Structured sparsity through convex optimization

Francis Bach

INRIA - Ecole Normale Supérieure, Paris, France

Joint work with R. Jenatton, J. Mairal, G. Obozinski Cambridge University - May 2012

Outline

- Introduction: Sparse methods for machine learning
 - Short tutorial
 - Need for structured sparsity: Going beyond the $\ell_1\text{-norm}$
- Classical approaches to structured sparsity
 - Linear combinations of ℓ_q -norms
 - Applications
- Structured sparsity through submodular functions
 - Relaxation of the penalization of supports
 - Unified algorithms and analysis

Sparsity in supervised machine learning

- Observed data $(x_i, y_i) \in \mathbb{R}^p \times \mathbb{R}$, $i = 1, \dots, n$
 - Response vector $y = (y_1, \dots, y_n)^\top \in \mathbb{R}^n$
 - Design matrix $X = (x_1, \ldots, x_n)^\top \in \mathbb{R}^{n \times p}$
- Regularized empirical risk minimization:

$$\min_{w \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \ell(y_i, w^\top x_i) + \lambda \Omega(w) = \left[\min_{w \in \mathbb{R}^p} L(y, Xw) + \lambda \Omega(w) \right]$$

- Norm Ω to promote sparsity
 - square loss + ℓ_1 -norm \Rightarrow basis pursuit in signal processing (Chen et al., 2001), Lasso in statistics/machine learning (Tibshirani, 1996)
 - Proxy for interpretability
 - Allow high-dimensional inference: $\log p$

$$\log p = O(n)$$

ℓ_2 -norm vs. ℓ_1 -norm

- ℓ_1 -norms lead to interpretable models
- ℓ_2 -norms can be run implicitly with very large feature spaces
- Algorithms:
 - Smooth convex optimization vs. nonsmooth convex optimization
- Theory:
 - better predictive performance?

Why ℓ_1 -norms lead to sparsity?

• Example 1: quadratic problem in 1D, i.e.

$$\lim_{x \in \mathbb{R}} \frac{1}{2}x^2 - xy + \lambda |x|$$

• Piecewise quadratic function with a kink at zero

- -x = 0 is the solution iff $g_+ \ge 0$ and $g_- \le 0$ (i.e., $|y| \le \lambda$)
- $-x \ge 0$ is the solution iff $g_+ \le 0$ (i.e., $y \ge \lambda$) $\Rightarrow x^* = y \lambda$
- $x \leq 0$ is the solution iff $g_{-} \leq 0$ (i.e., $y \leq -\lambda$) $\Rightarrow x^{*} = y + \lambda$

• Solution
$$x^* = \operatorname{sign}(y)(|y| - \lambda)_+ = \operatorname{soft} \operatorname{thresholding}$$

Why ℓ_1 -norms lead to sparsity?

• **Example 1**: quadratic problem in 1D, i.e.

$$\lim_{x \in \mathbb{R}} \frac{1}{2}x^2 - xy + \lambda |x|$$

• Piecewise quadratic function with a kink at zero

• Solution
$$x^* = \operatorname{sign}(y)(|y| - \lambda)_+ = \operatorname{soft} \operatorname{thresholding}$$

Why ℓ_1 -norms lead to sparsity?

- Example 2: minimize quadratic function Q(w) subject to ||w||₁ ≤ T.
 coupled soft thresholding
- Geometric interpretation
 - NB : penalizing is "equivalent" to constraining

Non-smooth optimization

• Simple techniques might not work!

- Gradient descent or coordinate descent
- Special tools
 - Subgradients or directional derivatives
- Typically slower than smooth optimization...
- ... except in some regularized problems

Counter-example Coordinate descent for nonsmooth objectives

Regularized problems - Proximal methods

• Gradient descent as a proximal method (differentiable functions)

$$-w_{t+1} = \arg\min_{w \in \mathbb{R}^p} L(w_t) + (w - w_t)^\top \nabla L(w_t) + \frac{\mu}{2} \|w - w_t\|_2^2 -w_{t+1} = w_t - \frac{1}{\mu} \nabla L(w_t)$$

- Problems of the form: $\lim_{w \in \mathbb{R}^p} L(w) + \lambda \Omega(w)$
 - $-w_{t+1} = \arg\min_{w\in\mathbb{R}^p} L(w_t) + (w w_t)^\top \nabla L(w_t) + \lambda \Omega(w) + \frac{\mu}{2} ||w w_t||_2^2$ - Thresholded gradient descent $w_{t+1} = \text{SoftThres}(w_t - \frac{1}{\mu} \nabla L(w_t))$
- Similar convergence rates than smooth optimization
 - Acceleration methods (Nesterov, 2007; Beck and Teboulle, 2009)
 - depends on the condition number of the loss

• Proximal methods

- Proximal methods
- Coordinate descent (Fu, 1998; Friedman et al., 2007)
 - convergent here under reasonable assumptions! (Bertsekas, 1995)
 - separability of optimality conditions
 - equivalent to iterative thresholding

- Proximal methods
- Coordinate descent (Fu, 1998; Friedman et al., 2007)
 - convergent here under reasonable assumptions! (Bertsekas, 1995)
 - separability of optimality conditions
 - equivalent to iterative thresholding
- "η-trick" (Rakotomamonjy et al., 2008; Jenatton et al., 2009b)
 - Notice that $\sum_{j=1}^{p} |w_j| = \min_{\eta \ge 0} \frac{1}{2} \sum_{j=1}^{p} \left\{ \frac{w_j^2}{\eta_j} + \eta_j \right\}$
 - Alternating minimization with respect to η (closed-form $\eta_j = |w_j|$) and w (weighted squared ℓ_2 -norm regularized problem)
 - Caveat: lack of continuity around $(w_i, \eta_i) = (0, 0)$: add ε/η_j

- Proximal methods
- Coordinate descent (Fu, 1998; Friedman et al., 2007)
 - convergent here under reasonable assumptions! (Bertsekas, 1995)
 - separability of optimality conditions
 - equivalent to iterative thresholding
- "η-trick" (Rakotomamonjy et al., 2008; Jenatton et al., 2009b)
 - Notice that $\sum_{j=1}^{p} |w_j| = \min_{\eta \ge 0} \frac{1}{2} \sum_{j=1}^{p} \left\{ \frac{w_j^2}{\eta_j} + \eta_j \right\}$
 - Alternating minimization with respect to η (closed-form $\eta_j = |w_j|$) and w (weighted squared ℓ_2 -norm regularized problem)
 - Caveat: lack of continuity around $(w_i, \eta_i) = (0, 0)$: add ε/η_i
- Dedicated algorithms that use sparsity (active sets/homotopy)

Piecewise linear paths

Gaussian hare vs. Laplacian tortoise

- Coord. descent and proximal: O(pn) per iterations for ℓ_1 and ℓ_2
- "Exact" algorithms: O(kpn) for ℓ_1 vs. $O(p^2n)$ for ℓ_2

Additional methods - Softwares

- Many contributions in signal processing, optimization, mach. learning
 - Extensions to stochastic setting (Bottou and Bousquet, 2008)
- Extensions to other sparsity-inducing norms
 - Computing proximal operator
 - F. Bach, R. Jenatton, J. Mairal, G. Obozinski. Optimization with sparsity-inducing penalties. *Foundations and Trends in Machine Learning*, 4(1):1-106, 2011.

