probability
distributions over the partitions γ ∈ ΓX ,∼, we define the function δB : ℘(X ) ×
℘(L)×X → R+

0 as follows:

δB(X,L, xj) =
∑
{γ(x̃i, xi) · |w(xi, l, xj)| | l ∈ L, xi ∈ X}.
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x1 x3

x2 x4

a, 1

a�, 1

b, 2

b�, 2

c, 1

d, 3

(a) A forward bisimulation.

x1

x3

x2 x4

x5

b, 1

b�, 1

c�, 1

a, 3

a�, 3

c, 1

d, 2

e, 2

(b) A uniform backward bisimulation.

Figure 14: Examples of bisimulations: (a) aggregating the labels so that a ∼L a′ and b ∼L b′

induces a foward bisimulation; (b) aggregating the labels so that a ∼L a′, b ∼L b′ and c ∼L c′

induces a uniform backward bisimulation.

Specifically, if γ is a family of uniform distributions over each ∼-equivalence
classes, we can express the latter expression in terms of cardinalities of the
equivalence classes as follows:

δBU (X,L, xj) =
∑{ |w(xi, l, xj)|

|x̃i|
| l ∈ L, xi ∈ X

}
.

Intuitively, the quantity δF (xi, L,X) is the sum of the weights of outcoming
transitions from a state xi to a state in X with labels in the state L. Conversely,
whenever X is a ∼-equivalence class, δB(X,L, xj) is the expected weight of the
incoming transitions from a state in the X to the state xj with labels in the set
L, under the assumption that whenever the system is in a state in the class x̃i,
the distribution of states is given by the mapping [xi 7→ γ(x̃i, xi)].

Example 6.2. In the WLTS in Fig. 14(b), we have:

δF (x1, {a, a′}, {x2, x3}) = w(x1, a, x2) + w(x1, a
′, x3) = 3 + 3 = 6.

In the WLTS in Fig. 14(a), for the equivalence relation ∼ over the states which
identifies x1 and x2, and for the family γ of probability distributions over the

partition of states, which is defined by γ(x̃, x) =
1

|x̃|
, we have:

δB({x1, x2}, {b, b′}, x4) =
w(x1, b

′, x4)

2
+
w(x2, b, x4)

2
=

2

2
+

2

2
= 2.

Definition 25. (Forward and backward Markov bisimulation) Given a WLTS
W = (X ,L, w, π0), and (∼,∼L) a pair of equivalence relations respectively over
X and L, we say that (∼,∼L) is a
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1. Forward Markov Bisimulation, if for all xi and xj, the following is satis-

fied: xi ∼ xj, iff for all equivalence classes x̃ ∈ X/∼ ,l̃ ∈ L/∼L
, we have

that a(xi) = a(xj) and δF (xi, l̃, x̃) = δF (xj , l̃, x̃).

Remark. Note that this involves the bisimulation in the classical sense: if
xi has a successor in some class, xj has it as well, and they are related by
appropriate labels (and probabilities in this case).

2. Backward Markov bisimulation, if there exists an γ ∈ ΓX ,∼ such that
for all xi and xj the following is satisfied: xi ∼ xj, iff for all equiv-

alence classes x̃ ∈ X/∼ , l̃ ∈ L/∼L
, we have that a(xi) = a(xj) and

γ(x̃i, xi) · δB(x̃, l̃, xi) = γ(x̃j , xj) · δB(x̃, l̃, xj).

Remark. Note that this involves that if the system is in the class of states
x̃i with a distribution of states given by the mapping [x 7→ γ(x̃i, x)], and
if a transition with a label in the class λ̃ to a state in the class x̃j is
picked stochastically according to the weight of these transitions, then, the
probability that the system is in a given state x is given by the mapping
[x 7→ γ(x̃j , x)]. Thus, conditional probability that the system is in a given
state, knowing the equivalence class of this state, is an invariant of the
system, denoted by γ.

