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Sparsity in supervised machine learning

� Observed data(x i ; yi ) 2 Rp � R, i = 1 ; : : : ; n

{ Response vectory = ( y1; : : : ; yn )> 2 Rn

{ Design matrixX = ( x1; : : : ; xn )> 2 Rn � p

� Regularized empirical risk minimization:

min
w2 Rp

1
n

nX

i =1

`(yi ; w> x i ) + � 
( w) = min
w2 Rp

L(y; Xw ) + � 
( w)

� Norm 
 to promote sparsity

{ square loss +̀ 1-norm ) basis pursuitin signal processing (Chen
et al., 2001),Lassoin statistics/machine learning (Tibshirani, 1996)

{ Proxy for interpretability
{ Allow high-dimensional inference: logp = O(n)



`2-norm vs. `1-norm

� `1-norms lead to interpretable models

� `2-norms can be run implicitly with very large feature spaces

� Algorithms :

{ Smooth convex optimization vs. nonsmooth convex optimization

� Theory :

{ better predictive performance?



Why `1-norms lead to sparsity?

� Example 1: quadratic problem in 1D, i.e. min
x 2 R

1
2
x2 � xy + � jxj

� Piecewise quadratic function with a kink at zero

{ Derivative at0+ : g+ = � � y and 0� : g� = � � � y

{ x = 0 is the solution i� g+ > 0 and g� 6 0 (i.e., jyj 6 � )
{ x > 0 is the solution i� g+ 6 0 (i.e., y > � ) ) x � = y � �
{ x 6 0 is the solution i� g� 6 0 (i.e., y 6 � � ) ) x � = y + �

� Solution x � = sign( y)( jyj � � )+ = soft thresholding
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� Example 1: quadratic problem in 1D, i.e. min
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Why `1-norms lead to sparsity?

� Example 2: minimize quadratic functionQ(w) subject tokwk1 6 T.

{ coupled softthresholding

� Geometric interpretation

{ NB : penalizing is \equivalent" to constraining
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Non-smooth optimization

� Simple techniques might not work!

{ Gradient descent or coordinate descent

� Special tools

{ Subgradients or directional derivatives

� Typically slower than smooth optimization...

� ... except in some regularized problems



Counter-example
Coordinate descent for nonsmooth objectives
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Regularized problems - Proximal methods

� Gradient descent as a proximal method (di�erentiable functions)

{ wt +1 = arg min
w2 Rp

L(wt ) + ( w � wt )> r L (wt )+
�
2

kw � wt k2
2

{ wt +1 = wt � 1
� r L (wt )

� Problems of the form: min
w2 Rp

L(w) + � 
( w)

{ wt +1 = arg min
w2 Rp

L(wt )+ ( w � wt )> r L (wt )+ � 
( w)+
�
2

kw � wt k2
2

{ Thresholded gradient descentwt +1 = SoftThres( wt � 1
� r L (wt ))

� Similar convergence rates than smooth optimization

{ Acceleration methods (Nesterov, 2007; Beck and Teboulle, 2009)
{ depends on the condition number of the loss



Cheap (and not dirty) algorithms for all losses

� Proximal methods



Cheap (and not dirty) algorithms for all losses

� Proximal methods

� Coordinate descent (Fu, 1998; Friedman et al., 2007)

{ convergenthere under reasonable assumptions! (Bertsekas, 1995)
{ separability of optimality conditions
{ equivalent to iterative thresholding



Cheap (and not dirty) algorithms for all losses

� Proximal methods

� Coordinate descent (Fu, 1998; Friedman et al., 2007)

{ convergenthere under reasonable assumptions! (Bertsekas, 1995)
{ separability of optimality conditions
{ equivalent to iterative thresholding

� \ � -trick" (Rakotomamonjy et al., 2008; Jenatton et al., 2009b)

{ Notice that
P p

j =1 jwj j = min � > 0
1
2

P p
j =1

� w 2
j

� j
+ � j

	

{ Alternating minimization with respect to� (closed-form� j = jwj j)
and w (weighted squared̀2-norm regularized problem)

{ Caveat: lack of continuity around(wi ; � i ) = (0 ; 0): add "=� j



Cheap (and not dirty) algorithms for all losses

� Proximal methods

� Coordinate descent (Fu, 1998; Friedman et al., 2007)

{ convergenthere under reasonable assumptions! (Bertsekas, 1995)
{ separability of optimality conditions
{ equivalent to iterative thresholding

