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Submodular functions - References

• References based on combinatorial optimization

– Submodular Functions and Optimization (Fujishige, 2005)

– Discrete convex analysis (Murota, 2003)

• Tutorial paper based on convex optimization (Bach, 2011b)

– www.di.ens.fr/~fbach/submodular_fot.pdf

• Slides for this lecture

– www.di.ens.fr/~fbach/fbach_cargese_2013.pdf



Submodularity (almost) everywhere

Clustering

• Semi-supervised clustering

⇒

• Submodular function minimization



Submodularity (almost) everywhere

Sensor placement

• Each sensor covers a certain area (Krause and Guestrin, 2005)

– Goal: maximize coverage

• Submodular function maximization

• Extension to experimental design (Seeger, 2009)



Submodularity (almost) everywhere

Graph cuts and image segmentation

• Submodular function minimization



Submodularity (almost) everywhere

Isotonic regression

• Given real numbers xi, i = 1, . . . , p

– Find y ∈ R
p that minimizes

1

2

p
∑

j=1

(xi− yi)
2 such that ∀i, yi 6 yi+1

y

x

• Submodular convex optimization problem



Submodularity (almost) everywhere

Structured sparsity - I



Submodularity (almost) everywhere

Structured sparsity - II

raw data sparse PCA

• No structure: many zeros do not lead to better interpretability



Submodularity (almost) everywhere

Structured sparsity - II

raw data sparse PCA

• No structure: many zeros do not lead to better interpretability



Submodularity (almost) everywhere

Structured sparsity - II

raw data Structured sparse PCA

• Submodular convex optimization problem



Submodularity (almost) everywhere

Structured sparsity - II

raw data Structured sparse PCA

• Submodular convex optimization problem



Submodularity (almost) everywhere

Image denoising

• Total variation denoising (Chambolle, 2005)

• Submodular convex optimization problem



Submodularity (almost) everywhere

Maximum weight spanning trees

• Given an undirected graph G = (V,E) and weights w : E 7→ R+

– find the maximum weight spanning tree
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• Greedy algorithm for submodular polyhedron - matroid



Submodularity (almost) everywhere

Combinatorial optimization problems

• Set V = {1, . . . , p}

• Power set 2V = set of all subsets, of cardinality 2p

• Minimization/maximization of a set function F : 2V → R.

min
A⊂V

F (A) = min
A∈2V

F (A)



Submodularity (almost) everywhere

Combinatorial optimization problems

• Set V = {1, . . . , p}

• Power set 2V = set of all subsets, of cardinality 2p

• Minimization/maximization of a set function F : 2V → R.

min
A⊂V

F (A) = min
A∈2V

F (A)

• Reformulation as (pseudo) Boolean function

min
w∈{0,1}p

f(w)

with ∀A ⊂ V, f(1A) = F (A)

(0, 1, 1)~{2, 3}

(0, 1, 0)~{2}

(1, 0, 1)~{1, 3} (1, 1, 1)~{1, 2, 3}

(1, 1, 0)~{1, 2}

(0, 0, 1)~{3}

(0, 0, 0)~{ }

(1, 0, 0)~{1}



Submodularity (almost) everywhere

Convex optimization with combinatorial structure

• Supervised learning / signal processing

– Minimize regularized empirical risk from data (xi, yi), i = 1, . . . , n:

min
f∈F

1

n

n
∑

i=1

ℓ(yi, f(xi)) + λΩ(f)

– F is often a vector space, formulation often convex

• Introducing discrete structures within a vector space framework

– Trees, graphs, etc.

– Many different approaches (e.g., stochastic processes)

• Submodularity allows the incorporation of discrete structures



Outline

1. Submodular functions

– Review and examples of submodular functions

– Links with convexity through Lovász extension

2. Submodular minimization

– Non-smooth convex optimization

– Parallel algorithm for special case

3. Structured sparsity-inducing norms

– Relaxation of the penalization of supports by submodular functions

– Extensions (symmetric, ℓq-relaxation)



Submodular functions

Definitions

• Definition: F : 2V → R is submodular if and only if

∀A,B ⊂ V, F (A) + F (B) > F (A ∩B) + F (A ∪B)

– NB: equality for modular functions

– Always assume F (∅) = 0



Submodular functions

Definitions

• Definition: F : 2V → R is submodular if and only if

∀A,B ⊂ V, F (A) + F (B) > F (A ∩B) + F (A ∪B)

– NB: equality for modular functions

– Always assume F (∅) = 0

• Equivalent definition:

∀k ∈ V, A 7→ F (A ∪ {k})− F (A) is non-increasing

⇔ ∀A ⊂ B, ∀k /∈ A, F (A ∪ {k})− F (A) > F (B ∪ {k})− F (B)

– “Concave property”: Diminishing return property



Examples of submodular functions

Cardinality-based functions

• Notation for modular function: s(A) =
∑

k∈A sk for s ∈ R
p

– If s = 1V , then s(A) = |A| (cardinality)

• Proposition: If s ∈ R
p
+ and g : R+ → R is a concave function, then

F : A 7→ g(s(A)) is submodular

• Proposition 2: If F : A 7→ g(s(A)) is submodular for all s ∈ R
p
+,

then g is concave

• Classical example:

– F (A) = 1 if |A| > 0 and 0 otherwise

– May be rewritten as F (A) = maxk∈V (1A)k



Examples of submodular functions

Covers

S

3S

1S
2S

7

S6
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S4

S 8

• Let W be any “base” set, and for each k ∈ V , a set Sk ⊂W

• Set cover defined as F (A) =
∣

∣

⋃

k∈A Sk

∣

∣

• Proof of submodularity ⇒ homework



Examples of submodular functions

Cuts

• Given a (un)directed graph, with vertex set V and edge set E

– F (A) is the total number of edges going from A to V \A.

A

• Generalization with d : V × V → R+

F (A) =
∑

k∈A,j∈V \A
d(k, j)

• Proof of submodularity ⇒ homework



Examples of submodular functions

Entropies

• Given p random variables X1, . . . ,Xp with finite number of values

– Define F (A) as the joint entropy of the variables (Xk)k∈A

– F is submodular

• Proof of submodularity using data processing inequality (Cover and

Thomas, 1991): if A ⊂ B and k /∈ B,

F (A∪{k})−F (A) = H(XA,Xk)−H(XA) = H(Xk|XA) > H(Xk|XB)

• Symmetrized version G(A) = F (A) + F (V \A) − F (V ) is mutual

information between XA and XV \A

• Extension to continuous random variables, e.g., Gaussian:

F (A) = log detΣAA, for some positive definite matrix Σ ∈ R
p×p



Examples of submodular functions

Flows

• Net-flows from multi-sink multi-source networks (Megiddo, 1974)

• See details in Fujishige (2005); Bach (2011b)

• Efficient formulation for set covers



Examples of submodular functions

Matroids

• The pair (V, I) is a matroid with I its family of independent sets, iff:

(a) ∅ ∈ I
(b) I1 ⊂ I2 ∈ I ⇒ I1 ∈ I
(c) for all I1, I2 ∈ I, |I1| < |I2| ⇒ ∃k ∈ I2\I1, I1 ∪ {k} ∈ I

• Rank function of the matroid, defined as F (A) = maxI⊂A, A∈I |I|
is submodular (direct proof )

• Graphic matroid

– V edge set of a certain graph G = (U, V )

– I = set of subsets of edges which do not contain any cycle

– F (A) = |U | minus the number of connected components of the

subgraph induced by A



Outline

1. Submodular functions

– Review and examples of submodular functions

– Links with convexity through Lovász extension

2. Submodular minimization

– Non-smooth convex optimization

– Parallel algorithm for special case

3. Structured sparsity-inducing norms

– Relaxation of the penalization of supports by submodular functions

– Extensions (symmetric, ℓq-relaxation)



