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• Introduction: Sparse methods for machine learning

– Short tutorial

– Need for structured sparsity: Going beyond the ℓ1-norm

• Classical approaches to structured sparsity

– Linear combinations of ℓq-norms

– Applications

• Structured sparsity through submodular functions

– Relaxation of the penalization of supports

– Unified algorithms and analysis



Sparsity in supervised machine learning

• Observed data (xi, yi) ∈ R
p × R, i = 1, . . . , n

– Response vector y = (y1, . . . , yn)
⊤ ∈ R

n

– Design matrix X = (x1, . . . , xn)
⊤ ∈ R

n×p

• Regularized empirical risk minimization:

min
w∈Rp

1

n

n
∑

i=1

ℓ(yi, w
⊤xi) + λΩ(w) = min

w∈Rp
L(y,Xw) + λΩ(w)

• Norm Ω to promote sparsity

– square loss + ℓ1-norm ⇒ basis pursuit in signal processing (Chen

et al., 2001), Lasso in statistics/machine learning (Tibshirani, 1996)

– Proxy for interpretability

– Allow high-dimensional inference: log p = O(n)



ℓ2-norm vs. ℓ1-norm

• ℓ1-norms lead to interpretable models

• ℓ2-norms can be run implicitly with very large feature spaces

• Algorithms:

– Smooth convex optimization vs. nonsmooth convex optimization

• Theory:

– better predictive performance?



Why ℓ1-norms lead to sparsity?

• Example 1: quadratic problem in 1D, i.e. min
x∈R

1

2
x2 − xy + λ|x|

• Piecewise quadratic function with a kink at zero

– Derivative at 0+: g+ = λ− y and 0−: g− = −λ− y

– x = 0 is the solution iff g+ > 0 and g− 6 0 (i.e., |y| 6 λ)

– x > 0 is the solution iff g+ 6 0 (i.e., y > λ) ⇒ x∗ = y − λ

– x 6 0 is the solution iff g− 6 0 (i.e., y 6 −λ) ⇒ x∗ = y + λ

• Solution x∗ = sign(y)(|y| − λ)+ = soft thresholding
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Why ℓ1-norms lead to sparsity?

• Example 2: minimize quadratic function Q(w) subject to ‖w‖1 6 T .

– coupled soft thresholding

• Geometric interpretation

– NB : penalizing is “equivalent” to constraining
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Non-smooth optimization

• Simple techniques might not work!

– Gradient descent or coordinate descent

• Special tools

– Subgradients or directional derivatives

• Typically slower than smooth optimization...

• ... except in some regularized problems



Counter-example

Coordinate descent for nonsmooth objectives
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Regularized problems - Proximal methods

• Gradient descent as a proximal method (differentiable functions)

– wt+1 = arg min
w∈Rp

L(wt) + (w − wt)
⊤∇L(wt)+

µ

2
‖w − wt‖22

– wt+1 = wt − 1
µ∇L(wt)

• Problems of the form: min
w∈Rp

L(w) + λΩ(w)

– wt+1 = arg min
w∈Rp

L(wt)+(w−wt)
⊤∇L(wt)+λΩ(w)+

µ

2
‖w − wt‖22

– Thresholded gradient descent wt+1 = SoftThres(wt − 1
µ∇L(wt))

• Similar convergence rates than smooth optimization

– Acceleration methods (Nesterov, 2007; Beck and Teboulle, 2009)

– depends on the condition number of the loss



Cheap (and not dirty) algorithms for all losses

• Proximal methods
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Cheap (and not dirty) algorithms for all losses

• Proximal methods

• Coordinate descent (Fu, 1998; Friedman et al., 2007)

– convergent here under reasonable assumptions! (Bertsekas, 1995)

– separability of optimality conditions

– equivalent to iterative thresholding

• “η-trick” (Rakotomamonjy et al., 2008; Jenatton et al., 2009b)

– Notice that
∑p

j=1 |wj| = minη>0
1
2

∑p
j=1

{w2
j

ηj
+ ηj

}

– Alternating minimization with respect to η (closed-form ηj = |wj|)
and w (weighted squared ℓ2-norm regularized problem)

– Caveat: lack of continuity around (wi, ηi) = (0, 0): add ε/ηj



Cheap (and not dirty) algorithms for all losses

• Proximal methods

• Coordinate descent (Fu, 1998; Friedman et al., 2007)

– convergent here under reasonable assumptions! (Bertsekas, 1995)

