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Abstract

We propose an abstract interpretation-based analysis for automatically proving
non-trivial properties of mobile systems of processes. We focus on properties relying
on the number of occurrences of processes during computation sequences, such as
mutual exclusion and non-exhaustion of resources.

We design a non-standard semantics for the π-calculus in order to explicitly trace
the origin of channels and to solve efficiently problems set by α-conversion and non-
deterministic choices. We abstract this semantics into an approximate one. The use
of a relational domain for counting the occurrences of processes allows us to prove
quickly and efficiently properties such as mutual exclusion and non-exhaustion of
resources. At last, dynamic partitioning allows us to detect some configurations by
which no infinite computation sequences can pass.

1 Introduction

We are interested in automatically proving non-trivial properties of mobile
systems of processes. We focus on properties relying on a good description
of the multiset of processes that occur inside computation sequences, such as
mutual exclusion and non-exhaustion of resources, for instance.

We propose an abstract interpretation-based analysis for the full π-calculus
[19,18]. Since, the π-calculus is a communication-based formalism, no analysis
can be done without a good approximation of the control-flow. Following
Venet’s methodology [23], we introduce a non-standard semantics to explicitly
capture the origin of channels and to describe non-uniform distributions of
processes. Our semantics considers the full π-calculus and is optimized to
deal efficiently with non-deterministic choices (no useless thread is created).

We use the abstract interpretation framework [8,6,10] to derive an ap-
proximate semantics to analyze both the interaction between processes and
the number of occurrences of these processes. We propose a well adapted
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domain to detect quickly mutual exclusion and non-exhaustion of resources.
Our approach relies on the use of a relational domain the height of which is
quadratic on the number of distinct counted processes. This relational do-
main helps in calculating properties of interest in a non-relational domain, by
reduction. Complexity problems are solved by using approximated algorithms
for calculating this reduction. Number of occurrences of processes defines a
good criterion for partitioning: we use dynamic partitioning [3] to abstract
precisely the trace semantics of mobile systems, which allows us to detect a
set of configurations such that no infinite computation sequence can pass by
a configuration in this set. Our methodology may very likely be adapted to
other formalisms, such as the mobile ambients [4] for instance.

In Section 3, we define the standard semantics of the π-calculus. We define
our non-standard semantics in Section 4. We design a generic abstract analysis
in Section 5, and instantiate it in Section 6. We show how to use dynamic
partitioning in Section 7.

2 Related work

Counting occurrences and analyzing the control flow of a system are deeply
related. We cannot count number of occurrences of processes in a system
without a good knowledge of its control flow, but counting occurrences helps
in getting a more precise knowledge of the control flow by detecting mutual
exclusion between processes and by providing a good criterion for partitioning.
Our analysis can directly be combined with our previous analysis [14] to infer
a non-uniform description of the interactions between the processes, but can
also be adapted to many other flow analyses [2,23].

Only a very few analyses for counting occurrences of processes have been
published. [15] proposes an exponential analysis for counting occurrences of
processes inside ambients. [20] uses context-dependent counts for infering a
more accurate description of the internal structure of processes at the expense
of a higher time complexity (an exponential number of processes are distin-
guished). These analyses encounter the same problem: when a process occurs
several times, they cannot decide whether this process is still occuring one or
several times after being computed, so they have to consider the two possible
cases, which leads to both a loss of precision and an exponential explosion.
The use of both a relational domain for globally abstracting sets of multisets
of processes and an approximated reduction allows us to solve this problem
efficiently. We obtain a very accurate analysis which is polynomial on the
number of distinguished processes.

3 π-calculus

The π-calculus [18,19] is used for describing mobile systems of processes which
communicate channel names via channels. We consider a lazy synchronous
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version of the polyadic π-calculus, inspired by the lazy asynchronous version
introduced by Turner [21] and the chemical abstract machine [1] in which
communication primitives are very simple, while ensuring the same expres-
sive power. Let Channel be a countable set of channel names, the standard
semantics of the π-calculus, given in Figure 1, relies on the use of both a re-
duction relation to define results of process computations, and a congruence
relation to reveal redexes.

Example 3.1 We model by a mobile system S an ftp protocol for a server
which cannot establish more than three simultaneous connections:

S := (ν port)(Allocate | port![] | port![] |port![])
where

Allocate := ∗port?[](ν in)(ν out)(ν query)
(in![query ]
| in?[response].(out ![response] | port![]))

Each message port![] occurring at top level symbolizes an available connec-
tion. When a customer requests an available connection, three channel names
query, in and out are created. The customer sends its query, represented by
the channel query, via the channel in. The server computes this query and
sends it back via the channel out. A new message port![] is then spawn, which
symbolizes that the connection is released. We shall notice that many compu-
tational aspects are abstracted away, since we present only an approximation
of a realistic server. We finally propose a short computation for S as follows:
S = (ν port)

(Allocate | port![] | port![] | port![])
→ (ν port)(ν in1)(ν out1)(ν query1)

( Allocate | port![] | port![]
| in1![query1]
| in1?[response].(out1![response] | port![]))

→ (ν port)(ν in1)(ν out1)(ν query1)
( Allocate | port![] | port![] | port![]
| out1![query1]) 2

As illustrated in the above example, the configuration of a mobile system
is at any stage congruent with a configuration of the form (ν c)(P1 | ... | Pn),
where c is a sequence of channel names, and P1, ..., Pn are syntactic copies of
sub-processes which have been substituted during communications. Nerver-
theless, standard semantics allows to trace neither the origin of those processes,
nor the origin of the channels they have declared.

