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3 DI-ENS (INRIA/ÉNS/CNRS/PSL?), Paris, France
feret@ens.fr

Abstract. Site-graph rewriting languages, such as Kappa or BNGL, of-
fer parsimonious ways to describe highly combinatorial systems of mech-
anistic interactions among proteins. These systems may be then sim-
ulated efficiently. Yet, the modeling mechanisms that involve counting
(a number of phosphorylated sites for instance) require an exponential
number of rules in Kappa. In BNGL, updating the set of the potential
applications of rules in the current state of the system comes down to
the sub-graph isomorphism problem (which is NP-complete).
In this paper, we extend Kappa to deal both parsimoniously and effi-
ciently with counters. We propose a single push-out semantics for Kappa
with counters. We show how to compile Kappa with counters into Kappa
without counters (without requiring an exponential number of rules).
We design a static analysis, based on affine relationships, to identify the
meaning of counters and bound their ranges accordingly.

1 Introduction

Site-graph rewriting is a paradigm for modeling mechanistic interactions among
proteins. In Kappa [18] and BNGL [3,40], rewriting rules describe how instances
of proteins may bind and unbind, and how each protein may activate the in-
teraction sites of each others, by changing their properties. Sophisticated sig-
naling cascades may be described. The long term behavior of such models usu-
ally emerges from competition against shared-resources, proteins with multiple-
phosphorylation sites, scaffolds, separation of scales, and non-linear feedback
loops.

It is often desirable to add more structure to states in order to describe
generic mechanisms more compactly. In this paper, we consider extending Kappa
with counters with numerical values. As opposed to the properties of classical
Kappa sites, which offer no structure, counters allow for expressive preconditions
(such as the value of a counter is less than 2), but also for generic update
functions (such as incrementing or decrementing the current value of a counter
by a given value independently of its current value). Without counters, such
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Fig. 1. Three representations for the phosphorylation of a site. We assume that the
rate of phosphorylation of a site in a protein in which exactly k sites are already
phosphorylated, is equal to the value f(k). The function f is left as a parameter of the
model. In 1(a), we do not use counters. In order to get the number of sites that are
already phosphorylated, we have to document the state of all the sites of the protein.
In this rule, there are exactly 2 sites already phosphorylated, thus the rate of the
rule is equal to f(2). In 1(b), we use a counter to encode the number of sites already
phosphorylated. The variable k, that is introduced by the notation @k, contains the
number of sites that are phosphorylated before the application of the rule. Thus, the
rate of the rule is equal to f(k). In the right hand side, the notation +1 indicates that
the counter is incremented at each application of the rule. The rule in 1(b) summarizes
exactly 8 rules of the kind of the one in 1(a) (it defines the phosphorylation of the site
a regardless of the states of the three other phosphorylation sites). In 1(c), we abstract
away the sites and keep only the counter. The notation @k binds the variable k to the
value of the counter. The left hand side also indicates that the rule may be applied
only if the value of the counter is less than or equal to 3 (so that at least one site is not
already phosphorylated). The right hand side specifies that the value of the counter is
incremented at each application of the rule and that after the application of a rule, the
value of the counter is always less than or equal to 4. The rule in 1(c) stands for 32
rules of the kind of the one in 1(a) (it depends neither on which site is phosphorylated,
nor on the state of the three other sites).

update functions would require one rule per potential value of the counter. This
raises efficiency issues for the simulation and also blurs any potential reasoning
on the causality of the system.

However adding counters cannot be done without consequences. The effi-
ciency of Kappa simulations mainly relies on two ingredients. Firstly, Kappa
graphs are rigid [16,39]: an embedding from a connected site-graph into a site-
graph, when it exists, is fully determined by the image of one node. Thanks to
rigidity, searching for the occurrences of a sub-graph into another graph (up-to
isomorphism) may be done without backtracking (once a first node has been
placed), and embeddings can be described in memory very concisely. Secondly,
the representation of the set of potential applications of rules relies on a categori-
cal construction [6] that optimizes sharing among patterns. Yet this construction
cannot cope with the more expressive patterns that involve counters. In order
to efficiently simulate models with counters, we need an efficient encoding that
preserves rigidity and that use classical site-graph patterns.

Let us consider a case study so as to illustrate the need for counters in Kappa.
This example is inspired from the behavior of the protein KaiC that is involved in
the synchronization of the proteins in the circadian clock. We consider one kind
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of protein with n identified sites that can get phosphorylated. Indeed, n is equal
to 6 in the protein KaiC . We take n equal to 4 to make graphical representation
lighter. We will make n diverge towards the infinity so as to empirically estimate
the combinatorial complexity of several encoding schemes.

The rate of phosphorylation/dephosphorylation of each site, depends on the
number of sites that are already phosphorylated. In Fig. 1(a), we provide the
example of a rule that phosphorylates the site a of the protein, assuming that
the sites b and c are already phosphorylated and that the site d is not. Proteins
are depicted as rectangles. Sites are depicted clockwise from the site a to the
site d starting at the top left corner of the protein. Phosphorylation states are
depicted with a black mark when the site is phosphorylated, and with a white
mark otherwise. To fully encode this model in Kappa, we would require n · 2n
rules. Indeed, we need to decide whether this is a phosphorylation or a dephos-
phorylation (2 possibilities), then on which site to apply the transformation (n
possibilities), then what the state of the other sites is (2n−1 possibilities). This
combinatorial complexity may be reduced by the means of counters. We con-
sider a fresh site (this site is depicted on the right of the protein) and we assume
that this site takes numerical values. Writing each rule carefully, we can enforce
that the value of this site is always equal to the number of the sites that are
phosphorylated in the protein instance. Thanks to this invariant, describing our
model requires 2·n rules according to whether we describe a phosphorylation
or a dephosphorylation (2 possibilities) and to which site the transformation is
applied (n possibilities). An example of rule for the phosphorylation of the site a
is given in Fig. 1(b). The notation @k assigns the value of the counter before the
application of the rule to the variable k. Then the rate of the rule may depend
on the value of k. This way, we can make the rate of phosphorylation depend on
the number of sites already phosphorylated in the protein. Since there are only
n sites that may be phosphorylated, it is straightforward to see that the counter
may range only between the values 0 and n.

If only the number of phosphorylated sites matters, we can go even further:
we need just one counter and two rules, one for phosphorylating a new site
(e. g. see Fig. 1(c)) and one for dephosphorylating it. The value of the counter
is no longer related explicitly to a number of phosphorylated sites, thus we need
another way to specify that the value of the counter is bounded. We do this, by
specifying in the precondition of the rule that the phosphorylation rule may be
applied only if the value of the counter is less or equal to n − 1, which entails
that the value of the counter may range only between the values 0 and n.

Not only parsimonious description of the mechanistic interactions in a model
eases the process of writing a model, enhances readability and leads to more
efficient simulation, but also it may provide better grain of observation of the
system behavior. In Fig. 2, we illustrate this by looking at three causal traces
that denote the same execution, but for three different encodings. Intuitively,
causal traces [15,14] are inspired by event structures [43]. They describe sets
of traces seen up to permutation of concurrent computation steps. The level of
representation for the potential configurations of each protein impacts the way
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causality is defined, because what is tested in rules depends on the representation
level. In our case study, the phosphorylation of each site is intuitively causally
independent: one site may be phosphorylated whatever the state of the other
sites is. Without counters, the only way to specify that the rate of phosphory-
lation depends on the number of the sites that are already phosphorylated, is
to detail the state of every site of the protein in the precondition of the rule.
This induces spurious causal relations (e. g. see Fig. 2(a)). Utilizing counters re-
laxes this constraint. However it is important to equip counters with arithmetic.
Without arithmetic, a rule may only set the value of a counter to a constant
value. Thus for implementing counter increment, rules have to enumerate the
potential values of the counter before their applications, and set the value of
this counter accordingly. This induces again spurious causal relations (e. g. see
Fig. 2(b)). With arithmetic, incrementing counters becomes a generic operation
that may be applied independently of the current value of the counter. As a
result the phosphorylation of the four sites can be seen as causally independent
(e. g. see Fig. 2(c)). This faithfully represents the fact that the phosphorylation
of the four sites may happen in arbitrary order.

