
Dependency Analysis of Mobile Systems⋆

Jrme Feret

jerome.feret@ens.fr

Département d’Informatique de l’École Normale Supérieure
ENS-DI, 45, rue d’Ulm, 75230 PARIS Cedex 5, FRANCE

http://www.di.ens.fr/~feret

Abstract. We propose an Abstract Interpretation-based static analysis
for automatically detecting the dependencies between the names linked
to the agents of a mobile system. We focus our study on the mobile
systems written in the π-calculus. We first refine the standard semantics
in order to restore the relation between the names and the agents that
have declared them. We then abstract the dependency relations that are
always satisfied by the names of the agents of a mobile system. That is to
say we will detect which names are always pair-wisely equal, and which
names have necessarily been declared by the same recursive instance of
an agent.

1 Introduction

We are interested in analyzing automatically the behaviour of mobile systems
of agents. Agent distribution in such systems may dynamically change during
the computation sequences, which makes their analysis difficult. We address the
problem of proving non-uniform properties about the interactions between the
agents of a mobile system; such properties allow distinguishing between several
recursive instances of a same agent. We especially intend to infer the dependency

relations between the names communicated to each agent. This means that we
will calculate whether they are pair-wisely equal (and / or) whether they have
been pair-wisely declared by the same recursive instance of an agent.

Previous works. In previous articles [7, 8], we proposed several analyses for
mobile systems expressed in the π-calculus. In [7], we already proposed a non-
uniform abstraction of the interactions between the agents of a mobile system.
This analysis takes into account the dynamic creation of both names and agents,
which is an inherent feature of mobility: it assigns a unique marker to each
agent instance and stamps each channel with the marker of the agent instance
which has declared it. Group creation [3] allows proving that a channel name
is confined inside the scope of a given recursive instance, but it can only infer
equality or disequality constraints between the groups, and cannot prove any
equality constraint by composing disequality constraints. In [7], the algebraic

⋆ This work was supported by the RTD project IST-1999-20527 ”DAEDALUS” of the
European FP5 programme.

properties of markers allow handling more complex properties: we can prove
that a channel name is first sent to the next instance and then returned to the
previous one; thus, we prove it is returned to the instance which has declared it.

Contribution. The main two drawbacks of [7] are that the properties it
captures are very low level and are not easily understandable, and that the only
calculated properties are those which involve a comparison between the marker
of a channel name and the marker of the agent it is communicated to.

We propose here a more abstract parametric analysis which handles a wider
class of properties. It can especially express some relations between names, even
if there is no relation between their markers and the marker of the agent instance
they are communicated to. Nevertheless, this raises some complexity problems
we propose to solve by designing several domains: there is then a trade-off be-
tween information partitioning, and the accuracy of information propagation.
Reduced product makes these domains collaborate. At this point, [7] can be
seen as a particular instantiation of the parametric domain. We also propose
two particular domains that aim at discovering and propagating explicit equal-
ity and disequality relations among channel names and among markers.

We briefly present, in Sect. 2, the standard semantics of the π-calculus. We
recall the non-standard semantics of [7] in Sect. 3 and derive a new generic
abstraction of it in Sect. 4. We design some domains in Sect. 5 and describe
outlines for reduction in Sect. 6.

2 π-calculus

The π-calculus is a formalism well-fitted for describing the behaviour of mobile
systems. It is based on the notion of name passing. We use a lazy synchronous
version of the π-calculus which is inspired from [11, 1]. Let N be an infinite set
of channel names; agents are built according to the following syntax:

P,Q ::= 0 | action.P | (P | Q) | (P +Q) | (ν x)P | [x ⋄ y]P
action ::= c![x] | c?[x] | ∗ c?[x]

where c, x, y ∈ N , x is a tuple of channel names, and ⋄ ∈ {=; 6=}. Input
guards, replication guards and name restrictions are the only name binders,
i.e, in c?[x1, ..., xn]P , ∗d?[y1, ..., yn]Q and (ν x)R, occurrences of x1, ..., xn in P ,
y1, ..., yp in Q and x in R are said to be bound. Usual rules about scoping, sub-
stitution and α-conversion apply. We denote by fn(P) the set of the free names
of P , i.e, the names which are not under the scope of any binder, and by bn(P)
the set of the bound names of P . The agent P | Q denotes the parallel com-
position of two agents P and Q which performs P and Q simultaneously. The
agent P + Q denotes a non-deterministic choice between two agents P and Q

which performs either P or Q: the choice is internal and does not depend on the
other agents. [x ⋄ y]P denotes a matching guard: the agent P can be activated
if the guard [x ⋄ y] is satisfied and it does not require that the agent P interacts
with another agent of the system. We use a lazy version of replication: the agent
∗c?[x].P duplicates itself each time it communicates with another agent.

2

Example 1. We use, as an illustration, the following system S [12] throughout
the paper:1

Next ::= ∗make?0[last](ν next)(edge!1[last;next] | make!2[next])
Last ::= make?3[last].edge!4[last; first]
Test ::= edge?5[x; y].[x =6 y][x 6=7 first]ok!8[]

S ::= (ν make)(ν edge)(ν first)(ν ok)(Next | Last | Test | make!9[first]).