4 Non-standard semantics

A non-standard semantics [23] is a refined semantics, which explicitly speci-
fies the link between channels and the instances of processes which have de-
clared them. It identifies any instance of a process by an unambiguous marker
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P ::= action.P (Action)
| (P | P ) (Parallel composition)
| (P + P ) (Non-deterministic choice)
| ∅ (End of a process)

action ::= c![x1, ..., xn] (Message)
| c?[x1, ..., xn] (Input guard)
| ∗c?[x1, ..., xn] (Replication guard)
| (ν x) (Channel creation)

where c, x1, ..., xn, x ∈ Channel , n > 0. Input guard, replication
guard and channel creation are the only name binders, i.e in c?[x1, ..., xn]P ,
∗d?[y1, ..., yp]Q and (ν x)R, occurrences of x1, ..., xn in P , y1, ..., yp in Q and
x in R are considered bound. Usual rules about scoping, substitution and α-
conversion apply. We denote by FN (P ) the set of free names of P , i.e names
which are not under the scope of a binder and by BN (P ) the set of bound
names of P .

(a) Syntax

(ν x)P ≡ (ν y)P [x← y] if y 6∈ FN (P ) (α-conversion)
P | Q ≡ Q | P (Commutativity)

P | (Q | R) ≡ (P | Q) | R (Associativity)
P | ∅ ≡ P (End of a process)

(ν x)(ν y)P ≡ (ν y)(ν x)P (Swapping)
((ν x)P ) | Q ≡ (ν x)(P | Q) if x 6∈ FN (Q) (Extrusion)

where x, y ∈ Channel
(b) Congruence relation

c![x1, ..., xn]P | c?[y1, ..., yn]Q→P |
∼
Q (communication)

c![x1, ..., xn]P | ∗c?[y1, ..., yn]Q→P |
∼
Q | ∗c?[y1, ..., yn]Q (res. fetching)

P + Q→P (left choice)
P + Q→Q (right choice)

P → Q
(ν x)P → (ν x)Q

P ′ ≡ P P → Q Q ≡ Q′

P ′ → Q′
P → P ′

P | Q→ P ′ | Q
where c, x, x1, ..., xn, y1, ..., yn ∈ Channel

and
∼
Q = Q[y1 ← x1, ..., yn ← xn]

(c) Reduction relation

Fig. 1. The chemical semantics
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in order to distinguish each instance of a recursive process from all others.
Then, the origin of channel names is easily traced by identifying each chan-
nel name with the marker of the process which has created it. In [14] we
propose a non-standard semantics which considers the full π-calculus without
non-deterministic choices. We redefine it in order to take them into account
efficiently, without adding further reduction rules nor considering useless syn-
tactic components. This allows for an easier analysis by making abstract
domains smaller while giving a good intuition on the potential evolutions of
the analyzed systems. For that purpose, we restrict the set of computations to
those where non-deterministic choices are made as soon as possible. In such
computations, no further communication nor resource fetching is performed
while there are non-deterministic choices at the top level. This assumption
does not change the subset of reachable standard configurations which contain
no non-deterministic choice at top level.

Let Lbl be an infinite set of labels, we denote by M the set of all binary
trees the leaves of which are not labelled (ε) and the nodes of which are
labelled with a pair (i, j) where both i and j are in Lbl . The tree, having a
node labelled a, a left sibling t1 and a right sibling t2 is denoted by N(a, t1, t2).
We use M as a set of markers and denote by Σ the set Lbl × Lbl . Σ is used
in labelling non-standard transitions. We consider a closed mobile system S
in the π-calculus and assume without any loss of generality that two channel
binders of S are never used on the same channel name. We locate syntactic
components of S by marking each sign ? or ! occurring in S with distinct
labels in Lbl . A non-standard configuration is a set of thread instances, where
a thread instance is a triplet composed with a syntactic component, a marker
and an environment. The syntactic component is a copy of a sub-process of
S, the marker is calculated at the creation of the thread and the environment
specifies the semantic value of each free name in the syntactic component.
Thread instances are created at the beginning of the system computation and
during execution. In both cases, several threads are spawned, corresponding
to a set of syntactic components, in accordance to which non-deterministic
choices are made. Applying the function Agent, defined as follows, to either
S for initial threads, or to the continuation of running processes, gives the set
of all possibilities for the set of spawned syntactic components.