Theorem 3. (Forward Markov bisimulation implies sound abstraction) Let
W = (X ,L, w, π0) be a WLTS. If (∼,∼L) induces a forward Markov bisimu-
lation, then for any aggregates x̃i, l̃, and x̃j, we can define

w̃(x̃i, l̃, x̃j) = δF (xi, l̃, x̃j).

The so defined abstraction W̃ = (X/∼ ,L/∼L
, w̃, π̃0) is sound. We then say that

W refines W̃ by a forward Markov bisimulation (∼,∼L), written W �F,(∼,∼L)

W̃.

Theorem 4. (Backward Markov bisimulation implies sound and complete ab-
straction) Given a WLTS W = (X ,L, w, π0), if (∼,∼L) induces a backward
Markov bisimulation with conditional probabilities over the aggregates γ ∈ ΓX ,∼,

then for any aggregates x̃i,l̃, and x̃j, we can define

w̃(x̃i, l̃, x̃j) =
δB(x̃i, l̃, xj)

γ(x̃j , xj)
. (4)

If γ(x̃) = π0|x̃, then the so defined abstraction W̃ = (X/∼ ,L/∼L
, w̃, π̃0) is sound

and complete. We then say thatW refines W̃ by a backward Markov bisimulation
(∼,∼L) with conditional distributions γ, written W �B,(∼,∼L),γ W̃.

In particular, if we know that γ is uniform, if follows from the equation (4)
that w̃(x̃i, l̃, x̃j) = δBU (xi, l̃, x̃j), written also W �BU,(∼,∼L) W̃.
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Example 6.3. Now we illustrate the difference between forward and backward
bisimulations in Fig. 14.

In Fig. 14(a), we can notice that a(x1) = a(x2) = 3. Moreover, not only
we have δF (x1, {a, a′}, {x3}) = δF (x2, {a, a′}, {x3}) = 1, but we also have
δF (x1, {b, b′}, {x4}) = δF (x1, {b, b′}, {x4}) = 2. Thus, the pair (∼,∼L) of equiv-
alence relations where ∼ identifies the states x1 and x2, and ∼L identifies pair-
wisely the labels a and a′, and b and b′, is a forward bisimulation.

Moreover, the pair of relation (∼,∼L) is not a backward bisimulation. Oth-
erwise, there would exist a family of distributions γ such that:

γ({x1, x2}, x1) · δB({x3}, {c}, x1) = γ({x1, x2}, x2) · δB({x3}, {c}, x2),

γ({x1, x2}, x1) · δB({x4}, {d}, x1) = γ({x1, x2}, x2) · δB({x4}, {d}, x2),

which would be absurd since δB({x3}, {c}, x1) = 1, δB({x3}, {c}, x2) = 0,
δB({x4}, {d}, x2) = 4, and γ({x1, x2}, x1) + γ({x1, x2}, x2) = 1.

In Fig. 14(b), we can notice that a(x2) = a(x3) = 2 and a(x4) = a(x5) = 2.
Moreover, we have:

δBU ({x1}, {a, a′}, x2) = δBU ({x1}, {a, a′}, x3) = 3,

δBU ({x2, x3}, {b, b′}, x4) = δBU ({x2, x3}, {b, b′}, x5) = 1,

δBU ({x1}, {c, c′}, x4) = δBU ({x1}, {c, c′}, x5) = 1.

Thus, the pair (∼,∼L) of equivalence relations, where ∼ identifies pair-wisely
the states x2 and x3, and the states x4 and x5, and ∼L identifies pair-wisely
the labels a and a′, and the labels b and b′, and c and c′, is a uniform backward
bisimulation. Nevertheless, (∼,∼L) is not a forward bisimulation, since, for
instance, δF (x4, {d}, {x1} = 1, whereas δF (x5, {d}, {x1}) = 0.

6.4. Proving bisimulations

The forward bisimulation relation for abstracting the transition systems with
CTMC semantics has been established and used in applications (eg, [21, 20]).
Moreover, computing the backward uniform bisimulation when γ is uniform is
defined in [5, 38]. It is based on an alternative characterization of the backward
uniform Markov bisimulation, which eases the analysis.