The system S creates a communication ring between several monitors. Each
channel name created by the restrictions (ν first) and (ν next) denotes a mon-
itor. The message edge![x;y] represents a connection between the monitors re-
spectively denoted by x and y. The first monitor is created by the restriction
(ν first). The resource Next can then be used to connect the last created moni-
tor with a newly created one. The thread Last is used to connect the last created
monitor with the first one. The thread Test is used to test whether a monitor
is linked with itself and, in such a case, whether it is not the first monitor. We
intend to prove that the first matching pattern of Test may be satisfied, al-
though the second matching pattern can never be satisfied. This result is out
of the range of any uniform analysis [2] which can give no more accurate result
than the fact that monitors can be linked to each other. �

3 Non-standard Semantics

We refine the standard semantics in order to explicitly specify the link between
channel names and the agent recursive instances that have declared them: we
assign to each instance of an agent an unambiguous marker, and stamp each
channel name with the marker of the instance of the agent which has declared
it. We consider a closed mobile system S in the π-calculus, we may assume,
without any loss of generality, that no one name occurs twice as an argument of
an input guard, a replication guard or a name restriction. Let L be an infinite
set of labels. We locate each syntactic component of S by labeling each action
and each matching pattern with a distinct label. We describe each configuration

of S by a set of thread instances. Each thread instance is a triplet composed of
a syntactic component which, for the sake of simplicity, will often be denoted
by its label, an unambiguous marker and an environment which specifies the
semantic values of the syntactic channel names of the thread. An environment
assigns to each syntactic channel name a pair composed of a channel name a
and a thread marker id, meaning that the channel name has been declared by
the name restriction (ν a) of a thread the marker of which was id.

Thread instances are created at the beginning of the system computation and
when agents interact. In both cases, several threads are spawned, in accordance
to which non-deterministic choices are made. The function β, defined below,
applied to a labeled agent, its marker and its environment, returns the set of all
possible combination sets of spawned thread instances:

1 We have labeled each syntactic component, as explained in Sect. 3.

3

β((ν n)P, id, E) = β (P, id, (E[n 7→ (n, id)]))
β(0, id, E) = {∅}

β(P +Q, id, E) = β(P, id, E) ∪ β(Q, id, E)
β(P | Q, id, E) = {A ∪B |A ∈ β(P, id, E), B ∈ β(Q, id, E)}

β(action.P, id, E) = {{(action.P, id, E|fn(action.P))}}
β([x ⋄i y]P, id, E) = {{([x ⋄i y]P, id, E|fn([x⋄iy]P))}}

Markers are the history of the resource duplications which have led to the cre-
ation of the agent instances: they are binary trees the nodes of which are labeled
with a pair of labels, and the leaves of which are unlabeled (ε). The markers of
initial threads are ε, while new thread markers are calculated as follows: when
a computation step does not involve fetching a resource, markers of computed
threads are just passed to the threads of their continuations; when a resource
is fetched, the marker of the new threads created from the continuation of the
resource is N((i, j), id∗, id!) where i and id∗ are the label and the marker of the
resource, j and id! are the label and the marker of the message sender.

The set of initial configurations and the computation rules are given in Fig.
1. Standard and non-standard semantics are in bisimulation, provided that we
restrict ourselves to the set of standard computations where all non-deterministic
choices are made before other computation steps.

Example 2. Here is the non-standard configuration for our mobile system S,
reached after having replicated the resource Next twice, and after having made
the last spawned agent labeled by 1 communicated with the thread Test:

(

0, ε,

{

make→ (make, ε)

edge→ (edge, ε)

)

1, id1,

edge→ (edge, ε)

last→ (first, ε)

next→ (next, id1)

(

2, id2,

{

make→ (make, ε)

next→ (next, id2)

)

3, ε,

make→ (make, ε)

edge→ (edge, ε)

first→ (first, ε)

6, ε,

x→ (next, id1)

y → (next, id2)

first→ (first, ε)

ok→ (ok, ε)

where

{

id1 = N((0, 9), ε, ε)

id2 = N((0, 2), ε, id1)

It turns out that there is no generic relation between the marker of the agent
6 and the markers of the names linked to the variables x and y, so both [12, 7]
will fail to prove that the second matching pattern is not satisfiable. �

Moreover, in accordance with the following proposition, we can simplify the
shape of the markers without losing marker allocation consistency which ensures

4

C0(S) = β(S , ε, ∅)
(a) Non-standard initial configurations.

E?(y) = E!(x), ContP ∈ β(P, id?, E?[yi 7→E!(xi)]),ContQ ∈ β(Q, id!, E!)

C ∪ {(y?i[y]P, id?, E?); (x!j [x]Q, id!, E!)}−→ (C ∪ ContP ∪ ContQ)

E∗(y) = E!(x), ContP ∈ β(P, N((i, j), id∗, id!), E∗[yi 7→E!(xi)]),ContQ ∈ β(Q, id!, E!)

C ∪

{

(∗y?i[y]P, id∗, E∗);
(x!j [x]Q, id!, E!)

}

−→
(

C ∪ {(∗y?i[y]P, id∗, E∗)} ∪ ContP ∪ ContQ
)

E(x) ⋄E(y), ContP ∈ β(P, id, E)

C ∪ {([x ⋄i y]P, id, E)} −→ C ∪ ContP

(b) Non-standard transition system.

Fig. 1. Non-standard semantics.

that no one marker can be assigned twice to the same syntactic agent during a
computation sequence.

Proposition 1. Let φ1 and φ2 be the two following functions:

φ1 :

Id → (L 2)⋆

N(a, b, c) 7→ φ1(c).a

ε 7→ ε

φ2 :

Id → L⋆

N((i, j), b, c) 7→ φ2(c).j

ε 7→ ε.