• Softwares

- Many available codes
- SPAMS (SPArse Modeling Software)

http://www.di.ens.fr/willow/SPAMS/

Lasso - Two main recent theoretical results

1. **Support recovery condition** (Zhao and Yu, 2006; Wainwright, 2009; Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistent if and only if there are low correlations between relevant and irrelevant variables.

Model selection consistency (Lasso)

- Assume w sparse and denote $\mathbf{J} = \{j, \mathbf{w}_j \neq 0\}$ the nonzero pattern

where $\mathbf{Q} = \lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^{n} x_i x_i^{\top} \in \mathbb{R}^{p \times p}$ and $\mathbf{J} = \operatorname{Supp}(\mathbf{w})$

Model selection consistency (Lasso)

- Assume w sparse and denote $\mathbf{J} = \{j, \mathbf{w}_j \neq 0\}$ the nonzero pattern
- The Lasso is usually not model-consistent
 - Selects more variables than necessary (see, e.g., Lv and Fan, 2009)
 Fixing the Lasso: adaptive Lasso (Zou, 2006), relaxed Lasso (Meinshausen, 2008), thresholding (Lounici, 2008), Bolasso (Bach, 2008a), stability selection (Meinshausen and Bühlmann, 2008), Wasserman and Roeder (2009)

Adaptive Lasso and concave penalization

 \boldsymbol{n}

• Adaptive Lasso (Zou, 2006; Huang et al., 2008)

- Weighted
$$\ell_1$$
-norm: $\min_{w \in \mathbb{R}^p} L(w) + \lambda \sum_{j=1}^p \frac{|w_j|}{|\hat{w}_j|^{\alpha}}$

- \hat{w} estimator obtained from ℓ_2 or ℓ_1 regularization

• Reformulation in terms of concave penalization

$$\min_{w \in \mathbb{R}^p} L(w) + \sum_{j=1}^p g(|w_j|)$$

- Example: $g(|w_j|) = |w_j|^{1/2}$ or $\log |w_j|$. Closer to the ℓ_0 penalty
- Concave-convex procedure: replace $g(|w_j|)$ by affine upper bound
- Better sparsity-inducing properties (Fan and Li, 2001; Zou and Li, 2008; Zhang, 2008b)

Lasso - Two main recent theoretical results

- 1. **Support recovery condition** (Zhao and Yu, 2006; Wainwright, 2009; Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistent if and only if there are low correlations between relevant and irrelevant variables.
- 2. Exponentially many irrelevant variables (Zhao and Yu, 2006; Wainwright, 2009; Bickel et al., 2009; Lounici, 2008; Meinshausen and Yu, 2008): under appropriate assumptions, consistency is possible as long as

$$\log p = O(n)$$

High-dimensional inference Going beyond exact support recovery

- Theoretical results usually assume that non-zero \mathbf{w}_j are large enough, i.e., $|\mathbf{w}_j| \ge \sigma \sqrt{\frac{\log p}{n}}$
- May include too many variables but still predict well
- Oracle inequalities
 - Predict as well as the estimator obtained with the knowledge of ${\bf J}$
 - Assume i.i.d. Gaussian noise with variance σ^2
 - We have:

$$\frac{1}{n} \mathbb{E} \| X \hat{w}_{\text{oracle}} - X \mathbf{w} \|_2^2 = \frac{\sigma^2 |J|}{n}$$

High-dimensional inference Variable selection without computational limits

• Approaches based on penalized criteria (close to BIC)

$$\min_{w \in \mathbb{R}^p} \frac{1}{2} \|y - Xw\|_2^2 + C\sigma^2 \|w\|_0 \left(1 + \log \frac{p}{\|w\|_0}\right)$$

Oracle inequality if data generated by w with k non-zeros (Massart, 2003; Bunea et al., 2007):

$$\frac{1}{n} \|X\hat{w} - X\mathbf{w}\|_2^2 \leqslant C \frac{k\sigma^2}{n} \left(1 + \log\frac{p}{k}\right)$$

- Gaussian noise No assumptions regarding correlations
- Scaling between dimensions: $\frac{k \log p}{n}$ small

High-dimensional inference (Lasso)

- Main result: we only need $k \log p = O(n)$
 - if ${\bf w}$ is sufficiently sparse
 - and input variables are not too correlated

High-dimensional inference (Lasso)

- Main result: we only need $k \log p = O(n)$
 - if ${\bf w}$ is sufficiently sparse
 - and input variables are not too correlated
- Precise conditions on covariance matrix $\mathbf{Q} = \frac{1}{n} X^{\top} X$.
 - Mutual incoherence (Lounici, 2008)
 - Restricted eigenvalue conditions (Bickel et al., 2009)
 - Sparse eigenvalues (Meinshausen and Yu, 2008)
 - Null space property (Donoho and Tanner, 2005)
- Links with signal processing and compressed sensing (Candès and Wakin, 2008)
- Slow rate if no assumptions: $\sqrt{\frac{k \log p}{n}}$

Restricted eigenvalue conditions

• Theorem (Bickel et al., 2009):

- assume
$$k(k)^2 = \min_{|J| \leq k} \min_{\Delta, \|\Delta_{J^c}\|_1 \leq \|\Delta_J\|_1} \frac{\Delta^\top \mathbf{Q} \Delta}{\|\Delta_J\|_2^2} > 0$$

- assume $\lambda = A\sigma\sqrt{n\log p}$ and $A^2 > 8$ - then, with probability $1 - p^{1-A^2/8}$, we have

estimation error
$$\|\hat{w} - \mathbf{w}\|_1 \leq \frac{16A}{\kappa^2(k)} \sigma k \sqrt{\frac{\log p}{n}}$$

prediction error $\frac{1}{n} \|X\hat{w} - X\mathbf{w}\|_2^2 \leq \frac{16A^2}{\kappa^2(k)} \frac{\sigma^2 k}{n} \log p$

- Condition imposes a potentially hidden scaling between (n, p, k)
- Condition always satisfied for $\mathbf{Q} = I$

Checking sufficient conditions

- Most of the conditions are not computable in polynomial time
- Random matrices
 - Sample $X \in \mathbb{R}^{n \times p}$ from the Gaussian ensemble
 - Conditions satisfied with high probability for certain $\left(n,p,k\right)$
 - Example from Wainwright (2009): $\theta = \frac{n}{2k \log p} > 1$