Lemma 2. (Proving backward uniform Markov bisimulation) We considerW =
(X ,L, w, π0) a WLTS and (∼,∼L) be a pair of equivalence relations respectively
over X and L. For any state x′ ∈ X , and any pair of classes x̃, l̃ ∈ X/∼×L/∼L

,

let us define the set Pred(x̃, l̃, x′) of transitions from a state in x̃ to the state x′

and with a label in l̃ as follows:

Pred(x̃, l̃, x′) = {(x, l) ∈ x̃× l̃ | w(x, l, x′) > 0}.

Assume that: (1) π0|X/∼ = π̃0, and (2) for any x′i, x
′
j ∈ X such that x′i ∼ x′j and

any x̃ ∈ X/∼, l̃ ∈ L/∼L
, there exists a bijective map φ between Pred(x̃, l̃, x′i) and
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Pred(x̃, l̃, x′j), such that for any (xi, li) ∈ Pred(x̃, l̃, x′i), if φ(xi, li) = (xj , lj),
then we have that w(xi, li, x

′
i) = w(xj , lj , x

′
j).

Then we have thatW is the backward uniform bisimulation of the abstraction
W̃ = (X/∼,L/∼, w̃, π̃0), i.e. W �BU,(∼,∼L) W̃.

On the other hand, as soon as γ over the aggregates is not uniform, we
cannot observe the bijection between predecessors over the states. Proving that
the given abstraction is a backward bisimulation cannot be established unless
we have a right ’guess’ of the distributions γ. Lem. 3 states how to avoid proving
backward bisimulation by instead proving two uniform backward bisimulations.
More precisely, if we want to prove the backward refinement between the systems
W and W̃, it is enough to observe the system Wi, which is a backward uniform
refinement of both of the systems W and W̃ (Fig. 15).

Lemma 3. (Proving backward Markov bisimulation) Consider a WLTS W =
(X ,L, w, π0), and any aggregation relation (∼,∼L), which would satisfy W̃ =
(X/∼,L/∼L

, w̃, π̃0). We assume that there exist a system Wi = (X i,Li, wi, πi0),
and two pairs of equivalence relations (∼1,∼L1), (∼2,∼L2), such that ∼1�∼2

(in the sense that, for any xi1, x
i
2 ∈ X i, xi1 ∼1 xi2 ⇒ xi1 ∼2 xi2), ∼L1�∼L2,

and, for any xi1, x
i
2 such that xi1 ∼2 x

i
2, the number of states which are ∼L1-

equivalent to xi1 is equal to the number of states which are ∼L1- equivalent to
xi2), Wi �BU,(∼1,∼L1) W, and Wi �BU,(∼2,∼L2) W̃. Under this assumption, we

have that W �B,(∼,∼L),γ W̃, where γ is defined as

γ(x̃, x) =
|{xi ∈ X i | xi ∼1 x

i
0}|

|{xi ∈ X i | xi ∼2 xi0}|
, for any [xi0]∼1 = x.

This Lemma contains the key observation for the abstraction of Kappa sys-
tems, and for proving Thm.1. It thus completes the intention of the theoretical
analysis in this paper. More precisely, we observe the WLTS WR of a given
Kappa system R, as defined in Dfn. 13 and its abstraction generated as pro-
posed in the reduction procedure (Sect. 5, Dfn. 17). The main observation is
that the system W is already an abstraction. More concretely, the states of
W are multisets of species, and as such, they abstract the individual species.
For example, a state that contains two agents of type A(su) abstracts away
the potential individual behavior of these two agents, for example A1(su) and
A2(su). To show that the abstraction is sound and complete, we observe the
system Wi, which is the individual-based semantics of a Kappa system, where
each individual agent is uniquely identified. The backward uniform refinement
is established between Wi and W by the modeling assumptions. We are left to
prove the backward uniform refinement between Wi and W̃. This is done by
inspections on the ACM’s (Dfn. 15).

