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Abstract. Rule-based modelling is particularly effective for handling the
highly combinatorial aspects of cellular signalling. The dynamics is de-
scribed in terms of interactions between partial complexes, and the ability
to write rules with such partial complexes -i.e., not to have to specify
all the traits of the entitities partaking in a reaction but just those that
matter- is the key to obtaining compact descriptions of what otherwise
could be nearly infinite dimensional dynamical systems. This also makes
these descriptions easier to read, write and modify.

In the course of modelling a particular signalling system it will often
happen that more traits matter in a given interaction than previously
thought, and one will need to strengthen the conditions under which that
interaction may happen. This is a process that we call rule refinement
and which we set out in this paper to study. Specifically we present a
method to refine rule sets in a way that preserves the implied stochastic
semantics.

This stochastic semantics is dictated by the number of different ways
in which a given rule can be applied to a system (obeying the mass ac-
tion principle). The refinement formula we obtain explains how to refine
rules and which choice of refined rates will lead to a neutral refinement,
i.e., one that has the same global activity as the original rule had (and
therefore leaves the dynamics unchanged). It has a pleasing mathematical
simplicity, and is reusable with little modification across many variants of
stochastic graph rewriting. A particular case of the above is the derivation
of a maximal refinement which is equivalent to a (possibly infinite) Petri
net and can be useful to get a quick approximation of the dynamics and
to calibrate models. As we show with examples, refinement is also useful
to understand how different subpopulations contribute to the activity of
a rule, and to modulate differentially their impact on that activity.

1 Semi-liquid computing

To the eye of the computational scientist, cellular signalling looks like an intrigu-
ing computational medium. Various types of agents (proteins) of limited means
interact in what, at first sight, may seem to be a liquid universe of chance encoun-
ters where there is little causality. But in fact a rich decentralized choreography
of bindings (complex formation) and mutual modifications (post-translational



modifications) can be observed. Transient devices (complexes) are built by agents
to integrate, convey, and amplify signals and channel them to the appropriate
outputs (transcriptional regulation). The intricate pathways of the response to
the epidermal growth factor (EGF) sketched in Fig. 1 are a well-studied and well-
modelled example [1]. This universe of semi-liquid computing is brought about
by a surprisingly small number of elementary interactions. It sits somewhere in
between the worlds of the random graphs of statistical physics [2] which perhaps
lack expressivity, and the solid colliding sphere models of chemical kinetics [3]
which perhaps lack programmability.

The generativity of those systems, that is to say the number of different
non-isomorphic combinations (aka complexes or species) that may come to exist
along different realizations of the implied stochastic process, may well be enor-
mous, but this does not say how complex those systems really are. A lot fewer
rules than there are reactions (interactions between complete complexes) may
be good enough to describe some of them. For instance the sketch of Fig. 1 once
properly formalized uses about 300 rules whereas it produces about 1040 unique
combinations. One sees that the number of rules is a more meaningful estimate
of its inherent complexity.

Rule-based languages [4–11], and more generally process algebraic approaches
to modelling [12–19], because they can express such generic interactions, can
work around this apparent descriptive complexity and achieve compact descrip-
tions. Let us also mention, although we will not treat this aspect of the question
here, that another benefit of rule-based modelling is that one can trace the evo-
lution of a system at the level of agents (or individuals) and explore the causal
relationships between events occurring in a system [6].

The difference between an assembly of agents with random uncorrelated en-
counters and a signalling system is that there is a causal structure channelling the
interactions towards a particular response. Typically a binding will not happen
before one or both of the bindees has been modified. Combining those micro-
causal constraints into a coherent pathway is a programming art that we don’t
master or even understand yet, but one that signalling systems have been honing
for a considerable time. Rule-based modelling incorporates such causality con-
straints in the rules themselves by using partial complexes: not everything needs
to be described in a rule, only the aspects of the state of a complex which matter
for an event to happen need to be specified. That is the difference between a
reaction between complete entities, and a rule between partial ones. As said, this
reliance on partial complexes allows to capture compact descriptions and work
around the huge numbers of combinations one would have to contemplate (or
neglect) otherwise. The more detailed the partial complex, that is to say the less
partial, the more conditions must be met for a particular event to happen.

The purpose of the present paper is to understand better the mechanics of
refinement, that is to say the process by which one can make a complex less
partial, or equivalently a rule more demanding. We specifically consider the
problem of replacing a rule with a family of refined rules which will exhibit
the same collective activity, and will therefore generate an identical stochastic
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Fig. 1. A informal sketch of the many interactions involved in the ERK/AKT pathway
responding to an EGF stimulus. The corresponding rule-based model generates about
1040 different species.

behaviour. Note that there are really two questions in one: one is to define what
constitutes a good family of refined rules, another is to define their rates so
as to preserve the underlying dynamics. It turns out that the latter question
has an intimate connexion with the notion of symmetry, and what becomes of a
symmetry group of a partial complex under refinement. The solution we propose
to the former question can certainly be made to cover more cases (of which more
later).