Contribution. Now we describe the main contributions of this paper.

In Sect. 2, we formalize a single push-out (SPO) semantics for Kappa with
counters. Having a categorical framework dealing with counters, as opposed to
implementing counters as syntactic sugar, is important. Firstly, this semantics
will serve as a reference for the formal specification of the behavior of coun-
ters. Secondly, the categorical setting of Kappa provides efficient ways to define
causality [15,14], symmetries [25], and some sound symbolic reasonings on the
behavior of the number of occurrences of patterns [26,1] that are used in model
reduction. Including counters in the categorical semantics of Kappa allows for
extending the definition of these concepts to Kappa with counters for free.

Yet different encodings of counters may be necessary to extend other tools for
Kappa. In Sect. 3, we propose a couple of translations from Kappa with counters
into Kappa without counters. The goal is to simulate models with counters ef-
ficiently without modifying the implementation of the Kappa simulator, KaSim
[17]. The first encoding requires counters to be bounded from below and it sup-
ports only two kinds of preconditions over counters: a rule may require the value
of a counter to be equal to a given value, or to be greater than a given value.
Requiring the value of a counter to be less than a given value is not supported.
The second encoding supports equality and inequality (in both directions) tests.
But it requires the value of each counter to be bounded also from above.

Static analysis is needed not only to prove these requirements, but also to
retrieve the meaning of counters. In Sect. 4, we introduce a generic abstract
interpretation framework [9] to infer the properties of reachable states of a model.
This framework is parametric with respect to a class of properties. In Sect. 5, we
instantiate this framework with a relational numerical analysis aiming at relating
the value of each counter to its interpretation with respect to the state of the
other sites. This is used to detect and prove bounds on the range of counters.
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(c) Causal trace for the representation with arithmetical counters.

Fig. 2. Three causal traces. Each causal trace is made of a set of partially ordered
computation steps. Roughly speaking, a computation step precedes another one, if the
former is necessary to perform the later. Each computation step is denoted as an ar-
row labeled with the rule that implements it. In 2(a), counters are not used. Every
rule tests the full configuration of the protein. At this level of representation, the k-
th phosphorylation causally precedes the k + 1-th one, whatever the order in which
the sites have been phosphorylated. In 2(b), an additional site is used to record the
number of phosphorylated sites in its internal state. With this encoding, the number
of phosphorylated sites cannot be incremented without testing explicitly the internal
state of the additional site. As a consequence, here again, at this level of representa-
tion, each phosphorylation causally depends on the previous one. In 2(c), we use the
expressiveness of arithmetic. We use generic rules to increment the counter regardless
of its current value. Hence, at this level of representation, the phosphorylation of the
four sites become independent, which flatten the causal trace.

Related works Many modeling languages support arbitrary data-types. In Spatial-
Kappa [41], counters encode the discrete position of agents. More generally, in
Chromar [29] and in colored Petri nets [30,35], agents may be tagged with val-
ues in arbitrary auxiliary programming languages. In ML-Rules [28], agents with
attributes continuously diffuse within compartments and collide to interact.

We have different motivations. Our goal is to enrich the state of proteins
with some redundant information, so as to reduce the number of rules that are
necessary to describe their mechanistic interactions. Also we want to avoid too
expressive data-types, which could not be integrated within simulation, causal-
ity analysis, and static analysis tools, without altering their performance. For
instance, analysis of colored Petri nets usually relies on unfolding them into
classical ones. Unfolding rule sets into classical ones does not scale because the
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number of rules would become intractable. Thus we need tools which deal di-
rectly with counters.

An encoding of two-counter machines has been proposed to show that most
problems in Kappa are undecidable [19,34]. We represent counters the same way
in our first encoding, but we provide atomic implementation for more primitives.

The number of isomorphic classes of connected components that may oc-
cur in Kappa models during simulation is usually huge (if not infinite), which
prevents from using agent-centric approaches [4]. For instance, one of the first
non-toy model written in Kappa was involving more than 1019 kinds of bio-
molecular complexes [26,16]. Kappa follows a rule-centric approach which allows
for the description and the execution of models independently from the number
of potential complexes. Also, Kappa disallows to describe diffusion of molecules.
Instead the state of the system is assumed to satisfy the well-mixed assumption.
This provides efficient ways to represent and update the distribution of potential
computation steps, along a simulation [17,6].

Equivalent sites [3] or hyperlinks [31] offer promising solutions to extend the
decision procedures to extract minimal causal traces in the case of counters, but
the rigidity of graphs is lost. Our encodings rely neither on the use of equivalent
sites, nor on expanding the rules into more refined and more numerous ones.
Hence our encodings preserve the efficiency of the simulation.

Our analysis is based on the use of affine relationships [32]. It relates counter
values to the state of the other variables. Such relationships look like the ones
that help understanding and proving the correctness of semaphores [20,21]. We
use the decision procedure that is described in [23,24] to deduce bounds on the
values of counters from the affine relationships. The cost of each atomic com-
putation is cubic with respect to the number of variables. Abstract multi-sets
[27,38] may succeed in expressing the properties of interest, but they require a
parameter setting a bound on the values that can abstract precisely. In practice,
their time-cost is exponential as soon as this bound is not chosen big enough.
Our abstraction has an infinite height. It uses widening [11] and reduction [12]
to discover the bounds of interest automatically. Octagons [36,37] have a cubic
complexity, but they cannot express the properties involving more than two vari-
ables which are required in our context. Polyhedra [13] express all the properties
needed for an exponential time-cost in practice.

2 Kappa

In this section, we enrich the syntax and the operational semantics of Kappa so
as to cope with counters. We focus on the single push-out (SPO) semantics.

2.1 Signature

Firstly we define the signature of a model.

Definition 1 (signature). The signature of a model is defined as a tuple Σ =
(Σag, Σsite, Σint, Σ

int
ag-st, Σ

lnk
ag-st, Σ

$
ag-st,Prop$,Update$) where:
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1. Σag is a finite set of agent types,
2. Σsite is a finite set of site identifiers,
3. Σint is a finite set of internal state identifiers,
4. Σlnk

ag-st, Σ
int
ag-st, and Σ$

ag-st are three site maps (from Σag into ℘(Σsite))
5. Prop$ is a potentially infinite set of non-empty subsets of Z,
6. Update$ is a potentially infinite set of functions from Z to Z containing the

identity function.

For every G ∈ Prop$, we assume that for every function f ∈ Update$, the set
{f(k) | k ∈ G} belongs to the set Prop$, and that for every element k ∈ G, the
set {k} belongs to the set Prop$ as well.

Agent types in Σag denote the agents of interest, the different kinds of pro-
teins for instance. A site identifier in Σsite represents an identified locus for a
capability of interaction. Each agent type A ∈ Σag is associated with a set of sites
Σint

ag-st(A) with an internal state (i.e. a property), a set of sites Σlnk
ag-st(A) which

may be linked, and a set of sites Σ$
ag-st(A) with a counter. We assume without

any loss of generality that the three sets Σlnk
ag-st(A), Σint

ag-st(A), and Σ$
ag-st(A) are

disjoint pairwise. The set Prop$ contains the set of valid conditions that may be
checked on the value of counters, whereas the set Update$ contains all the pos-
sible update functions for the value of counters. We assume that every singleton
that is included in a valid condition is a valid condition as well. In this way, a
valid condition may be refined to a fully specified value. Additionally, the image
of a valid condition is required to be valid, so that the post-condition obtained
by applying an update function to a valid precondition, is valid as well.