Sparse methods Common extensions

- Removing bias of the estimator
 - Keep the active set, and perform unregularized restricted estimation (Candès and Tao, 2007)
 - Better theoretical bounds
 - Potential problems of robustness
- Elastic net (Zou and Hastie, 2005)
 - Replace $\lambda \|w\|_1$ by $\lambda \|w\|_1 + \varepsilon \|w\|_2^2$
 - Make the optimization strongly convex with unique solution
 - Better behavior with heavily correlated variables

Relevance of theoretical results

- Most results only for the square loss
 - Extend to other losses (Van De Geer, 2008; Bach, 2009)
- Most results only for $\ell_1\text{-}regularization$
 - May be extended to other norms (see, e.g., Huang and Zhang, 2009; Bach, 2008b)
- Condition on correlations
 - very restrictive, far from results for BIC penalty
- Non sparse generating vector
 - little work on robustness to lack of sparsity
- Estimation of regularization parameter
 - No satisfactory solution \Rightarrow open problem

Alternative sparse methods Greedy methods

- Forward selection
- Forward-backward selection
- Non-convex method
 - Harder to analyze
 - Simpler to implement
 - Problems of stability
- Positive theoretical results (Zhang, 2009, 2008a)
 - Similar sufficient conditions than for the Lasso

Alternative sparse methods Bayesian methods

- Lasso: minimize $\sum_{i=1}^{n} (y_i w^{\top} x_i)^2 + \lambda \|w\|_1$
 - Equivalent to MAP estimation with Gaussian likelihood and factorized Laplace prior $p(w) \propto \prod_{j=1}^{p} e^{-\lambda |w_j|}$ (Seeger, 2008)
 - However, posterior puts zero weight on exact zeros
- Heavy-tailed distributions as a proxy to sparsity
 - Student distributions (Caron and Doucet, 2008)
 - Generalized hyperbolic priors (Archambeau and Bach, 2008)
 - Instance of automatic relevance determination (Neal, 1996)
- Mixtures of "Diracs" and another absolutely continuous distributions, e.g., "spike and slab" (Ishwaran and Rao, 2005)
- Less theory than frequentist methods

Comparing Lasso and other strategies for linear regression

• Compared methods to reach the least-square solution

- Ridge regression:
$$\min_{w \in \mathbb{R}^p} \frac{1}{2} \|y - Xw\|_2^2 + \frac{\lambda}{2} \|w\|_2^2$$

- Lasso:
$$\min_{w \in \mathbb{R}^p} \frac{1}{2} \|y - Xw\|_2^2 + \lambda \|w\|_1$$

- Forward greedy:
 - * Initialization with empty set
 - \ast Sequentially add the variable that best reduces the square loss
- Each method builds a path of solutions from 0 to ordinary leastsquares solution
- Regularization parameters selected on the test set

Simulation results

- i.i.d. Gaussian design matrix, k=4, n=64, $p\in[2,256]$, ${\sf SNR}=1$
- Note stability to non-sparsity and variability

Going beyond the Lasso

- ℓ_1 -norm for linear feature selection in high dimensions
 - Lasso usually not applicable directly
- Non-linearities
- Dealing with structured set of features
- Sparse learning on matrices

Going beyond the Lasso Non-linearity - Multiple kernel learning

• Multiple kernel learning

- Learn sparse combination of matrices $k(x, x') = \sum_{j=1}^{p} \eta_j k_j(x, x')$
- Mixing positive aspects of ℓ_1 -norms and ℓ_2 -norms

• Equivalent to group Lasso

– p multi-dimensional features $\Phi_j(x)$, where

$$k_j(x, x') = \Phi_j(x)^\top \Phi_j(x')$$

- learn predictor $\sum_{j=1}^{p} w_j^{\top} \Phi_j(x)$ - Penalization by $\sum_{j=1}^{p} \|w_j\|_2$
Going beyond the Lasso Structured set of features

- Dealing with exponentially many features
 - Can we design efficient algorithms for the case $\log p \approx n?$
 - Use structure to reduce the number of allowed patterns of zeros
 - Recursivity, hierarchies and factorization
- Prior information on sparsity patterns
 - Grouped variables with overlapping groups

Going beyond the Lasso Sparse methods on matrices

• Learning problems on matrices

- Multi-task learning
- Multi-category classification
- Matrix completion
- Image denoising
- NMF, topic models, etc.

• Matrix factorization

- Two types of sparsity (low-rank or dictionary learning)

Outline

- Introduction: Sparse methods for machine learning
 - Short tutorial
 - Need for structured sparsity: Going beyond the $\ell_1\text{-norm}$
- Classical approaches to structured sparsity
 - Linear combinations of ℓ_q -norms
 - Applications
- Structured sparsity through submodular functions
 - Relaxation of the penalization of supports
 - Unified algorithms and analysis

Sparsity in supervised machine learning

- Observed data $(x_i, y_i) \in \mathbb{R}^p \times \mathbb{R}$, $i = 1, \dots, n$
 - Response vector $y = (y_1, \dots, y_n)^\top \in \mathbb{R}^n$
 - Design matrix $X = (x_1, \ldots, x_n)^\top \in \mathbb{R}^{n \times p}$
- Regularized empirical risk minimization:

$$\min_{w \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \ell(y_i, w^\top x_i) + \lambda \Omega(w) = \left[\min_{w \in \mathbb{R}^p} L(y, Xw) + \lambda \Omega(w) \right]$$

- Norm Ω to promote sparsity
 - square loss + ℓ_1 -norm \Rightarrow basis pursuit in signal processing (Chen et al., 2001), Lasso in statistics/machine learning (Tibshirani, 1996)
 - Proxy for interpretability
 - Allow high-dimensional inference: $\log p$

$$\log p = O(n)$$

Sparsity in unsupervised machine learning

• Multiple responses/signals $y = (y^1, \dots, y^k) \in \mathbb{R}^{n \times k}$

$$\min_{w^1,\dots,w^k \in \mathbb{R}^p} \sum_{j=1}^k \left\{ L(y^j, Xw^j) + \lambda \Omega(w^j) \right\}$$

Sparsity in unsupervised machine learning

• Multiple responses/signals $y = (y^1, \dots, y^k) \in \mathbb{R}^{n \times k}$

$$\min_{w^1,\dots,w^k \in \mathbb{R}^p} \sum_{j=1}^k \left\{ L(y^j, Xw^j) + \lambda \Omega(w^j) \right\}$$

- Only responses are observed \Rightarrow **Dictionary learning**
 - Learn $X = (x^1, \dots, x^p) \in \mathbb{R}^{n \times p}$ such that $\forall j, \|x^j\|_2 \leqslant 1$

$$\min_{X=(x^1,\ldots,x^p)} \min_{w^1,\ldots,w^k \in \mathbb{R}^p} \sum_{j=1}^k \left\{ L(y^j, Xw^j) + \lambda \Omega(w^j) \right\}$$