Marker allocation remains consistent when replacing each marker with its image

by φ1 or φ2.

Such simplifications allow us to reduce the cost of our analysis, but also lead to
a loss of accuracy since they merge information related to distinct computation
sequences of the system.

4 Abstract Semantics

We denote by Id the set of all markers, by E(V) the set of all environments
over the set of syntactic names V , by Σ the set L2 and by C the set of all non-
standard configurations. We are actually interested in C(S), the set of all the
configurations a system S may take during any finite sequence of computation
steps. This is the collecting semantics [4], which can be expressed as the least
fix point of the following ∪-complete endomorphism F on the complete lattice
℘(C):

F(X) = β(S, ε, ∅) ∪
{

C ∈ C
∣

∣ ∃C ∈ X, C −→ C
}

.

5

The least fix point of such an endomorphism is usually not decidable, so we
use a relaxed version of the Abstract Interpretation framework [5] to compute a
sound—but not necessary complete—approximation of it.

We assume we are given a family (GV ,⊑V ,
⊔

V ,⊥V)V ⊆bn(S) of abstract do-
mains of properties. For each V ⊆ bn(S), GV is used for globally abstracting
the marker and the environment of a thread instance that uses the set of free
names V . The relation ⊑V is a pre-order which describes the relative amount
of information between those properties. Each abstract property is related to
℘(Id×E(V)) by a monotonic concretization function γV . The operator

⊔

V maps
each finite set of properties to a weaker property: for each finite A ⊆ GV , ∀a ∈ A,
a ⊑V (

⊔

V A). ⊥V is the least element in GV with respect to ⊑V . We assume
that γV is strict, that is to say, γV (⊥V) = ∅. Then, our main abstract domain

(C♯,⊑♯,
⊔♯
,⊥♯) is the set of functions mapping each syntactic component P of S

to an element of Gfn(P). The domain structure (⊑♯,
⊔♯

and ⊥♯) is defined point-

wise. The abstract domain C♯ is related to ℘(C) by the concretization function
γ that maps each abstract property f ∈ C♯ to the set of configurations C ∈ C
such that ∀(p, id, E) ∈ C, (id, E) ∈ γfn(p)(f(p)).

During a communication or resource fetching step, we have to describe the
relations among the markers and the environments of two threads: a message
receiver and a message sender. For that purpose, we also assume that we are
given a family (GV!

V?
) of abstract properties2. For any V?, V! ∈ ℘(bn(S)), each

property in GV!

V?
is related by a concretization function γV!

V?
to the elements of

℘((Id× E(V?))× (Id× E(V!))) which satisfy this property.
Let V , V? and V! be three parts of bn(S). We now introduce some primitives

to handle elements in GV and GV!

V?
, and to relate GV?

and GV!
to GV!

V?
:

– initial environment abstraction: ε∅ ∈ G∅ satisfies {(ε, ∅)} ⊆ γ∅(ε∅);
– abstract restriction: ∀x ∈ bn(S) \ V, νx : GV → GV ∪{x} satisfies:
{

(id, E) ∈ Id× E(V ∪ {x})

∣

∣

∣

∣

(id, E|V) ∈ γV (A),
E(x) = (x, id)

}

⊆ γV ∪{x}(νx(A));

– abstract extension: ∀X ⊆ bn(S) \ V, new⊤
X : GV → GV ∪X satisfies:

{(id, E) ∈ Id× E(V ∪X) | (id, E|V) ∈ γV (A)} ⊆ γV ∪X(new⊤
X(A));

– abstract garbage collection: ∀X ⊆ V, gcX : GV → GX satisfies:
{(id, E|X) ∈ Id× E(X) | (id, E) ∈ γV (A)} ⊆ γX(gcX(A));

– abstract matching: match : ((V ×{=; 6=}×V)×GV)→ GV satisfies:
{(id, E) ∈ Id× E(V) | (id, E) ∈ γV (A), E(x) ⋄E(y)} ⊆ γV (match(x ⋄ y,A)).

– abstract product: • : GV?
× GV!

→ GV!

V?
satisfies:

γV?
(A?)× γV!

(A!) ⊆ γ
V!

V?
(A? •A!);

– abstract projections: fst♯ : GV!

V?
→ GV?

and snd♯ : GV!

V?
→ V! satisfy:

fst
(

γV!

V?
(A)
)

⊆ γV?
(fst♯(A)) and snd

(

γV!

V?
(A)
)

⊆ γV!
(snd♯(A));

– abstract synchronization: sync : ℘(V? × V!)× G
V!

V?
→ GV!

V?
satisfies:

{((id?, E?), (id!, E!))∈γ
V!

V?
(A) | ∀(a, b)∈S, E?(a) = E!(b)} ⊆ γ

V!

V?
(sync(S,A));

2 The abstract domain GV!

V?
is not assumed to be a pre-order, because it is only used

to make intermediary calculi, and not to make iterations.

6

– abstract marker allocation: fetch : L2 × GV!

V?
→ GV!

V?
satisfies:

{

((id∗, E?), (id!, E!))

∣

∣

∣

∣

((id?, E?), (id!, E!)) ∈ γ
V!

V?
(A)

id∗ = N((i, j), id?, id!)

}

⊆ γV!

V?
(fetch((i, j), A)).