– separability of optimality conditions

– equivalent to iterative thresholding

• “η-trick” (Rakotomamonjy et al., 2008; Jenatton et al., 2009b)

– Notice that
∑p

j=1 |wj| = minη>0
1
2

∑p
j=1

{w2
j

ηj
+ ηj

}

– Alternating minimization with respect to η (closed-form ηj = |wj|)
and w (weighted squared ℓ2-norm regularized problem)

– Caveat: lack of continuity around (wi, ηi) = (0, 0): add ε/ηi

• Dedicated algorithms that use sparsity (active sets/homotopy)



Piecewise linear paths
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Gaussian hare vs. Laplacian tortoise

• Coord. descent and proximal: O(pn) per iterations for ℓ1 and ℓ2

• “Exact” algorithms: O(kpn) for ℓ1 vs. O(p2n) for ℓ2



Additional methods - Softwares

• Many contributions in signal processing, optimization, mach. learning

– Extensions to stochastic setting (Bottou and Bousquet, 2008)

• Extensions to other sparsity-inducing norms

– Computing proximal operator

– F. Bach, R. Jenatton, J. Mairal, G. Obozinski. Optimization with

sparsity-inducing penalties. Foundations and Trends in Machine

Learning, 4(1):1-106, 2011.

• Softwares

– Many available codes

– SPAMS (SPArse Modeling Software)

http://www.di.ens.fr/willow/SPAMS/



Lasso - Two main recent theoretical results

1. Support recovery condition (Zhao and Yu, 2006; Wainwright,

2009; Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistent if

and only if there are low correlations between relevant and irrelevant

variables.



Model selection consistency (Lasso)

• Assume w sparse and denote J = {j,wj 6= 0} the nonzero pattern

• Support recovery condition (Zhao and Yu, 2006; Wainwright, 2009;

Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistent if and

only if ‖QJcJQ
−1
JJ sign(wJ)‖∞ 6 1

where Q = limn→+∞
1
n

∑n
i=1 xix

⊤
i ∈ R

p×p and J = Supp(w)



Model selection consistency (Lasso)

• Assume w sparse and denote J = {j,wj 6= 0} the nonzero pattern

• Support recovery condition (Zhao and Yu, 2006; Wainwright, 2009;

Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistent if and

only if ‖QJcJQ
−1
JJ sign(wJ)‖∞ 6 1

where Q = limn→+∞
1
n

∑n
i=1 xix

⊤
i ∈ R

p×p and J = Supp(w)

• The Lasso is usually not model-consistent

– Selects more variables than necessary (see, e.g., Lv and Fan, 2009)

– Fixing the Lasso: adaptive Lasso (Zou, 2006), relaxed

Lasso (Meinshausen, 2008), thresholding (Lounici, 2008),

Bolasso (Bach, 2008a), stability selection (Meinshausen and

Bühlmann, 2008), Wasserman and Roeder (2009)



Adaptive Lasso and concave penalization

• Adaptive Lasso (Zou, 2006; Huang et al., 2008)

– Weighted ℓ1-norm: min
w∈Rp

L(w) + λ

p
∑

j=1

|wj|
|ŵj|α

– ŵ estimator obtained from ℓ2 or ℓ1 regularization

• Reformulation in terms of concave penalization

min
w∈Rp

L(w) +

p
∑

j=1

g(|wj|)

– Example: g(|wj|) = |wj|1/2 or log |wj|. Closer to the ℓ0 penalty

– Concave-convex procedure: replace g(|wj|) by affine upper bound

– Better sparsity-inducing properties (Fan and Li, 2001; Zou and Li,

2008; Zhang, 2008b)



Lasso - Two main recent theoretical results

1. Support recovery condition (Zhao and Yu, 2006; Wainwright,

2009; Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistent if

and only if there are low correlations between relevant and irrelevant

variables.