Seeing how the notion of partial complex is central to rule-based modelling4

it certainly makes sense to try to theorize around it, as we start doing in this
paper. But there are also very concrete reasons to do so. First it will often happen
that in a modelling situation a rule has to be revised because people come to
believe that its rate depends on more information about the context than the

4 An aside: the name rule-based is a little unfortunate since just about any computa-
tional formalism is rule-based but that is the name under which this approach has
become known in the biological modelling community.
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rule actually provides. A typical example would be that a post-translational
modification increases or decreases the likelihood that an agent will bind another
one. Replacing a rule with a bunch of more specific ones, in order to express those
context-dependent modulations of the rule activity, is a transformation which
we call a kinetic refinement of the rule. It can be usefully decomposed as first
introducing a neutral refinement -as defined in this paper- and second changing
those base rates to achieve the modulation of interest. In this application the
neutral refinement, that is to say the choice of refined rates that will not change
the behaviour, serves as a baseline. One needs it to know where to start from. In
fact even when one does not actually modulate the rates of the refined rules and
keeps the refinement neutral, the procedure allows one to peek into the relative
contributions of the various subpopulations of complexes that can intervene in
an instance of the original unrefined rule (see the examples at the end of the
next section). So for both reasons it is important to understand how to compute
this baseline which is the question we address here.

Maximal refinements are of special interest. This is the case where one re-
places a rule with all its ground instances (in general an infinite set) where only
complete complexes take part. Such a transformation when applied to all rules
in a rule set will obtain a set of multiset rewriting rules, that is to say a (possibly
infinite) Petri net. This transformation will be unfeasible in general, owing to
the combinatorial explosion mentioned earlier, because the obtained Petri net,
even if finite in principle, will be simply too large to be written (this is not even
a problem of computational complexity but of mere size of the output). How-
ever it is easy to imagine running truncated versions of a complete expansion
using an ODE semantics. That could be useful for model calibration, and similar
exploration mechanisms that are particularly demanding in terms of the num-
ber of simulations required while not necessarily needing the accuracy an exact
expansion would provide.

We start with a brief presentation of Kappa which is the rule-based language
we shall use in this paper. This is an occasion to get familiar with some of
the notations, but is in no way a formal presentation. Then we turn to two
simple examples of refinement to get a more concrete sense of what the notion
of refinement is trying to achieve and how it is relevant to practical modelling
questions. Explanations given in this paper, further than the ones given above,
about the relevance of Kappa for the actual practical modelling are all to be
found in the next Section. The reader interested in more can consult Refs. [6]
and [7].

After this presentation the mathematical development reintroduces a simpli-
fied Kappa, this time in a completely formal and algebraic way which is conducive
to a study of refinement which will be of general import and not tied in specific
syntactical details. In fact the refinement formula we obtain is of general valid-
ity and assumes nothing about the arity of the rule to be refined, and actually
assumes little about the rewriting framework itself. We are conscious that this in-
curs some cost to the reader unacquainted with basic category-theoretic notions
in that some heavy-looking machinery is involved. However, mathematically it
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is natural, and hopefully at this stage the preliminary informal explanations
will have clarified what is achieved in the mathematical development. After the
derivation of the refinement formula for partial complexes first, and then for
rules, we explain how to sharpen this result by considering more inclusive no-
tions of refinements. Only the first refinement formula is treated in detail; its
extensions are just sketched.

2 A brief guide to Kappa

Let us start with an informal and brief account of our modelling language. In
Kappa, agents (think of them as idealized proteins) have sites and their sites
can be used to bind other sites, and can also hold an internal state. The former
possibility accounts for domain-mediated complex formation, while the latter ac-
counts for post-translational modifications. Accordingly one distinguishes three
types of (atomic) rules for binding, unbinding, and modification. In the full
language one also considers agent creation and deletion (see later the formal
presentation), and it is possible to combine actions in a single rule.

Note that a binding rule requires two distinct agents, each with a free (i.e.,
not already bound) site, which bind via those sites. In other words, it is not
possible to bind a site more than once.

A Kappa model consists of (i) an initial solution that declares the names and
all sites (with default state values for all sites we wish to carry a state) of the
relevant agents; and (ii) a rule set specifying how the initial solution may evolve.
We will see an example very soon.

The behaviour of a model is stochastic. Given a global state of the system
one assigns to each rule a likelihood to be applied which is proportional to the
number of ways in which this rule can be applied, and its intrinsic rate (the rate
is a measure of how efficient a rule is at turning a chance encounter of reagents
into an actual reaction). In the particular case where agents have no sites at all,
one has a Petri net, and the dynamics is none other than the mass action law
put in Gillespie form [3].

2.1 A simple cascade

As a way of getting more familiar with the notation we can first consider a
simple and yet ubiquitous motif of cellular biology. This will also be an occasion
to introduce a first example of refinement and get a sense of how natural the
notion is in a modelling situation. Our motif consists of one protein (typically an
enzyme or kinase) covalently modifying another. Let us call them S (as signal)
and X and assume they have each a single site s.