Choquet integral (Choquet, 1954) - Lovász extension

• Subsets may be identified with elements of {0, 1}p

• Given any set-function F and w such that wj1 > · · · > wjp, define:

f(w) =

p
∑

k=1

wjk[F ({j1, . . . , jk})− F ({j1, . . . , jk−1})]

=

p−1
∑

k=1

(wjk − wjk+1
)F ({j1, . . . , jk}) + wjpF ({j1, . . . , jp})

(0, 1, 1)~{2, 3}

(0, 1, 0)~{2}

(1, 0, 1)~{1, 3} (1, 1, 1)~{1, 2, 3}

(1, 1, 0)~{1, 2}

(0, 0, 1)~{3}

(0, 0, 0)~{ }

(1, 0, 0)~{1}



Choquet integral (Choquet, 1954) - Lovász extension

Properties

f(w) =

p
∑

k=1

wjk[F ({j1, . . . , jk})− F ({j1, . . . , jk−1})]

=

p−1
∑

k=1

(wjk − wjk+1
)F ({j1, . . . , jk}) + wjpF ({j1, . . . , jp})

• For any set-function F (even not submodular)

– f is piecewise-linear and positively homogeneous

– If w = 1A, f(w) = F (A) ⇒ extension from {0, 1}p to R
p



Submodular functions

Links with convexity (Edmonds, 1970; Lovász, 1982)

• Theorem (Lovász, 1982): F is submodular if and only if f is convex

• Proof requires additional notions from Edmonds (1970):

– Submodular and base polyhedra



Submodular and base polyhedra - Definitions

• Submodular polyhedron: P (F ) = {s ∈ R
p, ∀A ⊂ V, s(A) 6 F (A)}

• Base polyhedron: B(F ) = P (F ) ∩ {s(V ) = F (V )}
2s

s 1

B(F)

P(F)

3s

s2

s1

P(F)

B(F)

• Property: P (F ) has non-empty interior



Submodular and base polyhedra - Properties

• Submodular polyhedron: P (F ) = {s ∈ R
p, ∀A ⊂ V, s(A) 6 F (A)}

• Base polyhedron: B(F ) = P (F ) ∩ {s(V ) = F (V )}

• Many facets (up to 2p), many extreme points (up to p!)



Submodular and base polyhedra - Properties

• Submodular polyhedron: P (F ) = {s ∈ R
p, ∀A ⊂ V, s(A) 6 F (A)}

• Base polyhedron: B(F ) = P (F ) ∩ {s(V ) = F (V )}

• Many facets (up to 2p), many extreme points (up to p!)

• Fundamental property (Edmonds, 1970): If F is submodular,

maximizing linear functions may be done by a “greedy algorithm”

– Let w ∈ R
p
+ such that wj1 > · · · > wjp

– Let sjk = F ({j1, . . . , jk})− F ({j1, . . . , jk−1}) for k ∈ {1, . . . , p}
– Then f(w) = max

s∈P (F )
w⊤s = max

s∈B(F )
w⊤s

– Both problems attained at s defined above

• Simple proof by convex duality



Submodular functions

Links with convexity

• Theorem (Lovász, 1982): If F is submodular, then

min
A⊂V

F (A) = min
w∈{0,1}p

f(w) = min
w∈[0,1]p

f(w)

• Consequence: Submodular function minimization may be done in

polynomial time (through ellipsoid algorithm)

• Representation of f(w) as a support function (Edmonds, 1970):

f(w) = max
s∈B(F )

s⊤w

– Maximizer s may be found efficiently through the greedy algorithm



Outline

1. Submodular functions
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– Links with convexity through Lovász extension
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– Parallel algorithm for special case
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Submodular function minimization

Dual problem

• Let F : 2V → R be a submodular function (such that F (∅) = 0)

• Convex duality (Edmonds, 1970):

min
A⊂V

F (A) = min
w∈[0,1]p

f(w)

= min
w∈[0,1]p

max
s∈B(F )

w⊤s

= max
s∈B(F )

min
w∈[0,1]p

w⊤s = max
s∈B(F )

s−(V )



Exact submodular function minimization

Combinatorial algorithms

• Algorithms based on minA⊂V F (A) = maxs∈B(F ) s−(V )

• Output the subset A and a base s ∈ B(F ) as a certificate of

optimality

• Best algorithms have polynomial complexity (Schrijver, 2000; Iwata

et al., 2001; Orlin, 2009) (typically O(p6) or more)

• Update a sequence of convex combination of vertices of B(F )

obtained from the greedy algorithm using a specific order:

– Based only on function evaluations

• Recent algorithms using efficient reformulations in terms of

generalized graph cuts (Jegelka et al., 2011)



Approximate submodular function minimization

• For most machine learning applications, no need to obtain

exact minimum

– For convex optimization, see, e.g., Bottou and Bousquet (2008)

min
A⊂V

F (A) = min
w∈{0,1}p

f(w) = min
w∈[0,1]p

f(w)



Approximate submodular function minimization

• For most machine learning applications, no need to obtain

exact minimum

– For convex optimization, see, e.g., Bottou and Bousquet (2008)

min
A⊂V

F (A) = min
w∈{0,1}p

f(w) = min
w∈[0,1]p

f(w)

• Important properties of f for convex optimization

– Polyhedral function

– Representation as maximum of linear functions

f(w) = max
s∈B(F )

w⊤s

• Stability vs. speed vs. generality vs. ease of implementation



Projected subgradient descent (Shor et al., 1985)

• Subgradient of f(w) = max
s∈B(F )

s⊤w through the greedy algorithm

• Using projected subgradient descent to minimize f on [0, 1]p

– Iteration: wt = Π[0,1]p
(

wt−1 − C√
t
st
)

where st ∈ ∂f(wt−1)

– Convergence rate: f(wt)−minw∈[0,1]p f(w) 6
√
p√
t
with primal/dual

guarantees (Nesterov, 2003)

• Fast iterations but slow convergence

– need O(p/ε2) iterations to reach precision ε

– need O(p2/ε2) function evaluations to reach precision ε



Ellipsoid method (Nemirovski and Yudin, 1983)

• Build a sequence of minimum volume ellipsoids that enclose the set

of solutions
1

E

E

0
1

2
E

E

• Cost of a single iteration: p function evaluations and O(p3) operations

• Number of iterations: 2p2
(

maxA⊂V F (A)−minA⊂V F (A)
)

log 1
ε.

– O(p5) operations and O(p3) function evaluations

• Slow in practice (the bound is “tight”)



Analytic center cutting planes (Goffin and Vial, 1993)

• Center of gravity method

– improves the convergence rate of ellipsoid method

– cannot be computed easily

• Analytic center of a polytope defined by a⊤i w 6 bi, i ∈ I

min
w∈Rp

−
∑

i∈I

log(bi − a⊤i w)

• Analytic center cutting planes (ACCPM)

– Each iteration has complexity O(p2|I| + |I|3) using Newton’s

method

– No linear convergence rate

– Good performance in practice



Simplex method for submodular minimization

• Mentioned by Girlich and Pisaruk (1997); McCormick (2005)

• Formulation as linear program: s ∈ B(F ) ⇔ s = S⊤η, S ∈ R
d×p

max
s∈B(F )

s−(V ) = max
η>0, η⊤1d=1

p
∑

i=1

min{(S⊤η)i, 0}

= max
η>0, α>0, β>0

−β⊤1p such that S⊤η − α+ β = 0, η⊤1d = 1.