� \ � -trick" (Rakotomamonjy et al., 2008; Jenatton et al., 2009b)

{ Notice that
P p

j =1 jwj j = min � > 0
1
2

P p
j =1

� w 2
j

� j
+ � j

	

{ Alternating minimization with respect to� (closed-form� j = jwj j)
and w (weighted squared̀2-norm regularized problem)

{ Caveat: lack of continuity around(wi ; � i ) = (0 ; 0): add "=� i

� Dedicated algorithms that use sparsity (active sets/homotopy)



Piecewise linear paths
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Gaussian hare vs. Laplacian tortoise

� Coord. descent and proximal:O(pn) per iterations for`1 and `2

� \Exact" algorithms: O(kpn) for `1 vs. O(p2n) for `2



Additional methods - Softwares

� Many contributions in signal processing, optimization, mach. learning

{ Extensions to stochastic setting (Bottou and Bousquet, 2008)

� Extensions to other sparsity-inducing norms

{ Computing proximal operator
{ F. Bach, R. Jenatton, J. Mairal, G. Obozinski. Optimizationwith

sparsity-inducing penalties.Foundations and Trends in Machine
Learning, 4(1):1-106, 2011.

� Softwares

{ Many available codes
{ SPAMS (SPArse Modeling Software)

http://www.di.ens.fr/willow/SPAMS/



Lasso - Two main recent theoretical results

1. Support recovery condition (Zhao and Yu, 2006; Wainwright,
2009; Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistent if
and only if there are low correlations between relevant and irrelevant
variables.



Model selection consistency (Lasso)

� Assumew sparse and denoteJ = f j; w j 6= 0g the nonzero pattern

� Support recovery condition (Zhao and Yu, 2006; Wainwright, 2009;
Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistentif and
only if

kQJcJQ � 1
JJ sign(w J)k1 6 1

whereQ = lim n ! + 1
1
n

P n
i =1 x i x>

i 2 Rp� p and J = Supp(w)



Model selection consistency (Lasso)

� Assumew sparse and denoteJ = f j; w j 6= 0g the nonzero pattern

� Support recovery condition (Zhao and Yu, 2006; Wainwright, 2009;
Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistentif and
only if

kQJcJQ � 1
JJ sign(w J)k1 6 1

whereQ = lim n ! + 1
1
n

P n
i =1 x i x>

i 2 Rp� p and J = Supp(w)

� The Lasso is usually not model-consistent

{ Selects more variables than necessary (see, e.g., Lv and Fan, 2009)
{ Fixing the Lasso: adaptive Lasso (Zou, 2006), relaxed

Lasso (Meinshausen, 2008), thresholding (Lounici, 2008),
Bolasso (Bach, 2008a), stability selection (Meinshausen and
B•uhlmann, 2008), Wasserman and Roeder (2009)



Adaptive Lasso and concave penalization

� Adaptive Lasso (Zou, 2006; Huang et al., 2008)

{ Weighted`1-norm: min
w2 Rp

L(w) + �
pX

j =1

jwj j
jŵj j �

{ ŵ estimator obtained from̀ 2 or `1 regularization

� Reformulation in terms of concave penalization

min
w2 Rp

L(w) +
pX

j =1

g(jwj j)

{ Example:g(jwj j) = jwj j1=2 or log jwj j. Closer to the`0 penalty
{ Concave-convex procedure: replaceg(jwj j) by a�ne upper bound
{ Better sparsity-inducing properties (Fan and Li, 2001; Zouand Li,

2008; Zhang, 2008b)



Lasso - Two main recent theoretical results

1. Support recovery condition (Zhao and Yu, 2006; Wainwright,
2009; Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistent if
and only if there are low correlations between relevant and irrelevant
variables.

2. Exponentially many irrelevant variables (Zhao and Yu, 2006;
Wainwright, 2009; Bickel et al., 2009; Lounici, 2008; Meinshausen
and Yu, 2008): under appropriate assumptions, consistencyis possible
as long as

logp = O(n)



High-dimensional inference
Going beyond exact support recovery

� Theoretical results usually assume that non-zerow j are large enough,

i.e., jw j j > �
q

log p
n

� May include too many variables but still predict well

� Oracle inequalities

{ Predict as well as the estimator obtained with the knowledgeof J
{ Assume i.i.d. Gaussian noise with variance� 2