That situation can be expressed by the following rule triplet:

S(s), X(su) → S(s1), X(s1
u)

S(s1), X(s1) → S(s), X(s)
S(s1), X(s1

u) → S(s1), X(s1
p)
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where we represent a binding between two sites by a shared exponent, s1, and
the internal state of a site as a subscript to this site, as in su or sp; here we use p
as a mnemonic for phosphorylated, and u for unphosphorylated, but any string
is a legitimate internal state (conceptually an internal state is any element from
a set). Note that for the S, X binding to take place, X must be in the internal
(unactivated) state X(su); this requirement prevents S from binding already
activated targets.

One can add a nearly identical triplet for X and a new agent Y :

X(sp), Y (su) → X(s1
p), Y (s1

u)
X(s1), Y (s1) → X(s), Y (s)
X(s1), Y (s1

u) → X(s1), Y (s1
p)

The only difference being that X has to be activated for the binding to Y to
happen. This ensures in particular that no Y is activated in the absence of a
signal S -an example of the causal constraints we were alluding to earlier.

Such cascades regularly arise in real signalling networks. Referring back to
the actual EGFR pathway in Fig. 1 we see the famous examples of the Ras, Raf,
MEK and ERK cascade, and the PIP3, PDK1, and AKT one.

What about the dynamical behaviour of such a simplified cascade? We would
like to understand how the cascade throughput, that is to say the rate of produc-
tion of the active form of Y , depends on the rate k at which X detaches from
Y (hereafter the XY off-rate), namely the rate of the rule r := X(s1), Y (s1) →
X(s), Y (s) given above.

Well intuitively, with too small an off-rate (high affinity binding), X will tend
to remain bound to Y even after the Y has been activated. Whereas with too
large an off-rate (low affinity binding), X will often detach from Y before having
activated Y . Somewhere in between there must be an optimal choice of k which
strikes the right balance and maximise the rate of activation of Y .

This is something that we can verify numerically. Suppose one starts with
15S(s) + 60X(su) + 120Y (su) as an initial state, and suppose further all other
rules have a rate of 1. As expected, for k = 0.1, k = 10, and k = 1000 the
activation goes up then down again (see Fig. 2, 3, 4).

This demonstrates the tension between binding loosely, and “not always get-
ting the job done”, and binding tightly which amounts to “sleeping on the job”.
It also nicely shows that the cascade throughput depends on a lot more than
just the rate attached to the rule performing that activation.

Now our off-rate k measures how likely it is that X and Y will detach -
independently of their respective internal states. If we were to optimize the cas-
cade throughput it would be natural to let the off-rate depend on the state of
Y . In terms of rules, all we have to do is to split r into two subcases:

ru := X(s1), Y (s1
u) →ku

X(s), Y (su)
rp := X(s1), Y (s1

p) →kp X(s), Y (sp)

with respective and now independent rates ku, kp. One calls the substitution of
r with such more specific rules ru, rp a refinement. If in addition the new rates
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Fig. 2. Low off rate (k = 0.1): the activated Y s tend to stay attached to their activa-
tors X (the XY p ‘sleep’ curve dominates the XY u ‘ready’ one); as a consequence the
production of activated Y is slowed down.

Fig. 3. Medium off rate (k = 10): most of the XY complexes have now an inactivated
Y (the XY u ‘ready’ curve now dominates); the production of activated Y is visibly
faster.
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Fig. 4. High off rate (k = 1000): the production of activated Y has gone down again.

Fig. 5. Split rate (ku = 0, kp = ∞): there is no XY p anymore; the production of
activated Y is optimal.
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are both taken equal to k, then in this simple case evidently the behaviour of
the system will be unchanged. That special case, where nothing changes in the
dynamics, is what we call a neutral refinement.

If one favours unbinding from active Y , then clearly this allows X both to
bind long enough to Y to activate it and then to unbind quickly to maximize
throughput. In particular the combination kp = ∞ (detach as soon as acti-
vated), and ku = 0 (never detach before activation) leads to the best possible
throughput, all other things being equal (see Fig. 5).

2.2 A less obvious refinement

Here is a second example which shows that choosing the rates of the refined
rules and obtaining a neutral refinement may require some more ingenuity than
in the preceding example.

Consider two agent types B, C each with only one site x, and define a family
of systems x(n1, n2) consisting of n1 single Cs and n2 dimers C(x1), B(x1). In
other words set x(n1, n2) := n1C(x) + n2(C(x1), B(x1)). Now consider the rule
r := C(), B() →1 C() with rate 1. Note that r does not mention x at all (we
say that both agents have an empty signature in this case). This means that r
applies irrespective of the binding state of x in B and C. Both agents could be
free, or bound, or even bound together. Whichever is the case, the effect of the
rule will be the same, namely to delete a B and to bring x(n1, n2) to a new state
x(n1 + 1, n2 − 1). This supposes n2 > 0. If on the other hand n2 = 0 then there
is no B left in the system and no further event is possible (deadlock).

Now we would like to refine r into mutually exclusive sub-cases depending
on the relationship in which C and B stand; specifically we want to use the
following three refined rules:

r1 := C(x1), B(x1) →1 C(x)
r2 := C(x1), B(x1), C(x2), B(x2) →2 C(x), C(x2), B(x2)
r3 := C(x1), B(x1), C(x) →1 C(x), C(x)

Each of them is a particular case of r in the sense that their left hand sides
embed (sometimes in more than one way) that of r (see below the notion of
morphism). Intuitively, r1 is the sub-case where B, C are bound together, r2 is
the sub-case where they are both bound but not together, and r3 is the sub-case
where B is bound but C is free. Given the particular family of states x(n1, n2)
we are dealing with, those seem to cover all possible cases, and to be indeed
exclusive.