• Column generation for simplex methods: only access the rows of

S by maximizing linear functions

– no complexity bound, may get global optimum if enough iterations



Separable optimization on base polyhedron

• Optimization of convex functions of the form Ψ(w) + f(w) with

f Lovász extension of F , and Ψ(w) =
∑

k∈V ψk(wk)

• Structured sparsity

– Total variation denoising - isotonic regression

– Regularized risk minimization penalized by the Lovász extension



Total variation denoising (Chambolle, 2005)

• F (A) =
∑

k∈A,j∈V \A
d(k, j) ⇒ f(w) =

∑

k,j∈V

d(k, j)(wk − wj)+

• d symmetric ⇒ f = total variation



Isotonic regression

• Given real numbers xi, i = 1, . . . , p

– Find y ∈ R
p that minimizes

1

2

p
∑

j=1

(xi− yi)
2 such that ∀i, yi 6 yi+1

y

x

• For a directed chain, f(y) = 0 if and only if ∀i, yi 6 yi+1

• Minimize 1
2

∑p
j=1(xi − yi)

2 + λf(y) for λ large



Separable optimization on base polyhedron

• Optimization of convex functions of the form Ψ(w) + f(w) with

f Lovász extension of F , and Ψ(w) =
∑

k∈V ψk(wk)

• Structured sparsity

– Total variation denoising - isotonic regression

– Regularized risk minimization penalized by the Lovász extension



Separable optimization on base polyhedron

• Optimization of convex functions of the form Ψ(w) + f(w) with

f Lovász extension of F , and Ψ(w) =
∑

k∈V ψk(wk)

• Structured sparsity

– Total variation denoising - isotonic regression

– Regularized risk minimization penalized by the Lovász extension

• Proximal methods (see second part)

– Minimize Ψ(w) + f(w) for smooth Ψ as soon as the following

“proximal” problem may be obtained efficiently

min
w∈Rp

1

2
‖w − z‖22 + f(w) = min

w∈Rp

p
∑

k=1

1

2
(wk − zk)

2 + f(w)

• Submodular function minimization



Separable optimization on base polyhedron

Convex duality

• Let ψk : R → R, k ∈ {1, . . . , p} be p functions. Assume

– Each ψk is strictly convex

– supα∈R
ψ′
j(α) = +∞ and infα∈Rψ

′
j(α) = −∞

– Denote ψ∗
1, . . . , ψ

∗
p their Fenchel-conjugates (then with full domain)



Separable optimization on base polyhedron

Convex duality

• Let ψk : R → R, k ∈ {1, . . . , p} be p functions. Assume

– Each ψk is strictly convex

– supα∈R
ψ′
j(α) = +∞ and infα∈Rψ

′
j(α) = −∞

– Denote ψ∗
1, . . . , ψ

∗
p their Fenchel-conjugates (then with full domain)

min
w∈Rp

f(w) +

p
∑

j=1

ψi(wj) = min
w∈Rp

max
s∈B(F )

w⊤s+
p

∑

j=1

ψj(wj)

= max
s∈B(F )

min
w∈Rp

w⊤s+
p

∑

j=1

ψj(wj)

= max
s∈B(F )

−
p

∑

j=1

ψ∗
j (−sj)



Separable optimization on base polyhedron

Equivalence with submodular function minimization

• For α ∈ R, let Aα ⊂ V be a minimizer of A 7→ F (A) +
∑

j∈Aψ
′
j(α)

• Let w∗ be the unique minimizer of w 7→ f(w) +
∑p

j=1ψj(wj)

• Proposition (Chambolle and Darbon, 2009):

– Given Aα for all α ∈ R, then ∀j, w∗
j = sup({α ∈ R, j ∈ Aα})

– Given w∗, then A 7→ F (A) +
∑

j∈Aψ
′
j(α) has minimal minimizer

{w∗ > α} and maximal minimizer {w∗ > α}

• Separable optimization equivalent to a sequence of submodular

function minimizations

– NB: extension of known results from parametric max-flow



Equivalence with submodular function minimization

Proof sketch (Bach, 2011b)

• Duality gap for min
w∈Rp

f(w) +

p
∑

j=1

ψi(wj) = max
s∈B(F )

−
p

∑

j=1

ψ∗
j (−sj)

f(w) +

p
∑

j=1

ψi(wj)−
p

∑

j=1

ψ∗
j (−sj)

= f(w)− w⊤s+
p

∑

j=1

{

ψj(wj) + ψ∗
j (−sj) + wjsj

}

=

∫ +∞

−∞

{

(F + ψ′(α))({w > α})− (s+ ψ′(α))−(V )

}

dα

• Duality gap for convex problems = sums of duality gaps for

combinatorial problems



Separable optimization on base polyhedron

Quadratic case

• Let F be a submodular function and w ∈ R
p the unique minimizer

of w 7→ f(w) + 1
2‖w‖22. Then:

(a) s = −w is the point in B(F ) with minimum ℓ2-norm

(b) For all λ ∈ R, the maximal minimizer of A 7→ F (A) + λ|A| is

{w > −λ} and the minimal minimizer of F is {w > −λ}

• Consequences

– Threshold at 0 the minimum norm point in B(F ) to minimize

F (Fujishige and Isotani, 2011)

– Minimizing submodular functions with cardinality constraints (Nagano

et al., 2011)



From convex to combinatorial optimization

and vice-versa...

• Solving min
w∈Rp

∑

k∈V

ψk(wk) + f(w) to solve min
A⊂V

F (A)

– Thresholding solutions w at zero if ∀k ∈ V, ψ′
k(0) = 0

– For quadratic functions ψk(wk) =
1
2w

2
k, equivalent to projecting 0

on B(F ) (Fujishige, 2005)



From convex to combinatorial optimization

and vice-versa...

• Solving min
w∈Rp

∑

k∈V

ψk(wk) + f(w) to solve min
A⊂V

F (A)

– Thresholding solutions w at zero if ∀k ∈ V, ψ′
k(0) = 0

– For quadratic functions ψk(wk) =
1
2w

2
k, equivalent to projecting 0

on B(F ) (Fujishige, 2005)

• Solving min
A⊂V

F (A)− t(A) to solve min
w∈Rp

∑

k∈V

ψk(wk) + f(w)

– General decomposition strategy (Groenevelt, 1991)

– Efficient only when submodular minimization is efficient



Solving min
A⊂V

F (A)− t(A) to solve min
w∈Rp

∑

k∈V
ψk(wk)+f(w)

• General recursive divide-and-conquer algorithm (Groenevelt, 1991)

• NB: Dual version of Fujishige (2005)

1. Compute minimizer t ∈ R
p of

∑

j∈V ψ
∗
j (−tj) s.t. t(V ) = F (V )

2. Compute minimizer A of F (A)− t(A)

3. If A = V , then t is optimal. Exit.

4. Compute a minimizer sA of
∑

j∈Aψ
∗
j (−sj) over s ∈ B(FA) where

FA : 2A → R is the restriction of F to A, i.e., FA(B) = F (A)

5. Compute a minimizer sV \A of
∑

j∈V \Aψ
∗
j (−sj) over s ∈ B(FA)

where FA(B) = F (A ∪B)− F (A), for B ⊂ V \A
6. Concatenate sA and sV \A. Exit.



Solving min
w∈Rp

∑

k∈V
ψk(wk) + f(w) to solve min

A⊂V
F (A)

• Dual problem: maxs∈B(F )−
∑p

j=1ψ
∗
j (−sj)

• Constrained optimization when linear functions can be maximized

– Frank-Wolfe algorithms

• Two main types for convex functions



Approximate quadratic optimization on B(F )

• Goal: min
w∈Rp

1

2
‖w‖22 + f(w) = max

s∈B(F )
−1

2
‖s‖22

• Can only maximize linear functions on B(F )

• Two types of “Frank-wolfe” algorithms

• 1. Active set algorithm (⇔ min-norm-point)

– Sequence of maximizations of linear functions over B(F )

+ overheads (affine projections)

– Finite convergence, but no complexity bounds



Minimum-norm-point algorithm (Wolfe, 1976)
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Approximate quadratic optimization on B(F )

• Goal: min
w∈Rp

1

2
‖w‖22 + f(w) = max

s∈B(F )
−1

2
‖s‖22

• Can only maximize linear functions on B(F )

• Two types of “Frank-wolfe” algorithms

• 1. Active set algorithm (⇔ min-norm-point)

– Sequence of maximizations of linear functions over B(F )