- Olshausen and Field (1997); Elad and Aharon (2006); Mairal et al. (2009a)
- sparse PCA: replace $||x^j||_2 \leq 1$ by $\Theta(x^j) \leq 1$

Sparsity in signal processing

• Multiple responses/signals $x = (x^1, \dots, x^k) \in \mathbb{R}^{n \times k}$

$$\min_{\alpha^1,\dots,\alpha^k \in \mathbb{R}^p} \sum_{j=1}^k \left\{ L(x^j, D\alpha^j) + \lambda \Omega(\alpha^j) \right\}$$

- Only responses are observed \Rightarrow **Dictionary learning**
 - Learn $D = (d^1, \dots, d^p) \in \mathbb{R}^{n \times p}$ such that $\forall j, \|d^j\|_2 \leq 1$

$$\min_{D=(d^1,\ldots,d^p)} \min_{\alpha^1,\ldots,\alpha^k \in \mathbb{R}^p} \sum_{j=1}^k \left\{ L(x^j, D\alpha^j) + \lambda \Omega(\alpha^j) \right\}$$

- Olshausen and Field (1997); Elad and Aharon (2006); Mairal et al.
 (2009a)
- sparse PCA: replace $||d^j||_2 \leq 1$ by $\Theta(d^j) \leq 1$

Why structured sparsity?

• Interpretability

- Structured dictionary elements (Jenatton et al., 2009b)
- Dictionary elements "organized" in a tree or a grid (Kavukcuoglu et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)

raw data

sparse PCA

 \bullet Unstructed sparse PCA \Rightarrow many zeros do not lead to better interpretability

raw data

sparse PCA

 \bullet Unstructed sparse PCA \Rightarrow many zeros do not lead to better interpretability

raw data

Structured sparse PCA

• Enforce selection of convex nonzero patterns \Rightarrow robustness to occlusion in face identification

raw data

Structured sparse PCA

• Enforce selection of convex nonzero patterns \Rightarrow robustness to occlusion in face identification

Why structured sparsity?

• Interpretability

- Structured dictionary elements (Jenatton et al., 2009b)
- Dictionary elements "organized" in a tree or a grid (Kavukcuoglu et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)

Why structured sparsity?

• Interpretability

- Structured dictionary elements (Jenatton et al., 2009b)
- Dictionary elements "organized" in a tree or a grid (Kavukcuoglu et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)

• Stability and identifiability

- Optimization problem $\min_{w \in \mathbb{R}^p} L(y, Xw) + \lambda \|w\|_1$ is unstable
- "Codes" w^j often used in later processing (Mairal et al., 2009c)

• Prediction or estimation performance

 When prior knowledge matches data (Haupt and Nowak, 2006; Baraniuk et al., 2008; Jenatton et al., 2009a; Huang et al., 2009)

• Numerical efficiency

- Non-linear variable selection with 2^p subsets (Bach, 2008c)

Classical approaches to structured sparsity

• Many application domains

- Computer vision (Cevher et al., 2008; Mairal et al., 2009b)
- Neuro-imaging (Gramfort and Kowalski, 2009; Jenatton et al., 2011)
- Bio-informatics (Rapaport et al., 2008; Kim and Xing, 2010)

• Non-convex approaches

Haupt and Nowak (2006); Baraniuk et al. (2008); Huang et al. (2009)

• Convex approaches

- Design of sparsity-inducing norms

Outline

- Introduction: Sparse methods for machine learning
 - Short tutorial
 - Need for structured sparsity: Going beyond the $\ell_1\text{-norm}$
- Classical approaches to structured sparsity
 - Linear combinations of ℓ_q -norms
 - Applications
- Structured sparsity through submodular functions
 - Relaxation of the penalization of supports
 - Unified algorithms and analysis

Sparsity-inducing norms

• Popular choice for Ω

– The ℓ_1 - ℓ_2 norm,

$$\sum_{G \in \mathbf{H}} \|w_G\|_2 = \sum_{G \in \mathbf{H}} \left(\sum_{j \in G} w_j^2\right)^{1/2}$$

- with ${\bf H}$ a partition of $\{1,\ldots,p\}$
- The ℓ_1 - ℓ_2 norm sets to zero groups of non-overlapping variables (as opposed to single variables for the ℓ_1 -norm)
- For the square loss, group Lasso (Yuan and Lin, 2006)

Unit norm balls Geometric interpretation

 $||w||_2$

 $||w||_1$

 $\sqrt{w_1^2 + w_2^2} + |w_3|$

Sparsity-inducing norms

• Popular choice for Ω

– The ℓ_1 - ℓ_2 norm,

$$\sum_{G \in \mathbf{H}} \|w_G\|_2 = \sum_{G \in \mathbf{H}} \left(\sum_{j \in G} w_j^2\right)^{1/2}$$

- with ${\bf H}$ a partition of $\{1,\ldots,p\}$
- The ℓ_1 - ℓ_2 norm sets to zero groups of non-overlapping variables (as opposed to single variables for the ℓ_1 -norm)
- For the square loss, group Lasso (Yuan and Lin, 2006)
- However, the ℓ_1 - ℓ_2 norm encodes **fixed/static prior information**, requires to know in advance how to group the variables

 $|G_3|$

 \bullet What happens if the set of groups ${\bf H}$ is not a partition anymore?

Structured sparsity with overlapping groups (Jenatton, Audibert, and Bach, 2009a)

• When penalizing by the ℓ_1 - ℓ_2 norm,

$$\sum_{G \in \mathbf{H}} \|w_G\|_2 = \sum_{G \in \mathbf{H}} \left(\sum_{j \in G} w_j^2\right)^{1/2}$$

- The ℓ_1 norm induces sparsity at the group level:
 - * Some w_G 's are set to zero
- Inside the groups, the ℓ_2 norm does not promote sparsity

Structured sparsity with overlapping groups (Jenatton, Audibert, and Bach, 2009a)

- When penalizing by the ℓ_1 - ℓ_2 norm,
 - $\sum_{G \in \mathbf{H}} \|w_G\|_2 = \sum_{G \in \mathbf{H}} \left(\sum_{j \in G} w_j^2\right)^{1/2}$
 - The ℓ_1 norm induces sparsity at the group level:
 - * Some w_G 's are set to zero
 - Inside the groups, the ℓ_2 norm does not promote sparsity
- The zero pattern of w is given by

$$\{j, w_j = 0\} = \bigcup_{G \in \mathbf{H}'} G$$
 for some $\mathbf{H}' \subseteq \mathbf{H}$

• Zero patterns are unions of groups

Examples of set of groups ${\bf H}$

• Selection of contiguous patterns on a sequence, p=6

- ${\bf H}$ is the set of blue groups
- Any union of blue groups set to zero leads to the selection of a contiguous pattern

Examples of set of groups ${\bf H}$

 \bullet Selection of rectangles on a 2-D grids, p=25

- H is the set of blue/green groups (with their not displayed complements)
- Any union of blue/green groups set to zero leads to the selection of a rectangle

Examples of set of groups ${\bf H}$

• Selection of diamond-shaped patterns on a 2-D grids, p = 25.