The abstract semantics is then given by an initial abstract element C♯
0(S) ∈ C♯

and an abstract transition relation −→♯ in Fig. 2. Their definitions use the
following abstract extraction function:

β♯((ν n)P,A) = β♯ (P, νn(A))
β♯(0, A) = ⊥♯

β♯(P +Q,A) =
⊔♯{β♯(P,A);β♯(Q,A)}

β♯(P | Q,A) =
⊔♯{β♯(P,A);β♯(Q,A)}

β♯(action.P,A) = {action.P 7→ gcfn(action.P)(A)}
β♯([x ⋄i y]P,A) = {[x ⋄i y]P 7→ gcfn([x⋄iy]P)(A)}

C♯
0(S) = β

♯(S , ε∅)
(a) Abstract initial configuration.

λ = y?i[y]P, µ = x!j [x]Q,

Es = syny
x

(

C♯(λ) ← C♯(µ)

y ← x

)

C
♯ −→♯

⊔♯
{C♯; β♯(P, fst

♯(Es)); β
♯(Q, snd

♯(Es))}

λ = ∗y?i[y]P, µ = x!j [x]Q,

Es = fetch

(

(i, j),

(

syny
x

(

C♯(λ) ← C♯(µ)

y ← x

)))

C
♯ −→♯

⊔♯
{C♯; β♯(P, fst

♯(Es)); β
♯(Q, snd

♯(Es))}

⋄ ∈ {=; 6=}, λ = [x ⋄i y]P

C
♯ −→♯

⊔♯
{C♯; β♯(P,match(x ⋄ y,C

♯))}

(b) Abstract transition system.

Fig. 2. Abstract semantics.

Furthermore, abstract communication and resource fetching require the follow-
ing synchronization function, which merges the abstract environments of two
communicating syntactic components, and mimics the communication of a part
of the sender environment.

syny
x

(

A? ← A!

y ← x

)

= sync
(

{(y;x)} ∪
(

⋃

{(yi;xi)}
)

, (new⊤
{y1;...;yn}(A?)) •A!

)

7

Theorem 1. C♯
0 and −→♯ satisfy the following soundness property:

1. C0(S) ⊆ γ(C♯
0(S));

2. ∀C♯ ∈ C♯, ∀C ∈ γ(C♯), ∀C ∈ C, C −→ C =⇒ ∃C
♯
∈ C♯,

{

C♯−→♯C
♯

C ∈ γ(C
♯
).

So, the abstract counterpart F♯ to F defined by :

F♯(C♯) =
⊔♯ (

{C♯
0(S)} ∪

{

C
♯
| C♯−→♯C

♯
})

satisfies the soundness condition ∀C♯ ∈ C♯, F◦γ(C♯) ⊆ γ◦F♯(C♯). Using Kleene’s
theorem, we obtain the soundness of our analysis:

Theorem 2. lfp∅F ⊆
⋃

n∈N

[

γ ◦ F♯n]
(C♯

0(S)).

A widening operator [6] may be then used to compute a sound and decidable
approximation of the abstract semantics.

5 Analyses

We propose in this section five abstract domains of properties. The first two
domains describe properties of interest which can directly be understood by the
user. The last three domains represent complex properties which are used to
complete the two first domains by reduction.

5.1 Dependencies Among Agent Names

5.1.1 Abstract Domain of Equality and Disequality Relations

We introduce an abstract domain for describing equality and disequality relations
among a finite set of variables. Let V be a set of variables, we introduce for all
finite subsets of V ⊆ V the abstract domain TV of all non-oriented graphs (G,R)
such that G is a partition of V . Given a finite subset V of V and X = (G,R) ∈
TV , we introduce two binary relations over V as follows:

– a =X b
∆
⇐⇒ ∃X ∈ G, {a, b} ⊆ X ,

– a 6=X b
∆
⇐⇒ ∃X ∈ G, ∃Y ∈ G, a ∈ X , b ∈ Y, (X ,Y) ∈ R.

The domain TV is partially ordered by the 6V relation defined as follows:

∀X,Y ∈ TV , X 6V Y
∆
⇐⇒

{

∀x, y ∈ V, x =Y y ⇒ x =X y

∀x, y ∈ V, x 6=Y y ⇒ x 6=X y.

For every set I, each element A in TV is related to the set of functions γI
V (A),

defined as follows:

γI
V (A) =

{

f ∈ F(V, I)

∣

∣

∣

∣

∣

∀x, y ∈ V,

{

x =A y =⇒ f(x) = f(y)

x 6=A y =⇒ f(x) 6= f(y)

}

.

8

We also define some primitives over our abstract domain as follows:
let (GX , RX) be an element in TV ,

– given (GY , RY) ∈ TV , (GX , RX) ⋒ (GY , RY) = (G′, R′) ∈ TV where

• G′ = {x ∩ y | x ∈ GX , y ∈ GY , x ∩ y 6= ∅}
• R′ = {(x1 ∩ y1, x2 ∩ y2) ∈ (G′)2 | (x1, x2) ∈ RX and (y1, y2) ∈ RY }

– given V ′ ⊆ V \ V , and (GY , AY) ∈ TV ′ , (GX , AX) ⋓ (GY , AY) ∈ TV ∪V ′ ,
and ((GX , AX) ⋓ (GY , AY)) = (GX ∪GY , AX ∪AY);

– given V ′ ⊆ V, projV ′(GX , RX) = (G′, R′) ∈ TV ′ where

• G′ = {A ∩ V ′ | A ∈ GX , A ∩ V ′ 6= ∅},
• R′ = {(A ∩ V ′, A′ ∩ V ′) ∈ (G′)2 | (A,A′) ∈ R};