2. Exponentially many irrelevant variables (Zhao and Yu, 2006;

Wainwright, 2009; Bickel et al., 2009; Lounici, 2008; Meinshausen

and Yu, 2008): under appropriate assumptions, consistency is possible

as long as

log p = O(n)



High-dimensional inference

Going beyond exact support recovery

• Theoretical results usually assume that non-zero wj are large enough,

i.e., |wj| > σ
√

log p
n

• May include too many variables but still predict well

• Oracle inequalities

– Predict as well as the estimator obtained with the knowledge of J

– Assume i.i.d. Gaussian noise with variance σ2

– We have:
1

n
E‖Xŵoracle −Xw‖22 =

σ2|J |
n



High-dimensional inference

Variable selection without computational limits

• Approaches based on penalized criteria (close to BIC)

min
w∈Rp

1
2‖y −Xw‖22 + Cσ2‖w‖0

(

1 + log
p

‖w‖0
)

• Oracle inequality if data generated by w with k non-zeros (Massart,

2003; Bunea et al., 2007):

1

n
‖Xŵ −Xw‖22 6 C

kσ2

n

(

1 + log
p

k

)

• Gaussian noise - No assumptions regarding correlations

• Scaling between dimensions:
k log p

n
small



High-dimensional inference (Lasso)

• Main result: we only need k log p = O(n)

– if w is sufficiently sparse

– and input variables are not too correlated



High-dimensional inference (Lasso)

• Main result: we only need k log p = O(n)

– if w is sufficiently sparse

– and input variables are not too correlated

• Precise conditions on covariance matrix Q = 1
nX

⊤X.

– Mutual incoherence (Lounici, 2008)

– Restricted eigenvalue conditions (Bickel et al., 2009)

– Sparse eigenvalues (Meinshausen and Yu, 2008)

– Null space property (Donoho and Tanner, 2005)

• Links with signal processing and compressed sensing (Candès and

Wakin, 2008)

• Slow rate if no assumptions:
√

k log p
n



Restricted eigenvalue conditions

• Theorem (Bickel et al., 2009):

– assume κ(k)2 = min
|J|6k

min
∆, ‖∆Jc‖16‖∆J‖1

∆⊤Q∆

‖∆J‖22
> 0

– assume λ = Aσ
√
n log p and A2 > 8

– then, with probability 1− p1−A2/8, we have

estimation error ‖ŵ −w‖1 6
16A

κ2(k)
σk

√

log p

n

prediction error
1

n
‖Xŵ −Xw‖22 6

16A2

κ2(k)

σ2k

n
log p

• Condition imposes a potentially hidden scaling between (n, p, k)

• Condition always satisfied for Q = I



Checking sufficient conditions

• Most of the conditions are not computable in polynomial time

• Random matrices

– Sample X ∈ R
n×p from the Gaussian ensemble

– Conditions satisfied with high probability for certain (n, p, k)

– Example from Wainwright (2009): θ =
n

2k log p
> 1



Sparse methods

Common extensions

• Removing bias of the estimator

– Keep the active set, and perform unregularized restricted

estimation (Candès and Tao, 2007)

– Better theoretical bounds

– Potential problems of robustness

• Elastic net (Zou and Hastie, 2005)

– Replace λ‖w‖1 by λ‖w‖1 + ε‖w‖22
– Make the optimization strongly convex with unique solution

– Better behavior with heavily correlated variables



Relevance of theoretical results

• Most results only for the square loss

– Extend to other losses (Van De Geer, 2008; Bach, 2009)

• Most results only for ℓ1-regularization

– May be extended to other norms (see, e.g., Huang and Zhang,

2009; Bach, 2008b)

• Condition on correlations

– very restrictive, far from results for BIC penalty

• Non sparse generating vector

– little work on robustness to lack of sparsity

• Estimation of regularization parameter

– No satisfactory solution ⇒ open problem



Alternative sparse methods

Greedy methods

• Forward selection

• Forward-backward selection

• Non-convex method

– Harder to analyze

– Simpler to implement

– Problems of stability

• Positive theoretical results (Zhang, 2009, 2008a)

– Similar sufficient conditions than for the Lasso



Alternative sparse methods

Bayesian methods

• Lasso: minimize
∑n

i=1 (yi − w⊤xi)
2 + λ‖w‖1

– Equivalent to MAP estimation with Gaussian likelihood and

factorized Laplace prior p(w) ∝
∏p

j=1 e
−λ|wj| (Seeger, 2008)

– However, posterior puts zero weight on exact zeros

• Heavy-tailed distributions as a proxy to sparsity

– Student distributions (Caron and Doucet, 2008)

– Generalized hyperbolic priors (Archambeau and Bach, 2008)

– Instance of automatic relevance determination (Neal, 1996)

• Mixtures of “Diracs” and another absolutely continuous distributions,

e.g., “spike and slab” (Ishwaran and Rao, 2005)