{ We have:
1
n

EkX ŵoracle � X wk2
2 =

� 2jJ j
n



High-dimensional inference
Variable selection without computational limits

� Approaches based on penalized criteria (close to BIC)

min
w2 Rp

1
2ky � Xw k2

2 + C� 2kwk0
�
1 + log

p
kwk0

�

� Oracle inequality if data generated byw with k non-zeros (Massart,
2003; Bunea et al., 2007):

1
n

kX ŵ � X wk2
2 6 C

k� 2

n

�
1 + log

p
k

�

� Gaussian noise -No assumptions regarding correlations

� Scaling between dimensions:
k logp

n
small



High-dimensional inference (Lasso)

� Main result : we only needk logp = O(n)

{ if w is su�ciently sparse
{ and input variables are not too correlated



High-dimensional inference (Lasso)

� Main result : we only needk logp = O(n)

{ if w is su�ciently sparse
{ and input variables are not too correlated

� Precise conditions on covariance matrixQ = 1
n X > X .

{ Mutual incoherence (Lounici, 2008)
{ Restricted eigenvalue conditions (Bickel et al., 2009)
{ Sparse eigenvalues (Meinshausen and Yu, 2008)
{ Null space property (Donoho and Tanner, 2005)

� Links with signal processing and compressed sensing (Cand�es and
Wakin, 2008)

� Slow rate if no assumptions:
q

k log p
n



Restricted eigenvalue conditions

� Theorem (Bickel et al., 2009):

{ assume � (k)2 = min
j J j6 k

min
� ; k� J ck16 k� J k1

� > Q�
k� J k2

2
> 0

{ assume� = A�
p

n logp and A2 > 8
{ then, with probability1 � p1� A 2=8, we have

estimation error kŵ � wk1 6
16A

� 2(k)
�k

r
logp

n

prediction error
1
n

kX ŵ � X wk2
2 6

16A2

� 2(k)
� 2k
n

logp

� Condition imposes a potentially hidden scaling between(n; p; k)

� Condition always satis�ed forQ = I



Checking su�cient conditions

� Most of the conditions are not computable in polynomial time

� Random matrices

{ SampleX 2 Rn � p from the Gaussian ensemble
{ Conditions satis�ed with high probability for certain(n; p; k)

{ Example from Wainwright (2009): � =
n

2k logp
> 1



Sparse methods
Common extensions

� Removing bias of the estimator

{ Keep the active set, and performunregularized restricted
estimation (Cand�es and Tao, 2007)

{ Better theoretical bounds
{ Potential problems of robustness

� Elastic net (Zou and Hastie, 2005)

{ Replace� kwk1 by � kwk1 + "kwk2
2

{ Make the optimization strongly convex with unique solution
{ Better behavior with heavily correlated variables



Relevance of theoretical results
� Most results only for the square loss

{ Extend to other losses (Van De Geer, 2008; Bach, 2009)

� Most results only for `1-regularization

{ May be extended to other norms (see, e.g., Huang and Zhang,
2009; Bach, 2008b)

� Condition on correlations

{ very restrictive, far from results for BIC penalty

� Non sparse generating vector

{ little work on robustness to lack of sparsity

� Estimation of regularization parameter

{ No satisfactory solution) open problem



Alternative sparse methods
Greedy methods

� Forward selection

� Forward-backward selection

� Non-convex method

{ Harder to analyze
{ Simpler to implement
{ Problems of stability

� Positive theoretical results (Zhang, 2009, 2008a)

{ Similar su�cient conditions than for the Lasso



Alternative sparse methods
Bayesian methods

� Lasso: minimize
P n

i =1 (yi � w> x i )2 + � kwk1

{ Equivalent to MAP estimation with Gaussian likelihood and
factorizedLaplace prior p(w) /

Q p
j =1 e� � jw j j (Seeger, 2008)

{ However, posterior puts zero weight on exact zeros

� Heavy-tailed distributions as a proxy to sparsity

{ Student distributions (Caron and Doucet, 2008)
{ Generalized hyperbolic priors (Archambeau and Bach, 2008)
{ Instance of automatic relevance determination (Neal, 1996)

� Mixtures of \Diracs" and another absolutely continuous distributions,
e.g., \spike and slab" (Ishwaran and Rao, 2005)

� Less theory than frequentist methods



Comparing Lasso and other strategies for linear
regression

� Compared methods to reach the least-square solution

{ Ridge regression: min
w2 Rp

1
2
ky � Xw k2

2 +
�
2

kwk2
2

{ Lasso: min
w2 Rp

1
2
ky � Xw k2

2 + � kwk1

{ Forward greedy:
� Initialization with empty set
� Sequentially add the variable that best reduces the square loss

