Isotonic Regression

- Imposing ordering constraints on estimation problems
- Signal processing, machine learning and statistics
 - Probability calibration for classification
 - Interpretability

Constrained optimization problem

\[
\min_{x \in \mathbb{R}^n} H(x) \text{ such that } \forall (i, j) \in E, \; x_i \geq x_j,
\]
where \(E \subset \{1, \ldots, n\}^2 \) is a directed acyclic graph.

- Most classical example: separable quadratic cost

\[
\min_{x \in \mathbb{R}^n} \frac{1}{2} \|x - z\|^2 \quad \text{such that } x_1 \leq \cdots \leq x_n
\]

- Convex function \(H \) \(\Rightarrow \) convex optimization problem
 - Efficient first-order algorithms
- Non-convex function \(H \)
 - No efficient algorithms general

Submodular Functions

- Definition ([1]): \(\forall x \in \mathbb{R}^n, \forall i \neq j, \frac{\partial^2 H}{\partial x_i \partial x_j}(x) \leq 0 \)
- Example 1 (Laplacian): \(H(x) = \sum_{i,j=1}^n w_{ij}(x_i - x_j)^2 \)
- Example 2 (Separable functions): \(H(x) = \sum_{i=1}^n h_i(x_i) \)
 - For any (e.g., non-convex) functions \(h_i : \mathbb{R} \rightarrow \mathbb{R} \)

Convex Extension with Measures

- \(\mathcal{P}(\mathbb{R}) \) = set of Radon probability measures on \(\mathbb{R} \)
- \((\text{reverse}) \) cumulative distribution function for \(\mu \in \mathcal{P}(\mathbb{R}) \): \(F_{\mu_i}(x) = \mu_i([x_i, +\infty)) \)
- “Inverse” CDF \(F_{\mu_i}^{-1} \)

- Extension to \(\mu = (\mu_1, \ldots, \mu_n) \)-see [2]:

\[
h(\mu_1, \ldots, \mu_n) = \int_0^1 H[F_{\mu_1}^{-1}(t), \ldots, F_{\mu_n}^{-1}(t)] dt
\]

- Property 1: \(H \) submodular \(\iff \) \(h \) convex
- Property 2: minimizers of \(H \) can be recovered from minimizers of \(h \)
- Consequence: Submodular function minimization is a convex optimization problem

Discretization Algorithms

- Discretize each interval with \(k \) values
 - Approximation \(O(n/k) \)
 - Number of queries of \(H \) is \(O(tnk) \) for \(t \) operations of projected subgradient descent
 - Projection based on (efficient) quadratic cost isotonic regression \([3]\)
 - Extra approximation factor \(O(n/\sqrt{t}) \)
- With \(k = n/\varepsilon \) and \(t = n^2/\varepsilon^2 \)
 - Error \(\varepsilon \) and number of queries \(O(n^4/\varepsilon^5) \)
- For improved behavior, see paper

Experiments

- Robust isotonic regression: \(H(x) = \frac{1}{n} \sum_{i=1}^n G(x_i - z_i) \)
 - \(G(t) = |t| \) or \(|t|^2 \Rightarrow \) convex problem
 - \(G(t) = \kappa^2 \log(1 + |t/\kappa|) \Rightarrow \) submodular problem
 - Vanishing gradients \(\Rightarrow \) Robustness
- Data with adversarial perturbations
 - Goal: learn decreasing functions
 - Perturbation by noise and increasing function (observations in pink)

Extension for Isotonic Constraints

- First-order stochastic dominance between \(\mu, \nu \in \mathcal{P}(\mathbb{R}) \):

\[
\mu \succ \nu \text{ if and only if } \forall x \in \mathbb{R}, \quad F_\mu(x) \geq F_\nu(x)
\]

- Equivalent optimization problem

\[
\min_{\mu \in \mathcal{P}(\mathbb{R})^n} h(\mu) \text{ such that } \forall (i, j) \in E, \; \mu_i \geq \mu_j
\]

References