Define the activity of a rule as the number of possible ways to apply the
rule multiplied by its rate. This determines its likelihood to apply next and only
depends on the current state of the system. Now we have chosen for each refined
rule a rate (indicated as a subscript to the reaction arrow), and in particular
r2 was assigned a rate of 2. We claim this is the unique correct choice if one
wants the stochastic behaviour of the system to be preserved by the refinement.
Figure 6 shows a run of the refined system with x(0, 100) as the initial state.
The y axis traces the activity of all rules including the base one r.
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We see that indeed at all times the refined activities add up to the original
one (the top curve).

There are other things worth noticing. Firstly, r1 keeps a low probability that
decreases linearly during the simulation since its activity is exactly the number
of dimers n2; so suppressing r1 would have a negligible effect on the behaviour of
the system. Secondly, r2 dominates the early events, since near the initial state
there are only dimers, and no free Cs yet; however, as time passes there will
be more of those free Cs, and the corresponding rule r3 will come to dominate.
Hence we see that the relative importance of the sub-cases changes over time,
and that refinement can be used as a way of profiling the contribution various
subpopulations of agents make to a given type of event.

The corrective factor applied to r2 accounts for two opposite effects: on the
one hand r2 embeds r in more than one way which tends to scale the rate of r2

upwards, on the other hand r2 is more symmetric than r and that would tend
to scale the rate of r2 downwards.

What we are interested in is to handle the general case, i.e., to explain what
constitutes a good set of refined rules as r1, r2, and r3 above, and how one can
choose the refined rates in a way that the global activity is preserved. We will
return to the example once we have a general solution.

Fig. 6. The activities of the refined rules r1, r2, and r3 add up exactly to that of the
initial rule r (top curve).
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3 Rule-based modelling

To give proper generality and portability to our study, we will frame it into some
simple categorical language where a system is seen as an object x and the various
ways a rule r may apply to x are identified using a notion of morphism f from
r’s left hand side to x.

As said we shall also simplify the Kappa syntax in two respects. First, we sup-
pose agents have no internal states. Second, we suppose no wildcards are used in
left hand sides, e.g., expressions like A(x ) meaning x is bound to some unspec-
ified other site, are not considered. The former simplification is only a matter
of readability, as internal values offer no difficulty. The latter simplification is
more significant, and we will see later in our development that reintroducing
wildcards allows us to strengthen our main result. With these simplifications we
can give a syntax-less presentation of Kappa that will facilitate the derivation
of the refinement formula.

We suppose given two sets A and S of agent names and sites.
A matching over a set X is an irreflexive and symmetric binary relation on

X such that no element is in relation with more than one element.

Definition 1 An object is a quadruple (V, λ, σ, µ) where:
– V is a finite set of nodes,
– λ ∈ AV assigns names to nodes,
– σ ∈ P(S)V assigns sets of sites to nodes,
– µ is a matching over

∑
v∈V σ(v).

The matching represents bindings (hereafter also simply edges), and hence any
given site can be bound at most once. A node however can be bound many times
via different sites.

We define (u, x) ∈ µ as shorthand for ∃(v, y) : (u, x, y, v) ∈ µ, and say u, x is
free when (u, x) 6∈ µ, bound when (u, x) ∈ µ.

The simplest non-empty object is a single node named A with no sites and
therefore no binding. In the preceding section we wrote A() for this object. There
we also introduced a textual notation to designate objects where bindings are
indicated by exponents.

Note that we sometimes use the same family of symbols x, y, etc. for sites
and objects. Hopefully this will not cause any confusion since they are entities
of a very different nature.

We define a signature as a map Σ : A → P(S); this can be used to constrain
the set of sites per agent type. We write x ≤ Σ if for all v ∈ Vx, σx(v) ⊆ Σ(λx(v));
likewise we write Σ ≤ x if for all v ∈ Vx, Σ(λx(v)) ⊆ σx(v), and x : Σ when
x ≤ Σ ≤ x.

When x : Σ for some Σ, we say x is homogeneous, which means all agents of
the same type in x use exactly the same set of sites.

Definition 2 An arrow (V, λ, σ, µ) → (V ′, λ′, σ′, µ′) is a map f : V → V ′ such
that
– 1) f preserves names: λ′ ◦ f = λ
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– 2) f preserves sites: σ′ ◦ f ⊇ σ
– 3a) f preserves edges: (u, x, y, v) ∈ µ ⇒ (f(u), x, y, f(v)) ∈ µ′

– 3b) f reflects edges: (f(u), x) ∈ µ′, x ∈ σx(u) ⇒ (u, x) ∈ µ
– 4) f is a monomorphism

This then is the category of graphs with sites we shall work with. We also call
arrows morphisms sometimes; we write [x, y] for the arrows from x to y; iso[x, y]
for the isomorphisms (meaning invertible arrows), and therefore [x, x] = iso[x, x]
denotes the set of automorphisms (or symmetries) of x; we say that y embeds x
when [x, y] 6= ∅.