Example 6.4. We consider the following Kappa system. We have the agent
types A = {A,B}, the site names {s, t}, the signatures Σι(A) = Σι(B) = {s}
and Σλ(A) = Σλ(B) = {t}, the alphabet of internal states I = {u, p}. The
contact map is defined by (N , E), such that N = {(A, s), (A, t), (B, s), (B, t)}
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W̃WWi W̃W⇒
�BU,(∼2,∼L2)

�BU,(∼1,∼L1) �B,(∼,∼L),γ

Figure 15: Proving backward refinement (Lem. 3): instead of proving that a given abstraction
is a backward bisimulation (W �B,(∼,∼L),γ), it is enough to prove two uniform backward

bisimulations (find a system Wi, such that Wi �BU,(∼1,∼L1)
, and Wi �BU,(∼2,∼L2)

).

and E = {((A, t), (B, t))} and the following rules:

r1 : A(su)↔ A
(
sp
)
@k1, k1−

r2 : B(su)↔ B
(
sp
)
@k2, k2−

r3 : A(t ) , B(t )↔ A
(
t1
)
, B
(
t1
)
@k3, k3−

Moreover, using the minimal ACM for annotating the agents, as written in
Dfn. 15, we get that ≈A has two equivalence classes {s} and {t}; and that ≈B
has two equivalence classes {s} and {t} as well.

The fragments derived from an ACM (Dfn. 16) are the following: F1 =
A(su), F2 = A

(
sp
)
, F3 = A(t ), F4 = A

(
t1
)
, B
(
t1
)
, F5 = B(su), F6 = B

(
sp
)
,

F7 = B(t ).
Let us pick a (finite) initial distribution π0. Now we observe the WLTS

W = (X ,L, w, π0) assigned to the Kappa system RAB (introduced in Dfn. 13),
and the state y which is the ≡-equivalence class of the mixture Ey defined as
follows:

A
(
sp,t

1
)

, B
(
sp,t

1
)

, A
(
su,t2

)
, B
(
su,t2

)
, A
(
su,t3

)
, B
(
su,t3

)
.

The unique (up to ≡) non ≡]-equivalent mixtures is Ey′ , defined as follows:

A
(
sp,t

1
)

, B
(
su,t1

)
, A
(
su,t2

)
, B
(
sp,t

2
)

, A
(
su,t3

)
, B
(
su,t3

)
We denote y′ = [Ey′ ]≡, ỹ′ = [Ey′ ]≡] . We compute however that the distribution
among state ỹ = [Ey]≡] is such that γ(ỹ, y) = 1/3, and γ(ỹ, y′) = 2/3. Roughly
speaking, this comes from the fact that if we annotate fragments of type A and
B in ỹ with the identifiers 1, 2, 3 (there are 36 possible annotations), and if we
assume that agents with the same identifiers are bound together, then there are
12 annotations such that the phosphorilated A and B are bound together, and
24 where this is not the case. A more detailed analysis of this model is given in
[15].

7. Conclusions

Reducing the complexity of combinatorial reaction mixtures is an important
milestone towards simulation and analysis of large-scale realistic models of cel-
lular signal transduction. In this paper we study a scalable reduction method,
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that is applicable to any rule-based specification. The reduction is sound and
moreover complete, i.e. the sample traces of individual molecular species can be
reconstructed from the traces of aggregated species in the reduced model. We
put this method into the general context of abstractions of probabilistic transi-
tion systems and show that it yields a sufficient condition for weak lumpability
and that it is equivalent to backward Markov bisimulation. The reduction factor
depends on the number of independent molecular events and is strictly smaller
than that of the less-demanding reduction based on the differential semantics.

A compelling problem for future work is thus to analyze differential frag-
ments in the context of stochastic semantics and to obtain error bounds for this
reduction as a function of the kinetic parameters of the system.
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[15] Jérôme Feret, Heinz Koeppl, and Tatjana Petrov. Stochastic fragments: A
framework for the exact reduction of the stochastic semantics of rule-based
models. International Journal of Software and Informatics, to appear.

