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Structured sparsity through submodular functions

{ Relaxation of the penalization of supports
{ Uni ed algorithms and analysis



Sparsity in supervised machine learning

Regularized empirical risk minimization:

I T _
nmin, - (yiw=xi)+  (w)=| min L(y;Xw)+ ( w)

Norm to promote sparsity

{ square loss + 1-norm ) basis pursuitin signal processing (Chen

et al., 2001),Lassan statistics/machine learning (Tibshirani, 1996)
{ Proxy forinterpretability

{ Allow high-dimensional inference¢logp = O(n)




“>-nOrm vsS. {-horm

“1-norms lead to interpretable models

“2-norms can be run implicitly with very large feature spaces

Algorithms :

{ Smooth convex optimization vs. nhonsmooth convex optimiaat

Theory:

{ better predictive performance?



Why “;-norms lead to sparsity?

1>

Example 1. quadratic problem in 1D, i.el min =x“ Xy +

X2R 2

JX]

Piecewise quadratic function with a kink at zero

{ Derivative atO+: g, =
A

>

yandO : g = Yy

A

/.

{ x=0 is the solutioni g > 0andg 6 0O(i.e.,Jyj6 )
{ x> O0Oisthesolutioni g 6 O(l.e.,y> )) X =Yy
{ x6 Oisthe solutioni g 6 O(l.e.,y 6 )) X =y+

Solution| x = sign(y)(jyj

)+

= soft thresholding
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Example 1. quadratic problem in 1D, i.el min =x“ Xy +
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Piecewise quadratic function with a kink at zero

Solution

X =sign(y)(Jyi
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= soft thresholding




Why “;-norms lead to sparsity?

Example 2. minimize quadratic functiorQ(w) subject tokwk; 6 T.

{ coupled softthresholding

Geometric interpretation

{ NB : penalizing is \equivalent" to constraining




Non-smooth optimization

Simple techniques might not work!

{ Gradient descent or coordinate descent

Special tools

{ Subgradients or directional derivatives
Typically slower than smooth optimization...

. except in some regularized problems



Counter-example
Coordinate descent for nonsmooth objectives




Regularized problems - Proximal methods

Gradient descent as a proximal method (di erentiable furucts)

{ Wrr =arg min L(w) +(w  w)”r L(w)+=kw wk3
w2 RP 2

{ Wie1 = Wi Ly L (W)

Problems of the form] min L(w) + ( w)
w2 RP

{ Wer =arg min L(w)+(w  w)”r L(w)+ ( w)+=kw wk5
w2 RP 2

{ Thresholded gradient descemt;,; = SoftThres(w; *r L(w;))

Similar convergence rates than smooth optimization

{ Acceleration methods (Nesterov, 2007; Beck and Teboul@)9
{ depends on the condition number of the loss



Cheap (and not dirty) algorithms for all losses

Proximal methods



Cheap (and not dirty) algorithms for all losses
Proximal methods

Coordinate descent (Fu, 1998; Friedman et al., 2007)

{ convergenthere under reasonable assumptions! (Bertsekas, 1995
{ separability of optimality conditions
{ equivalent to iterative thresholding



Cheap (and not dirty) algorithms for all losses
Proximal methods

Coordinate descent (Fu, 1998; Friedman et al., 2007)

{ convergenthere under reasonable assumptions! (Bertsekas, 1995
{ separability of optimality conditions
{ equivalent to iterative thresholding

\ -trick" (Rakotomamonjy et al., 2008; Jenatton et al., 2009b)

h I:)p 1Pp 1'2
{ Notice that  {_; jwjj=min 035 ., o

{ Alternating minimization with respect to (closed -form ; = Jw;|)
andw (weighted squared,-norm regularized problem)
{ Caveat: lack of continuity around@w;; ;) = (0;0): add"=



Cheap (and not dirty) algorithms for all losses
Proximal methods

Coordinate descent (Fu, 1998; Friedman et al., 2007)

{ convergenthere under reasonable assumptions! (Bertsekas, 1995
{ separability of optimality conditions
{ equivalent to iterative thresholding

\ -trick" (Rakotomamonjy et al., 2008; Jenatton et al., 2009b)

Py _ 1P p 12
{ Notice that 7, jwjj=min 505 [, T

{ Alternating minimization with respect to (closed -form ; = jw;])
andw (weighted squared,-norm regularized problem)
{ Caveat: lack of continuity aroundw;; ;) =(0;0): add"= ;

Dedicated algorithms that use sparsity (active sets/homotopy)



Piecewise linear paths

0 01 02 03 04 05 06
regularization parameter



Gaussian hare vs. Laplacian tortoise

i

il
._,'m( ~,J

Coord. descent and proximaD(pn) per iterations for ; and
\Exact" algorithms: O(kpn) for “1 vs. O(p?n) for *»