+ overheads (affine projections)

– Finite convergence, but no complexity bounds

• 2. Conditional gradient

– Sequence of maximizations of linear functions over B(F )

– Approximate optimality bound



Conditional gradient with line search
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Approximate quadratic optimization on B(F )

• Proposition: t steps of conditional gradient (with line search)

outputs st ∈ B(F ) and wt = −st, such that

f(wt) +
1

2
‖wt‖22 −OPT 6 f(wt) +

1

2
‖wt‖22 +

1

2
‖st‖22 6

2D2

t



Approximate quadratic optimization on B(F )

• Proposition: t steps of conditional gradient (with line search)

outputs st ∈ B(F ) and wt = −st, such that

f(wt) +
1

2
‖wt‖22 −OPT 6 f(wt) +

1

2
‖wt‖22 +

1

2
‖st‖22 6

2D2

t

• Improved primal candidate through isotonic regression

– f(w) is linear on any set of w with fixed ordering

– May be optimized using isotonic regression (“pool-adjacent-

violator”) in O(n) (see, e.g., Best and Chakravarti, 1990)

– Given wt = −st, keep the ordering and reoptimize



Approximate quadratic optimization on B(F )

• Proposition: t steps of conditional gradient (with line search)

outputs st ∈ B(F ) and wt = −st, such that

f(wt) +
1

2
‖wt‖22 −OPT 6 f(wt) +

1

2
‖wt‖22 +

1

2
‖st‖22 6

2D2

t

• Improved primal candidate through isotonic regression

– f(w) is linear on any set of w with fixed ordering

– May be optimized using isotonic regression (“pool-adjacent-

violator”) in O(n) (see, e.g. Best and Chakravarti, 1990)

– Given wt = −st, keep the ordering and reoptimize

• Better bound for submodular function minimization?



From quadratic optimization on B(F )

to submodular function minimization

• Proposition: If w is ε-optimal for minw∈Rp
1
2‖w‖22 + f(w), then at

least a levet set A of w is
(

√
εp

2

)

-optimal for submodular function

minimization

• If ε =
2D2

t
,

√
εp

2
=
Dp1/2√

2t
⇒ no provable gains, but:

– Bound on the iterates At (with additional assumptions)

– Possible thresolding for acceleration



From quadratic optimization on B(F )

to submodular function minimization

• Proposition: If w is ε-optimal for minw∈Rp
1
2‖w‖22 + f(w), then at

least a levet set A of w is
(

√
εp

2

)

-optimal for submodular function

minimization

• If ε =
2D2

t
,

√
εp

2
=
Dp1/2√

2t
⇒ no provable gains, but:

– Bound on the iterates At (with additional assumptions)

– Possible thresolding for acceleration

• Lower complexity bound for SFM

– Conjecture: no algorithm that is based only on a sequence of

greedy algorithms obtained from linear combinations of bases can

improve on the subgradient bound (after p/2 iterations).



Simulations on standard benchmark

“DIMACS Genrmf-wide”, p = 430

• Submodular function minimization

– (Left) dual suboptimality

– (Right) primal suboptimality

0 500 1000 1500
−1

0

1

2

3

4

iterations

lo
g 10

(m
in

(F
)−

s −
(V

))

 

 

MNP
CG−LS
CG−1/t
SD−1/t1/2

SD−Polyak
Ellipsoid
Simplex
ACCPM
ACCPM−simp.

0 500 1000 1500
−1

0

1

2

3

4

iterations

lo
g 10

(F
(A

)−
m

in
(F

))



Simulations on standard benchmark

“DIMACS Genrmf-long”, p = 575

• Submodular function minimization

– (Left) dual suboptimality

– (Right) primal suboptimality
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Simulations on standard benchmark

• Separable quadratic optimization

– (Left) dual suboptimality

– (Right) primal suboptimality

(in dashed, before the pool-adjacent-violator correction)
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Outline

1. Submodular functions

– Review and examples of submodular functions

– Links with convexity through Lovász extension

2. Submodular minimization

– Non-smooth convex optimization

– Parallel algorithm for special case

3. Structured sparsity-inducing norms

– Relaxation of the penalization of supports by submodular functions

– Extensions (symmetric, ℓq-relaxation)



From submodular minimization to proximal problems

• Summary: several optimization problems

– Discrete problem: min
A⊂V

F (A) = min
w∈{0,1}p

f(w)

– Continuous problem: min
w∈[0,1]p

f(w)

– Proximal problem (P): min
w∈Rp

1

2
‖w‖22 + f(w)

• Solving (P) is equivalent to minimizing F (A) + λ|A| for all λ
– arg min

A⊆V
F (A) + λ|A| = {k,wk > −λ}

• Much simpler problem but no gains in terms of (provable) complexity

– See Bach (2011a)



Decomposable functions

• F may often be decomposed as the sum of r “simple” functions:

F (A) =
r

∑

j=1

Fj(A)

– Each Fj may be minimized efficiently

– Example: 2D grid = vertical chains + horizontal chains

• Komodakis et al. (2011); Kolmogorov (2012); Stobbe and Krause

(2010); Savchynskyy et al. (2011)

– Dual decomposition approach but slow non-smooth problem



Decomposable functions and proximal problems

(Jegelka, Bach, and Sra, 2013)

• Dual problem

min
w∈Rp

f1(w) + f2(w) +
1

2
‖w‖22

= min
w∈Rp

max
s1∈B(F1)

s⊤1 w + max
s2∈B(F2)

s⊤2 w +
1

2
‖w‖22

= max
s1∈B(F1), s2∈B(F2)

−1

2
‖s1 + s2‖2

• Finding the closest point between two polytopes

– Several alternatives: Block coordinate ascent, Douglas Rachford

splitting (Bauschke et al., 2004)

– (a) no parameters, (b) parallelizable



Experiments

• Graph cuts on a 500× 500 image
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• Matlab/C implementation 10 times slower than C-code for graph cut

– Easy to code and parallelizable



Parallelization

• Multiple cores

0 2 4 6 8
0

1

2

3

4

5

6
40 iterations of DR

# cores

sp
ee

du
p 

fa
ct

or



Outline

1. Submodular functions

– Review and examples of submodular functions

– Links with convexity through Lovász extension

2. Submodular minimization

– Non-smooth convex optimization

– Parallel algorithm for special case

3. Structured sparsity-inducing norms

– Relaxation of the penalization of supports by submodular functions

– Extensions (symmetric, ℓq-relaxation)



Structured sparsity through submodular functions

References and Links

• References on submodular functions

– Submodular Functions and Optimization (Fujishige, 2005)

– Tutorial paper based on convex optimization (Bach, 2011b)

www.di.ens.fr/~fbach/submodular_fot.pdf

• Structured sparsity through convex optimization

– Algorithms (Bach, Jenatton, Mairal, and Obozinski, 2011)

www.di.ens.fr/~fbach/bach_jenatton_mairal_obozinski_FOT.pdf

– Theory/applications (Bach, Jenatton, Mairal, and Obozinski, 2012)

www.di.ens.fr/~fbach/stat_science_structured_sparsity.pdf

– Matlab/R/Python codes: http://www.di.ens.fr/willow/SPAMS/

• Slides: www.di.ens.fr/~fbach/fbach_cargese_2013.pdf



Sparsity in supervised machine learning

• Observed data (xi, yi) ∈ R
p × R, i = 1, . . . , n

– Response vector y = (y1, . . . , yn)
⊤ ∈ R

n

– Design matrix X = (x1, . . . , xn)
⊤ ∈ R

n×p

• Regularized empirical risk minimization:

min
w∈Rp

1

n

n
∑

i=1

ℓ(yi, w
⊤xi) + λΩ(w) = min

w∈Rp
L(y,Xw) + λΩ(w)

• Norm Ω to promote sparsity

– square loss + ℓ1-norm ⇒ basis pursuit in signal processing (Chen

et al., 2001), Lasso in statistics/machine learning (Tibshirani, 1996)

– Proxy for interpretability

– Allow high-dimensional inference: log p = O(n)



Sparsity in unsupervised machine learning

• Multiple responses/signals y = (y1, . . . , yk) ∈ R
n×k

min
X=(x1,...,xp)

min
w1,...,wk∈Rp

k
∑

j=1

{

L(yj,Xwj) + λΩ(wj)
}



Sparsity in unsupervised machine learning

• Multiple responses/signals y = (y1, . . . , yk) ∈ R
n×k

min
X=(x1,...,xp)

min
w1,...,wk∈Rp

k
∑

j=1

{

L(yj,Xwj) + λΩ(wj)
}

• Only responses are observed ⇒ Dictionary learning

– Learn X = (x1, . . . , xp) ∈ R
n×p such that ∀j, ‖xj‖2 6 1

min
X=(x1,...,xp)

min
w1,...,wk∈Rp

k
∑

j=1

{

L(yj,Xwj) + λΩ(wj)
}

– Olshausen and Field (1997); Elad and Aharon (2006); Mairal et al.