Define the image of f ∈ [x, y] as Im(f) := {f(v), x; v ∈ V, x ∈ σ(v)}.
Note that Im(f) is but a subset of

∑
v∈V σ′(f(v)), and only sites in Im(f)

are mentioned in the arrow-defining clauses above.
One has obviously a forgetful functor to the category of graphs and graph

morphisms, and that allows us to import the usual graph-theoretical vocabulary
of connected components and paths, which we will freely use in the sequel. Note
that, from the point of view of graphs, the reflectivity condition 3b) above does
not really make sense, one really needs sites to express edge reflection. Moreover
the rather stringent notion of arrow constrains the homsets [x, y]:

Lemma 1 (rigidity) Suppose x is connected, then any non-empty partial in-
jection f from Vx to Vy extends to at most one morphism in [x, y].

Proof: If f is strictly partial, that is to say Vx rdom(f) is not empty, pick a v in
there such that for some node w ∈ dom(f), and some sites x, y, (w, y, v, x) ∈ µx.
This is always possible because x is connected. Then, either (f(w), y, v′, x) ∈ µy

for some v′ ∈ Vy, and by 3a) one must extend f as f(v) = v′, or there is no such
extension. �

Clearly being a monomorphism, i.e., being post-cancellable, is equivalent to
being a one-one map. On the other hand there are far more epimorphisms than
surjections:

Lemma 2 (epis) A map h ∈ [x, y] is an epimorphism iff every connected com-
ponent of y intersects f(x); that is to say for all connected component cy ⊆ y,
h−1(cy) 6= ∅.

Proof: Suppose f1h = f2h for h ∈ [x, y], fi ∈ [y, z], and let cy ⊆ y be a connected
component of y such that h−1(cy) 6= ∅. Pick u such that h(u) ∈ cy, then
f1(h(u)) = f2(h(u)) and by the preceding lemma f1/cy = f2/cy. �

We write [x, y]e ⊆ [x, y] for the epis from x to y.

4 Object refinements

Now that we have our basics in place we turn to the first question of what
constitutes a refinement of a (partial) object s. As we have seen in the example,
a refinement of s is intuitively a collection of objects ti that embed s and such
that any embedding in an object of higher signature x (i.e., that has more
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sites everywhere) can be unambiguously attributed to one ti. We first make this
intuition into a real definition and then proceed to define the refinements of
rules.

Definition 3 (factorisation) One says an object t factors f ∈ [s, x] if f = γφ
for some φ, γ ∈ [s, t]e × [t, x]; φ, γ is called a factorisation of f via t.

The first thing to notice is that one cannot ask for unique factorisations.
Suppose given a factorisation φ, γ ∈ [s, t]e × [t, x] of f via t and an isomor-

phism α ∈ [t, t′]. Define φ′, γ′ := αφ, γα−1 ∈ [s, t′]× [t′, x]; this new pair verifies
γφ = γ′φ′, and since φ′ is clearly an epimorphism, the pair is also a factorisation
of f via t′.

s
φ //

φ′

��

t

γ

��

α

zz
t′

γ′ // x

(1)

In this case we will say that φ, γ and φ′, γ′ are conjugate under α, and write
φ, γ 'tt′ φ′, γ′. We also write [s, t] ×[t,t] [t, x] for the quotient of [s, t] × [t, x]
under 'tt; this notation is justified by the following:

Lemma 3 (conjugates) The equivalence relation 'tt has |[s, t] × [t, x]|/|[t, t]|
classes.

Proof: Suppose, using the notations of (1), that φ, γ 'tt′ φ′, γ′, then this uniquely
determines α since γα−1 = γα′−1 implies α = α′ by γ being a monomorphism.
In particular the set of conjugates of φ, γ over the same t is in one-one corre-
spondence with [t, t]. �

Note that being an epimorphism is stable by conjugation so we can say that
a class is an epimorphism, and we can restrict the equivalence to [s, t]e × [t, x],
so the version of the Lemma relative to [s, t]e also holds.5

Unicity of factorization is then to be understood up to isomorphisms; fur-
thermore, even if we select one representative ti per isomorphism class, unicity
is up to automorphisms of each of the representative ti.

Definition 4 (object refinement) Given s, Σ such that s ≤ Σ, a refinement
of s under Σ, written Σ(s), is a set of objects obtained by selecting one repre-
sentative in each isomorphism class defined by {t | t : Σ, [s, t]e 6= ∅}.
5 This prompts a more general argument for the restriction of that Lemma to the case

of [s, t]e. Suppose given φ, γ as above, one has a map from [t, t] to the class [φ, γ] in
[s, t]× [t, x]: α 7→ α · (φ, γ) := φα, α−1γ (an action of the group [t, t] on [s, t]× [t, x]);
this map is surjective by definition of conjugation; it is also injective because γ is a
mono. Now if in addition φ is an epi, it is injective for a second reason, namely φ
is an epi (α1φ = α2φ implies α1 = α2). This seems to indicate that one can relax
the monomorphism requirement in the ambient category and still develop the same
theory.
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Note that the actual choice of representatives does not matter, but we do have
to choose one for our counting purposes.