Additional methods - Softwares

Many contributions in signal processing, optimization, amalearning

{ Extensions to stochastic setting (Bottou and Bousquet, 3)0

Extensions to other sparsity-inducing norms

{ Computing proximal operator

{ F. Bach, R. Jenatton, J. Mairal, G. Obozinski. Optimizatiamith
sparsity-inducing penalties.Foundations and Trends in Machine
Learning 4(1):1-106, 2011

Softwares

{ Many available codes
{ SPAMS (SPArse Modeling Software)
http://www.di.ens.fr/iwillow/SPAMS/



Lasso - Two main recent theoretical results

1. Support recovery condition (Zhao and Yu, 2006; Wainwright,
2009; Zou, 2006; Yuan and Lin, 2007): the Lasso Is sign-ciant if
and only if there are low correlations between relevant amelevant

variables.



Model selection consistency (Lasso)

Assumew sparse and denoté = f|; w; 6 0g the nonzero pattern

Support recovery condition (Zhao and Yu, 2006; Wainwright, 2009;
Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consisié@aind

only If .
y kaleslgn(WJ)kl 6 1

whereQ =1lim 1 +1 %.- inzl Xix; 2 RP P andJ = Supp(w)




Model selection consistency (Lasso)

Assumew sparse and denoté = f]; w; 6 0g the nonzero pattern

Support recovery condition (Zhao and Yu, 2006; Wainwright, 2009;
Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consisiéaind

only If .
y Q3 Q,;'Sign(Wo)ks 6 1

whereQ =1im 1 +1 %.- . XiXx7 2 RP P andJ = Supp(w)

The Lasso Is usually not model-consistent

{ Selects more variables than necessary (see, e.g., Lv andZe49)

{ Fixing the Lasso: adaptive Lasso (Zou, 2006), relaxed
Lasso (Meinshausen, 2008), thresholding (Lounici, 2008)
Bolasso (Bach, 2008a), stability selection (Meinshausend a
Bahlmann, 2008), Wasserman and Roeder (2009)



Adaptive Lasso and concave penalization

Adaptive Lasso (Zou, 2006; Huang et al., 2008)

{ Weighted ;-norm: min L(w) + X JWj J
' " W2RP i joj

{ W estimator obtained from, or 1 regularization

Reformulation in terms of concave penalization

. >@ . . A _z
min L (w) + . g(w; ) '

>

{ Example:g(jw;j) = jw;j'= or logjw;j. Closer to the o penalty

{ Concave-convex procedure: replaggw;|) by a ne upper bound

{ Better sparsity-inducing properties (Fan and Li, 2001; Zand LI,
2008; Zhang, 2008b)



Lasso - Two main recent theoretical results

1. Support recovery condition (Zhao and Yu, 2006; Wainwright,
2009; Zou, 2006; Yuan and Lin, 2007): the Lasso Is sign-ciant if
and only if there are low correlations between relevant amelevant
variables.

2. Exponentially many irrelevant variables (Zhao and Yu, 2006;
Wainwright, 2009; Bickel et al., 2009; Lounici, 2008; Memagisen
and Yu, 2008): under appropriate assumptions, consistaa@ossible
as long as

logp = O(Nn)



High-dimensional inference
Going beyond exact support recovery

Theoretical rasults usually assume that non-zerp are large enough,
e, jwjj> 9P

May include too many variables but still predict well

Oracle inequalities

{ Predict as well as the estimator obtained with the knowledufe]

{ Assume i.i.d. Gaussian noise with variance

{ We have: o
1 2 °JJ]
ﬁEkX Worade X W k2 — n




High-dimensional inference
Variable selection without computational limits

Approaches based on penalized criteria (close to BIC)

1 2 2 P
Voglgpzky Xwk5+ C “kwkg 1+ log Wk

Oracle inequality if data generated byv with k non-zeros (Massart,
2003; Bunea et al., 2007):

1 k 2 P

“kXW Xwk56 C— 1+log

n 2 n I
Gaussian noise No assumptions regarding correlations

klogp
n

Scaling between dimensions: small



High-dimensional inference (Lasso)

Main result : we only needk logp = O(n)

{ If w Is su ciently sparse
{ and input variables are not too correlated



High-dimensional inference (Lasso)

Main result: we only neek logp = O(n)

{ If w Is su ciently sparse
{ and input variables are not too correlated

Precise conditions on covariance matfx = %X > X.