– given x ∈ bn(S) \ V, freshx(GX , RX) ∈ TV ∪{x} and
freshx(GX , RX) = (GX ∪ {{x}}, RX ∪ ({{x}} ×GX) ∪ (GX × {{x}}));

– given V ′ ⊆ bn(S) \ V, newV ′(GX , RX) ∈ TV ∪V ′ and
newV ′(GX , RX) = (GX ∪ {{v′} | v′ ∈ V ′}, RX) ∈ TV ∪V ′ ;

– given x, y ∈ V , and ⋄ ∈ {=; 6=}, set(x ⋄ y, (GX , RX)) ∈ TV and:

• set(x = y, (GX , RX)) = ((GX)/∼, (RX)/∼), if not x 6=(GX ,RX) y,

where ∀X,Y ∈ GX , X ∼ Y
∆
⇐⇒ X = Y or (x, y) ∈ (X × Y) ∪ (Y ×X),

• set(x 6=y, (GX, RX)) = (GX, RX∪{(A,B); (B,A)}), if not x =(GX,RX) y,

where A,B ∈ GX such that x ∈ A and y ∈ B,
• set(x ⋄ y, (GX , RX)) is undefined, otherwise.

The union ⋒ gives the lowest upper bound of two properties; the intersection
⋓ gathers the description of two disjoint sets of variables; the projection proj

restricts the set of the variables; the operator fresh adds a new variable the
value of which is assumed to be distinct from the value of the other variables;
the operator new adds a set of variables without any assumption about their
values; the operator set simply adds a new constraint.

Then, we lift TV by adding an extra element ⊥V . Its concretization γI
V (⊥V)

is the empty set of functions. Abstract union is lifted by A⋒⊥V = ⊥V ⋒A = A,
abstract intersection by A ⋓ ⊥V ′ = ⊥V ⋓ A = ⊥V ∪V ′ . Other primitives are
defined to be strict, that is to say:

fresh (⊥V) = proj (⊥V) = set(,⊥V) = ⊥V

Furthermore, undefined images in set are identified with ⊥V .

5.1.2 Equality and Disequality Relations Among Channel Names

We first abstract the equality and the disequality relations between the channel
names of each agent. We set, for that purpose, V = bn(S) and we introduce,
for each V ⊆ bn(S), the abstract domain GV = TV ∪ {⊥V }. GV is related to
℘(Id× E(V)) by the following concretization function:

γV (A) = {(id, E) | E ∈ γ
(bn(S)×Id)
V (A)}, when A 6= ⊥V .

9

The same way, we describe relations between the names of two agents: we intro-
duce V ′ = {xi | x ∈ bn(S), i ∈ {?, !}}, and we define for each subset pair (V?, V!)
of bn(S)2, GV!

V?
as being the set TV ′ ∪ {⊥V ′} where V ′ = {xi | i ∈ {?, !}, x ∈ Vi}.

We now give primitive definitions: we set ε∅ = (∅, ∅); we set νx = freshx

since, at its creation, a fresh name cannot have been communicated to any other
variables; we define the extension new⊤

X (resp. the garbage collection gcX) by
newX (resp. projX); we set match(x ⋄ y,A) = set(x ⋄ y,A); product A? • A! is
obtained by first renaming the variable x into x? (resp. x!) in A? (resp. in A!) and
then intersecting the two results using ⋓; projection fst♯(A) (resp. snd♯(A)) is
obtained by first using the projection projV?

(resp. projV!
) and then renaming the

variable x? (resp. x!) into x; synchronization is defined by sync({x = y}∪X,A) =
sync(X, set(x = y,A)) and sync(∅, A) = A3; we set fetch((i, j), A) = A since the
allocation of new markers does not change the marker of channel names.

5.1.3 Equality and Disequality Relations Among Markers

We then abstract the equality and the disequality relations between the marker
of an agent and the markers of its names. We set V = bn(S) ⊎ {agent}4, and we
introduce, for each V ⊆ bn(S), the abstract domain GV = TV ′ ∪ {⊥V ′} where
V ′ = V ∪ {agent}. GV is related to ℘(Id×E(V)) by the following concretization
function:

γV (A) =

(id, E)

∣

∣

∣

∣

∣

∣

∣

V ∪ {agent} → Id

v ∈ V 7→ snd(E(v))

agent 7→ id

∈ γId

V ∪{agent}(A)

,

when A 6= ⊥V .

The same way, we describe relations between the markers of two agents: we
introduce V ′ = {xi | x ∈ bn(S)⊎ {agent}, i ∈ {?, !}}, and define, for each subset
pair (V?, V!) of bn(S)2, GV!

V?
as being the set TV ′ ∪ {⊥V ′} where V ′ = {xi | i ∈

{?, !}, x ∈ Vi ⊎ {agent}}.
Primitives are all defined as in the previous domain, except for the primitives

ε∅, ν, match and fetch: we set ε∅ = ({agent}, ∅) since it describes an agent with an
empty environment; we set νx(A) = match(agent = x,new{x}(A)) because the
marker of a newly created name is the marker of the thread which has declared it;
we define match(x = y,A) = set(x = y,A) and match(x 6= y,A) = A, since two
different names do not necessarily have distinct markers; we set fetch((i, j), A) =
freshagent?