Another noteworthy fact is that Σ(s) in general will be infinite. However in
practice one may get information about the reachables of the system which will
allow to control the size of the expansion [4]; indeed it is not necessary to include
ts which are not reachable, and we took advantage of this in the example of the
first section.

Lemma 4 (injectivity) Given Σ, s, x such that s ≤ Σ ≤ x the composition
map from the disjoint sum

∑
t∈Σ(s)[s, t]

e ×[t,t] [t, x] to [s, x] is injective.

Proof: Suppose given two factorisations f = γφ = γ′φ′ via t and t′ as in (1).

v ∈ s
φ //

φ′

��

t ⊇ c 3 φ(v)

γ

��

α

vv
φ′(v) ∈ c′ ⊆ t′

γ′ // x

(2)

Pick a connected component c ⊆ t, such that φ(v) ∈ c for some v ∈ s. Call c′ ⊆ t′

the connected component of φ′(v) in t′. By construction γ(c) and γ′(c′) intersect
at γφ(v) = f(v) = γ′φ′(v). It is easy to see that they both are Σ-homogeneous.
This means they must be equal.

Indeed suppose w ∈ γ(c) is a node which is directly connected to γ(c) ∩
γ′(c′), meaning w is such that (u, x, y, w) ∈ µx, for some u ∈ γ(c) ∩ γ′(c′) and
(u, x), (w, y) ∈ Im(γ). Because c′ is Σ-homogeneous, u, x ∈ Im(γ′), ie x is also a
site of the (unique) antecedent of u in c′, which we can write x ∈ σt′γ

′−1(u). By
condition 3b) this site cannot be free, and by 3a) it must be bound to γ′−1(w), y,
so w ∈ γ′(c′). Since γ(c) is connected, γ(c) ∩ γ′(c′) must contain γ(c), and by
symmetry γ′(c′).

Hence γ(c) = γ′(c′), therefore c and c′ are isomorphic. In fact, since φ is an
epi, we can repeat the above for any connected component in t, and therefore t
embeds in t′ (it is readily seen that the assignment of a c′ to a c above is injective),
and by symmetry they must be isomorphic under a certain isomorphism α. By
definition of Σ(s) we have picked exactly one representative in each isomorphism
class, therefore t = t′, α ∈ [t, t], and the two factorizations are conjugate under
α. �

Theorem 1 Given Σ, s, x such that s ≤ Σ and x : Σ:

[s, x] '
∑

t∈Σ(s)

[s, t]e ×[t,t] [t, x]

Proof: From the preceding lemma we know the composition map is injective, so
all there remains to prove is that it is surjective.

Consider f ∈ [s, x], define f(s) := {u | ∃x : (u, x) ∈ Im(f)} ⊆ Vx, and write
[f(s)] for the connected closure of f(s) in x. We claim there is a t ∈ Σ(s) which
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is isomorphic to [f(s)]. Indeed every node in [f(s)] has a signature in accordance
with Σ because x : Σ, and [f(s)] embeds s since f(s) does (via f). �

Using Lemma 3 in addition we can use the above theorem to obtain:

Corollary 1 Given Σ, s, x such that s ≤ Σ and x : Σ, one has:

|[s, x]| =
∑

t∈Σ(s)

|[s, t]e|/|[t, t]| · |[t, x]| (3)

There are several things worth noticing about the theorem and its numerical
form as a corollary.

First, the |[s, t]e|/|[t, t]| is a static term that can be computed once and for all,
and which we shall use to determine the rule rates. The positive contribution
[s, t]e is rather intuitive since the more copies of s one finds in t the higher
the contribution of t to the number of instances of s should be; the negative
contribution |[t, t]| is less intuitive however.

Second, one cannot relax the homogeneity condition on x and ask only Σ ≤ x.
That would break the easy part of the proof, namely that of surjectivity. Here
is an example; set s := A(x) < Σ := A 7→ {x, y} < A(x, y1, z), A(x, y, z1) =: x.
Choose f to be the ‘left’ morphism mapping s’s unique A to A(x, y1, z) in x;
then [f(s)] = x and no t ∈ Σ(s) can factorize f because the (y, z) binding is not
reproducible in t, because z 6∈ Σ(A).

However, one can modify the notion of object (and accordingly that of arrow)
by introducing new partial objects such as t = A(x, y¬Σ), meaning y binds
an otherwise unspecified non-Σ site (ie A, y is bound to some B, z such that
z 6∈ Σ(B)). This t is homogeneous and factorizes the f above. This variant allows
to recover surjectivity and extend our decomposition theorem above. Similar
wildcard expressions are already present in the actual syntax of Kappa, and it
is amusing to see that those convenient notations also have a theoretical status.

This begs a last remark, namely that we are the ones choosing how to relate
the base object s and its refinements. For example, here, we are using epis to
relate them. Below we will allude to a finer-grained correspondence based on
using a pointed version of the ambient category that will allow us to go beyond
the homogeneity requirement in another way. But before we do that we will
return to the example of the first section.