 It is possible to extend such settings to 3-D space, or more complex topologies

Unit norm balls Geometric interpretation

Optimization for sparsity-inducing norms (see Bach, Jenatton, Mairal, and Obozinski, 2011)

• Gradient descent as a **proximal method** (differentiable functions)

$$-w_{t+1} = \arg\min_{w \in \mathbb{R}^p} L(w_t) + (w - w_t)^\top \nabla L(w_t) + \frac{B}{2} ||w - w_t||_2^2$$

$$-w_{t+1} = w_t - \frac{1}{B} \nabla L(w_t)$$

Optimization for sparsity-inducing norms (see Bach, Jenatton, Mairal, and Obozinski, 2011)

• Gradient descent as a **proximal method** (differentiable functions)

$$-w_{t+1} = \arg\min_{w \in \mathbb{R}^p} L(w_t) + (w - w_t)^\top \nabla L(w_t) + \frac{B}{2} ||w - w_t||_2^2$$

$$-w_{t+1} = w_t - \frac{1}{B} \nabla L(w_t)$$

• Problems of the form: $\lim_{w \in \mathbb{R}^p} L(w) + \lambda \Omega(w)$

 $-w_{t+1} = \arg\min_{w \in \mathbb{R}^p} L(w_t) + (w - w_t)^\top \nabla L(w_t) + \lambda \Omega(w) + \frac{B}{2} ||w - w_t||_2^2$ - $\Omega(w) = ||w||_1 \Rightarrow$ Thresholded gradient descent

- Similar convergence rates than smooth optimization
 - Acceleration methods (Nesterov, 2007; Beck and Teboulle, 2009)

Comparison of optimization algorithms (Mairal, Jenatton, Obozinski, and Bach, 2010) Small scale

• Specific norms which can be implemented through network flows

Comparison of optimization algorithms (Mairal, Jenatton, Obozinski, and Bach, 2010) Large scale

• Specific norms which can be implemented through network flows

Approximate proximal methods (Schmidt, Le Roux, and Bach, 2011)

- Exact computation of proximal operator $\arg\min_{w\in\mathbb{R}^p}\frac{1}{2}\|w-z\|_2^2+\lambda\Omega(w)$
 - Closed form for $\ell_1\text{-norm}$
 - Efficient for overlapping group norms (Jenatton et al., 2010; Mairal et al., 2010)
- Convergence rate: O(1/t) and $O(1/t^2)$ (with acceleration)
- Gradient or proximal operator may be only approximate
 - Preserved convergence rate with appropriate control
 - Approximate gradient with non-random errors
 - Complex regularizers

Application to background subtraction (Mairal, Jenatton, Obozinski, and Bach, 2010)

Input

 ℓ_1 -norm

Structured norm

Application to background subtraction (Mairal, Jenatton, Obozinski, and Bach, 2010)

Background

 ℓ_1 -norm

Structured norm

Application to neuro-imaging Structured sparsity for fMRI (Jenatton et al., 2011)

- "Brain reading": prediction of (seen) object size
- Multi-scale activity levels through hierarchical penalization

Application to neuro-imaging Structured sparsity for fMRI (Jenatton et al., 2011)

- "Brain reading": prediction of (seen) object size
- Multi-scale activity levels through hierarchical penalization

Application to neuro-imaging Structured sparsity for fMRI (Jenatton et al., 2011)

- "Brain reading": prediction of (seen) object size
- Multi-scale activity levels through hierarchical penalization

Sparse Structured PCA (Jenatton, Obozinski, and Bach, 2009b)

• Learning sparse and structured dictionary elements:

$$\min_{W \in \mathbb{R}^{k \times n}, X \in \mathbb{R}^{p \times k}} \frac{1}{n} \sum_{i=1}^{n} \|y^{i} - Xw^{i}\|_{2}^{2} + \lambda \sum_{j=1}^{p} \Omega(x^{j}) \text{ s.t. } \forall i, \|w^{i}\|_{2} \leq 1$$
Application to face databases (1/3)

• NMF obtains partially local features

Application to face databases (2/3)

(unstructured) sparse PCA Structured sparse PCA

 \bullet Enforce selection of convex nonzero patterns \Rightarrow robustness to occlusion

Application to face databases (2/3)

(unstructured) sparse PCA Structured sparse PCA

 \bullet Enforce selection of convex nonzero patterns \Rightarrow robustness to occlusion

Application to face databases (3/3)

• Quantitative performance evaluation on classification task

Structured sparse PCA on resting state activity (Varoquaux, Jenatton, Gramfort, Obozinski, Thirion, and Bach, 2010)

Dictionary learning vs. sparse structured PCA Exchange roles of X and w

• Sparse structured PCA (structured dictionary elements):

$$\min_{W \in \mathbb{R}^{k \times n}, X \in \mathbb{R}^{p \times k}} \frac{1}{n} \sum_{i=1}^{n} \|y^i - Xw^i\|_2^2 + \lambda \sum_{j=1}^{k} \Omega(x^j) \text{ s.t. } \forall i, \ \|w^i\|_2 \le 1$$

• Dictionary learning with structured sparsity for codes w:

$$\min_{W \in \mathbb{R}^{k \times n}, X \in \mathbb{R}^{p \times k}} \frac{1}{n} \sum_{i=1}^{n} \|y^i - Xw^i\|_2^2 + \lambda \Omega(w^i) \text{ s.t. } \forall j, \|x^j\|_2 \leq 1.$$

- Optimization:
 - Alternating optimization
 - Modularity of implementation if proximal step is efficient (Jenatton et al., 2010; Mairal et al., 2010)

Hierarchical dictionary learning (Jenatton, Mairal, Obozinski, and Bach, 2010)

- Structure on codes w (not on dictionary X)
- Hierarchical penalization: $\Omega(w) = \sum_{G \in \mathbf{H}} \|w_G\|_2$ where groups G in \mathbf{H} are equal to set of descendants of some nodes in a tree

• Variable selected after its ancestors (Zhao et al., 2009; Bach, 2008c)

Hierarchical dictionary learning Modelling of text corpora

- Each document is modelled through word counts
 - Low-rank matrix factorization of word-document matrix
 - Similar to NMF with multinomial loss
- Probabilistic topic models (Blei et al., 2003a)
 - Similar structures based on non parametric Bayesian methods (Blei et al., 2004)
 - Can we achieve similar performance with simple matrix factorization formulation?