(projV′\{agent?}
(A)) since, when duplicating a resource, the marker is

fresh and distinct from any other existing marker.

5.2 Marker Analysis

We aim at describing the markers associated with an agent and its channel
names. For the sake of simplicity, we use Prop. 1 and approximate every tree

3 This primitive is well-define due to an associativity criterion.
4 A ⊎B denotes the disjoint union of A and B.

10

marker id by the word φ1(id) of Σ∗ written along its right comb. Then, we want
to compute, for each agent P , an approximation of the set Int(P), defined as
follows:

(

id,

{

fn(P) → (Σ ∪ bn(S))∗

y → (ay .φ1(by))

)

∣

∣

∣

∣

∣

∣

∣

∃C ∈ C(S), ∃id ∈ Id, ∃E ∈ E(fn(P)),
{

(P, id, E) ∈ C

∀y ∈ fn(P), E(y) = (ay, by)

.

We will first describe the general shape of markers, and then infer some relational
algebraic properties on them. By reduction, we will use this information to syn-
thesize equality and disequality relations between channel names and between
markers.

5.2.1 Shape Analysis

Shape analysis consists in distinctly abstracting, for each agent P , the set of
markers which can be associated to an instance of P and to each of its channel
name. Our abstraction is built upon the lattice Reg of regular languages over
the alphabet (bn(S)∪Σ). For each V ⊆ bn(S), we define GV = Reg×F(V,Reg).
For all (A, f) in GV , γV (A, f) ⊆ Id × E(V) is the set of all the elements (id, E)
which satisfy: φ1(id) ∈ A and ∀x ∈ V, y.φ1(idx) ∈ f(x) where (y, idx) = E(x).

Abstract union is defined point-wisely. Since the domain is not relational,
we define, for each V?, V! in bn(S), the domain GV!

V?
as the Cartesian product

GV?
×GV!

, and the primitives •, first♯, second♯ as the canonical pair construction
and projection functions. Other abstract primitives are defined as follows:

– ε∅ = (ε, ∅);

– νx(id♯, f ♯) =
(

id♯, f ♯[x 7→ x.id♯]
)

;

– new⊤
X(id♯, f ♯) =

(

id♯, f ♯[x 7→ bn(S).Σ∗, ∀x ∈ X]
)

;

– gcX(id♯, f ♯) =
(

id♯, f
♯
|X

)

;

– match(x = y, (id♯, f)) =

{

[→ ∅] if f(x) ∩ f(y) = ∅

f [x, y 7→ f(x) ∩ f(y)] otherwise;

– match(x 6= y,A) = A;
– sync({x = y} ∪X,A) = sync(X,match(x = y,A)) and sync(∅, A) = A;
– fetch((i, j), ((id?, f?), (id!, f!))) = ((id!.(i, j), f?), (id!, f!)).

There can be infinite increasing sequences in Reg, so we need a widening
operator to ensure the convergence of our analysis in a finite amount of time.

5.2.2 Global Numerical Abstraction

Numerical abstraction captures the relations between the markers which are
associated to an agent and to its channel names. This abstraction is built upon
the lattice of the affine relations among a set of numerical variables [9]. Each word

11

is first approximated by its Parikh vector [10], then we abstract the relations
between occurrence numbers of letters in markers. For each V ⊆ bn(S), we
denote by XV the set of variables {pλ | λ ∈ Σ}∪{c(λ,v) | λ ∈ Σ∪bn(S), v ∈ V }.
The variable pλ is used to describe the number of occurrences of λ in the right
comb of the markers of the instances of the agent p, while c(λ,v) is used to count
the number of occurrences of λ in the marker associated to the syntactic name
v when λ ∈ Σ, or in determining whether v is bound to a channel created by an
instance of the restriction (ν λ) when λ ∈ bn(S). GV is the set of affine equality
relations among the variables of XV . For all K in GV , γV (K) ⊆ Id× E(V) is the
set of the elements (id, E) such that the assignment

{pλ → |id|λ, c
(λ,v) → |y.idc|λ where (y, idc) = E(c)}

is a solution of K.
In the same manner, for each V?, V! ⊆ bn(S), we denote by X V!

V?
the set of

variables {pλ
i | λ ∈ Σ, i ∈ {?, !}} ∪ {c

(λ,v)
i | λ ∈ Σ, i ∈ {?, !}, v ∈ Vi}. We also

define GV!

V?
as the set of affine equality relations among the variables of X V!

V?
. For

all K in GV!

V?
, γV!

V?
(K) ⊆ Id× E(V) is the set of elements ((id?, E?), (id!, E!)) such

that the assignment:

{pλ
i → |idi|λ, c

(λ,v)
i → |y.idc|λ where (y, idc) = Ei(c)}

is a solution of K.
Most primitives can be encoded using affine operators described in [9]. Pos-

itive abstract matching and synchronization are simply defined by adding new
affine constraints in the system. These constraints specify that the Parikh’s
vectors coordinates of the synchronized channel names are pair-wisely equal;
negative abstract matching is the identity function. Abstract resource fetching
fetch((i, j),K) is obtained using an affine projection to keep only constraints not
involving variables of the form pλ

? , then adding the constraints pλ
? = pλ

! for all

λ ∈ Σ, and last replacing each occurrence of the variable p
(i,j)
? by the expression

p
(i,j)
? − 1.