Agent(∅) = {{}}
Agent(x!i[x1, ..., xn]P ) = {{x!i[x1, ..., xn]P}}
Agent(y?i[y1, ..., yn]P ) = {{y?i[y1, ..., yn]P}}

Agent(∗y?i[y1, ..., yn]P ) = {{∗y?i[y1, ..., yn]P}}
Agent(P | Q) = {A ∪B | A ∈ Agent(P ), B ∈ Agent(Q)}

Agent(P + Q) = Agent(P ) ∪ Agent(Q)
Agent((ν x)P ) = Agent(P )

The markers of initial threads are ε, while the markers of new threads are
calculated recursively from the marker of the threads whose computation has
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led to their creation:
• when an execution does not involve fetching a resource, the marker of the

computed thread is just passed to the threads in its continuation;
• when a resource is fetched, the markers of the new threads created from

the continuation of the resource are N((i, j), id∗, id!), where (i,id∗,E∗) is the
fetched resource thread and (j,id!,E!) the message sender thread.

Environments map each free channel name of syntactic components to a pair
(a, b) where a is a bound channel name of S, and b is a marker. Intuitively, a
refers to the binder (ν a) which has been used in declaring the channel, and b
is the marker of the thread which has declared it. While threads are running,
environments are calculated in order to mimic the standard semantics.

We denote by C the set of all non-standard configurations. Our non-
standard semantics is given in Figure 2. The function C0 gives the set of
possible initial configurations, while the relation −→2 defines non-standard
computation steps. Each non-standard communication steps are labelled with
a pair (i, j) ∈ Σ, where i is the label of the message receiver and j is the label
of the message sender. There is a bisimulation between standard and non-
standard semantics, provided that we restrict the set of standard computations
to those where all non-deterministic choices are always made before communi-
cations and resource fetching. The proof relies on the fact that non-standard
computations cannot yield conflicts between the markers of the threads.

5 Abstraction

The set of all possible non-standard configurations a system may take during
a finite computation sequence is given by its collecting semantics [7] and can
be expressed as the least fixpoint of the following ∪-complete endomorphism
F on the complete lattice ℘(Σ∗ × C):

F(X) = {(ε, C) | C ∈ C0(S)} ∪ {(u.λ, C) | ∃(u, C ′) ∈ X, C ′ λ−→2 C}

We use abstract interpretation [8] to design an abstract domain in which a
decidable description of Coll(S) will be computed. Our abstract domain is
the reduced product of two domains: the first one describes the control-flow
of S; the second one counts occurrences of its processes. Since the π-calculus
is a communication-based formalism, any further analysis requires a good
approximation of the communication topology. Several analyses [2,22,23,14]
have already been proposed. For the sake of simplicity, we use a naive uniform
analysis to abstract the control-flow of systems, but it could be enriched by
using the non-uniform analysis proposed in [14]. We introduce the set BN (S)2

as the set of all possible interactions between agents of the system S; intuitively
the pair (x, y) denotes that the channel name x may be bound to a channel
created by the binder (ν y). Our first abstract domain is then the complete
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C0(S) = {{(p, ε, Ep) | p ∈ Cont)} |Cont ∈ Agent(S)}

where Ep =

{
FN (p) → BN (S)×M
x 7→ (x, ε)

(a) Set of initial non-standard configurations

If C is a non-standard configuration,
if there are λ, µ in C,
with λ=(y?i[y1, ..., yn]P, id?, E?) and µ=(x!j[x1, ..., xn]Q, id!, E!)
such that E?(y) = E!(x),
if ContP is in Agent(P ) and ContQ is in Agent(Q),

then C
(i,j)−→2C

′

where C ′ = (C \ {λ, µ}) ∪ (f?(ContP )) ∪ (f!(ContQ)),

f? : Ag 7→

Ag, id?,


z 7→ E?(z) if z ∈ FN (Ag) ∩ FN (y?i[y1, ..., yn]P )

yk 7→ E!(xk) if yk ∈ FN (Ag)

z 7→ (z, id?) if

{
z ∈ FN (Ag) ∩ BN (y?i[y1, ..., yn]P )

z 6∈ {yk|k ∈ [|1; n|]}


and f! : Ag 7→

(
Ag, id!,

{
z 7→ E!(z) if z ∈ FN (Ag) ∩ FN (x!j[x1, ..., xn]Q)

z 7→ (z, id!) if z ∈ FN (Ag) ∩ BN (x!j[x1, ..., xn]Q)

)
(b) Non-standard communication

If C is a non-standard configuration,
if there are λ, µ in C,
with λ=(∗y?i[y1, ..., yn]P, id?, E?) and µ = (x!j[x1, ..., xn]Q, id!, E!)
such that E?(y) = E!(x),
if ContP is in Agent(P ) and ContQ is in Agent(Q),

then C
(i,j)−→2C

′

where C ′ = (C \ {µ}) ∪ (f?(ContP )) ∪ (f!(ContQ)),
id∗ = N((i, j), id?, id!),

f? : Ag 7→

Ag, id∗,


z 7→ E?(z) if z ∈ FN (Ag) ∩ FN (y?i[y1, ..., yn]P )

yk 7→ E!(xk) if yk ∈ FN (Ag)

z 7→ (z, id∗) if

{
z ∈ FN (Ag) ∩ BN (y?i[y1, ..., yn]P )

z 6∈ {yk|k ∈ [|1; n|]}


and f! : Ag 7→

(
Ag, id!,

{
z 7→ E!(z) if z ∈ FN (Ag) ∩ FN (x!j[x1, ..., xn]Q)

z 7→ (z, id!) if z ∈ FN (Ag) ∩ BN (x!j[x1, ..., xn]Q)