Example 1 (running example). We define the signature for our case study as
the tuple (Σag, Σsite, Σint, Σ

int
ag-st, Σ

lnk
ag-st, Σ

$
ag-st,Prop$,Update$) where:

1. Σag := {P};
2. Σsite := {a, b, c, d, x};
3. Σint := {◦, •};
4. Σint

ag-st := [P 7→ {a, b, c, d}];
5. Σlnk

ag-st := [P 7→ ∅];
6. Σ$

ag-st := [P 7→ {x}];
7. Prop$ is the set of all the convex parts of Z;
8. Update$ contains the function mapping each integer n ∈ Z to its successor,

and the function mapping each integer n ∈ Z to its predecessor.

The agent type P denotes the only kind of proteins. It has four sites a, b, c, d
carrying an internal state and one site x carrying a counter. �

Until the rest of the paper, we assume given a signature Σ.

2.2 Site-graphs

Site-graphs describe both patterns and chemical mixtures. Their nodes are typed
agents with some sites which may carry internal and binding states, and counters.
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(c) G3.

=2

(d) G4.

Fig. 3. Four site-graphs G1, G2, G3, and G4.

Definition 2 (site-graph). A site-graph is a tuple G = (A, type,S,L, pκ, cκ)
where:

1. A is a finite set of agents,
2. type : A → Σag is a function mapping each agent to its type,
3. S is a set of sites satisfying the following property:

S ⊆ {(n, i) | n ∈ A, i ∈ Σag-st(type(n))},
4. L maps the set:

{(n, i) ∈ S | i ∈ Σlnk
ag-st(type(n))}

to the set:
{(n, i) ∈ S | i ∈ Σlnk

ag-st(type(n))} ∪ {a,−},
such that:
(a) for any site (n, i) ∈ S, we have L(n, i) 6= (n, i);
(b) for any two sites (n, i), (n′, i′) ∈ S, we have (n′, i′) = L(n, i) if and only

if (n, i) = L(n′, i′);
5. pκ maps the set {(n, i) ∈ S | i ∈ Σint

ag-st(type(n))} to the set Σint;

6. cκ maps the set {(n, i) ∈ S | i ∈ Σ$
ag-st(type(n))} to the set Prop$.

For a site-graph G, we write as AG its set of agents, typeG its typing function,
SG its set of sites, and LG its set of links. Given a site-graph G, we write as S lnk

G

(resp. Sint
G , resp. S$G) its set of binding sites (resp. property sites, resp. counters)

that is to say the set of the sites (n, i) such that i ∈ Σlnk
ag-st(typeG(n)) (resp. i ∈

Σint
ag-st(typeG(n)), resp. i ∈ Σ$

ag-st(typeG(n))).

Let us consider a binding site (n, i) ∈ S lnk
G . Whenever LG(n, i) =a, the site

(n, i) is free. Various levels of information may be given about the sites that are
bound. Whenever LG(n, i) = −, the site (n, i) is bound to an unspecified site.
Whenever LG(n, i) = (n′, i′) (and hence LG(n′, i′) = (n, i)), the sites (n, i) and
(n′, i′) are bound together.

A chemical mixture is a site-graph in which the state of each site is fully
specified. Formally, a site-graph G is a chemical mixture, if and only if, the
three following properties:

1. the set SG is equal to the set {(n, i) | n ∈ AG, i ∈ Σag-st(typeG(n))};
2. every binding site is free or bound to another binding site (i. e. for every

(n, i) ∈ SG ∩Σlnk
ag-st(typeG(n)), LG(n, i) 6= −);

3. every counter has a single value (i. e. for every (n, i) ∈ Σ$
ag-st, cκG(n, i) is a

singleton);

are satisfied.
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Example 2 (running example). In Fig. 3, we give a graphical representation of
the four site-graphs, G1, G2, G3, and G4 that are defined as follows:

1. (a) AG1
= {1},

(b) typeG1
= [1 7→ P],

(c) SG1
= {(1, a), (1, x)},

(d) LG1
= ∅,

(e) pκG1 = [(1, a) 7→ ◦],
(f) cκG1 = [(1, x) 7→ {k ∈ Z | k ≤ 2}];

2. (a) AG2 = {1},
(b) typeG2

= [1 7→ P],

(c) SG2
= {(1, x)},

(d) LG2
= ∅,

(e) pκG2
= [],

(f) cκG2
= [(1, x) 7→ {k ∈ Z | k ≤ 2}];

3. (a) AG3
= {1},

(b) typeG3
= [1 7→ P],

(c) SG3
= {(1, a), (1, x)},

(d) LG3 = ∅,
(e) pκG3 = [(1, a) 7→ •],
(f) cκG3 = [(1, x) 7→ {k ∈ Z | k ≤ 3}];

4. (a) AG4 = {1},
(b) typeG4

= [1 7→ P],

(c) SG4
= {(1, a), (1, b), (1, c), (1, d), (1, x)},

(d) LG4
= ∅,

(e) pκG4
= [(1, a) 7→ ◦, (1, b) 7→ •, (1, c) 7→ •, (1, d) 7→ ◦],

(f) cκG4
= [(1, x) 7→ {2}];

The white site on the side of proteins is always the site x. The other sites, starting
from the top-left one denote the sites a, b, c, and d clockwise. �

2.3 Sliding embeddings

In classical Kappa, two site-graphs may be related by structure-preserving in-
jections, which are called embeddings. Here, we extend their definition to cope
with counters. There are two main issues: a rule may require the value of a
given counter to belong to a non-singleton set; also updating counters may in-
volve arithmetic computations. The smaller the set of the potential values for
a counter is, the more information we have. Thus, embeddings may map the
potential values of a given counter into a subset. In order to cope with update
functions, we equip embeddings with some arithmetic functions which explain
how to get from the value of the counter in the source of the embedding to its
value in the target. This way, our embeddings not only define instances of site-
graphs, but they also contain the information to compute the values of counters.
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(a) A sliding embedding.

≤2 � � // ≤2

(b) A pure embedding.

≤2 � � // =2

(c) A pure embedding.

Fig. 4. Three sliding embeddings from the G2 respectively into the site-graphs G3, G1,
and G4. Only the second and the third embeddings are pure.

Definition 3 (sliding embedding). A sliding embedding h : G
� �

$ //H
from a site-graph G into a site-graph H is a pair (he, h$) where he is a function
of agents he : AG → AH and h$ is a function mapping the counters of the
site-graph G to update functions h$ : S$G → Update$ such that for all agent
identifiers m, n, n′ ∈ AG and for all site identifiers i ∈ Σag-st(typeG(n)), i′ ∈
Σag-st(typeG(n′)), the following properties are satisfied:

1. if m 6= n, then he(m) 6= he(n);
2. typeG(n) = typeH(he(n));
3. if (n, i) ∈ SG, then (he(n), i) ∈ SH ;
4. if (n, i) ∈ S lnk

G and LG(n, i) = (n′, i′), then LH(he(n), i) = (he(n
′), i′);

5. if (n, i) ∈ S lnk
G and LG(n, i) =a, then LH(he(n), i) =a;

6. if (n, i) ∈ S lnk
G and LG(n, i) = −, then LH(he(n), i) ∈ {−} ∪ SH ;

7. if (n, i) ∈ Sint
G and pκG(n, i) = ι, then pκH(he(n), i) = ι;

8. if (n, i) ∈ S$G, then cκH(h(n), i) ⊆ {h$(k) | k ∈ cκG(n, i)}.