Topic models and matrix factorization

• Latent Dirichlet allocation (Blei et al., 2003b)

- For a document, sample $\theta \in \mathbb{R}^k$ from a Dirichlet (α)
- For the n-th word of the same document,
 - * sample a topic z_n from a multinomial with parameter θ
 - * sample a word w_n from a multinomial with parameter $\beta(z_n, :)$
- Interpretation as multinomial PCA (Buntine and Perttu, 2003)
 - Marginalizing over topic z_n , given θ , each word w_n is selected from a multinomial with parameter $\sum_{z=1}^k \theta_z \beta(z, :) = \beta^\top \theta$
 - Row of $\beta = {\rm dictionary}$ elements, θ code for a document

Modelling of text corpora - Dictionary tree Probabilistic topic models (Blei et al., 2004)

Modelling of text corpora - Dictionary tree

Topic models, NMF and matrix factorization

- Three different views on the same problem
 - Interesting parallels to be made
 - Common problems to be solved
- Structure on dictionary/decomposition coefficients with adapted priors, e.g., nested Chinese restaurant processes (Blei et al., 2004)
- Learning hyperparameters from data
- Identifiability and interpretation/evaluation of results
- Discriminative tasks (Blei and McAuliffe, 2008; Lacoste-Julien et al., 2008; Mairal et al., 2009c)
- Optimization and local minima

Digital zooming (Couzinie-Devy et al., 2011)

Digital zooming (Couzinie-Devy et al., 2011)

Inverse half-toning (Mairal et al., 2011)

Inverse half-toning (Mairal et al., 2011)

Structured sparsity - **Audio processing Source separation (Lefèvre et al., 2011)**

Time

Time

Structured sparsity - Audio processing Musical instrument separation (Lefèvre et al., 2011)

- Unsupervised source separation with group-sparsity prior
 - Top: mixture
 - Left: source tracks (guitar, voice). Right: separated tracks.

Outline

- Introduction: Sparse methods for machine learning
 - Short tutorial
 - Need for structured sparsity: Going beyond the $\ell_1\text{-norm}$
- Classical approaches to structured sparsity
 - Linear combinations of ℓ_q -norms
 - Applications
- Structured sparsity through submodular functions
 - Relaxation of the penalization of supports
 - Unified algorithms and analysis

ℓ_1 -norm = convex envelope of cardinality of support

- Let $w \in \mathbb{R}^p$. Let $V = \{1, \ldots, p\}$ and $\operatorname{Supp}(w) = \{j \in V, w_j \neq 0\}$
- Cardinality of support: $||w||_0 = Card(Supp(w))$
- Convex envelope = largest convex lower bound (see, e.g., Boyd and Vandenberghe, 2004)

• ℓ_1 -norm = convex envelope of ℓ_0 -quasi-norm on the ℓ_∞ -ball $[-1,1]^p$

Convex envelopes of general functions of the support (Bach, 2010)

- Let $F: 2^V \to \mathbb{R}$ be a set-function
 - Assume F is non-decreasing (i.e., $A \subset B \Rightarrow F(A) \leqslant F(B)$)
 - Explicit prior knowledge on supports (Haupt and Nowak, 2006; Baraniuk et al., 2008; Huang et al., 2009)
- Define $\Theta(w) = F(\operatorname{Supp}(w))$: How to get its convex envelope?
 - 1. Possible if F is also **submodular**
 - 2. Allows **unified** theory and algorithm
 - 3. Provides new regularizers

• $F: 2^V \to \mathbb{R}$ is **submodular** if and only if

 $\forall A, B \subset V, \quad F(A) + F(B) \ge F(A \cap B) + F(A \cup B)$

 $\Leftrightarrow \ \forall k \in V, \quad A \mapsto F(A \cup \{k\}) - F(A) \text{ is non-increasing}$

• $F: 2^V \to \mathbb{R}$ is **submodular** if and only if

 $\forall A, B \subset V, \quad F(A) + F(B) \ge F(A \cap B) + F(A \cup B)$ $\Leftrightarrow \quad \forall k \in V, \quad A \mapsto F(A \cup \{k\}) - F(A) \text{ is non-increasing}$

Intuition 1: defined like concave functions ("diminishing returns")
– Example: F : A → g(Card(A)) is submodular if g is concave

• $F: 2^V \to \mathbb{R}$ is submodular if and only if

 $\forall A, B \subset V, \quad F(A) + F(B) \ge F(A \cap B) + F(A \cup B)$ $\Leftrightarrow \quad \forall k \in V, \quad A \mapsto F(A \cup \{k\}) - F(A) \text{ is non-increasing}$

- Intuition 1: defined like concave functions ("diminishing returns")
 Example: F : A → g(Card(A)) is submodular if g is concave
- Intuition 2: behave like convex functions
 - Polynomial-time minimization, conjugacy theory

• $F: 2^V \to \mathbb{R}$ is submodular if and only if

 $\begin{aligned} \forall A,B \subset V, \quad F(A) + F(B) \geqslant F(A \cap B) + F(A \cup B) \\ \Leftrightarrow \quad \forall k \in V, \quad A \mapsto F(A \cup \{k\}) - F(A) \text{ is non-increasing} \end{aligned}$

- Intuition 1: defined like concave functions ("diminishing returns")
 Example: F : A → g(Card(A)) is submodular if g is concave
- Intuition 2: behave like convex functions
 - Polynomial-time minimization, conjugacy theory
- Used in several areas of signal processing and machine learning
 - Total variation/graph cuts (Chambolle, 2005; Boykov et al., 2001)
 - Optimal design (Krause and Guestrin, 2005)

Submodular functions - Examples

- Concave functions of the cardinality: g(|A|)
- Cuts
- Entropies
 - $H((X_k)_{k \in A})$ from p random variables X_1, \ldots, X_p
- Network flows
 - Efficient representation for set covers
- Rank functions of matroids

Submodular functions - Lovász extension

- Subsets may be identified with elements of $\{0,1\}^p$
- Given any set-function F and w such that $w_{j_1} \ge \cdots \ge w_{j_p}$, define:

$$f(w) = \sum_{k=1}^{p} w_{j_k}[F(\{j_1, \dots, j_k\}) - F(\{j_1, \dots, j_{k-1}\})]$$

- If $w = 1_A$, $f(w) = F(A) \Rightarrow$ extension from $\{0, 1\}^p$ to \mathbb{R}^p - f is piecewise affine and positively homogeneous
- F is submodular if and only if f is convex (Lovász, 1982)
 - Minimizing f(w) on $w \in [0,1]^p$ equivalent to minimizing F on 2^V

Submodular functions and structured sparsity

- Let $F: 2^V \to \mathbb{R}$ be a non-decreasing submodular set-function
- **Proposition**: the convex envelope of $\Theta : w \mapsto F(\operatorname{Supp}(w))$ on the ℓ_{∞} -ball is $\Omega : w \mapsto f(|w|)$ where f is the Lovász extension of F

Submodular functions and structured sparsity

- Let $F: 2^V \to \mathbb{R}$ be a non-decreasing submodular set-function
- **Proposition**: the convex envelope of $\Theta : w \mapsto F(\operatorname{Supp}(w))$ on the ℓ_{∞} -ball is $\Omega : w \mapsto f(|w|)$ where f is the Lovász extension of F
- Sparsity-inducing properties: Ω is a polyhedral norm