)
(c) Non-standard resource fetching

Fig. 2. Non-standard semantics

7



FERET

lattice ℘(BN (S)2) related to our concrete domain via a Galois connection
(αcom,γcom) defined as follows:

αcom(A) =

{
(x, y)

∣∣∣∣ ∃(u, C) ∈ A, ∃(P, id1, E) ∈ C,∃id2 ∈M
such that x ∈ FN (P ) and E(x) = (y, id2)

}
γcom(A]) =

{
(u, C)

∣∣∣∣ ∀(P, id1, E) ∈ C, ∀x ∈ FN (P ), ∀y ∈ BN (S)
[∃id2, E(x) = (y, id2)] =⇒ (x, y)∈A]

}
The second domain counts both the number of occurrences of processes

and the number of performed transitions inside computations. We denote by
Π the set of all sub-processes of S. Let V be the set Π + Σ. We consider
℘(NV), the complete lattice of the sets of natural number functions defined on
V . ℘(NV) is related to our concrete domain via a Galois connection (αNV , γNV ),
defined as follows:

αNV (A) =



V → N

v ∈ Π 7→ Card({(P, id, E) ∈ C | v = P})
λ ∈ Σ 7→ |u|λ

(u, C) ∈ A


γNV (A]) =

{
(u, C)

∣∣∣∣ ∃f ∈ A],∀λ ∈ Σ, |u|λ = f(λ),
∀v ∈ Π, Card({(P, id, E) ∈ C | v = P}) = f(v)

}
The complete lattice, (NV ,vNV ,tNV ,⊥NV ,uNV ,>NV ), left as a parameter of
our abstraction, is related to ℘(NV) by a Galois connection (αNV , γNV ) which
satisfies the condition: γNV (⊥NV ) = ∅. We require three abstract primitives
which satisfy the following soundness hypotheses:
• required : ℘(Π)×NV → NV

γNV (v]) ∩ {f | f(p) > 1, ∀p ∈ A} ⊆ γNV (required(A, v]))

• trans : NV × NV → NV
{x 7→ f(x) + g(x) | g ∈ γNV (v])} ⊆ γNV (trans(v], f))

• ρ : NV → NV
γNV (v]) ⊆ γNV (ρ(v]))

Roughly speaking, ρ is a reduction, it maps each abstract value to another
one which represents the same set but in which properties are easier to estab-
lish. Particularly, it will be used for proving that an abstract value represents
the empty set. At each abstract computation step, required is used to extract
from the abstract value the representation of configurations which simultane-
ously contain all the processes required by the computation step and trans is
used to calculate the representation of the result of the computation step by
taking into account newly spawned and destroyed processes.

We define our abstract domain (C],v,t,⊥,u,>) as the complete lattice
(℘(BN (S)2)×NV), wherev, t, ⊥, u and> are defined pairwise. C] is related
to ℘(Σ∗ × C) by a Galois connection (α, γ), where α(A) = αcom(A), [αNV ◦
αNV ](A)) and γ(A, B) = γcom(A) ∩ [γNV ◦ γNV ](B). Our abstract semantics is
defined by a transition relation  on our abstract domain C], given in Figure
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3. Soundness hypotheses on abstract primitives ensure the soundness of our
abstract transition:

Proposition 5.1 If (u, C) ∈ γ(C]) and C
λ−→2 C, then there exists C

] such
that C] λ

 C
] and (u.λ, C) ∈ γ(C

]
).

As a consequence, the abstract counterpart F] of F, defined by

F](C]) = (α({(ε, C) | C ∈ C0(S)})) t C] t
(⊔
{C] | ∃λ ∈ Σ, C] λ

 C]}
)

satisfies the soundness condition F(C) ⊆ γ(F](α(C))). Using Kleene’s theo-
rem, we obtain the soundness of our analysis:

Theorem 5.2 lfp∅F ⊆
⋃

n∈N
[γ ◦ F]n](⊥)

Following [6,7], we compute a sound approximation of our abstract seman-
tics by using a widening operator ∇ : C] × C] → C] which satisfies the
following properties:
• ∀C]

1, C]
2 ∈ C], C]

1 t C]
2 v C]

1∇C]
2

• (C]
n) ∈

(
C]
)N, the sequence (C∇

n ) defined as{
C∇

0 = C]
0

C∇
n+1 = C∇

n ∇C]
n+1

is ultimately stationary.

The abstract iteration of F] is then defined as follows:
F∇0 = ⊥

F∇n+1 =

{
F∇n if F](F∇n ) v F∇n
F∇n∇F](F∇n ) else

Theorem 5.3 Abstract iteration[10,11] Abstract iteration (F∇n ) is ulti-
mately stationary and its limit F∇ satisfies Coll(S) ⊆ γ(ρ(F∇)).