Two sliding embeddings between site-graphs, from E to F , and from F to
G respectively, compose to form a sliding embedding from E to G (functions
compose pair-wise). A sliding embedding (he, h$) such that h$ maps each counter
to the identity function is called a pure embedding. A pure embedding from E to
F is denoted as E �

� //F . Pure embeddings compose. Two site-graphs E and F
are isomorphic if and only if there exist a pure embedding from E to F and a pure
embedding from F to E. A pure embedding between two isomorphic site-graphs
is called an isomorphism. When it exists, the unique pure embedding (he, h$)
from a site-graph E into the site-graph F such that AE ⊆ AF and he(n) = n
for every agent n ∈ AE , is called the inclusion from E to F and is denoted as
iE,F or as E

� � ⊆ //F . In such a case, we say that the site-graph E is included in
the site-graph F . The inclusion from a site-graph into itself always exists and is
called an identity embedding.

Example 3 (running example). We show in Fig. 4 three sliding embeddings from
the site-graph G2 respectively into the site-graphs G3, G1, and G4. The first of
these three sliding embeddings is assumed to increment the value of the counter
of the site x. The last two embeddings are pure. �

Let L, R, and D be three site-graphs, such that R is included in D, and let
φ be a sliding embedding from L into D. Then there exist a site graph D′ that
is included in L and a sliding embedding ψ from D′ to R such that iR,Dψ =
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(b) Composition.

Fig. 5. Composition of partial sliding embeddings.
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(a) A rule r.
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(b) A pure embedding h
from the lhs of the rule r
to the site-graph G4.
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(c) Universal construction

=2
� ,2 =3

≤2
r � ,2

?�
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?�

OO

(d) Application of the rule
r on the site-graph G4.

Fig. 6. Rule application.

φiD′,L and such that D′ is maximal (w.r.t. inclusion among site-graphs) for this
property. The pair (D′, iD′,L, ψ) is called the pull-pack of the pair (φ, iR,D).

Let L, R, and D be three site-graphs such that D is included in L. A partial
sliding embedding from L into R is defined as a pair made of the inclusion iD,L
and a sliding embedding from D to R. Sliding embeddings may be considered as
partial sliding embeddings with the inclusion as the identity embedding. Partial
sliding embeddings compose by the means of a pull-back (e.g. see Fig. 5(b)).

2.4 Rules

Rules represent transformations between site-graphs. For the sake of simplicity,
we only use a fragment of Kappa (we assume here that there are no side effects).
Rules may break and create bonds between pairs of sites, change the properties
of sites, update the value of counters. They may also create and remove agents.
When an agent is created, all its sites must be fully specified: binding sites may
be either free, or bound to a specific site, and the value of counters must be
singletons. So as to ensure that there is no side-effect when an agent is removed,
we also assume that the binding sites of removed agents are fully specified. These
requirements are formalized as follows:
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Definition 4 (rule). A rule is a partial sliding embedding L ? _⊇oo D �
�

$
(he,h$)//R

such that:

1. (modified agents) for all agents n ∈ AD such that he(n) ∈ AR and for every
site identifier i ∈ Σsite(typeL(n)),
(a) the site (n, i) belongs to the set SL if and only if (he(n), i) belongs to set
SR;

(b) if the site (n, i) belongs to the set S lnk
L , then either LL(n, i) = − and

LR(he(n), i) = −, or LL(n, i) ∈ S lnk
L ∪{a} and LR(he(n), i) ∈ S lnk

R ∪{a};
(c) if the site (n, i) belongs to the set S$L, then the sets cκR(he(n), i) and
{h$(v) | v ∈ cκL(n, i)} are equal.

2. (removed agents) for all agents n ∈ AL such that n 6∈ AD, for every site
identifier i ∈ Σlnk

ag-st(typeL(n)), (n, i) ∈ S lnk
L and LL(n, i) ∈ S lnk

L ∪ {a}.
3. (created agents) for all agents n ∈ AR for which there exists no n′ ∈ AD

such that n = he(n
′), and for every site identifier i ∈ Σsite(typeR(n)),

(a) the site (n, i) belongs to the set SR;
(b) if the site (n, i) belongs to the set S lnk

R , then the binding state LR(n, i)
belong to the set S lnk

R ∪ {a};
(c) if the site (n, i) belongs to the set S$R, then cκR(n, i) is a singleton.

In Def. 4, each agent that is modified occurs on both hand sides of a rule.
Constraint 1a ensures that they document the same sites. Constraint 1b ensures
that, if the binding state of a site is modified, then it has to be fully specified
(either free, or bound to a specific site) in both hand sides of the rule. Constraint
1c ensures that the post-condition associated to a counter is the direct image of
its precondition by its update function. Constraint 2 ensures that the agents that
are removed have their binding sites fully specified. Constraint 3a ensures that,
in the agents that are created, all the sites are documented. Beside, constraint 3b
requires that the state of their binding site is either free or bound to a specific
site. Constraint 3c ensures that their counters have a single value.

An example of a rule is given in Fig. 6(a).
A rule L ? _⊇oo D

� �
$ //R is usually denoted as L

� ,2 R (leaving the common
region and the sliding embedding implicit). Rules are applied to site-graphs via
pure embeddings using the single push-out construction [22].

Definition 5 (rule application [14]). Let r be a rule L � ,2 R, L′ be a site-
graph, and hL be a pure embedding from L to L′. Then, there exists a rule
r′ : L′

� ,2 R′ and a pure embedding hR : R
� � //R′ such that the following

properties are satisfied (e. g. see Fig. 6(c)):

1. hRr = r′hL;
2. for all rules r′′ between the site-graph L′ and a site-graph R′′ and all embed-

dings h′R from R into R′′ such that h′Rr = r′′hL, there exists a unique pure
embedding h from R′ into R′′ such that r′′ = hr′ and h′R = hhR.

Moreover, whenever the site-graph L′ is a chemical mixture, the site-graph R′ is
a chemical mixture as well.
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We write L′
r−→ R′ for a transition from the state L′ into the state R′ via an

application of a rule r. Usually transition labels also mention the pure embedding
(hL here), but we omit it since we do not use it in the rest of the paper.

Example 4 (running example). An example of rule application is depicted in
Fig. 6. We consider the rule r that takes a protein with the site a unphospho-
rylated and a counter with a value at least equal to 2, and that phosphorylates
the site a while incrementing the counter by 1 (e. g. see Fig. 6(a)). Note that
the update function of the counter is written next to its post-condition in the
right hand side of the rule. We apply the rule to a protein with the sites b and
c phosphorylated, the site d unphosphorylated, and the counter equal to 2 (e. g.
see Fig. 6(b)). The result is a protein with the sites a, b, and c phosphorylated,
the site d unphosphorylated and the counter equal to 3 (e. g. see Fig. 6(d)). �

A model M over a given signature Σ is defined as the pair (G0,R) where
G0 is a chemical mixture, representing the initial state, and R is a set of rules.
Each rule is associated with a functional rate which maps each potential tuple
of values for the counters of the left hand side of the rule to a non negative real
number. We write C(M) for the set of states obtained from G0 by applying a
potentially empty sequence of rules in R.

3 Encoding counters

In this section, we introduce two encodings from Kappa with counters into Kappa
without counters. As explained in Sect. 1, our goal is to preserve the rigidity of
site-graphs and to avoid the blow-up of the number of rules in the target model.
This is mandatory to preserve the good performances of the Kappa simulator.
Both encodings rely on syntactic restrictions over the preconditions and the
update functions that may be applied to counters and on semantics ones about
the potential range of counters. In Sects. 4 and 5, we provide a static analysis
to check whether, or not, these semantics assumptions hold.