4.1 Example continued

We can now reconsider our initial example. Set s := C(), B(), for the left hand
side of the base rule r, and ti for that of the refined rule ri:

t1 := C(x1), B(x1)
t2 := C(x1), B(x1), C(x2), B(x2)
t3 := C(x1), B(x1), C(x)

Set also Σ := B,C 7→ {x}. Clearly s < Σ and ti, and x(n1, n2) are Σ-
homogeneous. Besides due to the particular form of x(n1, n2), the tis are the
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only elements in Σ(s) that x(n1, n2) embed. Using Lemma 3 we get:

|[s, x(n1, n2)]| = n2(n1 + n2)
|[s, t1]e ×[t1,t1] [t1, x(n1, n2)]| = |[s, t1]e[t1, x(n1, n2)]|/|[t1, t1]| = 1.n2/1 = n2

|[s, t2]e ×[t2,t1] [t2, x(n1, n2)]| = |[s, t2]e[t2, x(n1, n2)]|/|[t2, t2]| = 2.n2(n2 − 1)/2
|[s, t3]e ×[t3,t1] [t3, x(n1, n2)]| = |[s, t3]e[t3, x(n1, n2)]|/|[t2, t2]| = 1.n1n2/1 = n1n2

and the corollary correctly predicts n1n2 + n2(n2 − 1) + n2 = n1(n1 + n2).

4.2 Pointed refinements

Let us look at an example which breaks injectivity (Lemma 4). This is the kind
of complication the theorem is staying cautiously away from by asking the ts to
be homogeneous.

The set of nodes Vs = {1, 2} is represented as subscripts to agents below; the
subscripts to the y sites, y0 and y1, denote bindings to agents with only one site
and different names (to save space):

s = A(x1)1, A(x1)2
I //

I

��

t0 = A(x1, y0)1, A(x1)2

I

��

I

tt
t1 = A(x1)1, A(x1, y1)2

I // x = A(x1, y0)1, A(x1, y1)2

If one refers to the situation of (1), the unique possible candidate conjugating
α, i.e., the unique diagonal that makes both triangle commute, fails to be a
morphism. That means that t0, t1 provide really distinct extensions of f(s) in x
and form an ambiguous decomposition of s. Indeed, applying (wrongly since the
tis are not homogeneous) the refinement formula (3) betrays this redundancy
problem since |[s, x]| = 2 while |[s, ti]|/|[ti, ti]||[ti, x]| = 2.

To deal with a case such as this one, one needs to break the symmetry. To
do this, a possibility is to work out the static part of the refinement formula in
a pointed subcategory where objects have in addition to their usual structure a
distinguished node per connected component, and arrows are asked to preserve
them. Then one can replace homogeneity by a weaker requirement, namely that
across all expansions of s no two agents with the same coordinates with respect to
a distinguished node differ in their signature. In the example above, that would
force to decide whether the additional binding is to sit on the distinguished node
or not, and then both extensions would become truely distinct and unambiguous.
Obviously a little more work is needed to say with complete confidence that this
will work, but it seems it will.

5 Rule refinements

Now that we know how to refine objects, we will proceed to the case of rules.
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5.1 Action, rules, events

An atomic action on s is one of the following:
- an edge addition +(u, x, y, v)
- an edge deletion −(u, x, y, v)
- an agent addition +(A, σ) with A a name, σ a set of free sites
- an agent deletion −(u) with u ∈ Vs, v ∈ Vs, x ∈ σs(u), and y ∈ σs(v).

An action on s is a finite sequence of atomic actions on s. An atomic action
is well defined on s:
- if α = +(u, x, y, v), when both (u, x) and (v, y) are free in s,
- if α = −(u, x, y, v), when (u, x, y, v) ∈ µs.

This notion extends readily to non-atomic actions; we consider only well-
defined actions hereafter.

Definition 5 A rule is a triple r = s, α, τ where:
- s in an object,
- α is an action on s,
- and τ a rate which can be any positive real number.

We write α · s for the effect of the action α on s.
Given f ∈ [s, x] and α there is an obvious definition of the transport of α

along f , written f(α), and it is easy to verify that f(α) is itself a well-defined
action on x if α is a well-defined action on s (condition 3b) is crucial though).

Definition 6 A set R of rules defines a labelled transition relation:

x −→s,α,τ
f f(α) · x (4)

where s, α, τ ∈ R, and f ∈ [s, x].

The labelled transition system just defined can be enriched quantitatively in a
way that generalizes the notion of stochastic Petri nets [20] (Petri nets corre-
spond to the case of a uniformly empty signature Σ = ∅).

To do this we need to define the activity of a rule.

Definition 7 Given an object x and a rule r = s, α, τ , the activity of r at x
is a(x, r) := τ |[s, x]|, and the global activity of a set of rules R at x is a(x) :=∑

r∈R a(x, r).