(2009a)

• sparse PCA: replace ‖xj‖2 6 1 by Θ(xj) 6 1



Sparsity in signal processing

• Multiple responses/signals x = (x1, . . . , xk) ∈ R
n×k

min
D=(d1,...,dp)

min
α1,...,αk∈Rp

k
∑

j=1

{

L(xj,Dαj) + λΩ(αj)
}

• Only responses are observed ⇒ Dictionary learning

– Learn D = (d1, . . . , dp) ∈ R
n×p such that ∀j, ‖dj‖2 6 1

min
D=(d1,...,dp)

min
α1,...,αk∈Rp

k
∑

j=1

{

L(xj,Dαj) + λΩ(αj)
}

– Olshausen and Field (1997); Elad and Aharon (2006); Mairal et al.

(2009a)

• sparse PCA: replace ‖dj‖2 6 1 by Θ(dj) 6 1



Why structured sparsity?

• Interpretability

– Structured dictionary elements (Jenatton et al., 2009b)

– Dictionary elements “organized” in a tree or a grid (Kavukcuoglu

et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)



Structured sparse PCA (Jenatton et al., 2009b)

raw data sparse PCA

• Unstructed sparse PCA ⇒ many zeros do not lead to better

interpretability
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Structured sparse PCA (Jenatton et al., 2009b)

raw data Structured sparse PCA

• Enforce selection of convex nonzero patterns ⇒ robustness to

occlusion in face identification
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• Enforce selection of convex nonzero patterns ⇒ robustness to

occlusion in face identification



Why structured sparsity?

• Interpretability

– Structured dictionary elements (Jenatton et al., 2009b)

– Dictionary elements “organized” in a tree or a grid (Kavukcuoglu

et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)



Modelling of text corpora (Jenatton et al., 2010)
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et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)



Why structured sparsity?

• Interpretability

– Structured dictionary elements (Jenatton et al., 2009b)

– Dictionary elements “organized” in a tree or a grid (Kavukcuoglu

et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)

• Stability and identifiability

• Prediction or estimation performance

– When prior knowledge matches data (Haupt and Nowak, 2006;

Baraniuk et al., 2008; Jenatton et al., 2009a; Huang et al., 2009)

• Numerical efficiency

– Non-linear variable selection with 2p subsets (Bach, 2008)



Classical approaches to structured sparsity

• Many application domains

– Computer vision (Cevher et al., 2008; Mairal et al., 2009b)

– Neuro-imaging (Gramfort and Kowalski, 2009; Jenatton et al.,

2011)

– Bio-informatics (Rapaport et al., 2008; Kim and Xing, 2010)

• Non-convex approaches

– Haupt and Nowak (2006); Baraniuk et al. (2008); Huang et al.

(2009)

• Convex approaches

– Design of sparsity-inducing norms



Why ℓ1-norms lead to sparsity?

• Example 1: quadratic problem in 1D, i.e., min
x∈R

1

2
x2 − xy + λ|x|

• Piecewise quadratic function with a kink at zero

– Derivative at 0+: g+ = λ− y and 0−: g− = −λ− y

– x = 0 is the solution iff g+ > 0 and g− 6 0 (i.e., |y| 6 λ)

– x > 0 is the solution iff g+ 6 0 (i.e., y > λ) ⇒ x∗ = y − λ

– x 6 0 is the solution iff g− 6 0 (i.e., y 6 −λ) ⇒ x∗ = y + λ

• Solution x∗ = sign(y)(|y| − λ)+ = soft thresholding



Why ℓ1-norms lead to sparsity?

• Example 1: quadratic problem in 1D, i.e., min
x∈R

1

2
x2 − xy + λ|x|

• Piecewise quadratic function with a kink at zero

• Solution x∗ = sign(y)(|y| − λ)+ = soft thresholding

x

−λ

x*(y)

λ y



Why ℓ1-norms lead to sparsity?

• Example 2: minimize quadratic function Q(w) subject to ‖w‖1 6 T .

– coupled soft thresholding

• Geometric interpretation

– NB : penalizing is “equivalent” to constraining

1

2
w

w 1

2
w

w

• Non-smooth optimization!



Gaussian hare (ℓ2) vs. Laplacian tortoise (ℓ1)

• Smooth vs. non-smooth optimization

• See Bach, Jenatton, Mairal, and Obozinski (2011)



Sparsity-inducing norms

• Popular choice for Ω

– The ℓ1-ℓ2 norm,

∑

G∈H

‖wG‖2 =
∑

G∈H

(

∑

j∈G

w2
j

)1/2

– with H a partition of {1, . . . , p}
– The ℓ1-ℓ2 norm sets to zero groups of non-overlapping

variables (as opposed to single variables for the ℓ1-norm)

– For the square loss, group Lasso (Yuan and Lin, 2006)

G

2G

3G

1



Unit norm balls

Geometric interpretation

‖w‖2 ‖w‖1
√

w2
1 + w2

2 + |w3|



Sparsity-inducing norms

• Popular choice for Ω

– The ℓ1-ℓ2 norm,

∑

G∈H

‖wG‖2 =
∑

G∈H

(

∑

j∈G

w2
j

)1/2

– with H a partition of {1, . . . , p}
– The ℓ1-ℓ2 norm sets to zero groups of non-overlapping

variables (as opposed to single variables for the ℓ1-norm)

– For the square loss, group Lasso (Yuan and Lin, 2006)

G

2G

3G

1

• What if the set of groups H is not a partition anymore?

• Is there any systematic way?



ℓ1-norm = convex envelope of cardinality of support

• Let w ∈ R
p. Let V = {1, . . . , p} and Supp(w) = {j ∈ V, wj 6= 0}

• Cardinality of support: ‖w‖0 = Card(Supp(w))

• Convex envelope = largest convex lower bound (see, e.g., Boyd and

Vandenberghe, 2004)

1

0

||w||

||w||

−1 1

• ℓ1-norm = convex envelope of ℓ0-quasi-norm on the ℓ∞-ball [−1, 1]p



Convex envelopes of general functions of the support

(Bach, 2010)

• Let F : 2V → R be a set-function

– Assume F is non-decreasing (i.e., A ⊂ B ⇒ F (A) 6 F (B))

– Explicit prior knowledge on supports (Haupt and Nowak, 2006;

Baraniuk et al., 2008; Huang et al., 2009)

• Define Θ(w) = F (Supp(w)): How to get its convex envelope?