3.1 Encoding the value of counters as unbounded chains of agents

In this encoding, each counter is bound to a chain of fictitious agents the length
of which minus 1 denotes the value of the counter (another encoding not re-
quiring the subtraction is possible but it would require side-effects). Encoding
counters as chains of agents has already been used in the implementation of two-
counter machines in Kappa [19,34]. We slightly extend these works to implement
more atomic operations over counters. We assume that the value of counters is
bounded from below. For the sake of simplicity, we assume that counters range
in N, but arbitrary lower bounds may be considered by shifting each value ac-
cordingly. We denote by Ω1 the set of the site-graphs that have a counter with a
negative value. They are considered as erroneous states, since they may not be
encoded with chains of agents.
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(a) Encoding of G4.

(b) Test c = 2.

(c) Test c ≥ 1.

� ,2

(d) Incrementing a counter value by 2.

� ,2

(e) Decrementing a counter value by 1.

� ,2

(f) Assigning 2 to a counter.

Fig. 7. Encoding the value of counters as unbounded chains of agents.

Only two kinds of guards are handled. A rule may require the value of a
counter to be equal to a given number or that the value of a counter is greater
than a given number. Rules testing whether a value is less than a given number
require unfolding each such rule into several ones (one per potential value). Also
when the rate of a rule depends on the value of some counters, we unfold each
rule according to the value of these counters, so that the rate of each unfolded
rule is a constant (the Kappa simulator requires all the instances of a given rule
in a given simulation state to have the same rate, for efficiency concerns). For
update functions, we only consider constant functions and the functions that
increase/decrease the value of counters by a fixed value. Testing whether the
value of a counter is equal to (resp. greater than) n, can be done by requiring
the corresponding chain to contain exactly (resp. at least) n+ 1 agents (e. g. see
Figs. 7(b) and 7(c)). Incrementing (resp. decrementing) the value of a counter is
modeled by inserting (resp. removing) agents at the beginning its chain (e. g. see
Fig. 7(d), resp. Fig. 7(e)). Setting a counter to a fixed value, requires to detach
its full chain in order to create a new one of the appropriate length (e. g. see
Fig. 7(f)). In such a case, the former chain remains as a junk. Thus the state
of the model must be understood up to insertion of junk agents. We introduce
the function gc1 that removes every chain of spurious agents not bound to any
counter. We denote as JGKg1 (resp. JrKr1) the encoding of a site-graph G (resp. of
a rule r).

3.2 Encoding the value of counters as circular lists of agents

In this second encoding, each counter is bound to a ring of agents. Each such
agent has three binding sites zero , pred , and next , and a property site value
which may be activated, or not. In a ring, agents are connected circularly through
their site pred and next . Exactly one agent per ring is bound to a counter and
exactly one agent per ring has the site value activated. The value of the counter
is encoded by the distance between the agent bound to the counter and the agent
that is activated, scanning the agents by following the direction given by the site
next of each agent (clock-wisely in the graphical representation). We have to
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(a) Encoding of G4.

(b) Test c = 2.

(c) Test c ≤ 3.

� ,2

(d) Incrementing a counter value by 2.

� ,2

(e) Decrementing a counter value by 1.

� ,2

(f) Assigning 2 to a counter.

Fig. 8. Encoding the value of counters as circular lists of agents.

consider that counter values are bounded from above and below. Without any
loss of generality, we assume that the length of each ring is the same, that is to
say that counters range from 0 to n− 1, for a given n ∈ N. We denote by Ω2 the
set of the site-graphs with at least one counter not satisfying these bounds.

Compared to the first encoding, this one may additionally cope with testing
that a counter has a value less than a given constant without having to unfold the
rule. Both encodings may deal with the same update functions. Testing whether
a counter is equal to a value is done by requiring that the activated agent is at
the appropriate distance of the agent that is connected to the counter (e. g. see
Fig. 8(b)). It is worth noting that the intermediary agents are required to be
not activated. This is not mandatory for the soundness of the encoding, this is
an optimization that helps the simulator for detecting early that no embedding
may associate a given agent of the left hand side of a rule to a given agent in the
current state of the system. Inequalities are handled by checking that enough
agents starting from the one that is connected to the counter and in the direction
specified by the direction of the inequality, are not activated (e. g. see Fig. 8(c)).
Incrementing/decrementing the value of a counter is modeled by making counter
glide along the ring (e. g. see Figs. 8(d) and 8(e)). Special care has to be taken
to ensure that the activated agent never crosses the agent linked to the counter
(which would cause a numerical wrap-around). Assigning a given value to a
counter requires to entirely remove the ring and to replace it with a fresh one
(e. g. see Fig. 8(f)). It may be efficiently implemented without memory allocation.
As in the first encoding, when the rate of a rule depends on the value of some
counters, we unfold each rule according to the value of these counters, so that
the rate of each unfolded rule is constant.
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We introduce the function gc2 as the identity function over site-graphs (there
are no junk agent in this encoding). We denote as JGKg2 (resp. JrKr2) the encoding
without counter of a site-graph G (resp. of a rule r).

3.3 Correspondence

The following theorem states that, whenever there is no numerical overflow and
providing that junk agents are neglected, the semantics of Kappa with counters
and the semantics of their encodings are in bisimulation.

Theorem 1 (correspondence). Let i be either 1 or 2. Let G be a fully spec-
ified site-graph such that G 6∈ Ωi and r be a rule. Both following properties are
satisfied:

1. whenever there exists a site-graph G′ such that G
r−→ G′ and G′ 6∈ Ωi, there

exists a site-graph G′$, such that JGKgi
JrKri−−→ G′$ and JG′Kgi = gci(G

′
$);

2. whenever there exists a site-graph G′$ such that JGKgi
JrKri−−→ G′$, there exists a

site-graph G′ such that G
r−→ G′, G′ 6∈ Ωi, and JG′Kgi = gci(G

′
$).

3.4 Benchmarks

The experimental evaluation of the impact of both encodings to the performance
of the simulator KaSim [17,6] is presented in Fig. 9. We focus on the example that
has been presented in Sec. 1. We plot the number of events that are simulated
per second of CPU. For the sake of comparison, we also provide the simulation
efficiency of the simulator NFSim [40] on the models written in BNGL with
equivalent sites (with a linear number of rules only).

We notice that, with KaSim, the direct approach (without counter) is the
most efficient when there are less than 9 phosphorylation sites. We explain this
overhead, by the fact that each encoding utilizes spurious agents that have to
be allocated in memory and relies on rules with bigger left hand sides. Never-
theless this overhead is reasonable if we consider the gain in conciseness in the
description of the models. The versions of models with counters rely on a linear
number of rules, which make models easier to read, document, and update. For
more phosphorylation sites, simulation time for models written without counters
blow up very quickly, due to the large number of rules. The simulation of the
models with counters scales much better for both encodings.

Models can be concisely described in BNGL without using counters, by the
means of equivalent sites. Each version of the model uses n indistinguishable
sites and only a linear number of rules is required. However, detecting the po-
tential applications of rules in the case of equivalent sites relies on the sub-graph
isomorphism problem on general graphs, which prevent the approach to scale
to large value of n. We observe that the efficiency of NFSim on this family of
examples is not as good as the ones of KaSim (whatever which of the three
modeling methods is used). We also observe a very quick deterioration of the
performances starting at n equal to 5.
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Fig. 9. Efficiency of the simulation for the example in Sec. 1 with n ranging between
1 and 14. We test the simulator KaSim with a version of the models written without
counters and versions of the models according to both encodings (including the n
phosphorylation sites). For the sake of comparison, we also compare with the efficiency
of the simulator NFSim with the same model but written in BNGL by the means of
equivalent sites. For each version of the model and each simulation method, we run
15 simulations of 105 events on an initial state made of 100 agents and we plot the
number of computation steps computed in average per second of CPU on a log scale.
Every simulation has been performed on 4 processors: Intel(R) Xeon(R) CPU E5-2609
0 @ 2.40GHz 126 Go of RAM, running ubuntu 18.04.