� Each method builds a path of solutions from 0 to ordinary least-
squares solution

� Regularization parameters selected on the test set



Simulation results

� i.i.d. Gaussian design matrix,k = 4 , n = 64, p 2 [2; 256], SNR = 1

� Note stability to non-sparsity and variability
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Going beyond the Lasso

� `1-norm for linear feature selection inhigh dimensions

{ Lasso usually not applicable directly

� Non-linearities

� Dealing with structured set of features

� Sparse learning on matrices



Going beyond the Lasso
Non-linearity - Multiple kernel learning

� Multiple kernel learning

{ Learn sparse combination of matricesk(x; x 0) =
P p

j =1 � j kj (x; x 0)
{ Mixing positive aspects of̀1-norms and`2-norms

� Equivalent to group Lasso

{ p multi-dimensional features� j (x), where

kj (x; x 0) = � j (x)> � j (x0)

{ learn predictor
P p

j =1 w>
j � j (x)

{ Penalization by
P p

j =1 kwj k2



Going beyond the Lasso
Structured set of features

� Dealing with exponentially many features

{ Can we design e�cient algorithms for the caselogp � n?
{ Use structure to reduce the number of allowed patterns of zeros
{ Recursivity,hierarchies and factorization

� Prior information on sparsity patterns

{ Grouped variables with overlapping groups



Going beyond the Lasso
Sparse methods on matrices

� Learning problems on matrices

{ Multi-task learning
{ Multi-category classi�cation
{ Matrix completion
{ Image denoising
{ NMF, topic models, etc.

� Matrix factorization

{ Two types of sparsity (low-rank or dictionary learning)
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Sparsity in supervised machine learning

� Observed data(x i ; yi ) 2 Rp � R, i = 1 ; : : : ; n

{ Response vectory = ( y1; : : : ; yn )> 2 Rn

{ Design matrixX = ( x1; : : : ; xn )> 2 Rn � p

� Regularized empirical risk minimization:

min
w2 Rp

1
n

nX

i =1

`(yi ; w> x i ) + � 
( w) = min
w2 Rp

L(y; Xw ) + � 
( w)

� Norm 
 to promote sparsity

{ square loss +̀ 1-norm ) basis pursuitin signal processing (Chen
et al., 2001),Lassoin statistics/machine learning (Tibshirani, 1996)

{ Proxy for interpretability
{ Allow high-dimensional inference: logp = O(n)



Sparsity in unsupervised machine learning

� Multiple responses/signalsy = ( y1; : : : ; yk ) 2 Rn � k

min
X =( x 1;:::;x p)

min
w 1;:::;w k 2 Rp

kX

j =1

n
L(yj ; Xw j ) + � 
( wj )

o



Sparsity in unsupervised machine learning

� Multiple responses/signalsy = ( y1; : : : ; yk ) 2 Rn � k

min
X =( x 1;:::;x p)

min
w 1;:::;w k 2 Rp

kX

j =1

n
L(yj ; Xw j ) + � 
( wj )

o

� Only responses are observed) Dictionary learning

{ LearnX = ( x1; : : : ; xp) 2 Rn � p such that8j; kx j k2 6 1

min
X =( x 1;:::;x p)

min
w 1;:::;w k 2 Rp

kX

j =1

n
L(yj ; Xw j ) + � 
( wj )

o

{ Olshausen and Field (1997); Elad and Aharon (2006); Mairal et al.
(2009a)

� sparse PCA: replacekx j k2 6 1 by �( x j ) 6 1



Sparsity in signal processing

� Multiple responses/signalsx = ( x1; : : : ; xk ) 2 Rn � k

min
D =( d1;:::;d p)

min
� 1;:::;� k 2 Rp

kX

j =1

n
L(x j ; D� j ) + � 
( � j )

o

� Only responses are observed) Dictionary learning

{ LearnD = ( d1; : : : ; dp) 2 Rn � p such that8j; kdj k2 6 1

min
D =( d1;:::;d p)

min
� 1;:::;� k 2 Rp

kX

j =1

n
L(x j ; D� j ) + � 
( � j )

o

{ Olshausen and Field (1997); Elad and Aharon (2006); Mairal et al.
(2009a)

� sparse PCA: replacekdj k2 6 1 by �( dj ) 6 1



Why structured sparsity?