[16] Gnuplot. www.gnuplot.info.

[17] Donald Gross and Douglas R. Miller. The randomization technique as
a modeling tool and solution procedure for transient Markov processes.
Operations Research, 32(2):343–361, 1984.

[18] Cato Maxilian Guldberg and Peter Waage. Concerning chemical affinity.
Erdmann’s Journal für Praktische Chemie, 127:69–114, 1879.

[19] Thomas A. Henzinger, Maria Mateescu, and Verena Wolf. Sliding window
abstraction for infinite Markov chains. In CAV’09, volume 5643 of Lec-
ture Notes in Computer Science, pages 337–352, Grenoble, France, 2009.
Springer.

[20] Holger Hermanns. Interactive Markov Chains And the Quest for Quantified
Quality. PhD thesis, University of Marburg, 2002.

43



[21] Jane Hillston. A compositional approach to performance modelling. Cam-
bridge University Press, New York, NY, USA, 1996.

[22] William S. Hlavacek, James R. Faeder, Michael L. Blinov, Alan S. Perelson,
and Byron Goldstein. The complexity of complexes in signal transduction.
Biotechnology Bioengineering, 84:783–794, 2005.

[23] William S. Hlavacek, James R. Faeder, Michael L. Blinov, Richard G.
Posner, Michael Hucka, and Walter Fontana. Rules for Modeling Signal-
Transduction Systems. Science’s STKE, 2006(344), 2006.

[24] D. Kannan Jianjun Paul Tian. Lumpability and commutativity of Markov
processes. Stochastic Analysis and Applications, 24(3):685–702, 2006.

[25] John G. Kemeny and James L. Snell. Finite Markov Chains. Van Nostrand,
1960.

[26] John G. Kemeny, James L. Snell, and Anthony W. Knapp. Denumerable
Markov Chains. Springer-Verlag, New York, NY, USA, 1976.

[27] Thomas G. Kurtz. Limit theorems for sequences of jump Markov processes
approximating ordinary differential processes. Journal of Applied Probabil-
ity, 8(2):344–356, 1971.

[28] Kim G. Larsen and Arne Skou. Bisimulation through probabilistic testing
(preliminary report). In POPL’89, pages 344–352, New York, NY, USA,
1989. ACM.

[29] Maple. www.maplesoft.org.

[30] Donald A. McQuarrie. Stochastic approach to chemical kinetics. Journal
of Applied Probability, 4(3):413–478, 1967.

[31] Elaine Murphy, Vincent Danos, Jerome Feret, Russell Harmer, and Jean
Krivine. Rule based modelling and model refinement. In Elements of
Computational Systems Biology. Wiley, 2009.

[32] OpenKappa. www.kappalanguage.org.

[33] Gerardo Rubino and Bruno Sericola. A finite characterization of weak
lumpable Markov processes. part I: The discrete time case. Stochastic pro-
cesses and their applications, 38:195–204, 1991.

[34] Gerardo Rubino and Bruno Sericola. A finite characterization of weak
lumpable Markov Processes. part II: The continuous time case. Stochastic
processes and their applications, 45:115–125, 1993.

[35] Walter Rudin. Real and complex analysis, 3rd ed. McGraw-Hill, Inc., New
York, NY, USA, 1987.

44



[36] Roger B. Sidje, Kevin Burrage, and Shev MacNamara. Inexact uniformiza-
tion method for computing transient distributions of Markov chains. SIAM
Journal on Scientific Computing, 29, issue 6:2562–2580, 2007.

[37] Ana Sokolova and Erik P. de Vink. On relational properties of lumpability.
In PROGRESS’03, pages 220–224, Utrecht, Netherlands, 2003.

[38] Jeremy Sproston and Susanna Donatelli. Backward stochastic bisimulation
in CSL model checking. In QEST ’04, pages 220–229, Washington, DC,
USA, 2004.

[39] Christopher T. Walsh. Posttranslation Modification of Proteins: Expanding
Nature’s Inventory. Roberts and Co. Publisher, 2006.

45
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