• Less theory than frequentist methods



Comparing Lasso and other strategies for linear

regression

• Compared methods to reach the least-square solution

– Ridge regression: min
w∈Rp

1

2
‖y −Xw‖22 +

λ

2
‖w‖22

– Lasso: min
w∈Rp

1

2
‖y −Xw‖22 + λ‖w‖1

– Forward greedy:

∗ Initialization with empty set

∗ Sequentially add the variable that best reduces the square loss

• Each method builds a path of solutions from 0 to ordinary least-

squares solution

• Regularization parameters selected on the test set



Simulation results

• i.i.d. Gaussian design matrix, k = 4, n = 64, p ∈ [2, 256], SNR = 1

• Note stability to non-sparsity and variability
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Going beyond the Lasso

• ℓ1-norm for linear feature selection in high dimensions

– Lasso usually not applicable directly

• Non-linearities

• Dealing with structured set of features

• Sparse learning on matrices



Going beyond the Lasso

Non-linearity - Multiple kernel learning

• Multiple kernel learning

– Learn sparse combination of matrices k(x, x′) =
∑p

j=1 ηjkj(x, x
′)

– Mixing positive aspects of ℓ1-norms and ℓ2-norms

• Equivalent to group Lasso

– p multi-dimensional features Φj(x), where

kj(x, x
′) = Φj(x)

⊤Φj(x
′)

– learn predictor
∑p

j=1w
⊤
j Φj(x)

– Penalization by
∑p

j=1 ‖wj‖2



Going beyond the Lasso

Structured set of features

• Dealing with exponentially many features

– Can we design efficient algorithms for the case log p ≈ n?

– Use structure to reduce the number of allowed patterns of zeros

– Recursivity, hierarchies and factorization

• Prior information on sparsity patterns

– Grouped variables with overlapping groups



Going beyond the Lasso

Sparse methods on matrices

• Learning problems on matrices

– Multi-task learning

– Multi-category classification

– Matrix completion

– Image denoising

– NMF, topic models, etc.

• Matrix factorization

– Two types of sparsity (low-rank or dictionary learning)
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Sparsity in supervised machine learning

• Observed data (xi, yi) ∈ R
p × R, i = 1, . . . , n

– Response vector y = (y1, . . . , yn)
⊤ ∈ R

n

– Design matrix X = (x1, . . . , xn)
⊤ ∈ R

n×p

• Regularized empirical risk minimization:

min
w∈Rp

1

n

n
∑

i=1

ℓ(yi, w
⊤xi) + λΩ(w) = min

w∈Rp
L(y,Xw) + λΩ(w)

• Norm Ω to promote sparsity

– square loss + ℓ1-norm ⇒ basis pursuit in signal processing (Chen

et al., 2001), Lasso in statistics/machine learning (Tibshirani, 1996)

– Proxy for interpretability

– Allow high-dimensional inference: log p = O(n)



Sparsity in unsupervised machine learning

• Multiple responses/signals y = (y1, . . . , yk) ∈ R
n×k

min
X=(x1,...,xp)

min
w1,...,wk∈Rp

k
∑

j=1

{

L(yj,Xwj) + λΩ(wj)
}



Sparsity in unsupervised machine learning

• Multiple responses/signals y = (y1, . . . , yk) ∈ R
n×k

min
X=(x1,...,xp)

min
w1,...,wk∈Rp

k
∑

j=1

{

L(yj,Xwj) + λΩ(wj)
}

• Only responses are observed ⇒ Dictionary learning

– Learn X = (x1, . . . , xp) ∈ R
n×p such that ∀j, ‖xj‖2 6 1

min
X=(x1,...,xp)

min
w1,...,wk∈Rp

k
∑

j=1

{

L(yj,Xwj) + λΩ(wj)
}

– Olshausen and Field (1997); Elad and Aharon (2006); Mairal et al.

(2009a)

• sparse PCA: replace ‖xj‖2 6 1 by Θ(xj) 6 1



Sparsity in signal processing

• Multiple responses/signals x = (x1, . . . , xk) ∈ R
n×k

min
D=(d1,...,dp)

min
α1,...,αk∈Rp

k
∑

j=1

{

L(xj,Dαj) + λΩ(αj)
}

• Only responses are observed ⇒ Dictionary learning

– Learn D = (d1, . . . , dp) ∈ R
n×p such that ∀j, ‖dj‖2 6 1

min
D=(d1,...,dp)

min
α1,...,αk∈Rp

k
∑

j=1

{

L(xj,Dαj) + λΩ(αj)
}

– Olshausen and Field (1997); Elad and Aharon (2006); Mairal et al.