� Interpretability

{ Structured dictionary elements (Jenatton et al., 2009b)
{ Dictionary elements \organized" in atree or a grid (Kavukcuoglu

et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)



Structured sparse PCA (Jenatton et al., 2009b)

raw data sparse PCA

� Unstructed sparse PCA) many zeros do not lead to better
interpretability
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Structured sparse PCA (Jenatton et al., 2009b)

raw data Structured sparse PCA

� Enforce selection ofconvex nonzero patterns) robustness to
occlusion in face identi�cation



Structured sparse PCA (Jenatton et al., 2009b)

raw data Structured sparse PCA

� Enforce selection ofconvex nonzero patterns) robustness to
occlusion in face identi�cation



Why structured sparsity?

� Interpretability

{ Structured dictionary elements (Jenatton et al., 2009b)
{ Dictionary elements \organized" in atree or a grid (Kavukcuoglu

et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)



Why structured sparsity?

� Interpretability

{ Structured dictionary elements (Jenatton et al., 2009b)
{ Dictionary elements \organized" in atree or a grid (Kavukcuoglu

et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)

� Stability and identi�ability

{ Optimization problemminw2 Rp L(y; Xw ) + � kwk1 is unstable
{ \Codes" wj often used in later processing (Mairal et al., 2009c)

� Prediction or estimation performance

{ When prior knowledge matches data (Haupt and Nowak, 2006;
Baraniuk et al., 2008; Jenatton et al., 2009a; Huang et al., 2009)

� Numerical e�ciency

{ Non-linear variable selection with2p subsets (Bach, 2008c)



Classical approaches to structured sparsity

� Many application domains

{ Computer vision (Cevher et al., 2008; Mairal et al., 2009b)
{ Neuro-imaging (Gramfort and Kowalski, 2009; Jenatton et al.,

2011)
{ Bio-informatics (Rapaport et al., 2008; Kim and Xing, 2010)

� Non-convex approaches

{ Haupt and Nowak (2006); Baraniuk et al. (2008); Huang et al.
(2009)

� Convex approaches

{ Design of sparsity-inducing norms
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Sparsity-inducing norms

� Popular choice for 

{ The `1-`2 norm,

X

G2 H

kwGk2 =
X

G2 H

� X

j 2 G

w2
j

� 1=2

{ with H a partition of f 1; : : : ; pg
{ The `1-`2 norm sets to zerogroups of non-overlapping

variables(as opposed to single variables for the`1-norm)
{ For the square loss, group Lasso (Yuan and Lin, 2006)

G

2G

3G

1



Unit norm balls
Geometric interpretation

kwk2 kwk1

p
w2

1 + w2
2 + jw3j



Sparsity-inducing norms

� Popular choice for 

{ The `1-`2 norm,

X

G2 H

kwGk2 =
X

G2 H

� X

j 2 G

w2
j

� 1=2

{ with H a partition of f 1; : : : ; pg
{ The `1-`2 norm sets to zerogroups of non-overlapping

variables(as opposed to single variables for the`1-norm)
{ For the square loss, group Lasso (Yuan and Lin, 2006)

G

2G

3G

1

� However, the`1-`2 norm encodes�xed/static prior information ,
requires to know in advance how to group the variables

� What happens if the set of groupsH is not a partition anymore?



Structured sparsity with overlapping groups
(Jenatton, Audibert, and Bach, 2009a)

� When penalizing by thè1-`2 norm,

X

G2 H

kwGk2 =
X

G2 H

� X

j 2 G

w2
j

� 1=2

{ The `1 norm induces sparsity at the group level:
� SomewG 's are set to zero

{ Inside the groups, thè2 norm does not promote sparsity

GG2

1G

3G

2



Structured sparsity with overlapping groups
(Jenatton, Audibert, and Bach, 2009a)

� When penalizing by thè1-`2 norm,

X

G2 H

kwGk2 =
X

G2 H

� X

j 2 G

w2
j

� 1=2

{ The `1 norm induces sparsity at the group level:
� SomewG 's are set to zero

{ Inside the groups, thè2 norm does not promote sparsity

GG2

1G

3G

2

� The zero pattern ofw is given by

f j; w j = 0g =
[

G2 H 0

G for someH 0 � H

� Zero patterns are unions of groups



Examples of set of groups H

� Selection of contiguous patterns on a sequence,p = 6

{ H is the set of blue groups

{ Any union of blue groups set to zero leads to the selection of a
contiguous pattern



Examples of set of groups H

� Selection of rectangles on a 2-D grids,p = 25

{ H is the set of blue/green groups (with their not displayed
complements)

{ Any union of blue/green groups set to zero leads to the selection
of a rectangle



Examples of set of groups H

� Selection of diamond-shaped patterns on a 2-D grids,p = 25.