6 Detecting exhaustion of resources and mutual exclu-
sion

We only need to define an abstract domain to approximate set of tuples of
natural numbers, in which abstract primitives can be precisely and efficiently
implemented. We reject the use of usual numerical domains: we are unlikely to
design a precise primitive required in non-relational domain, without using an
exponential partitioning; we think that the domain of linear inequalities among
a finite set of variables [12] is too expensive because we deal with too many
variables. We propose the use of a product of two domains. The first domain is
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Let (c], v]) ∈ C], u ∈ BN (S), y?i[y1, ..., yn]P and x!j[x1, ..., xn]Q two sub-
processes, Cont? ∈ Agent(P ), Cont! ∈ Agent(Q), such that:
• (y, u) ∈ c]

• (x, u) ∈ c]

• V
∆
= ρ(required({y?i[y1, ..., yn]P ; x!j[x1, ..., xn]Q}, v])) 6= ⊥NV

then (c], v])
(i,j)
 (c′], v′]), where

• c′] = c] ∪{(yk, t) | k ∈ [|1; n|], t ∈ BN (S) and (xk, t) ∈ c]}
∪{(x, x) | ∃p ∈ Cont?, x ∈ (BN (P ) ∩ FN (p)) \ {yk | k ∈ [|1; n|]}}
∪{(x, x) | ∃q ∈ Cont!, x ∈ BN (Q) ∩ FN (q)}

• v′] = trans(V, δ)

with

∀x ∈ Π, δ(x) =


−1 if x ∈ {y?i[y1, ..., yn]P, x!j[x1, ..., xn]Q} \ (cont? ∪ cont!)

+1 if x ∈ (cont? ∪ cont!) \ {y?i[y1, ..., yn]P, x!j[x1, ..., xn]Q}
0 otherwise

∀λ ∈ Σ, δ(λ) =

{
+1 if λ = (i, j)

0 otherwise

(a) Abstract communication

Let (c], v]) ∈ C], u ∈ BN (S), ∗y?i[y1, ..., yn]P and x!j[x1, ..., xn]Q two sub-
processes, Cont∗ ∈ Agent(P ), Cont! ∈ Agent(Q), such that:
• (y, u) ∈ c]

• (x, u) ∈ c]

• V
∆
= ρ(required({∗y?i[y1, ..., yn]P ; x!j[x1, ..., xn]Q}, v])) 6= ⊥NV

then (c], v])
(i,j)
 (c′], v′]), where

• c′] = c] ∪{(yk, t) | k ∈ [|1; n|], t ∈ BN (S) and (xk, t) ∈ c]}
∪{(x, x) | ∃p ∈ Cont∗, x ∈ (BN (P ) ∩ FN (p)) \ {yk | k ∈ [|1; n|]}}
∪{(x, x) | ∃q ∈ Cont!, x ∈ BN (Q) ∩ FN (q)}

• v′] = trans(V, δ)

with ∀x ∈ Π, δ(x) =


−1 if x ∈ {x!j[x1, ..., xn]Q} \ cont∗

+1 if x ∈ (cont∗ ∪ cont!) \ {x!j[x1, ..., xn]Q}
0 otherwise

and ∀λ ∈ Σ, δ(λ) =

{
+1 if λ = (i, j)

0 otherwise

(b) Abstract resource fetching

Fig. 3. Abstract transition relation
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based on the use of the interval lattice and is used for expressing properties of
interest. This domain can represent all the information we need to express non-
exhaustion of resources, but it cannot calculate them precisely without being
refined. The second domain is based on the use of linear equalities between
variables [17] and is used for expressing more complex properties, such as
mutual exclusion for instance, which allows for more precise calculations in the
first domain. The power of our analysis directly follows from an unexpensive
algorithm, straightforwardly adapted from Linear Constraint Programming,
to calculate an approximated reduction between these two domains.

The complete lattice (IV ,vIV ,tIV ,⊥IV ,uIV ,>IV ) is the functional domain
of the natural numbers intervals, where lattice operations are defined point-
wise. A family (∇n

IV ) of widening operators on IV is defined as follows:

[f∇n
IVg](x) = f(x)∇ng(x)

where

{
[|a; b|] ∇n [|c; d|] = [|min{a; c};∞|[ if d > max{b; n}

I ∇n J = I ∪ J otherwise

The complete lattice (KV ,vKV ,∪KV ,>KV ,∩KV ,⊥KV ) of linear equality sys-
tems between the finite set of variables V is described with its lattice opera-
tions in [17]. This domain uses Gauss reduction in order to normalize systems.
Moreover, since there are no infinite increasing chain [17], we can choose ∪KV
as a widening operator. Our numerical domain is then the product IV ×KV .
Generic primitives are expressed as follows:

• required(P, (i, s)) = (i′, s) where

{
i′(x) = i(x) ∩ [|1; +∞|[ ∀x ∈ P

i′(x) = i(x) ∀x ∈ Π \ P

• trans
((

i,

{∑
v∈V

ak
vv = bk, ∀k ∈ [|1; m|]