1. Possible if F is also submodular

2. Allows unified theory and algorithm

3. Provides new regularizers



Submodular functions and structured sparsity

• Let F : 2V → R be a non-decreasing submodular set-function

• Proposition: the convex envelope of Θ : w 7→ F (Supp(w)) on the

ℓ∞-ball is Ω : w 7→ f(|w|) where f is the Lovász extension of F



Proof - I

• Notation: g : w 7→ F (supp(w)) defined on [−1, 1]p

• Computation of the Fenchel dual

g∗(s) = max
‖w‖∞61

w⊤s− g(w)

= max
δ∈{0,1}p

max
‖w‖∞61

(δ ◦ w)⊤s− f(δ) by definition of g

= max
δ∈{0,1}p

δ⊤|s| − f(δ) by maximizing out w

= max
δ∈[0,1]p

δ⊤|s| − f(δ) because F − |s| is submodular



Proof - II

• Notation: g : w 7→ F (supp(w)) defined on [−1, 1]p

• Fenchel dual: g∗(s) = max
δ∈[0,1]p

δ⊤|s| − f(δ)



Proof - II

• Notation: g : w 7→ F (supp(w)) defined on [−1, 1]p

• Fenchel dual: g∗(s) = max
δ∈[0,1]p

δ⊤|s| − f(δ)

• Computation of the Fenchel bi-dual, for all w such that ‖w‖∞ 6 1:

g∗∗(w) = max
s∈Rp

s⊤w − g∗(s)

= max
s∈Rp

min
δ∈[0,1]p

s⊤w − δ⊤|s|+ f(δ)

= min
δ∈[0,1]p

max
s∈Rp

s⊤w − δ⊤|s|+ f(δ) by strong duality

= min
δ∈[0,1]p,δ>|w|

f(δ) = f(|w|) because F is nonincreasing



Submodular functions and structured sparsity

• Let F : 2V → R be a non-decreasing submodular set-function

• Proposition: the convex envelope of Θ : w 7→ F (Supp(w)) on the

ℓ∞-ball is Ω : w 7→ f(|w|) where f is the Lovász extension of F



Submodular functions and structured sparsity

• Let F : 2V → R be a non-decreasing submodular set-function

• Proposition: the convex envelope of Θ : w 7→ F (Supp(w)) on the

ℓ∞-ball is Ω : w 7→ f(|w|) where f is the Lovász extension of F

• Sparsity-inducing properties: Ω is a polyhedral norm

(1,0)/F({1})

(1,1)/F({1,2})(0,1)/F({2})

– A if stable if for all B ⊃ A, B 6= A⇒ F (B) > F (A)

– With probability one, stable sets are the only allowed active sets



Polyhedral unit balls

w
2

w
3

w
1

F (A) = |A|
Ω(w) = ‖w‖1

F (A) = min{|A|, 1}
Ω(w) = ‖w‖∞

F (A) = |A|1/2
all possible extreme points

F (A) = 1{A∩{1}6=∅} + 1{A∩{2,3}6=∅}
Ω(w) = |w1|+ ‖w{2,3}‖∞

F (A) = 1{A∩{1,2,3}6=∅}
+1{A∩{2,3}6=∅}+1{A∩{3}6=∅}

Ω(w) = ‖w‖∞ + ‖w{2,3}‖∞ + |w3|



Submodular functions and structured sparsity

Examples

• From Ω(w) to F (A): provides new insights into existing norms

– Grouped norms with overlapping groups (Jenatton et al., 2009a)

Ω(w) =
∑

G∈H

‖wG‖∞

– ℓ1-ℓ∞ norm ⇒ sparsity at the group level

– Some wG’s are set to zero for some groups G

(

Supp(w)
)c

=
⋃

G∈H′
G for some H

′ ⊆ H



Submodular functions and structured sparsity

Examples

• From Ω(w) to F (A): provides new insights into existing norms

– Grouped norms with overlapping groups (Jenatton et al., 2009a)

Ω(w) =
∑

G∈H

‖wG‖∞ ⇒ F (A) = Card
(

{G ∈ H, G ∩A 6= ∅}
)

– ℓ1-ℓ∞ norm ⇒ sparsity at the group level

– Some wG’s are set to zero for some groups G

(

Supp(w)
)c

=
⋃

G∈H′
G for some H

′ ⊆ H

– Justification not only limited to allowed sparsity patterns



Selection of contiguous patterns in a sequence

• Selection of contiguous patterns in a sequence

• H is the set of blue groups: any union of blue groups set to zero

leads to the selection of a contiguous pattern



Selection of contiguous patterns in a sequence

• Selection of contiguous patterns in a sequence

• H is the set of blue groups: any union of blue groups set to zero

leads to the selection of a contiguous pattern

• ∑

G∈H
‖wG‖∞ ⇒ F (A) = p− 2 + Range(A) if A 6= ∅



Other examples of set of groups H

• Selection of rectangles on a 2-D grids, p = 25

– H is the set of blue/green groups (with their not displayed

complements)

– Any union of blue/green groups set to zero leads to the selection

of a rectangle



Other examples of set of groups H

• Selection of diamond-shaped patterns on a 2-D grids, p = 25.

– It is possible to extend such settings to 3-D space, or more complex

topologies



Unit norm balls

Geometric interpretation

‖w‖1
√

w2
1 + w2

2 + |w3| ‖w‖2 + |w1|+ |w2|



Application to background subtraction

(Mairal, Jenatton, Obozinski, and Bach, 2010)

Input ℓ1-norm Structured norm



Application to background subtraction

(Mairal, Jenatton, Obozinski, and Bach, 2010)

Background ℓ1-norm Structured norm



Application to neuro-imaging

Structured sparsity for fMRI (Jenatton et al., 2011)

• “Brain reading”: prediction of (seen) object size

• Multi-scale activity levels through hierarchical penalization
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Application to neuro-imaging

Structured sparsity for fMRI (Jenatton et al., 2011)

• “Brain reading”: prediction of (seen) object size

• Multi-scale activity levels through hierarchical penalization



Sparse Structured PCA

(Jenatton, Obozinski, and Bach, 2009b)

• Learning sparse and structured dictionary elements:

min
W∈Rk×n,X∈Rp×k

1

n

n
∑

i=1

‖yi−Xwi‖22+λ

p
∑

j=1

Ω(xj) s.t. ∀i, ‖wi‖2 ≤ 1



Application to face databases (2/3)

(unstructured) sparse PCA Structured sparse PCA

• Enforce selection of convex nonzero patterns ⇒ robustness to

occlusion



Application to face databases (2/3)

(unstructured) sparse PCA Structured sparse PCA

• Enforce selection of convex nonzero patterns ⇒ robustness to

occlusion



Application to face databases (3/3)

• Quantitative performance evaluation on classification task
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Dictionary learning vs. sparse structured PCA

Exchange roles of X and w

• Sparse structured PCA (structured dictionary elements):

min
W∈Rk×n,X∈Rp×k

1

n

n
∑

i=1

‖yi−Xwi‖22+λ
k

∑

j=1

Ω(xj) s.t. ∀i, ‖wi‖2 ≤ 1.

• Dictionary learning with structured sparsity for codes w:

min
W∈Rk×n,X∈Rp×k

1

n

n
∑

i=1

‖yi −Xwi‖22 + λΩ(wi) s.t. ∀j, ‖xj‖2 ≤ 1.

• Optimization: proximal methods

– Requires solving many times minw∈Rp
1
2‖y − w‖22 + λΩ(w)

– Modularity of implementation if proximal step is efficient

(Jenatton et al., 2010; Mairal et al., 2010)



Hierarchical dictionary learning

(Jenatton, Mairal, Obozinski, and Bach, 2010)

• Structure on codes w (not on dictionary X)

• Hierarchical penalization: Ω(w) =
∑

G∈H
‖wG‖∞ where groups G

in H are equal to set of descendants of some nodes in a tree

• Variable selected after its ancestors (Zhao et al., 2009; Bach, 2008)



Hierarchical dictionary learning

Modelling of text corpora

• Each document is modelled through word counts

• Low-rank matrix factorization of word-document matrix

• Probabilistic topic models (Blei et al., 2003)

– Similar structures based on non parametric Bayesian methods (Blei

et al., 2004)

– Can we achieve similar performance with simple matrix

factorization formulation?