(2009a)

• sparse PCA: replace ‖dj‖2 6 1 by Θ(dj) 6 1



Why structured sparsity?

• Interpretability

– Structured dictionary elements (Jenatton et al., 2009b)

– Dictionary elements “organized” in a tree or a grid (Kavukcuoglu

et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)



Structured sparse PCA (Jenatton et al., 2009b)

raw data sparse PCA

• Unstructed sparse PCA ⇒ many zeros do not lead to better

interpretability
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interpretability



Structured sparse PCA (Jenatton et al., 2009b)

raw data Structured sparse PCA

• Enforce selection of convex nonzero patterns ⇒ robustness to

occlusion in face identification
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Why structured sparsity?

• Interpretability

– Structured dictionary elements (Jenatton et al., 2009b)

– Dictionary elements “organized” in a tree or a grid (Kavukcuoglu

et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)

• Stability and identifiability

– Optimization problem minw∈Rp L(y,Xw) + λ‖w‖1 is unstable

– “Codes” wj often used in later processing (Mairal et al., 2009c)

• Prediction or estimation performance

– When prior knowledge matches data (Haupt and Nowak, 2006;

Baraniuk et al., 2008; Jenatton et al., 2009a; Huang et al., 2009)

• Numerical efficiency

– Non-linear variable selection with 2p subsets (Bach, 2008c)



Classical approaches to structured sparsity

• Many application domains

– Computer vision (Cevher et al., 2008; Mairal et al., 2009b)

– Neuro-imaging (Gramfort and Kowalski, 2009; Jenatton et al.,

2011)

– Bio-informatics (Rapaport et al., 2008; Kim and Xing, 2010)

• Non-convex approaches

– Haupt and Nowak (2006); Baraniuk et al. (2008); Huang et al.

(2009)

• Convex approaches

– Design of sparsity-inducing norms
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Sparsity-inducing norms

• Popular choice for Ω

– The ℓ1-ℓ2 norm,

∑

G∈H

‖wG‖2 =
∑

G∈H

(

∑

j∈G

w2
j

)1/2

– with H a partition of {1, . . . , p}
– The ℓ1-ℓ2 norm sets to zero groups of non-overlapping

variables (as opposed to single variables for the ℓ1-norm)

– For the square loss, group Lasso (Yuan and Lin, 2006)

G

2G

3G

1



Unit norm balls

Geometric interpretation

‖w‖2 ‖w‖1
√

w2
1 + w2

2 + |w3|



Sparsity-inducing norms

• Popular choice for Ω

– The ℓ1-ℓ2 norm,

∑

G∈H

‖wG‖2 =
∑

G∈H

(

∑

j∈G

w2
j

)1/2

– with H a partition of {1, . . . , p}
– The ℓ1-ℓ2 norm sets to zero groups of non-overlapping

variables (as opposed to single variables for the ℓ1-norm)

– For the square loss, group Lasso (Yuan and Lin, 2006)

G

2G

3G

1

• However, the ℓ1-ℓ2 norm encodes fixed/static prior information,

requires to know in advance how to group the variables

• What happens if the set of groups H is not a partition anymore?



Structured sparsity with overlapping groups

(Jenatton, Audibert, and Bach, 2009a)

• When penalizing by the ℓ1-ℓ2 norm,

∑

G∈H

‖wG‖2 =
∑

G∈H

(

∑

j∈G

w2
j

)1/2

– The ℓ1 norm induces sparsity at the group level:

∗ Some wG’s are set to zero

– Inside the groups, the ℓ2 norm does not promote sparsity

GG2

1G

3G

2



Structured sparsity with overlapping groups

(Jenatton, Audibert, and Bach, 2009a)

• When penalizing by the ℓ1-ℓ2 norm,

∑

G∈H

‖wG‖2 =
∑

G∈H

(

∑

j∈G

w2
j

)1/2

– The ℓ1 norm induces sparsity at the group level:

∗ Some wG’s are set to zero

– Inside the groups, the ℓ2 norm does not promote sparsity

GG2

1G

3G

2

• The zero pattern of w is given by

{j, wj = 0} =
⋃

G∈H′

G for some H′ ⊆ H

• Zero patterns are unions of groups



Examples of set of groups H

• Selection of contiguous patterns on a sequence, p = 6

– H is the set of blue groups

– Any union of blue groups set to zero leads to the selection of a

contiguous pattern



Examples of set of groups H

• Selection of rectangles on a 2-D grids, p = 25

– H is the set of blue/green groups (with their not displayed

complements)

– Any union of blue/green groups set to zero leads to the selection

of a rectangle



Examples of set of groups H

• Selection of diamond-shaped patterns on a 2-D grids, p = 25.