4 Generic abstraction of reachable states

So far, we have provided two encodings to compile Kappa with counters into
Kappa without counters. These encodings are sound under some assumptions
over the range of counters. Now we propose a static analysis not only to check
that these conditions are satisfied, but also to infer the meaning of the counters
(in our case study, that they are equal to the number of phosphorylated sites).

Firstly, we provide a generic abstraction to capture the properties of the
states that a Kappa model may potentially take. Our abstraction is parametric
with respect to the class of properties. It will be instantiated in Sect. 5. Our
analysis is not complete: not all the properties of the program are discovered;
nevertheless, the result is sound: all the properties that are captured, are correct.

4.1 Collecting semantics

Let Q be the set of all the site-graphs. We are interested in the set C(M) of all
the states that a model M = (G0,R) may take in 0, 1, or more computation
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steps. This is the collecting semantics [7]. By [33], it may be expressed as the
least fixpoint of the ∪-complete endomorphism F on the complete lattice ℘(Q)

that is defined as F(X) = {G0} ∪ {q′ | ∃q ∈ X, r ∈ R such that q
r−→ q′}. By

[42], the collecting semantics is also equal to the meet of all the post-fixpoints
of the function F (i. e. C(M) =

⋂{X ∈ ℘(Q) | F(X) ⊆ X}), that is to say the
strongest inductive invariant of our model that is satisfied by the initial state.

4.2 Generic abstraction

The collecting semantics is usually not decidable. We use the Abstract Interpre-
tation framework [9,10] to compute a sound approximation of it.

Definition 6 (abstraction). A tuple A = (Q],v, γ,t,⊥, I], t],∇) is called
an abstraction when all following conditions are satisfied:

1. the pair (Q],v) is a pre-order of abstract properties;
2. the component γ : Q] → ℘(Q) is a monotonic map (i. e. for every two

abstract elements q]1, q]2 ∈ Q] such that q]1 v q]2, we have γ(q]1) ⊆ γ(q]2));
3. the component t maps each finite set of abstract properties X] ∈ ℘finite(Q])

to an abstract property t(X]) ∈ Q] such that for each abstract property
q] ∈ X], we have: q] v t(X]);

4. the component ⊥ ∈ Q] is an abstract property such that γ(⊥) = ∅;
5. the component I] is an element of the set Q] such that {G0} ⊆ γ(I]);
6. the component t] is a function mapping each pair (q, r) ∈ Q] ×R to an ab-

stract property t](q, r) ∈ Q] such that: ∀q] ∈ Q], ∀q ∈ γ(q]), ∀r ∈ R, ∀q′ ∈
Q, we have q′ ∈ γ(t](q])) whenever q

r−→ q′;
7. the component ∇ : Q] ×Q] → Q] satisfies both following properties:

(a) ∀q]1, q]2 ∈ Q], q]1 v q]1∇q]2 and q]2 v q]1∇q]2,

(b) ∀(q]n)n∈N ∈
(
Q]
)N

, the sequence (q∇n )n∈N that is defined as q∇0 = q]0 and

q∇n+1 = q∇n ∇q]n+1 for every integer n ∈ N, is ultimately stationary.

The set Q] is an abstract domain. It captures the properties of interest, and
abstracts away the others. Each property q] ∈ Q] is mapped to the set of the
concrete states γ(q]) which satisfy this property by the means of the concretiza-
tion function γ. The pre-order v describes the amount of information which is
known about the properties that we approximate. We use a pre-order to allow
some concrete properties to be described by several unrelated abstract elements.
The abstract union t is used to gather the information described by a finite num-
ber of abstract elements. It may not necessarily compute the least upper bound
of a finite set of abstract elements (this least bound may not even exist). The
abstract element ⊥ provides the basis for abstract iterations. The concretization
function is strict which means that it maps the element ⊥ to the empty set.
The abstract property I] is satisfied by the initial state. The function t] is used
to mimic concrete rewriting steps in the abstract. The operator ∇ is called a
widening. It ensures the convergence of the analysis in finitely many iterations.
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Given an abstraction (Q],v, γ,t,⊥, I], t],∇), the abstract counterpart F]
to F is defined as F](q]) = t]

(
{q], I]} ∪ {t](q], r) | r ∈ R}

)
. The function F]

satisfies the soundness condition ∀q] ∈ Q], [F ◦ γ](q]) ⊆ [γ ◦ F]](q]). Following
[7], we compute a sound and decidable approximation of our abstract semantics
by using the widening operator ∇. The abstract iteration [10,11] of F] is defined
by the following induction: F∇0 = ⊥ and, for each integer n ∈ N, F∇n+1 = F∇n
whenever F](F∇n ) v F∇n , and F∇n+1 = F∇n∇F](F∇n ) otherwise.

Theorem 2 (Termination and soundness). The abstract iteration is ulti-
mately stationary and its limit F∇ satisfies C(M) ⊆ γ(F∇).

Proof. By construction, F](F∇) v F∇. Since γ is monotonic, it follows that:

γ(F](F∇)) ⊆ γ(F∇). Since, F ◦ γ
.
⊆ γ ◦ F], F(γ(F∇)) ⊆ γ(F∇). So γ(F∇) is a

post-fixpoint of F. By [42], we have lfp F ⊆ γ(F∇). �

4.3 Coalescent product

Two abstractions may be combined pair-wise to form a new one. The result is a
coalescent product that defines a mutual induction over both abstractions.

Definition 7 (coalescent product). The coalescent product between two ab-

stractions (Q]1,v1, γ1,t1,⊥1, I]1, t]1,∇1) and (Q]2,v2, γ2,t2,⊥2, I]2, t]2,∇2). is de-
fined as the tuple (Q],v, γ,t,⊥, I], t],∇) where

1. Q] = Q]1 ×Q]2;

2. v, t, ⊥, and ∇ are defined pair-wise;

3. γ maps every pair (q]1, q
]
2) to the meet γ1(q]1) ∩ γ2(q]2) of their respective

concretization;

4. I] = (I]1, I]2);

5. t] maps every pair ((q]1, q
]
2), r) ∈ Q]×R made of a pair of abstract properties

and a rule to the abstract property (t]1(q]1, r), t
]
2(q]2, r)) whenever t]1(q]1, r) 6=

⊥1 and t]2(q]2, r) 6= ⊥2, and to the pair (⊥1,⊥2) otherwise.

Theorem 3 (Soundness of the coalescent product). The coalescent prod-
uct of two abstractions is an abstraction as well.

We notice that if either of both abstractions proves that the precondition of a
rule is not satisfiable, then this rule is discarded in the other abstraction (hence
the term coalescent). By mutual induction, the composite abstraction may detect
which rules may be safely discarded along the iterations of the analysis.

We may now define an analysis modularly with respect to the class of con-
sidered properties. We use the coalescent product to extend the existing static
analyzer KaSa [5] with a new abstraction dedicated to the range of counters.
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5 Numerical abstraction

Now we specialize our generic abstraction to detect and prove safe bounds to
the range of counters. In general, this requires to relate the value of the counters
to the state of others sites. Our approach consists in translating each protein
configuration into a vector of relative numbers and in abstracting each rule by
its potential effect on these vectors. We obtain an integer linear programming
problem that we will solve by choosing an appropriate abstract domain.

The set of convex parts of Z is written as IZ. We assume that guards on
counters are element of IZ and that each update function either set counters to
a constant value, or increment/decrement counters by a constant value.

5.1 Encoding states and preconditions

We propose to translate each agent into a set of numerical constraints. A protein
of type A is associated with one variable χλi for each binding site i and each
binding state λ, one variable χιi for each property site i and each internal state
identifier ι, and one variable vali for each counter in i.