- A if stable if for all $B \supset A$, $B \neq A \Rightarrow F(B) > F(A)$
- With probability one, stable sets are the only allowed active sets

Polyhedral unit balls

Submodular functions and structured sparsity

• Unified theory and algorithms

- Generic computation of proximal operator
- Unified oracle inequalities

• Extensions

- Shaping level sets through symmetric submodular function (Bach, 2011)
- ℓ_q -relaxations of combinatorial penalties (Obozinski and Bach, 2011)

Conclusion

• Structured sparsity for machine learning and statistics

- Many applications (image, audio, text, etc.)
- May be achieved through structured sparsity-inducing norms
- Link with submodular functions: unified analysis and algorithms
Conclusion

• Structured sparsity for machine learning and statistics

- Many applications (image, audio, text, etc.)
- May be achieved through structured sparsity-inducing norms
- Link with submodular functions: unified analysis and algorithms
- On-going/related work on structured sparsity
 - Norm design beyond submodular functions
 - Complementary approach of Jacob, Obozinski, and Vert (2009)
 - Theoretical analysis of dictionary learning (Jenatton, Bach and Gribonval, 2011)
 - Achieving $\log p = O(n)$ algorithmically (Bach, 2008c)

References

- C. Archambeau and F. Bach. Sparse probabilistic projections. In Advances in Neural Information Processing Systems 21 (NIPS), 2008.
- F. Bach. Bolasso: model consistent lasso estimation through the bootstrap. In *Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML)*, 2008a.
- F. Bach. Consistency of the group Lasso and multiple kernel learning. *Journal of Machine Learning Research*, 9:1179–1225, 2008b.
- F. Bach. Exploring large feature spaces with hierarchical multiple kernel learning. In Advances in Neural Information Processing Systems, 2008c.
- F. Bach. Self-concordant analysis for logistic regression. Technical Report 0910.4627, ArXiv, 2009.
- F. Bach. Structured sparsity-inducing norms through submodular functions. In NIPS, 2010.
- F. Bach. Convex analysis and optimization with submodular functions: a tutorial. Technical Report 00527714, HAL, 2010.
- F. Bach. Shaping level sets with submodular functions. In Adv. NIPS, 2011.
- F. Bach and E. Moulines. Non-asymptotic analysis of stochastic approximation algorithms for machine learning. 2011.
- F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimization with sparsity-inducing penalties. Technical Report 00613125, HAL, 2011.
- R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde. Model-based compressive sensing. Technical report, arXiv:0808.3572, 2008.

- A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. *SIAM Journal on Imaging Sciences*, 2(1):183–202, 2009.
- D. Bertsekas. Nonlinear programming. Athena Scientific, 1995.
- P. Bickel, Y. Ritov, and A. Tsybakov. Simultaneous analysis of Lasso and Dantzig selector. *Annals of Statistics*, 37(4):1705–1732, 2009.
- D. Blei, A. Ng, and M. Jordan. Latent dirichlet allocation. *The Journal of Machine Learning Research*, 3:993–1022, January 2003a.
- D. Blei, T.L. Griffiths, M.I. Jordan, and J.B. Tenenbaum. Hierarchical topic models and the nested Chinese restaurant process. *Advances in neural information processing systems*, 16:106, 2004.
- D.M. Blei and J. McAuliffe. Supervised topic models. In *Advances in Neural Information Processing* Systems (NIPS), volume 20, 2008.
- D.M. Blei, A.Y. Ng, and M.I. Jordan. Latent dirichlet allocation. *The Journal of Machine Learning Research*, 3:993–1022, 2003b.
- L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In Advances in Neural Information Processing Systems (NIPS), volume 20, 2008.
- S. P. Boyd and L. Vandenberghe. *Convex Optimization*. Cambridge University Press, 2004.
- Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. *IEEE Trans. PAMI*, 23(11):1222–1239, 2001.
- F. Bunea, A.B. Tsybakov, and M.H. Wegkamp. Aggregation for Gaussian regression. *Annals of Statistics*, 35(4):1674–1697, 2007.
- W. Buntine and S. Perttu. Is multinomial PCA multi-faceted clustering or dimensionality reduction. In

International Workshop on Artificial Intelligence and Statistics (AISTATS), 2003.

- E. Candès and T. Tao. The Dantzig selector: statistical estimation when p is much larger than n. *Annals of Statistics*, 35(6):2313–2351, 2007.
- E. Candès and M. Wakin. An introduction to compressive sampling. *IEEE Signal Processing Magazine*, 25(2):21–30, 2008.
- F. Caron and A. Doucet. Sparse Bayesian nonparametric regression. In 25th International Conference on Machine Learning (ICML), 2008.
- V. Cevher, M. F. Duarte, C. Hegde, and R. G. Baraniuk. Sparse signal recovery using markov random fields. In *Advances in Neural Information Processing Systems*, 2008.
- A. Chambolle. Total variation minimization and a class of binary MRF models. In *Energy Minimization Methods in Computer Vision and Pattern Recognition*, pages 136–152. Springer, 2005.
- S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. *SIAM Review*, 43(1):129–159, 2001.
- D.L. Donoho and J. Tanner. Neighborliness of randomly projected simplices in high dimensions. *Proceedings of the National Academy of Sciences of the United States of America*, 102(27):9452, 2005.
- B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Annals of statistics, 32 (2):407–451, 2004.
- M. Elad and M. Aharon. Image denoising via sparse and redundant representations over learned dictionaries. *IEEE Transactions on Image Processing*, 15(12):3736–3745, 2006.
- J. Fan and R. Li. Variable Selection Via Nonconcave Penalized Likelihood and Its Oracle Properties.

Journal of the American Statistical Association, 96(456):1348–1361, 2001.

- J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani. Pathwise coordinate optimization. *Annals of Applied Statistics*, 1(2):302–332, 2007.
- W. Fu. Penalized regressions: the bridge vs. the Lasso. *Journal of Computational and Graphical Statistics*, 7(3):397–416, 1998).
- S. Fujishige. Submodular Functions and Optimization. Elsevier, 2005.
- A. Gramfort and M. Kowalski. Improving M/EEG source localization with an inter-condition sparse prior. In *IEEE International Symposium on Biomedical Imaging*, 2009.
- J. Haupt and R. Nowak. Signal reconstruction from noisy random projections. *IEEE Transactions on Information Theory*, 52(9):4036–4048, 2006.
- J. Huang and T. Zhang. The benefit of group sparsity. Technical Report 0901.2962v2, ArXiv, 2009.
- J. Huang, S. Ma, and C.H. Zhang. Adaptive Lasso for sparse high-dimensional regression models. *Statistica Sinica*, 18:1603–1618, 2008.
- J. Huang, T. Zhang, and D. Metaxas. Learning with structured sparsity. In *Proceedings of the 26th International Conference on Machine Learning (ICML)*, 2009.
- H. Ishwaran and J.S. Rao. Spike and slab variable selection: frequentist and Bayesian strategies. *The Annals of Statistics*, 33(2):730–773, 2005.
- L. Jacob, G. Obozinski, and J.-P. Vert. Group Lasso with overlaps and graph Lasso. In *Proceedings of the 26th International Conference on Machine Learning (ICML)*, 2009.
- R. Jenatton, J.Y. Audibert, and F. Bach. Structured variable selection with sparsity-inducing norms. Technical report, arXiv:0904.3523, 2009a.