Supposing a(x) > 0, the probability at x that the next event is f ∈ [s, x]
is p(x, f) := τ/a(x), and the subsequent time advance is a random variable
δt(x) such that p(δt(x) > t) := e−a(x)t. For our present purposes, all we need to
remember is that the quantitative structure of the transition system is entirely
determined by the activities of its rules. In fact this means our result will hold
for a larger class of stochastic system -for what it is worth.
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5.2 The main result

Given a rule r = s, α, τ and θ ∈ [s, t], we define θ(r) := θ(s), θ(α), τ .
We say r, r′ are isomorphic rules, written r ' r′, if there is an isomorphism

θ ∈ [s, s′] such that r′ = θ(r). If that is the case then r and θ(r) have isomorphic
transitions:

x −→r
f∈[s,x] f(α) · x ⇔ x −→θ(r)

fθ−1∈[θ(s),x] fθ−1(θ(α)) · x

and in particular the same activity a(r, x) = a(θ(r), x).

Definition 8 (rule refinement) Given s, Σ such that s ≤ Σ and r = s, α, τ ,
the refinement of r under Σ is the following family of rules:

Σ(s, α, τ) := (t, φ(α), τ ; t ∈ Σ(s), φ ∈ [s, t]e/[t, t]) (5)

where the notation φ ∈ [s, t]e/[t, t] means that for each t, one selects one φ ∈
[s, t]e per symmetry class on t (the equivalence relation ∃θ ∈ [t, t] : φ = θφ′).

It is easily seen that the particular selection made is irrelevant, but one has to
choose one to define refinement as a syntactic transformation.

Note also that the above family can have isomorphic or even identical rules,
it is important to have them all, i.e., stricto sensu the expansion is a multiset
of rules not a set. However one can always pack n isomorphic copies together by
choosing a representative and multiplying its rate by n so we carry on with our
slight abuse of terminology.

Given R a rule set, r a rule in R, we write R[r\Σ(r)] for the rule set obtained
by replacing r with Σ(r).

We write r = s, α, τ ≤ Σ if s ≤ Σ, and R ≤ Σ if for all r ∈ R, r ≤ Σ.

Theorem 2 Given R, Σ, such that R ≤ Σ, one has R[r\Σ(r)] ≤ Σ, and R and
R[r\Σ(r)] determine the same stochastic transition system over Σ-homogeneous
objects.

Proof: By Th. 1 events f ∈ [s, x] associated to rule r = s, α, τ are in one-one
correspondence with factorizations f = γφ via some t, and therefore determine
a unique matching refined event γ. This refined event has the same effect as f
since:

x −→t,φ,τ
γ∈[t=φ(s),x] γφ(α) · x = f(α) · x

so r and its refinements are equally likely and have the same effect on the un-
derlying state x; hence their stochastic transition systems are the same. �

Note that the activity of t, φ, τ in the refined system is τ |[t, x]| so the cumu-
lative activity of the refined rules is:∑

t∈Σ(s)

∑
φ∈[s,t]e/[t,t] τ |[t, x]| =

∑
t∈Σ(s) τ |[s, t]e|/|[t, t]||[t, x]| = a(r, x)

by Coro. 1, so we can directly derive the fact that the refined rules have the
same activity, but we also needed to prove they have the same effect.
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5.3 Example concluded

We can now conclude our initial example.
There we had s := C(), B(), and:

t1 := C(x1), B(x1)
t2 := C(x1), B(x1), C(x2), B(x2)
t3 := C(x1), B(x1), C(x)

Since |[s, t2]e| = 2 (recall that epis must have images in all connected compo-
nents), the refinement of r via t2 will contribute two rules to Σ(r) -according to
Def. 8. In this particular case the action of the rule to be refined is α(r) = −B,
and both epimorphisms φ ∈ [s, t2] lead to the same transported action φ(−B) up
to isomorphism. One can then pack them into one rule r2, as we did intuitively
when we considered the example, and as a consequence the rates must be added.
This explains why r2 has a rate of 2.

6 Conclusion

We have presented in this article the beginning of a theory of refinements for
rule-based modelling. Specifically we have defined what constitutes a notion of
a good set of refined rules and how, given such a set, one can compute the new
refined rates in such a way that the overall activity of the system is preserved
and the underlying stochastic semantics therefore unchanged. We have suggested
two improvements to extend the type of refinement one can consider.

We have also shown how one can use such refinements to obtain a complete
expansion (at least in principle), a construction which could be useful in practice
to get cheap and fast approximations of a system. We have further shown by
examples that refinements can be useful to modulate the influence of the context
in which a rule is applied.

A point worth commenting in this conclusion is that the formulas obtained
in our two main results, Th. 1 and 2, are couched in rather general terms and
are likely to be of a larger relevance than the particular case of graph-rewriting
we were contemplating here. In particular the epi-mono factorization system
which we rely on implicitly for the concrete case we have treated would point
to a more abstract approach. That in itself is valuable since such combinatorial
results as we have presented here can become nearly intractable if looked at in a
too concrete way. This in fact is one of the reasons why we framed our results in
a categorical language which has revealed the pervasiveness of symmetries (the
other reason is that the syntax is simpler to deal with). It would be particularly
interesting to recast the theory in the axiomatic framework of adhesive cate-
gories [21], with a view on understanding the formula as a traditional partition
formula (which it is, at least intuitively).

A longer term goal that this preliminary work might help to reach is that of
finding exact model reduction techniques. This needs to lift a key assumption
made here, namely that refinements are made of mutually exclusive sub-cases.
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