Example 3. In our example, the analysis detects that:

– in each agent labeled 1, the variable next is linked to a name created by
the (ν next) restriction, while the variable last is linked to a name, either
created by an instance of the (ν next) restriction, or by an instance of the
(ν first) restriction. We also detect that, in the case where the variable last

is linked to a name created by the (ν next) restriction, this variable is linked
to the name created by the previous recursive instance of the one which has
created the name communicated to the variable next;

– in each agent labeled 4, the variable first is linked to a name created by
the (ν first) restriction, while the variable last is linked to a name either
created by an instance of the (ν right) restriction or by an instance of the
(ν first) restriction.

12

These properties are deduced from the following invariants:

f(1) satisfies

cnext,next = 1

cfirst,last + cnext,last = 1

c(0,2),next = c(0,2),last + cnext,last

f(4) satisfies

{

cnext,last + cfirst,last = 1

cfirst,first = 1

where f denotes the result of the analysis.
Nevertheless, our abstract domain is not expressive enough to merge these

two environments, and detects no insightful information for the agent labeled 6.
That is why we introduce a partitioned domain. �

5.2.3 Partitioned Numerical Abstraction

We propose to partition the set of the interactions between channels and agents
in order to get more accurate results. To avoid complexity explosion, we do not
globally abstract environments, we only compare pair-wisely the right comb of
the markers. Let ψ5 be a linear form defined on QΣ. We introduce the set GV of
functions which map (V ×bn(S))⊎((V ×bn(S))2) onto the set of affine subspaces
of Q2. For all f ∈ GV , γV (f) ⊆ Id× E(V) is the set of the elements (id, E) such
that:

– ∀x ∈ V , such that E(x) = (cx, idx).
(ψ([λ→ |φ1(id)|λ]), ψ([λ→ |φ1(idx)|λ])) ∈ f(x, cx);

– ∀x ∈ V, ∀y ∈ V , such that E(x) = (cx, idx) and E(y) = (cy, idy),
(ψ([λ→ |φ1(idx)|λ]), ψ([λ→ |φ1(idy)|λ])) ∈ f((x, cx), (y, cy)).

Because of the precision of the partitioning, we cannot afford much calculi in
this domain. This domain will only be used to propagate information we got
from the global numerical abstraction.

We now give primitive definitions. For V?, V! ⊆ bn(S), we define GV!

V?
as the

Cartesian product GV?
× GV!

. The concretization γV!

V?
is defined pair-wise. Pair

construction and projection functions are the canonical ones. Other abstract
primitives are defined as follows:

– abstract union is defined by applying the affine union component-wise;
– we define νx(f) to be the following element:

f [(x, x)→ {(n, n) | n ∈ (Q)}, ((x, x), (,))→ Q2, ((,), (x, x))→ Q2];

– match(x = y, f) = f

[

((x, c), (y, c))→ f((x, y), (c, y)) ∩ {(n, n) | n ∈ Q}
((x, c), (y, d))→ ∅, if c 6= d

]

;

– match(x 6= y, f) = f ;

5 This abstraction must be done with several linear forms chosen according to a pre-
analysis and Thm. 3.

13

– gcX(f) = f|{((x,),(y,)) | x,y∈X};

– new⊤
X(f) = f

x, c→ Q2, x ∈ X ;
(x, c), (,)→ Q2, x ∈ X ;
(,), (x, c)→ Q2, x ∈ X

;

– sync({yk = xk | k ∈ K}, (f, g)) = (f ′, g) where

f ′ = f [((yi, c), (yj , d))→ f((yi, c), (yj , d)) ∩ g((xi, c), (xj , d)), ∀i, j ∈ K];

– fetch((i, j), (f, g)) = (f [(y, c)→ Q2], g).

We shall notice that no information is calculated by abstract name creation
and abstract marker allocation. Nevertheless, during synchronization, the de-
scription of the communicated names is copied to the description of the receiver
environment. A complete reduction of properties would lead to a time complexity
explosion. We use a partial reduction. On the first hand, we use thread markers
as pivots and replace each abstract element f with the following element:

f

[

((x, c), (y, d))→ f((x, c), (y, d)) ∩

{

(x, y)

∣

∣

∣

∣

∣

∃z,

{

(z, y) ∈ f(y, d),

(z, x) ∈ f(x, c)

}]

,

and on the other hand, we always perform reductions between global numerical
abstraction and partitioned numerical abstraction: global numerical analysis is
used to collect all the information, which is then projected onto each case of the
partition.

Example 4. For Ψ , we choose the linear form which maps each vector to the sum
of its components. Our analysis succeeds in proving that the second pattern
matching, in the example, is not satisfiable. Along the abstract iteration, the
analyzer proves that in agent 6, the names linked to the variables x and y have
been respectively declared:

1. by the action (ν first) of a thread with a 0 marker length and the action
(ν first) of a thread with a 0 marker length;

2. or by the action (ν first) of a thread with a 0 marker length and by the
action (ν next) with a 1 marker length;

3. or by the action (ν next) of a thread t1 and by the action (ν next) of a
thread t2 such that the length of the marker of t2 is equal to the length of
the marker of t1 plus 1;

4. or by the action (ν next) of a thread the length of the marker of which was
arbitrary and by the action (ν first) of a thread the length of the marker of
which was 0.