Definition 8 (numerical variables). Let A ∈ Σag be an agent type. We
define the set VarA as the set of variables Varlnk

A ∪ Varint
A ∪ Var$A where:

1. Varlnk
A = {χλi | i ∈ Σlnk

ag-st(A), λ ∈ {a}∪{(A′, i′) | A′ ∈ Σag, i
′ ∈ Σlnk

ag-st(A
′)}};

2. Varint
A = {χιi | i ∈ Σint

ag-st(A), ι ∈ Σint};
3. Var$A = {vali | i ∈ Σ$

ag-st}.

Intuitively, variables of the form χλi (resp. χιi) take the value 1 if the binding
(resp. internal) state of the site i is λ (resp. ι), whereas the variables of the form
vali takes the value of the counter i.

Each agent of type A may be translated into a function mapping each variable
in the set VarA into a subset of the set Z. Such a function is called a guard.

Definition 9 (Encoding of agents). Let G be a site-graph and n be an agent
in AG. We denote by A the type typeG(n). We define as follows the function
guardG(n) from the set VarA into the set IZ:

1. guardG(n)(χai ) is equal to the singleton {1} whenever (n, i) ∈ S lnk
G (A) and

LG(n, i) =a, to the singleton {0} whenever (n, i) ∈ S lnk
G (A) and LG(n, i) 6=a,

and to the set {0, 1} whenever (n, i) 6∈ S lnk
G (A);

2. guardG(n)(χ
(A′,i′)
i ) is equal to the singleton {1} whenever (n, i) ∈ S lnk

G (A)
and there exists n′ ∈ AG such that both conditions typeG(n′) = A′ and
LG(n, i) = (n′, i′) are satisfied, to the singleton {0} whenever (n, i) ∈ S lnk

G (A)
and either LG(n, i) =a, or there exist an agent identifier n′′ ∈ AG and a
site name i′′ ∈ Σsite such that (typeG(n′′), i′′) 6= (A′, i′), and to the set {0, 1}
whenever (n, i) 6∈ S lnk

G (A) or LG(n, i) = −;
3. guardG(n)(χιi) is equal to the singleton {1} whenever (n, i) ∈ Sint

G (A) and
pκG(n, i) = ι; to the singleton {0} whenever (n, i) ∈ Sint

G (A) and pκG(n, i) 6=
ι; and to set {0, 1} whenever (n, i) 6∈ Sint

G (A).
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4. guardG(n)(vali) is equal to the set cκG(c) whenever (n, i) ∈ S$G and to the
set Z otherwise.

The variable χai takes the value {1} if we know that the site i is free, the
value {0} if we know that it is bound, and the value {0, 1} if we do not know
whether the site is free or not. This is the same for binding type, the variable

χ
(A′,i′)
i takes the value {1} if we know that the site is bound to the site i′ of

an agent of type A′, the value {0} if we know that this is not the case, and the
value {0, 1} otherwise. Property sites work the same way. Lastly, the variable
vali takes as value the set attached to the counter or the value Z if the site is not
mentioned in the agent. We notice that when n is a fully-specified agent of type
A, the function guardG(n) maps every variable in the set VarA to a singleton.

Example 5 (running example). We provide the translation of the unique agent
of the site-graph G1 (e. g. see Fig. 3(a)) and the one of the unique agent of the
site-graph G4 (e. g. see Fig. 3(d)).

The agent of the site-graph G1 is translated as follows:
χ◦a = {1};χ•a = {0};
χ◦b = {0, 1};χ•b = {0, 1};
χ◦c = {0, 1};χ•c = {0, 1};
χ◦d = {0, 1};χ•d = {0, 1};
valx = {z ∈ Z | z ≤ 2}

 .

According to the first two constraints, the site a is unphosphorylated. According
to the next six ones, the sites b , c , and d have an unspecified state. According
to the last constraint, the value of the counter must be less than or equal to 2.

The translation of the agent of the site-graph G4 is obtained the same way:
χ◦a = {1};χ•a = {0};
χ◦b = {0};χ•b = {1};
χ◦c = {0};χ•c = {1};
χ◦d = {1};χ•d = {0};
valx = {2}

 .

This means that the sites b and c are phosphorylated while the sites a and d
are not. According to the last constraint, the value of the counter is equal to 2.

5.2 Encoding rules

In Kappa, a rule may be applied only when its precondition is satisfied. Moreover,
the application of a rule modifies the state of some sites in agents. We translate
each rule into a tuple of guards that encodes its precondition, a set of non-
invertible assignments (when a site is given a new state that does not depend
on the former one), and a set of invertible assignments (when the new state
of a site depends on the previous one). Such a distinction is important as we
want to establish relationships among the value of some variables [32]: a non-
invertible assignment completely hides the former value of a variable. This is not
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the case with invertible assignments for which relationships may be propagated
more easily. The agents that are created (which have no precondition) and the
ones that are removed (which disappear), have a special treatment.

Definition 10 (Encoding of rules). Each rule r : L ? _⊇oo D �
�

$
(he,h$)//R is

associated with the tuple (prer,not-invertr, invertr,newr) where:

1. prer maps every agent n ∈ AL in the left hand side of the rule r to its guard
guardL(n);

2. not-invertr maps every agent n ∈ AD and every variable v ∈ VartypeD(n)

such that the set guardR(he(n))(v) is a singleton and guardR(he(n))(v) 6=
guardL(n)(v) to the unique element of the set guardR(he(n))(v).

3. invertr maps every agent n ∈ AD and every variable v ∈ VartypeD(n) such

that the set guardR(he(n))(v) is not a singleton and h$(n, i) is a function of
the form [z ∈ Z 7→ z + c] with c ∈ Z, to the relative number c.

4. newr maps every agent n′ ∈ AR such that there is no agent n ∈ AD satisfying
he(n) = n′ to the guard guardR(n′).

Example 6 (running example). The encoding of the rule of Fig. 6(a) is given as
follows:

– the function prer maps the agent 1 to the following set of constraints:
χ◦a = {1};χ•a = {0};
χ◦b = {0, 1};χ•b = {0, 1};
χ◦c = {0, 1};χ•c = {0, 1};
χ◦d = {0, 1};χ•d = {0, 1};
valx = {z ∈ Z | z ≤ 2}

 ;

– the function not-invertr maps the pair (1, χ◦a) to the value 0, and the pair
(1, χ•a) to the value 1;

– the function invertr maps the pair (1, x) to the successor function;
– the function newr is the function with the empty domain.

The guard specifies that the site a must be unphosphorylated and the value
of the counter less or equal to 2. Applying the rule modifies the value of three
variables. The site a gets phosphorylated. This is a non-invertible modification
that sets the variable χ◦a to the constant value 0 and the variable χ•a to the
constant value 1. The counter x is incremented. This is an invertible modification
that is encoded by incrementing the value of the variable valx.

5.3 Generic numerical abstract domain

We are now ready to define a generic numerical abstraction.