)
, f

)
= (i′, s′)

where

i′(x) = {k + f(x)|∀k ∈ i(x)} ∩ [|0; +∞|[

s′ =

{∑
v∈V

ak
v(v − f(v)) = bk, ∀k ∈ [|1; m|]

We now present a reduction [9] ρ between IV and KV . A reduction consists
in taking into account linear constraints in order to narrow the domain of
interval variables. For instance, the system of constraints {x + y = 12, x ∈
[|3; 15|], y ∈ [|4; 19|] can be reduced to the system {x+y = 12, x ∈ [|3; 8|], y ∈
[|4; 9|]. Linear constraints are likely to be combined, via Gauss reduction, in
order to give new linear constraints which will allow for further reductions.
Therefore, generating the whole set of such combinations is likely to require
an exponential time of execution.

We propose a two-step-polynomial algorithm for solving this problem. The
first step aims at narrowing infinite intervals into finite ones. It uses Gauss
reduction to obtain a positive representation of systems of linear equalities,
that is to say an equivalent system of equations such that if a variable occurs
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with a strictly negative coefficient in an equation, then this variable occurs
with a negative coefficient in each equation. Positive representations contain
only a few undefined forms, which allows to narrow infinite intervals into
finite ones, with a worst-case in O(n3). The second step is inspired by [5]: it
consists in obtaining a triangular system of constraints of the form a1.x1 +
...+an.xn ∈ I where I is an interval. This system is then used for propagating
unidirectionnally intervals from non-diagonal to diagonal variables. The result
is a good reduction with a worst-case in O(n4).

We now propose some examples of mobile systems analyzed with our proto-
type. For the sake of brevity, we have selected for each example a subset of sig-
nificant constraints captured by our analysis; full results are available in [13].
In these constraints, the number of occurrences of a process c?i[x1, ..., xn]P or
c!i[x1, ..., xn]P is denoted by ](i), while ](i, j) denotes the number of times a
communication reduction labelled with (i, j) is used.

Example 6.1 Our first example is the ftp protocol proposed in Example 3.1:

S := (ν port)(Allocate | port!5[] | port!6[] |port!7[])
where

Allocate := ∗port?0[](ν in)(ν out)(ν query)
(in!1[query ]
| in?2[response].(out !3[response] | port!4[]))

](0) = 1, ](i) ∈ [|0; 3|], ∀i ∈ {1; 2; 4}
](3) ∈ [|0;∞|[
](i) ∈ [|0; 1|], ∀i ∈ [|5; 6; 7|]
](1) + ](4) + ](5) + ](6) + ](7) = 3

](3) = π(2, 1)

Our analysis has proved that only three physical channels are required to
simulate this protocol. 2

Example 6.2 We now propose an example of mutual exclusion:

S :=


(ν a)(ν b)(ν c)(ν d)

(∗a?0[x](x!1[a] + (c?2[]d!3[]))
|∗b?4[x](x!5[b] + (c!6[]))
|a!7[b])




](i) ∈ [|0; 1|], ∀i ∈ {1; 2; 5; 6; 7}
](3) = 0

](1) + ](2) + ](5) + ](6) + ](7) = 1

Our analysis has proved that the sub-process (d!3[]) is unreachable by detecting
a mutual exclusion between the sub-processes (c?2[]d!3[]) and (c!6[]). 2

12
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7 Detecting deadlocks

We use both our abstraction of the collecting semantics and dynamic parti-
tioning tools [3] to solve the problem of detecting sets of non-standard config-
urations such that no infinite sequence of computations can pass by them. For
that purpose, we analyze the trace semantics of the mobile system S, which is
defined as a transition system (G, A ⊆ G×G) where G = Coll(S) is the set of
states and A = {(u, C), λ, (u.λ, C ′) | (u, C) ∈ Coll(S), C

λ−→2 C ′} is the set
of transitions. This is also the least fixpoint of an ∪-complete endomorphism
F on the complete lattice (T ,@T ,∪T ,⊥T ,∩T ,>T ) of transition systems on
the alphabet Σ, the set of states of which is a subset of the set (Σ∗×C). Lat-
tice operations are the usual set operations, while F((G, A)) is the transition
system (G′, A′) defined as follows:

{
G′ = {(ε, C) | C ∈ C0(S)} ∪ {(u.λ, C) | ∃(u, C ′) ∈ G, C ′ λ−→2 C}
A′ = {((u, C), λ, (u.λ, C ′)) | (u, C) ∈ G, C

λ−→2 C ′}

We abstract the trace semantics to compute a finite approximation in a
finite time. We approximate infinite transition systems by finitely partitioning
their set of states. An abstract transition system is then defined as a transition
system on a finite set of states, and a function mapping each state to the set
of concrete states it represents. Let P be a finite subset of the lattice ℘(NV),
such that ∅ 6∈ P,

⋃
P = NV and ∀a, a′ ∈ P, a 6= a′ =⇒ a ∩ a′ = ∅. We

introduce our abstract domain T ] as the set of all pairs ((G], A]), f) such that
(G], A]) is a transition system on the alphabet Σ, where G] is the quotient of
P by an equivalence relation and f is a function mapping each element of G]

to an abstract element of C]. T ] is partially pre-ordered by the relation vT ]

where ((P/∼1 , A
]
1), f1) vT ] ((P/∼2 , A

]
2), f2) if and only:


∀q], q′] ∈ P, q] ∼1 q′] =⇒ q] ∼2 q′]

∀q] ∈ P, f1([q
]]∼1) v f2([q

]]∼2)

∀q], q′] ∈ P, ∀λ ∈ Σ, ([q]]∼1 , λ, [q′]]∼1) ∈ A1
] =⇒ ([q]]∼2 , λ, [q′]]∼2) ∈ A2

]

Since there is no canonical choice for the equivalence relation, we are unlikely
to define an abstraction function. So, we use a relaxed version of abstract
interpretation [10], which only relies on the use of a concretization function
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γT which relates the abstract domain to the concrete one, defined as follows:

γT ((P/∼, A]), f) = (G, A)

where



G =
⋃

q]∈P
[(γ(f([q]]∼))) ∩ (γNV (q]))]

A =

(q, λ, q′)

∣∣∣∣∣∣∣∣∣∣
∃q], q′] ∈ P,


q ∈ (γ(f([q]]∼))) ∩ (γNV (q]))

q′ ∈ (γ(f([q′]]∼))) ∩ (γNV (q′]))

([q]]∼, λ, [q′]]∼) ∈ A]

q
λ−→2 q′


We give in Figure 4 the definition of both an abstract counterpart F] of F
and an accelerator of convergence G]. Intuitively, G] merges the states of the
abstract transition system, as soon as we are unable to prove that no infinite
derivation can pass by a state they represent. G] uses a generic primitive
relation, denoted by finite ∈ ℘(T ] × P), such that for all t] = ((P/∼, A]), f) in
T ], for all q]

0 in P, if (t], q]
0) in finite then all derivations in transition system

γT (t]) passing by a configuration c0 in γ(f([q]
0]∼))∩γNV (q0

]) are finite. F] and
G] satisfy the soundness property: for all t] in T ], [F ◦ γT ](t]) vT [γT ◦ F] ◦
G]](t]). Furthermore, the sequence [F] ◦G]]n((P, ∅), ∅) is ultimately stationary
and, thanks to Theorem 4.1.1.0.2 in [6], its limit l] satisfies lfp⊥T F v γT (l]).

Theorem 7.1 Let ((P/∼, A), f) = l]. For all q in P, for all C in γ(f([q]]∼))∩
(γNV (q])), there is no infinite computation sequence in the system S which
passes by the state C if (l], q) ∈ finite.

Our last task is to instantiate P and the primitive finite. A good choice
for P consists in partitioning the set NV in accordance to the values of the
variables of V which have a bounded behavior. For that purpose, we consider
v ⊆ V and a family (Mx) in Nv, such that ∀f ∈ αNV (Coll(S)), f(x) ∈ [|0; Mx|].
We take P = NV

/∼ where ∼ is defined by: g ∼ h if and only if (∀x ∈ v, g(x) ∈
[|0; Mx|] and g(x) = h(x)) or (∃x1, x2 ∈ v, g(x1) > 1 and h(x2) > 1). Both v
and (Mx) are given by the analysis presented in Section 5. The primitive finite
is given by the following algorithm. Let (t], f) ∈ T ] and q]

0 ∈ P, we introduce
Available ⊆ Σ defined by λ ∈ Available if and only if there is a derivation in
the transition system t] stemming from q]

0 and containing a transition labelled
with λ. The following soundness proposition is valid:

Proposition 7.2 ∀λ ∈ Σ, if there is a derivation in the transition system
γT (t], f) which stems from a configuration in γ(f([q]

0]∼))∩(γNV (q]
0)) and which

contains a transition labelled with λ, then λ ∈ Available.

We denote by 7→2 the subset of −→2 which only contains the computation
steps labelled with an elements of Available. Following [16], we try to build a
well-founded set in which we will interpret (C, 7→2) via a morphism. Success in
doing this will prove that any derivation in the system γT (t], f) which passes
by a configuration in γ(f([q]

0]∼)) ∩ (γNV (q]
0)) is finite.
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F]
P((P/∼, A), f) = ((P/∼, A′), f ′) where

f ′(x) = f(x)∇h(x)

h(x) =
⊔
(c

], v] uNV αNV (u′))

∣∣∣∣∣∣∣∣∣∣
u′ ∈ x, v] uNV αNV (u′) 6= ⊥NV ,

(c], v]) = α({(ε, C) | C ∈ C0(S)})
or ∃u ∈ P, ∃λ ∈ Σ such that
f([u]∼) u (>com, αNV (u))

λ
 (c], v])


A′ = A ∪

([u]∼, λ, [u′]∼)

∣∣∣∣∣∣∣
∃(c], v]) ∈ C],

f([u]∼) u (>com, αNV (u))
λ
 (c], v])

v] uNV αNV (u′) 6= ⊥NV


(a) counterpart function

G]
P((P/∼, A), f) = ((P/∼′ , A

′), f ′) where
a ∼′ b⇐⇒ a ∼ b or {(((P/∼, A), f), a); (((P/∼, A), f), b)} ∩ finite = ∅
f ′([a]∼′) =