Then it detects that the matching pattern ([x = y]) can only be satisfied for the
case 1 and it discovers that in agent 7, all the syntactic channel names x, y and
first are bound to a channel created by the action (ν first) the thread marker of
which is ε and concludes that the second pattern matching ([x 6= first]) cannot
be satisfied. �

14

6 Reduced Product

We run our analysis with a reduced product of these five domains. There are
several kinds of reductions: we use the information about equality of channel
names and equality of markers to refine marker analysis; conversely, we use the
information obtained in marker analysis to infer information about disequalities
of channel names and disequalities of markers; we also make reductions between
the global and partitioned numerical abstractions; we use the results obtained in
marker analysis to prove equality relations between name markers. For the sake
of the brevity, we only describe this last kind of reduction, which is the most
difficult one. Marker analysis may discover that two markers are recognized
by the same automaton A and have the same Parikh’s vector, but these two
conditions do not ensure that these two markers are the same. We give in Thm.
3 a decidable sufficient condition on the automaton A to ensure the equality of
such markers.

Let Σ be a finite alphabet, φ be a linear function from the vector space RΣ

into the vector space Rm, and A be an automaton (Q,→, i, f) such that the set
Q is finite, the relation → is a part of Q×Σ ×Q and i and f are parts of Q.

Definition 1. We define the set Path(A) of acyclic derivation sequences in A as

the set of sequences q0
λ1→

λn→ qn such that q0 ∈ i, qn ∈ f , for all i, j ∈ J0;nK,
i 6= j =⇒ qi 6= qj, and for all i ∈ J1;nK, (qi−1, λi, qi) ∈→.

Definition 2. Let q be a particular state in Q. We define the set Cycle(A, q)
of elementary cycles of A stemming from the state q, as the set of sequences

q = q0
λ0→ q1...qn

λn→ qn+1 = q such that for all i ∈ J1;nK, qi 6= q, and for all

i ∈ J0;nK, (qi, λi, qi+1) ∈→.

Definition 3. Let q0
λ1→

λn→ qn be a sequence in A, we define its affine de-

scription P(q0
λ1→

λn→ qn) as the vector φ([λ→ |λ1...λn|λ]).

Definition 4. Let a = q0
λ1→

λn→ qn be an acyclic derivation sequence in

Path(A), we define the family F(a) of affine descriptions of the cycle of the

derivation a as the family (P(c))c∈
⋃

{Cycle(qi) | i∈J0;nK}.

Theorem 3. If

1. for all q ∈ Q, Card(Cycle(A, q)) 6 1,
2. for all a ∈ Path(A), F(a) is linearly independent in Rm,
3. for all distinct acyclic derivations a, a′ ∈ Path(A), the two affine sets P(a)+

Vect(F(a)) and P(a′) + Vect(F(a′)) are disjoint,

then

∀u, v ∈ Σ∗, [u, v recognized by A and φ[λ→ |u|λ] = φ[λ→ |v|λ]] =⇒ u = v.

Roughtly speaking, the first condition ensures that the automaton A contains
no embedded cycle. Then, from the description of a word Parikh’s vector, we can
deduce which main acyclic derivation is to be used to recognize this word (third
condition), and how many times each cycles are to be used (second condition).

15

7 Conclusion

We have proposed a new parametric framework for automatically inferring the
description of the dependency between the channel names used by the agents of
a mobile system. We claim that this framework is very generic since [2, 12, 7, 3]
may all be seen as a particular use of it.

We have proposed several abstract domains to deal with this framework.
They allowed us to prove some properties which cannot be obtained with [2, 12,
7, 3].

Acknowledgments. We deeply thank anonymous referees for their significant
comments on an early version of this paper. We wish also to thank Patrick
and Radhia Cousot, Arnaud Venet, Antoine Min, Francesco Logozzo and Xavier
Rival for their comments and discussions.

References

1. G. Berry and G. Boudol. The chemical abstract machine. Theoretical Computer

Science, 96:217–248, 1992.
2. C. Bodei, P. Degano, F. Nielson, and H.R Nielson. Control flow analysis for the

π-calculus. In Proc. CONCUR’98, LNCS. Springer-Verlag, 1998.
3. L. Cardelli, G. Ghelli, and A. D. Gordon. Secrecy and group creation. In

Proc. CONCUR’00, LNCS. Springer-Verlag, 2000.
4. P. Cousot. Semantic foundations of program analysis. In S.S. Muchnick and N.D.

Jones, editors, Program Flow Analysis: Theory and Applications, chapter 10, pages
303–342. Prentice-Hall, Inc., Englewood Cliffs, 1981.

5. P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of logic

and computation, 2(4):511–547, August 1992.
6. P. Cousot and R. Cousot. Comparing the Galois connection and widening--

narrowing approaches to abstract interpretation. In Proc. PLILP’92, LNCS.
Springer-Verlag, 1992.

7. J. Feret. Confidentiality analysis of mobile systems. In Proc. SAS’00, LNCS.
Springer-Verlag, 2000.

8. J. Feret. Occurrence counting analysis for the π-calculus. ENTCS, 39.2, 2001.
Workshop on GEometry and Topology in COncurrency theory, PennState, USA,
August 21, 2000.

9. M. Karr. Affine relationships among variables of a program. Acta Informatica,
pages 133–151, 1976.

10. R. J. Parikh. On context-free languages. Journal of the ACM, 13:570–581, 1966.
11. D. N. Turner. The Polymorphic Pi-Calculus: Theory and Implementation. PhD

thesis, Edinburgh University, 1995.
12. A. Venet. Automatic determination of communication topologies in mobile sys-

tems. In Proc. SAS’98, LNCS. Springer-Verlag, 1998.

16