{ It is possible to extend such settings to 3-D space, or more complex
topologies



Unit norm balls
Geometric interpretation

kwk1

p
w2

1 + w2
2 + jw3j kwk2 + jw1j + jw2j



Optimization for sparsity-inducing norms
(see Bach, Jenatton, Mairal, and Obozinski, 2011)

� Gradient descent as aproximal method (di�erentiable functions)

{ wt +1 = arg min
w2 Rp

L(wt ) + ( w � wt )> r L (wt )+
B
2

kw � wt k2
2

{ wt +1 = wt � 1
B r L (wt )



Optimization for sparsity-inducing norms
(see Bach, Jenatton, Mairal, and Obozinski, 2011)

� Gradient descent as aproximal method (di�erentiable functions)

{ wt +1 = arg min
w2 Rp

L(wt ) + ( w � wt )> r L (wt )+
B
2

kw � wt k2
2

{ wt +1 = wt � 1
B r L (wt )

� Problems of the form: min
w2 Rp

L(w) + � 
( w)

{ wt +1 = arg min
w2 Rp

L(wt )+( w� wt )> r L (wt )+ � 
( w)+
B
2

kw � wt k2
2

{ 
( w) = kwk1 ) Thresholded gradient descent

� Similar convergence rates than smooth optimization

{ Acceleration methods (Nesterov, 2007; Beck and Teboulle, 2009)



Comparison of optimization algorithms
(Mairal, Jenatton, Obozinski, and Bach, 2010)

Small scale

� Speci�c norms which can be implemented through network ows
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Comparison of optimization algorithms
(Mairal, Jenatton, Obozinski, and Bach, 2010)

Large scale

� Speci�c norms which can be implemented through network ows
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Approximate proximal methods
(Schmidt, Le Roux, and Bach, 2011)

� Exact computation of proximal operatorarg min
w2 Rp

1
2
kw� zk2

2 + � 
( w)

{ Closed form for̀ 1-norm
{ E�cient for overlapping group norms (Jenatton et al., 2010; Mairal

et al., 2010)

� Convergence rate:O(1=t) and O(1=t2) (with acceleration)

� Gradient or proximal operator may be only approximate

{ Preserved convergence rate with appropriate control
{ Approximate gradient with non-random errors
{ Complex regularizers



Application to background subtraction
(Mairal, Jenatton, Obozinski, and Bach, 2010)

Input `1-norm Structured norm
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Application to neuro-imaging
Structured sparsity for fMRI (Jenatton et al., 2011)

� \Brain reading": prediction of (seen) object size

� Multi-scale activity levels through hierarchical penalization
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Application to neuro-imaging
Structured sparsity for fMRI (Jenatton et al., 2011)

� \Brain reading": prediction of (seen) object size

� Multi-scale activity levels through hierarchical penalization



Sparse Structured PCA
(Jenatton, Obozinski, and Bach, 2009b)

� Learningsparse and structured dictionary elements :

min
W 2 Rk � n ;X 2 Rp� k

1
n

nX

i =1

kyi � Xw i k2
2 + �

pX

j =1


( x j ) s.t. 8i; kwi k2 � 1



Application to face databases (1/3)

raw data (unstructured) NMF

� NMF obtains partially local features



Application to face databases (2/3)

(unstructured) sparse PCA Structured sparse PCA

� Enforce selection ofconvex nonzero patterns) robustness to
occlusion



Application to face databases (2/3)

(unstructured) sparse PCA Structured sparse PCA

� Enforce selection ofconvex nonzero patterns) robustness to
occlusion



Application to face databases (3/3)

� Quantitative performance evaluation on classi�cation task
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Structured sparse PCA on resting state activity
(Varoquaux, Jenatton, Gramfort, Obozinski, Thirion,

and Bach, 2010)



Dictionary learning vs. sparse structured PCA
Exchange roles of X and w

� Sparse structured PCA (structured dictionary elements ):

min
W 2 Rk � n ;X 2 Rp� k

1
n

nX

i =1

kyi � Xw i k2
2 + �

kX

j =1


( x j ) s.t. 8i; kwi k2 � 1:

� Dictionary learning withstructured sparsity for codes w:

min
W 2 Rk � n ;X 2 Rp� k

1
n

nX

i =1

kyi � Xw i k2
2 + � 
( wi ) s.t. 8j; kx j k2 � 1:

� Optimization :

{ Alternating optimization
{ Modularity of implementation if proximal step is e�cient

(Jenatton et al., 2010; Mairal et al., 2010)



Hierarchical dictionary learning
(Jenatton, Mairal, Obozinski, and Bach, 2010)

� Structure on codesw (not on dictionaryX )

� Hierarchical penalization:
( w) =
P

G2 H kwGk2 where groupsG
in H are equal toset of descendantsof some nodes in a tree

� Variable selected after its ancestors (Zhao et al., 2009; Bach, 2008c)



Hierarchical dictionary learning
Modelling of text corpora

� Each document is modelled through word counts

{ Low-rank matrix factorization of word-document matrix
{ Similar to NMF with multinomial loss

� Probabilistic topic models (Blei et al., 2003a)

{ Similar structures based on non parametric Bayesian methods (Blei
et al., 2004)

{ Can we achieve similar performance with simple matrix
factorization formulation?



Topic models and matrix factorization

� Latent Dirichlet allocation (Blei et al., 2003b)

{ For a document, sample� 2 Rk from a Dirichlet(� )
{ For the n-th word of the same document,

� sample a topiczn from a multinomial with parameter�
� sample a wordwn from a multinomial with parameter� (zn ; :)

� Interpretation as multinomial PCA (Buntine and Perttu, 2003)

{ Marginalizing over topiczn , given� , each wordwn is selected from
a multinomial with parameter

P k
z=1 � z � (z; :) = � > �

{ Row of � = dictionary elements,� code for a document



Modelling of text corpora - Dictionary tree
Probabilistic topic models (Blei et al., 2004)



Modelling of text corpora - Dictionary tree



Topic models, NMF and matrix factorization

� Three di�erent views on the same problem

{ Interesting parallels to be made
{ Common problems to be solved

� Structure on dictionary/decomposition coe�cients with adapted
priors, e.g., nested Chinese restaurant processes (Blei etal., 2004)

� Learning hyperparameters from data

� Identi�ability and interpretation/evaluation of results

� Discriminative tasks (Blei and McAuli�e, 2008; Lacoste-Julien
et al., 2008; Mairal et al., 2009c)

� Optimization and local minima



Digital zooming (Couzinie-Devy et al., 2011)



Digital zooming (Couzinie-Devy et al., 2011)



Inverse half-toning (Mairal et al., 2011)



Inverse half-toning (Mairal et al., 2011)



Ongoing Work - Inverse half-toning



Ongoing Work - Inverse half-toning



Ongoing Work - Inverse half-toning



Ongoing Work - Inverse half-toning



Structured sparsity - Audio processing
Source separation (Lef�evre et al., 2011)

Time

A
m

pl
itu

de

Time

A
m

pl
itu

de

Time

F
re

qu
en

cy

Time

F
re

qu
en

cy



Structured sparsity - Audio processing
Musical instrument separation (Lef�evre et al., 2011)

� Unsupervised source separation with group-sparsity prior

{ Top: mixture
{ Left: source tracks (guitar, voice). Right: separated tracks.
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Outline

� Introduction: Sparse methods for machine learning

{ Short tutorial
{ Need for structured sparsity:Going beyond thè1-norm

� Classical approaches to structured sparsity

{ Linear combinations of̀q-norms
{ Applications

� Structured sparsity through submodular functions

{ Relaxation of the penalization of supports
{ Uni�ed algorithms and analysis



`1-norm = convex envelope of cardinality of support

� Let w 2 Rp. Let V = f 1; : : : ; pg and Supp(w) = f j 2 V; wj 6= 0g

� Cardinality of support : kwk0 = Card(Supp( w))

� Convex envelope = largest convex lower bound (see, e.g., Boyd and
Vandenberghe, 2004)

1

0

||w||

||w||

-1 1

� `1-norm = convex envelope of̀0-quasi-norm on thè 1 -ball [� 1; 1]p



Convex envelopes of general functions of the support
(Bach, 2010)

� Let F : 2V ! R be aset-function

{ AssumeF is non-decreasing (i.e., A � B ) F (A) 6 F (B ))
{ Explicit prior knowledge on supports (Haupt and Nowak, 2006;

Baraniuk et al., 2008; Huang et al., 2009)

� De�ne �( w) = F (Supp(w)) : How to get its convex envelope?