⊔
x∈[a]∼′

f([x]∼)

A′ = {([a0]∼′ , λ, [a]∼′) | ([a0]∼, λ, [a]∼) ∈ A}
(b) quotient function

Fig. 4. Abstract trace semantics

We introduce the relation y between the subprocesses of S such that
∀p, q ∈ Π, p y q if and only if at least one of the following conditions is
satisfied:
• p has the particular form x!j[]Q, q ∈

⋃
Agent(Q), and there exists i ∈ Lbl

such that (i, j) ∈ Available;
• p has the particular form x?i[]P , q ∈

⋃
Agent(P ), and there exists j ∈ Lbl

such that (i, j) ∈ Available;
• p has the particular form x!j[]Q, and there exists a process of the particular

form ∗y?i[]P such that q ∈
⋃

Agent(P ) and (i, j) ∈ Available.

We define the relation finite by: ((t], f), q]
0) ∈ finite⇐⇒ (Π, y) is acyclic.

Soundness hypotheses are satisfied since if (Π, y) is acyclic, then (Π, y+) is a
well founded order and the multiset extension [16] of y+ gives a well founded
order y+

Mul on NΠ. The function Φ : (C, 7→2) → (NΠ, y+
Mul) defined by

Φ(C)(p) = Card({(P, id, E) ∈ C | P = p}) is then a morphism.

Example 7.3 We propose to analyze the following mobile system:

S := (ν push)(ν pop)

((∗push?1[](pop!2[] | push!3[])) | ∗ pop?4[] | ∗ push?5[] | push!6[])

This system describes the behavior of a stack. The height of the stack is
symbolized by the number of processes pop!2[] that occurs at the top level.
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Push (resp. pop) operations are symbolized by communication with the re-
source ∗push?1[] (resp. ∗pop?4[]). Finally, a communication with the resource
∗push?5[] symbolizes that further push operations are no longer allowed.

Occurrence counting analysis gives the following properties:
π(1) = 1, π(2) ∈ [|0; +∞|[, π(3) ∈ [|0; 1|],
π(4) = 1, π(5) = 1, π(6) ∈ [|0; 1|],
π(1, 6) ∈ [|0; 1|], π(5, 3) ∈ [|0; 1|], π(5, 6) ∈ [|0; 1|],
π(1, 3) ∈ [|0;∞|[, π(4, 2) ∈ [|0;∞|[.

We denote by v ⊆ V the set of variables {push!3[]; push!6[]; (1, 6); (5, 3); (5, 6)}
and we take P = NV

/∼ where g ∼ h if and only if (∀x ∈ v, g(x) ∈ [|0; 1|] and
g(x) = h(x)) or (∃x1, x2 ∈ v, g(x1) > 1 and h(x2) > 1).

Our deadlock analysis then gives the abstract transition system (t], f)
where t] is given as follows:

q0/.-,()*+
push(1,3)

��

pop(4,2)

22

push(1,6)

rr q1/.-,()*+��������disable-push(5,6)

//

q2/.-,()*+��������
disable-push(5,3)

$$JJJJJJJJJJJJJJJJJ

pop(4,2)

22

where

q0 =

f

∣∣∣∣∣∣
f(push!6[]) + f(push!3[]) = 1
f(push!3[]) = f((1, 6)) ∈ [|0; 1|]
f(x) = 0, ∀x ∈ {(5, 3); (5, 6)}


q1 =

{
f

∣∣∣∣ f((5, 6)) = 1
f(x) = 0, ∀x ∈ v \ {(5, 6)}

}
q2 =

{
f

∣∣∣∣ f((1, 6)) = f((5, 3)) = 1
f(x) = 0, ∀x ∈ v \ {(1, 6); (5, 3)}

}
By applying our primitive relation finite, we prove that no infinite com-

putation sequence can pass by a configuration in γNV (q1) ∪ γNV (q2), which
means that executions of our system are bound to terminate as soon as a
communication (5, 3) or a communication (5, 6) is performed. 2

8 Conclusion

We have designed a powerful framework to prove properties on the potential
behavior of a mobile system. Our analysis allows to detect, in polynomial time
on the number of sub-processes of the mobile system, mutual exclusion and
non-exhaustion of resources. Our analysis has succeeded in analyzing very
quickly a few nested concrete systems, featuring unbounded communication
topologies, with the expected level of accuracy. Deadlock detection is a much
more difficult problem and our proposed approach is likely to require exponen-
tial time. However it gives interesting results on unbounded systems, which
are out of reach of model checking methods. We are likely to refine our initial
partitioning in order to get a quicker analysis.

This framework is likely to be enriched by using [14] in order to detect non-
uniform confidentiality properties between processes, and to allow the analysis
of mobile systems in hostile context. This will lead to a very powerfull modular
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analysis for mobile systems. To scale up, for large nested mobile systems, the
analysis must be more approximate to ensure short execution time.
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