– It is possible to extend such settings to 3-D space, or more complex

topologies



Unit norm balls

Geometric interpretation

‖w‖1
√

w2
1 + w2

2 + |w3| ‖w‖2 + |w1|+ |w2|



Optimization for sparsity-inducing norms

(see Bach, Jenatton, Mairal, and Obozinski, 2011)

• Gradient descent as a proximal method (differentiable functions)

– wt+1 = arg min
w∈Rp

L(wt) + (w − wt)
⊤∇L(wt)+

B

2
‖w − wt‖22

– wt+1 = wt − 1
B∇L(wt)



Optimization for sparsity-inducing norms

(see Bach, Jenatton, Mairal, and Obozinski, 2011)

• Gradient descent as a proximal method (differentiable functions)

– wt+1 = arg min
w∈Rp

L(wt) + (w − wt)
⊤∇L(wt)+

B

2
‖w − wt‖22

– wt+1 = wt − 1
B∇L(wt)

• Problems of the form: min
w∈Rp

L(w) + λΩ(w)

– wt+1 = arg min
w∈Rp

L(wt)+(w−wt)
⊤∇L(wt)+λΩ(w)+

B

2
‖w − wt‖22

– Ω(w) = ‖w‖1 ⇒ Thresholded gradient descent

• Similar convergence rates than smooth optimization

– Acceleration methods (Nesterov, 2007; Beck and Teboulle, 2009)



Comparison of optimization algorithms

(Mairal, Jenatton, Obozinski, and Bach, 2010)

Small scale

• Specific norms which can be implemented through network flows
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Comparison of optimization algorithms

(Mairal, Jenatton, Obozinski, and Bach, 2010)

Large scale

• Specific norms which can be implemented through network flows
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Approximate proximal methods

(Schmidt, Le Roux, and Bach, 2011)

• Exact computation of proximal operator arg min
w∈Rp

1

2
‖w−z‖22+λΩ(w)

– Closed form for ℓ1-norm

– Efficient for overlapping group norms (Jenatton et al., 2010; Mairal

et al., 2010)

• Convergence rate: O(1/t) and O(1/t2) (with acceleration)

• Gradient or proximal operator may be only approximate

– Preserved convergence rate with appropriate control

– Approximate gradient with non-random errors

– Complex regularizers



Application to background subtraction

(Mairal, Jenatton, Obozinski, and Bach, 2010)

Input ℓ1-norm Structured norm
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Background ℓ1-norm Structured norm



Application to neuro-imaging

Structured sparsity for fMRI (Jenatton et al., 2011)

• “Brain reading”: prediction of (seen) object size

• Multi-scale activity levels through hierarchical penalization
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Application to neuro-imaging

Structured sparsity for fMRI (Jenatton et al., 2011)

• “Brain reading”: prediction of (seen) object size

• Multi-scale activity levels through hierarchical penalization



Sparse Structured PCA

(Jenatton, Obozinski, and Bach, 2009b)

• Learning sparse and structured dictionary elements:

min
W∈Rk×n,X∈Rp×k

1

n

n
∑

i=1

‖yi−Xwi‖22+λ

p
∑

j=1

Ω(xj) s.t. ∀i, ‖wi‖2 ≤ 1



Application to face databases (1/3)

raw data (unstructured) NMF

• NMF obtains partially local features



Application to face databases (2/3)

(unstructured) sparse PCA Structured sparse PCA

• Enforce selection of convex nonzero patterns ⇒ robustness to

occlusion



Application to face databases (2/3)

(unstructured) sparse PCA Structured sparse PCA

• Enforce selection of convex nonzero patterns ⇒ robustness to

occlusion



Application to face databases (3/3)

• Quantitative performance evaluation on classification task
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Structured sparse PCA on resting state activity

(Varoquaux, Jenatton, Gramfort, Obozinski, Thirion,

and Bach, 2010)



Dictionary learning vs. sparse structured PCA

Exchange roles of X and w

• Sparse structured PCA (structured dictionary elements):

min
W∈Rk×n,X∈Rp×k

1

n

n
∑

i=1

‖yi−Xwi‖22+λ
k

∑

j=1

Ω(xj) s.t. ∀i, ‖wi‖2 ≤ 1.