1. Possible ifF is alsosubmodular
2. Allowsuni�ed theory and algorithm
3. Providesnew regularizers



Submodular functions (Fujishige, 2005; Bach, 2010)

� F : 2V ! R is submodular if and only if

8A; B � V; F(A) + F (B ) > F (A \ B ) + F (A [ B )

, 8 k 2 V; A 7! F (A [ f kg) � F (A) is non-increasing
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Submodular functions (Fujishige, 2005; Bach, 2010)

� F : 2V ! R is submodular if and only if

8A; B � V; F(A) + F (B ) > F (A \ B ) + F (A [ B )

, 8 k 2 V; A 7! F (A [ f kg) � F (A) is non-increasing

� Intuition 1 : de�ned like concave functions(\diminishing returns")

{ Example:F : A 7! g(Card(A)) is submodular ifg is concave

� Intuition 2 : behave like convex functions

{ Polynomial-time minimization, conjugacy theory

� Used in several areas of signal processing and machine learning

{ Total variation/graph cuts (Chambolle, 2005; Boykov et al., 2001)
{ Optimal design (Krause and Guestrin, 2005)



Submodular functions - Examples

� Concave functions of the cardinality:g(jAj)

� Cuts

� Entropies

{ H ((X k )k2 A ) from p random variablesX 1; : : : ; X p

� Network ows

{ E�cient representation for set covers

� Rank functions of matroids



Submodular functions - Lov�asz extension

� Subsets may be identi�ed with elements off 0; 1gp

� Givenany set-functionF and w such thatwj 1 > � � � > wj p, de�ne:

f (w) =
pX

k=1

wj k [F (f j 1; : : : ; j k g) � F (f j 1; : : : ; j k � 1g)]

{ If w = 1 A , f (w) = F (A) ) extension fromf 0; 1gp to Rp

{ f is piecewise a�ne and positively homogeneous

� F is submodular if and only iff is convex(Lov�asz, 1982)

{ Minimizing f (w) on w 2 [0; 1]p equivalent to minimizingF on 2V



Submodular functions and structured sparsity

� Let F : 2V ! R be anon-decreasing submodular set-function

� Proposition : the convex envelope of� : w 7! F (Supp(w)) on the
`1 -ball is 
 : w 7! f (jwj) wheref is the Lov�asz extension ofF



Submodular functions and structured sparsity

� Let F : 2V ! R be anon-decreasing submodular set-function

� Proposition : the convex envelope of� : w 7! F (Supp(w)) on the
`1 -ball is 
 : w 7! f (jwj) wheref is the Lov�asz extension ofF

� Sparsity-inducing properties : 
 is a polyhedralnorm

(1,0)/F({1})

(1,1)/F({1,2})(0,1)/F({2})

{ A if stable if for allB � A, B 6= A ) F (B ) > F (A)
{ With probability one, stable sets are the only allowed active sets



Polyhedral unit balls

w
2

w
3

w
1

F (A) = jAj

( w) = kwk1

F (A) = min fj Aj; 1g

( w) = kwk1

F (A) = jAj1=2

all possible extreme points

F (A) = 1 f A \f 1g6= ? g + 1 f A \f 2;3g6= ? g


( w) = jw1j + kwf 2;3gk1

F (A) = 1 f A \f 1;2;3g6= ? g

+1 f A \f 2;3g6= ? g +1 f A \f 3g6= ? g


( w) = kwk1 + kwf 2;3gk1 + jw3j



Submodular functions and structured sparsity

� Uni�ed theory and algorithms

{ Generic computation of proximal operator
{ Uni�ed oracle inequalities

� Extensions

{ Shaping level sets through symmetric submodular function (Bach,
2011)

{ `q-relaxations of combinatorial penalties (Obozinski and Bach,
2011)



Conclusion

� Structured sparsity for machine learning and statistics

{ Many applications (image, audio, text, etc.)
{ May be achieved through structured sparsity-inducing norms
{ Link with submodular functions: uni�ed analysis and algorithms



Conclusion

� Structured sparsity for machine learning and statistics

{ Many applications (image, audio, text, etc.)
{ May be achieved through structured sparsity-inducing norms
{ Link with submodular functions: uni�ed analysis and algorithms

� On-going/related work on structured sparsity

{ Norm designbeyond submodular functions
{ Complementary approach of Jacob, Obozinski, and Vert (2009)
{ Theoretical analysis of dictionary learning (Jenatton, Bach and

Gribonval, 2011)
{ Achievinglogp = O(n) algorithmically (Bach, 2008c)
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