Puzzles algorithmiques

Florian Bourse

Se ramener à un sous-problème Question 1. Un détachement de 25 soldats doit traverser une rivière. Ils aperçoivent 2 enfants jouant avec un bateau. Cependant, le bateau est si petit qu'il ne peut contenir qu'un soldat ou 2 enfants. Comment les soldats peuvent-ils traverser, et combien de traversées doit faire le bateau?

Question 2. On veut couper un bâton de 1 mètre en 100 morceaux de 1 centimètre. Si on peut couper plusieurs morceaux de bois d'un coup, quelle est la meilleure stratégie pour terminer en un minimum de coupe, et de combien de coupes a-t-on besoin?

Pesées Question 3. Une pièce parmi 8 est une contrefaçon et est plus légère que les autres. À l'aide d'une balance à plateaux, combien de pesées doit-on réaliser au minimum pour déterminer quelle pièce est contrefaite?

Question 4. Parmi 10 tas de 10 pièces chacuns, il y a une pile qui ne contient que des pièces de contrefaçon qui pèsent 11 grammes chacune, alors que les pièces ordinaires pèsent 10 grammes chacune. À l'aide d'une balance numérique, combien de pesées doit-on réaliser au minimum pour déterminer quelle est la pile de pièces contrefaites?

Question 5. Un nombre $n \geq 2$ de pièces contient une pièce contrefaite, mais on ne sait pas si elle est plus légère ou plus lourde. Combien de pesées faut-il utiliser au minimum pour déterminer cette information?

Egg throwing On cherche à savoir à partir de quel étage N d'un certain immeuble les œufs se cassent. On suppose que tous les œufs se cassent à la même hauteur, et qu'un œuf non cassé peut être réutiliser.

Pour l'instant, on suppose que l'immeuble possède 100 étages.

Question 6. On dispose d'un seul œuf, quelle est la meilleure stratégie pour déterminer la valeur de N, et combien de lancers doit-on effectuer?

Question 7. On dispose d'une infinité d'œufs, quelle est la meilleure stratégie pour déterminer la valeur de N et combien de lancers doit-on effectuer?

Question 8. On dispose de 2 œufs, quelle est la meilleure stratégie pour déterminer la valeur de N et combien de lancers doit-on effectuer?

Question 9. Généraliser à tout immeuble et tout nombre d'œufs, et proposer un algorithme qui résoud le problème. On pourra s'intéresser au nombre maximum d'étages qui peuvent être testés en k lancers avec n œufs.

Recherche exhaustive - diminution de l'espace de recherche Question 10. Peuton remplir un plateau d'échecs (8×8) avec des dominos sans former de carré avec deux dominos (2×2) ?