• Dictionary learning with structured sparsity for codes w:

min
W∈Rk×n,X∈Rp×k

1

n

n
∑

i=1

‖yi −Xwi‖22 + λΩ(wi) s.t. ∀j, ‖xj‖2 ≤ 1.

• Optimization:

– Alternating optimization

– Modularity of implementation if proximal step is efficient

(Jenatton et al., 2010; Mairal et al., 2010)



Hierarchical dictionary learning

(Jenatton, Mairal, Obozinski, and Bach, 2010)

• Structure on codes w (not on dictionary X)

• Hierarchical penalization: Ω(w) =
∑

G∈H ‖wG‖2 where groups G

in H are equal to set of descendants of some nodes in a tree

• Variable selected after its ancestors (Zhao et al., 2009; Bach, 2008c)



Hierarchical dictionary learning

Modelling of text corpora

• Each document is modelled through word counts

– Low-rank matrix factorization of word-document matrix

– Similar to NMF with multinomial loss

• Probabilistic topic models (Blei et al., 2003a)

– Similar structures based on non parametric Bayesian methods (Blei

et al., 2004)

– Can we achieve similar performance with simple matrix

factorization formulation?



Topic models and matrix factorization

• Latent Dirichlet allocation (Blei et al., 2003b)

– For a document, sample θ ∈ R
k from a Dirichlet(α)

– For the n-th word of the same document,

∗ sample a topic zn from a multinomial with parameter θ

∗ sample a word wn from a multinomial with parameter β(zn, :)

• Interpretation as multinomial PCA (Buntine and Perttu, 2003)

– Marginalizing over topic zn, given θ, each word wn is selected from

a multinomial with parameter
∑k

z=1 θzβ(z, :) = β⊤θ

– Row of β = dictionary elements, θ code for a document



Modelling of text corpora - Dictionary tree

Probabilistic topic models (Blei et al., 2004)



Modelling of text corpora - Dictionary tree



Topic models, NMF and matrix factorization

• Three different views on the same problem

– Interesting parallels to be made

– Common problems to be solved

• Structure on dictionary/decomposition coefficients with adapted

priors, e.g., nested Chinese restaurant processes (Blei et al., 2004)

• Learning hyperparameters from data

• Identifiability and interpretation/evaluation of results

• Discriminative tasks (Blei and McAuliffe, 2008; Lacoste-Julien

et al., 2008; Mairal et al., 2009c)

• Optimization and local minima



Digital zooming (Couzinie-Devy et al., 2011)
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Inverse half-toning (Mairal et al., 2011)



Inverse half-toning (Mairal et al., 2011)



Ongoing Work - Inverse half-toning
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Ongoing Work - Inverse half-toning



Structured sparsity - Audio processing

Source separation (Lefèvre et al., 2011)
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Structured sparsity - Audio processing

Musical instrument separation (Lefèvre et al., 2011)

• Unsupervised source separation with group-sparsity prior

– Top: mixture

– Left: source tracks (guitar, voice). Right: separated tracks.
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Outline

• Introduction: Sparse methods for machine learning

– Short tutorial

– Need for structured sparsity: Going beyond the ℓ1-norm

• Classical approaches to structured sparsity

– Linear combinations of ℓq-norms

– Applications

• Structured sparsity through submodular functions

– Relaxation of the penalization of supports

– Unified algorithms and analysis



ℓ1-norm = convex envelope of cardinality of support

• Let w ∈ R
p. Let V = {1, . . . , p} and Supp(w) = {j ∈ V, wj 6= 0}

• Cardinality of support: ‖w‖0 = Card(Supp(w))

• Convex envelope = largest convex lower bound (see, e.g., Boyd and

Vandenberghe, 2004)

1

0

||w||

||w||

−1 1

• ℓ1-norm = convex envelope of ℓ0-quasi-norm on the ℓ∞-ball [−1, 1]p



Convex envelopes of general functions of the support

(Bach, 2010)

• Let F : 2V → R be a set-function

– Assume F is non-decreasing (i.e., A ⊂ B ⇒ F (A) 6 F (B))

– Explicit prior knowledge on supports (Haupt and Nowak, 2006;

Baraniuk et al., 2008; Huang et al., 2009)

• Define Θ(w) = F (Supp(w)): How to get its convex envelope?