- R. Jenatton, G. Obozinski, and F. Bach. Structured sparse principal component analysis. Technical report, arXiv:0909.1440, 2009b.
- R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for sparse hierarchical dictionary learning. In *Submitted to ICML*, 2010.
- R. Jenatton, A. Gramfort, V. Michel, G. Obozinski, E. Eger, F. Bach, and B. Thirion. Multi-scale mining of fmri data with hierarchical structured sparsity. Technical report, Preprint arXiv:1105.0363, 2011. In submission to SIAM Journal on Imaging Sciences.
- K. Kavukcuoglu, M. Ranzato, R. Fergus, and Y. LeCun. Learning invariant features through topographic filter maps. In *Proceedings of CVPR*, 2009.
- S. Kim and E. P. Xing. Tree-guided group Lasso for multi-task regression with structured sparsity. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2010.
- A. Krause and C. Guestrin. Near-optimal nonmyopic value of information in graphical models. In *Proc.* UAI, 2005.
- S. Lacoste-Julien, F. Sha, and M.I. Jordan. DiscLDA: Discriminative learning for dimensionality reduction and classification. Advances in Neural Information Processing Systems (NIPS) 21, 2008.
- K. Lounici. Sup-norm convergence rate and sign concentration property of Lasso and Dantzig estimators. *Electronic Journal of Statistics*, 2:90–102, 2008.
- L. Lovász. Submodular functions and convexity. *Mathematical programming: the state of the art, Bonn*, pages 235–257, 1982.
- J. Lv and Y. Fan. A unified approach to model selection and sparse recovery using regularized least squares. *Annals of Statistics*, 37(6A):3498–3528, 2009.

- J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization and sparse coding. Technical report, arXiv:0908.0050, 2009a.
- J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Non-local sparse models for image restoration. In *Computer Vision, 2009 IEEE 12th International Conference on*, pages 2272–2279. IEEE, 2009b.
- J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Supervised dictionary learning. *Advances in Neural Information Processing Systems (NIPS)*, 21, 2009c.
- J. Mairal, R. Jenatton, G. Obozinski, and F. Bach. Network flow algorithms for structured sparsity. In *NIPS*, 2010.
- H. M. Markowitz. The optimization of a quadratic function subject to linear constraints. *Naval Research Logistics Quarterly*, 3:111–133, 1956.
- P. Massart. Concentration Inequalities and Model Selection: Ecole d'été de Probabilités de Saint-Flour 23. Springer, 2003.
- N. Meinshausen. Relaxed Lasso. Computational Statistics and Data Analysis, 52(1):374–393, 2008.
- N. Meinshausen and P. Bühlmann. Stability selection. Technical report, arXiv: 0809.2932, 2008.
- N. Meinshausen and B. Yu. Lasso-type recovery of sparse representations for high-dimensional data. Annals of Statistics, 37(1):246–270, 2008.
- R.M. Neal. Bayesian learning for neural networks. Springer Verlag, 1996.
- Y. Nesterov. Gradient methods for minimizing composite objective function. *Center for Operations Research and Econometrics (CORE), Catholic University of Louvain, Tech. Rep*, 76, 2007.
- G. Obozinski and F. Bach. Convex relaxation of combinatorial penalties. Technical report, HAL, 2011.

- B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy employed by V1? *Vision Research*, 37:3311–3325, 1997.
- A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. SimpleMKL. *Journal of Machine Learning Research*, 9:2491–2521, 2008.
- F. Rapaport, E. Barillot, and J.-P. Vert. Classification of arrayCGH data using fused SVM. *Bioinformatics*, 24(13):i375–i382, Jul 2008.
- M. Schmidt, N. Le Roux, and F. Bach. Convergence rates of inexact proximal-gradient methods for convex optimization. *Arxiv preprint arXiv:1109.2415*, 2011.
- M.W. Seeger. Bayesian inference and optimal design for the sparse linear model. *The Journal of Machine Learning Research*, 9:759–813, 2008.
- R. Tibshirani. Regression shrinkage and selection via the lasso. *Journal of The Royal Statistical Society Series B*, 58(1):267–288, 1996.
- S. A. Van De Geer. High-dimensional generalized linear models and the Lasso. *Annals of Statistics*, 36 (2):614, 2008.
- G. Varoquaux, R. Jenatton, A. Gramfort, G. Obozinski, B. Thirion, and F. Bach. Sparse structured dictionary learning for brain resting-state activity modeling. In *NIPS Workshop on Practical Applications of Sparse Modeling: Open Issues and New Directions*, 2010.
- M. J. Wainwright. Sharp thresholds for noisy and high-dimensional recovery of sparsity using ℓ_1 constrained quadratic programming. *IEEE transactions on information theory*, 55(5):2183, 2009.
- L. Wasserman and K. Roeder. High dimensional variable selection. *Annals of statistics*, 37(5A):2178, 2009.

- M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. *Journal of The Royal Statistical Society Series B*, 68(1):49–67, 2006.
- M. Yuan and Y. Lin. On the non-negative garrotte estimator. *Journal of The Royal Statistical Society Series B*, 69(2):143–161, 2007.
- T. Zhang. Adaptive forward-backward greedy algorithm for sparse learning with linear models. *Advances in Neural Information Processing Systems*, 22, 2008a.
- T. Zhang. Multi-stage convex relaxation for learning with sparse regularization. *Advances in Neural Information Processing Systems*, 22, 2008b.
- T. Zhang. On the consistency of feature selection using greedy least squares regression. *The Journal* of Machine Learning Research, 10:555–568, 2009.
- P. Zhao and B. Yu. On model selection consistency of Lasso. *Journal of Machine Learning Research*, 7:2541–2563, 2006.
- P. Zhao, G. Rocha, and B. Yu. Grouped and hierarchical model selection through composite absolute penalties. *Annals of Statistics*, 37(6A):3468–3497, 2009.
- H. Zou. The adaptive Lasso and its oracle properties. *Journal of the American Statistical Association*, 101(476):1418–1429, 2006.
- H. Zou and T. Hastie. Regularization and variable selection via the elastic net. *Journal of the Royal Statistical Society Series B (Statistical Methodology)*, 67(2):301–320, 2005.
- H. Zou and R. Li. One-step sparse estimates in nonconcave penalized likelihood models. *Annals of Statistics*, 36(4):1509–1533, 2008.