Modelling of text corpora - Dictionary tree



Submodular functions and structured sparsity

Examples

• From Ω(w) to F (A): provides new insights into existing norms

– Grouped norms with overlapping groups (Jenatton et al., 2009a)

Ω(w) =
∑

G∈H

‖wG‖∞ ⇒ F (A) = Card
(

{G ∈ H, G∩A 6= ∅}
)

– Justification not only limited to allowed sparsity patterns



Submodular functions and structured sparsity

Examples

• From Ω(w) to F (A): provides new insights into existing norms

– Grouped norms with overlapping groups (Jenatton et al., 2009a)

Ω(w) =
∑

G∈H

‖wG‖∞ ⇒ F (A) = Card
(

{G ∈ H, G∩A 6= ∅}
)

– Justification not only limited to allowed sparsity patterns

• From F (A) to Ω(w): provides new sparsity-inducing norms

– F (A) = g(Card(A)) ⇒ Ω is a combination of order statistics

– Non-factorial priors for supervised learning: Ω depends on the

eigenvalues of X⊤
AXA and not simply on the cardinality of A



Unified optimization algorithms

• Polyhedral norm with O(3p) faces and extreme points

– Not suitable to linear programming toolboxes

• Subgradient (w 7→ Ω(w) non-differentiable)

– subgradient may be obtained in polynomial time ⇒ too slow



Unified optimization algorithms

• Polyhedral norm with O(3p) faces and extreme points

– Not suitable to linear programming toolboxes

• Subgradient (w 7→ Ω(w) non-differentiable)

– subgradient may be obtained in polynomial time ⇒ too slow

• Proximal methods (e.g., Beck and Teboulle, 2009)

– minw∈Rp L(y,Xw) + λΩ(w): differentiable + non-differentiable

– Efficient when (P ) : minw∈Rp
1
2‖w − v‖22 + λΩ(w) is “easy”

– Fact: (P ) is equivalent to submodular function minimization



Optimization for sparsity-inducing norms

(see Bach, Jenatton, Mairal, and Obozinski, 2011)

• Gradient descent as a proximal method (differentiable functions)

– wt+1 = arg min
w∈Rp

L(wt) + (w − wt)
⊤∇L(wt)+

B

2
‖w − wt‖22

– wt+1 = wt − 1
B∇L(wt)



Optimization for sparsity-inducing norms

(see Bach, Jenatton, Mairal, and Obozinski, 2011)

• Gradient descent as a proximal method (differentiable functions)

– wt+1 = arg min
w∈Rp

L(wt) + (w − wt)
⊤∇L(wt)+

B

2
‖w − wt‖22

– wt+1 = wt − 1
B∇L(wt)

• Problems of the form: min
w∈Rp

L(w) + λΩ(w)

– wt+1 = arg min
w∈Rp

L(wt)+(w−wt)
⊤∇L(wt)+λΩ(w)+

B

2
‖w − wt‖22

– Ω(w) = ‖w‖1 ⇒ Thresholded gradient descent

• Similar convergence rates than smooth optimization

– Acceleration methods (Nesterov, 2007; Beck and Teboulle, 2009)



Unified optimization algorithms

• Polyhedral norm with O(3p) faces and extreme points

– Not suitable to linear programming toolboxes

• Subgradient (w 7→ Ω(w) non-differentiable)

– subgradient may be obtained in polynomial time ⇒ too slow

• Proximal methods (e.g., Beck and Teboulle, 2009)

– minw∈Rp L(y,Xw) + λΩ(w): differentiable + non-differentiable

– Efficient when (P ) : minw∈Rp
1
2‖w − v‖22 + λΩ(w) is “easy”

– Fact: (P ) is equivalent to submodular function minimization

• Active-set methods



Comparison of optimization algorithms

• Tree-based regularization (p = 511)

• See Bach et al. (2011) for larger-scale problems
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Unified theoretical analysis

• Decomposability

– Key to theoretical analysis (Negahban et al., 2009)

– Property: ∀w ∈ R
p, and ∀J ⊂ V , if minj∈J |wj| > maxj∈Jc |wj|,

then Ω(w) = ΩJ(wJ) + ΩJ(wJc)

• Support recovery

– Extension of known sufficient condition (Zhao and Yu, 2006;

Negahban and Wainwright, 2008)

• High-dimensional inference

– Extension of known sufficient condition (Bickel et al., 2009)

– Matches with analysis of Negahban et al. (2009) for common cases



Support recovery - minw∈Rp
1
2n‖y −Xw‖22 + λΩ(w)

• Notation

– ρ(J) = minB⊂Jc
F (B∪J)−F (J)

F (B) ∈ (0, 1] (for J stable)

– c(J) = supw∈Rp ΩJ(wJ)/‖wJ‖2 6 |J |1/2maxk∈V F ({k})

• Proposition

– Assume y = Xw∗ + σε, with ε ∼ N (0, I)

– J = smallest stable set containing the support of w∗

– Assume ν = minj,w∗
j 6=0 |w∗

j | > 0

– Let Q = 1
nX

⊤X ∈ R
p×p. Assume κ = λmin(QJJ) > 0

– Assume that for η > 0, (ΩJ)∗[(ΩJ(Q
−1
JJQJj))j∈Jc] 6 1− η

– If λ 6
κν

2c(J), ŵ has support equal to J , with probability larger than

1− 3P
(

Ω∗(z) > ληρ(J)
√
n

2σ

)

– z is a multivariate normal with covariance matrix Q



Consistency - minw∈Rp
1
2n‖y −Xw‖22 + λΩ(w)

• Proposition

– Assume y = Xw∗ + σε, with ε ∼ N (0, I)

– J = smallest stable set containing the support of w∗

– Let Q = 1
nX

⊤X ∈ R
p×p.

– Assume that ∀∆ s.t. ΩJ(∆Jc) 6 3ΩJ(∆J), ∆
⊤Q∆ > κ‖∆J‖22

– Then Ω(ŵ − w∗) 6
24c(J)2λ

κρ(J)2
and

1

n
‖Xŵ−Xw∗‖22 6

36c(J)2λ2

κρ(J)2

with probability larger than 1− P
(

Ω∗(z) > λρ(J)
√
n

2σ

)

– z is a multivariate normal with covariance matrix Q

• Concentration inequality (z normal with covariance matrix Q):

– T set of stable inseparable sets

– Then P (Ω∗(z) > t) 6
∑

A∈T 2|A| exp
(

− t2F (A)2/2

1⊤QAA1

)



Symmetric submodular functions (Bach, 2011)

• Let F : 2V → R be a symmetric submodular set-function

• Proposition: The Lovász extension f(w) is the convex envelope of

the function w 7→ maxα∈RF ({w > α}) on the set [0, 1]p + R1V =

{w ∈ R
p, maxk∈V wk −mink∈V wk 6 1}.