1. Possible if F is also submodular

2. Allows unified theory and algorithm

3. Provides new regularizers



Submodular functions (Fujishige, 2005; Bach, 2010)

• F : 2V → R is submodular if and only if

∀A,B ⊂ V, F (A) + F (B) > F (A ∩B) + F (A ∪B)

⇔ ∀k ∈ V, A 7→ F (A ∪ {k})− F (A) is non-increasing
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Submodular functions (Fujishige, 2005; Bach, 2010)

• F : 2V → R is submodular if and only if

∀A,B ⊂ V, F (A) + F (B) > F (A ∩B) + F (A ∪B)

⇔ ∀k ∈ V, A 7→ F (A ∪ {k})− F (A) is non-increasing

• Intuition 1: defined like concave functions (“diminishing returns”)

– Example: F : A 7→ g(Card(A)) is submodular if g is concave

• Intuition 2: behave like convex functions

– Polynomial-time minimization, conjugacy theory

• Used in several areas of signal processing and machine learning

– Total variation/graph cuts (Chambolle, 2005; Boykov et al., 2001)

– Optimal design (Krause and Guestrin, 2005)



Submodular functions - Examples

• Concave functions of the cardinality: g(|A|)

• Cuts

• Entropies

– H((Xk)k∈A) from p random variables X1, . . . ,Xp

• Network flows

– Efficient representation for set covers

• Rank functions of matroids



Submodular functions - Lovász extension

• Subsets may be identified with elements of {0, 1}p

• Given any set-function F and w such that wj1 > · · · > wjp, define:

f(w) =

p
∑

k=1

wjk[F ({j1, . . . , jk})− F ({j1, . . . , jk−1})]

– If w = 1A, f(w) = F (A) ⇒ extension from {0, 1}p to R
p

– f is piecewise affine and positively homogeneous

• F is submodular if and only if f is convex (Lovász, 1982)

– Minimizing f(w) on w ∈ [0, 1]p equivalent to minimizing F on 2V



Submodular functions and structured sparsity

• Let F : 2V → R be a non-decreasing submodular set-function

• Proposition: the convex envelope of Θ : w 7→ F (Supp(w)) on the

ℓ∞-ball is Ω : w 7→ f(|w|) where f is the Lovász extension of F



Submodular functions and structured sparsity

• Let F : 2V → R be a non-decreasing submodular set-function

• Proposition: the convex envelope of Θ : w 7→ F (Supp(w)) on the

ℓ∞-ball is Ω : w 7→ f(|w|) where f is the Lovász extension of F

• Sparsity-inducing properties: Ω is a polyhedral norm

(1,0)/F({1})

(1,1)/F({1,2})(0,1)/F({2})

– A if stable if for all B ⊃ A, B 6= A ⇒ F (B) > F (A)

– With probability one, stable sets are the only allowed active sets



Polyhedral unit balls

w
2

w
3

w
1

F (A) = |A|
Ω(w) = ‖w‖1

F (A) = min{|A|, 1}
Ω(w) = ‖w‖∞

F (A) = |A|1/2
all possible extreme points

F (A) = 1{A∩{1}6=∅} + 1{A∩{2,3}6=∅}

Ω(w) = |w1|+ ‖w{2,3}‖∞

F (A) = 1{A∩{1,2,3}6=∅}

+1{A∩{2,3}6=∅}+1{A∩{3}6=∅}

Ω(w) = ‖w‖∞ + ‖w{2,3}‖∞ + |w3|



Submodular functions and structured sparsity

• Unified theory and algorithms

– Generic computation of proximal operator

– Unified oracle inequalities

• Extensions

– Shaping level sets through symmetric submodular function (Bach,

2011)

– ℓq-relaxations of combinatorial penalties (Obozinski and Bach,

2011)



Conclusion

• Structured sparsity for machine learning and statistics

– Many applications (image, audio, text, etc.)

– May be achieved through structured sparsity-inducing norms

– Link with submodular functions: unified analysis and algorithms



Conclusion

• Structured sparsity for machine learning and statistics

– Many applications (image, audio, text, etc.)

– May be achieved through structured sparsity-inducing norms

– Link with submodular functions: unified analysis and algorithms

• On-going/related work on structured sparsity

– Norm design beyond submodular functions

– Complementary approach of Jacob, Obozinski, and Vert (2009)

– Theoretical analysis of dictionary learning (Jenatton, Bach and

Gribonval, 2011)

– Achieving log p = O(n) algorithmically (Bach, 2008c)
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