Definition 11 (Numerical domain). A numerical abstract domain is a fam-
ily (ANA )A∈Σag of tuples (DNA ,vNA , γA,tNA ,⊥NA ,>NA , gNA , forgetNA , δ

N
A ,∇NA ) that

satisfy the following conditions, for every agent type A ∈ Σag:
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1. the pair (DNA ,vNA ) is a pre-order;
2. the component γNA : DNA → ℘(ZVarA) is a monotonic function;
3. the component tNA : ℘finite(DNA ) → DNA is an operator such that ∀X] ∈

℘finite(DNA ), ∀ρ] ∈ X], ρ] v t(X]);
4. the component ⊥NA is an element in the set DNA such that γNA (⊥NA ) = ∅;
5. the component >NA is an element in the set DNA such that γNA (>NA ) = ZVarA ;
6. the component gNA is a function mapping each pair (g, ρ]) where g is a guard

and ρ] an abstract property in DNA to an abstract element in DNA such that
the set γNA (gNA (g, ρ])) contains at least each function ρ ∈ γNA (ρ]) that verifies
the condition ρ(v) ∈ ρ](v) for every variable v ∈ VarA;

7. the component forgetNA maps each pair (V, ρ]) ∈ ℘(VarA)×DNA to an abstract

property forgetNA (V, ρ]) ∈ DNA , the concretization γ(forgetNA (V, ρ])) of which
contains at least each function ρ ∈ ZVarA such that there exists a function
ρ′ ∈ γNA (ρ]) satisfying ρ(v) = ρ′(v) for each variable v ∈ VarA \ V ;

8. the component δNA maps each pair (t, ρ]) ∈ ZVarA × DNA to an abstract
property δNA (t, ρ]) ∈ DNA , such for each function ρ ∈ γNA (ρ]), the function
mapping each variable v ∈ VarA to the value ρ(v) + t(v) belongs to the set
γNA (δNA (t, ρ]));

9. the component ∇N is a widening operator. satisfies both following properties:

(a) ∀ρ]1, ρ]2 ∈ DNA , ρ]1 vNA ρ]1∇N ρ]2 and ρ]2 vNA ρ]1∇N ρ]2,

(b) ∀(ρ]n)n∈N ∈
(
DNA

)N
, the sequence (ρ∇n )n∈N that is defined as ρ∇0 = ρ]0 and

ρ∇n+1 = ρ∇n∇N ρ]n+1 for every integer n ∈ N, is ultimately stationary.

5.4 Numerical abstraction

The following theorem explains how to build an abstraction (as defined in Sect. 4)
from a numerical abstract domain. We introduce an operator ↑ to extend the
domain of functions with default values. Given a function f , a value v and a
super-set X of the domain of f , we write ↑vX f the extension of the function f
that maps each element x ∈ X \Dom (f) to the value v. We also write setA for
the function mapping pairs (f,X]) where f is a partial function from the set
VarA into the set of the convex parts of Z and X] an abstract property in DNA ,

to the abstract property: gNA (↑ZVarA
f, forgetNA (dom(f), X])). The function setA

forgets all the information about the variables in the domain of the function f ,
and reassign their range to their image by f in the abstract.

Theorem 4. Let (DNA ,vNA , γA,tNA ,⊥NA ,>NA , gNA , forgetNA , δ
N
A ,∇NA )A∈Σag

be a nu-
merical abstract domain. The tuple (Q],v, γ,t,⊥, I], t],∇) that is defined by:

1. the component Q] is the set of the functions mapping each agent type A ∈ Σag

to an abstract property in the set DNA ;
2. the component γ is the function mapping a function X] ∈ Q], to the set of

the fully specified site-graph G such that for each agent n ∈ AG, we have
guardG(n) ∈ γtypeG(n)(X

](typeG(n)));
3. the components v, t, ⊥ are defined component-wise;
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4. the component I] maps each agent type A ∈ Σag to the abstract property
tNA {gNA (guardG0

(n),>NA ) | n ∈ AG0
};

5. the component t] is a function mapping each pair (X], r) ∈ Q]×R (we write
r : L ? _⊇oo D �

�
$ //R) to the element ⊥NA whenever there exists an agent

n in AL such that gNA (prer(n), X](typeL(n))) = ⊥NA , and, otherwise, to the
function mapping each agent type A to the numerical property:

tNA ({X](A)} ∪ fresh(r,A) ∪ updated(r,A,X])),
with:
– fresh(r,A) the set of the numerical abstract elements gNA (newrn,>NA ) for

every n ∈ dom(newr) such that typeR(n) = A;
– and updated(r,A,X]) the set of the elements:

setA(not-invertr(n), δNA (↑0A invertr(n), gNA (prer(n), X](A))))
for each agent n ∈ AD with typeD(n) = A;

is a generic abstraction.

Most of the constructions of the abstraction are standard. The expression
gNA (prer(n), X](typeL(n))) refines the abstract information about the potential
configurations of the n-th agent in the left hand side of the rule, by taking into
account its precondition. Whenever a bottom element is obtained for at least
one agent, the precondition of the rule is not satisfiable and the rule is dis-
carded at this moment of the iteration. Otherwise, the information about each
agent is updated. Starting from the result of the refinement of the abstract ele-
ment by the precondition, the function δNA applies the invertible transformations
↑0A invertr(n) (the function ↑0A extends the domain of the function invertr(n)
by specifying that the variables not in the domain of this function remain un-
changed), and the function setA applies non invertible one not-invertr(n).

The domain of intervals [8] and the one of affine relationships [32] provide
all the primitives requested by Def. 11. We use a product of them, when all
primitives are defined pair-wise, except the guards which refine its output by
using the algorithm that is described in [23]. We use widening with thresholds
[2] for intervals so as to avoid infinite bounds when possible. This way we obtain
a domain, where all operations are cubic with respect to the number of variables.

This is a very good trade-off. A relational domain is required. Other relational
domain are either too imprecise [37], or to costly [13], or both [27,38].

5.5 Benchmarks

We run our analysis on the family of models of Sec. 1 for n ranging between 1 and
25. For each version of the model, the protein is made of n phosphorylation sites
and a counter. Moreover, our analysis always discover that the counter ranges
between 0 and n. CPU time is plot in Fig. 10.

6 Conclusion

When potential protein transformations depend on the number of sites satisfying
a given property, counters offer a convenient way to describe generic mechanisms
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Fig. 10. Efficiency of the static analysis for the example in Sec. 1 with n ranging
between 1 and 25. Every analysis has successfully computed the exact range of the
counter. The analysis has been performed on a MacBook Pro on a 2.8 GHz intel Core
i7, 16 Go of RAM, running under macOS High Sierra version 10.13.6.

while avoiding the explosion in the number of rules. We have extended the se-
mantics of Kappa to deal with counters. We have proposed some encodings to
remove counters while preserving the performance of the Kappa simulator. In
particular, graphs remain rigid and the number of rules remain the same. Then,
we have introduced a static analysis to bound the range of counters.

It is quite common to find proteins with more than 40 phosphorylation sites.
Without our contributions, the modeler has no choice but to assume these pro-
teins to be active only when all their sites are phosphorylated. This is a harsh
simplification. Modeling simplifications are usually done not only because de-
tailed knowledge is missing, but also because corresponding models cannot be
described, executed, or analyzed efficiently. Yet these simplifications are done
without any clue of their impact on the behavior of the systems. By providing
ways of describing and handling some complex details, we offer the modelers the
means to incorporate these details and to test empirically their impact.

Our framework is fully integrated within the Kappa modeling platform which
is open-source and usable online (https://kappalanguage.org). It is worth
noting that we have taken two radically different approaches to deal with coun-
ters in simulation and in static analysis. Encodings are good for simulation,
but they tend to obfuscate the properties of interest, hence damaging drasti-
cally the capability of the static analysis to infer useful properties about them.
The extension of the categorical semantics provides a parsimonious definition of
causality between computation steps, as well as means to reason symbolically on
the behavior of the number of occurrences of patterns. For further works, we will
extend existing decision procedures [15,14] that compute minimal causal traces
to cope with counters. It is very likely that a third approach will be required.
We suggest to use the traces obtained by simulation, then translate the counters
in these traces thanks to equivalent sites, and apply existing decision procedures
the traces that will be obtained this way.

25
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16. Vincent Danos, Jérôme Feret, Walter Fontana, Russell Harmer, and Jean Krivine.
Abstracting the differential semantics of rule-based models: exact and automated
model reduction. In Jean-Pierre Jouannaud, editor, Proceedings of the Twenty-
Fifth Annual IEEE Symposium on Logic in Computer Science, LICS ’2010, vol-
ume 0, pages 362–381, Edinburgh, UK, 11–14 July 2010. IEEE Computer Society.
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