• Shaping all level sets



Symmetric submodular functions - Examples

• From Ω(w) to F (A): provides new insights into existing norms

– Cuts - total variation

F (A) =
∑

k∈A,j∈V \A
d(k, j) ⇒ f(w) =

∑

k,j∈V

d(k, j)(wk−wj)+

– NB: graph may be directed

– Application to change-point detection (Tibshirani et al., 2005;

Harchaoui and Lévy-Leduc, 2008)



Symmetric submodular functions - Examples

• From F (A) to Ω(w): provides new sparsity-inducing norms

– Regular functions (Boykov et al., 2001; Chambolle and Darbon,

2009)

F (A)= min
B⊂W

∑

k∈B, j∈W\B
d(k, j)+λ|A∆B|
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Symmetric submodular functions - Examples

• From F (A) to Ω(w): provides new sparsity-inducing norms

– F (A) = g(Card(A)) ⇒ priors on the size and numbers of clusters
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– Convex formulations for clustering (Hocking, Joulin, Bach, and

Vert, 2011)



ℓ2-relaxation of combinatorial penalties

(Obozinski and Bach, 2012)

• Main result of Bach (2010):

– f(|w|) is the convex envelope of F (Supp(w)) on [−1, 1]p

• Problems:

– Limited to submodular functions

– Limited to ℓ∞-relaxation: undesired artefacts

F (A) = min{|A|, 1}
Ω(w) = ‖w‖∞

F (A) = 1{A∩{1}6=∅} + 1{A∩{2,3}6=∅}
Ω(w) = |w1|+ ‖w{2,3}‖∞



ℓ2-relaxation of submodular penalties

(Obozinski and Bach, 2012)

• F a nondecreasing submodular function with Lovász extension f

• Define Ω2(w) = min
η∈R

p
+

1

2

∑

i∈V

|wi|2
ηi

+
1

2
f(η)

– NB: general formulation (Micchelli et al., 2011; Bach et al., 2011)

• Proposition 1: Ω2 is the convex envelope of w 7→ F (Supp(w))‖w‖2

• Proposition 2: Ω2 is the homogeneous convex envelope of

w 7→ 1
2F (Supp(w)) +

1
2‖w‖22

• Jointly penalizing and regularizing

– Extension possible to ℓq, q > 1



From ℓ∞ to ℓ2
Removal of undesired artefacts

F (A) = 1{A∩{3}6=∅} + 1{A∩{1,2}6=∅}

Ω2(w) = |w3|+ ‖w{1,2}‖2

F (A) = 1{A∩{1,2,3}6=∅}
+1{A∩{2,3}6=∅} + 1{A∩{2}6=∅}

• Extension to non-submodular functions + tightness study: see

Obozinski and Bach (2012)



Beyond submodular functions?

• Let F be any set-function

• “Edmonds extension”: the convex envelope of w 7→ F (Supp(w))

on [0, 1]p is equal to

f(w) = sup
∀A⊆V, s(A)6F (A)

w⊤s = sup
s∈P (F )

w⊤s

– When is it an extension of F?

• Lower combinatorial envelope: G(B) = f(1B) = sups∈P (F ) s(B)

– G 6 F

– Property: idempotent operation

• A new class of set-functions: functions for which G = F



Conclusion

• Structured sparsity for machine learning and statistics

– Many applications (image, audio, text, etc.)

– May be achieved through structured sparsity-inducing norms

– Link with submodular functions: unified analysis and algorithms

Submodular functions to encode discrete structures



Conclusion

• Structured sparsity for machine learning and statistics

– Many applications (image, audio, text, etc.)

– May be achieved through structured sparsity-inducing norms

– Link with submodular functions: unified analysis and algorithms

Submodular functions to encode discrete structures

• On-going work on machine learning and submodularity

– Improved complexity bounds for submodular function minimization

– Submodular function maximization

– Importing concepts from machine learning (e.g., graphical models)

– Multi-way partitions for computer vision

– Online learning

– Going beyond linear programming duality?
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Z. Harchaoui and C. Lévy-Leduc. Catching change-points with Lasso. Adv. NIPS, 20, 2008.

J. Haupt and R. Nowak. Signal reconstruction from noisy random projections. IEEE Transactions on

Information Theory, 52(9):4036–4048, 2006.



T. Hocking, A. Joulin, F. Bach, and J.-P. Vert. Clusterpath: an algorithm for clustering using convex

fusion penalties. In Proc. ICML, 2011.

J. Huang, T. Zhang, and D. Metaxas. Learning with structured sparsity. In Proceedings of the 26th

International Conference on Machine Learning (ICML), 2009.

S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial strongly polynomial algorithm for minimizing

submodular functions. Journal of the ACM, 48(4):761–777, 2001.

S. Jegelka, F. Bach, and S. Sra. Reflection methods for user-friendly submodular optimization.

Technical report, HAL, 2013.

Stefanie Jegelka, Hui Lin, and Jeff A. Bilmes. Fast approximate submodular minimization. In Neural

Information Processing Society (NIPS), Granada, Spain, December 2011.

R. Jenatton, J.Y. Audibert, and F. Bach. Structured variable selection with sparsity-inducing norms.

Technical report, arXiv:0904.3523, 2009a.

R. Jenatton, G. Obozinski, and F. Bach. Structured sparse principal component analysis. Technical

report, arXiv:0909.1440, 2009b.

R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for sparse hierarchical dictionary

learning. In Submitted to ICML, 2010.

R. Jenatton, A. Gramfort, V. Michel, G. Obozinski, E. Eger, F. Bach, and B. Thirion. Multi-scale

mining of fmri data with hierarchical structured sparsity. Technical report, Preprint arXiv:1105.0363,

2011. In submission to SIAM Journal on Imaging Sciences.

K. Kavukcuoglu, M. Ranzato, R. Fergus, and Y. LeCun. Learning invariant features through topographic

filter maps. In Proceedings of CVPR, 2009.



S. Kim and E. P. Xing. Tree-guided group Lasso for multi-task regression with structured sparsity. In

Proceedings of the International Conference on Machine Learning (ICML), 2010.

V. Kolmogorov. Minimizing a sum of submodular functions. Disc. Appl. Math., 160(15), 2012.

N. Komodakis, N. Paragios, and G. Tziritas. Mrf energy minimization and beyond via dual

decomposition. IEEE TPAMI, 33(3):531–552, 2011.

A. Krause and C. Guestrin. Near-optimal nonmyopic value of information in graphical models. In Proc.

UAI, 2005.

L. Lovász. Submodular functions and convexity. Mathematical programming: the state of the art,

Bonn, pages 235–257, 1982.

J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization and sparse coding.

Technical report, arXiv:0908.0050, 2009a.

J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Non-local sparse models for image

restoration. In Computer Vision, 2009 IEEE 12th International Conference on, pages 2272–2279.

IEEE, 2009b.

J. Mairal, R. Jenatton, G. Obozinski, and F. Bach. Network flow algorithms for structured sparsity. In

NIPS, 2010.

S. T. McCormick. Submodular function minimization. Discrete Optimization, 12:321–391, 2005.

N. Megiddo. Optimal flows in networks with multiple sources and sinks. Mathematical Programming,

7(1):97–107, 1974.

C.A. Micchelli, J.M. Morales, and M. Pontil. Regularizers for structured sparsity. Arxiv preprint

arXiv:1010.0556, 2011.



K. Murota. Discrete convex analysis. Number 10. Society for Industrial Mathematics, 2003.

K. Nagano, Y. Kawahara, and K. Aihara. Size-constrained submodular minimization through minimum

norm base. In Proc. ICML, 2011.

S. Negahban and M. J. Wainwright. Joint support recovery under high-dimensional scaling: Benefits

and perils of ℓ1-ℓ∞-regularization. In Adv. NIPS, 2008.

S. Negahban, P. Ravikumar, M. J. Wainwright, and B. Yu. A unified framework for high-dimensional

analysis of M-estimators with decomposable regularizers. 2009.

A. S. Nemirovski and D. B. Yudin. Problem complexity and method efficiency in optimization. John

Wiley, 1983.

Y. Nesterov. Introductory lectures on convex optimization: A basic course. Kluwer Academic Pub,

2003.

Y. Nesterov. Gradient methods for minimizing composite objective function. Center for Operations

Research and Econometrics (CORE), Catholic University of Louvain, Tech. Rep, 76, 2007.

G. Obozinski and F. Bach. Convex relaxation of combinatorial penalties. Technical report, HAL, 2012.

B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy employed

by V1? Vision Research, 37:3311–3325, 1997.

J.B. Orlin. A faster strongly polynomial time algorithm for submodular function minimization.

Mathematical Programming, 118(2):237–251, 2009.

F. Rapaport, E. Barillot, and J.-P. Vert. Classification of arrayCGH data using fused SVM.

Bioinformatics, 24(13):i375–i382, Jul 2008.

B. Savchynskyy, S. Schmidt, J. Kappes, and C. Schnörr. A study of Nesterovs scheme for Lagrangian
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