{ Mutual incoherence (Lounici, 2008)

{ Restricted eigenvalue conditions (Bickel et al., 2009)
{ Sparse eigenvalues (Meinshausen and Yu, 2008)

{ Null space property (Donoho and Tanner, 2005)

Links with signal processing and compressed sensing (€arahd
Wakin, 2008)

Slow rate if no assumptions: %8P



Restricted eigenvalue conditions

Theorem (Bickel et al., 2009):

. . ”Q
L (K)? = > 0
{ assume ( jr?jlgk N ﬂlﬂsk WK Jk§
{ assume = A pnlogp andA§> 8
{ then, with probabilityl p* A™=8, we have
r—
estimation error kW wk; 6 1262% k IO%O
- 1 , . 16A% °k
prediction error ﬁkxw Xwks5 6 2 n logp

Condition imposes a potentially hidden scaling betwéanp; k)

Condition always satis ed foQ = |



Checking su cient conditions

Most of the conditions are not computable in polynomial time

Random matrices

{ SampleX 2 R" P from the Gaussian ensemble
{ Conditions satis ed with high probability for certaifn; p; k)

{ Example from Wainwright (2009);

o
@

o
o

P(support correct)
o
'

o
)

(=)




Sparse methods
Common extensions

Removing bias of the estimator

{ Keep the active set, and performunregularized restricted
estimation (Cances and Tao, 2007)

{ Better theoretical bounds

{ Potential problems of robustness

Elastic net (Zou and Hastie, 2005)

{ Replace kwki by kwk; + "kwk3
{ Make the optimization strongly convex with unique solution
{ Better behavior with heavily correlated variables



Relevance of theoretical results
Most results only for the square loss
{ Extend to other losses (Van De Geer, 2008; Bach, 2009)

Most results only for ;-regularization

{ May be extended to other norms (see, e.g., Huang and Zhan(
2009; Bach, 2008b)

Condition on correlations

{ very restrictive, far from results for BIC penalty

Non sparse generating vector

{ little work on robustness to lack of sparsity

Estimation of regularization parameter

{ No satisfactory solution) open problem



Alternative sparse methods
Greedy methods

Forward selection
Forward-backward selection

Non-convex method

{ Harder to analyze
{ Simpler to implement
{ Problems of stability

Positive theoretical results (Zhang, 2009, 2008a)

{ Similar su cient conditions than for the Lasso



Alternative sparse methods

Bayesian methods
.. Py
Lasso: minimize ., (yi W xj)?+ kwk;
{ Equivalent to MAP estimatioa with Gaussian likelihood and
factorizedLaplace prior p(w) / ~7°_; e il (Seeger, 2008)
{ However, posterior puts zero weight on exact zeros

Heavy-tailed distributions as a proxy to sparsity

{ Student distributions (Caron and Doucet, 2008)

{ Generalized hyperbolic priors (Archambeau and Bach, 2008)
{ Instance of automatic relevance determination (Neal, 196

Mixtures of \Diracs" and another absolutely continuous thgutions,
e.g., \spike and slab" (Ishwaran and Rao, 2005)

Less theory than frequentist methods



Comparing Lasso and other strategies for linear
regression

Compared methods to reach the least-square solution

{ Ridge regressionmin ky XWK5 + —kwk3

w2 RP 2 2
{ Lasso min ky XWks +  kwkq
W2 RP 2

{ Forward greedy
Initialization with empty set
Sequentially add the variable that best reduces the squass |

Each method builds a path of solutions from O to ordinary least
sguares solution

Regularization parameters selected on the test set



Simulation results

1.I.d. Gaussian design matrik, =4, n =64, p2 [2;256] SNR =1
Note stability to non-sparsity and variability

0.9r |—L1 8 0.9
—L2
0.8 —greedy 0.8
0.7l oracle 0.7
5 5
o 0.6f o 0.6f
() )
© 0.5 © 0.5
@ a
= 0.4r c 0.4r
Q Q
€ 0.3f £ 0.3
0.2 0.2
0.1r 0.1
0 0

2 4 6 8
09,(p)

Rotated (non sparse)




Going beyond the Lasso

“1-norm for linear feature selection irhigh dimensions

{ Lasso usually not applicable directly
Non-linearities
Dealing with structured set of features

Sparse learning on matrices



Going beyond the Lasso
Non-linearity - Multiple kernel learning

Multiple kernel learning

{ Learn sparse combination of matric&gx; x9) = le i ki (x;x9
{ Mixing positive aspects of;-norms and ,-norms

Equivalent to group Lasso

{ p multi-dimensional features j (x), where
Ki (X9 =" 5(x)7 j(x)

I ctor P >
{ learn predictor pi=1 W, i (X)

{ Penalization by _; kw;k



Going beyond the Lasso
Structured set of features

Dealing with exponentially many features

{ Can we design e cient algorithms for the cadegp n?
{ Use structure to reduce the number of allowed patterns ofozer
{ Recursivity,hierarchies and factorization

Prior information on sparsity patterns

{ Grouped variables with overlapping groups



Going beyond the Lasso
Sparse methods on matrices

Learning problems on matrices

{ Multi-task learning

{ Multi-category classi cation
{ Matrix completion

{ Image denoising

{ NMF, topic models, etc.

Matrix factorization

{ Two types of sparsity (low-rank or dictionary learning)
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Sparsity in supervised machine learning

Regularized empirical risk minimization:

I T _
nmin, - (yiw=xi)+  (w)=| min L(y;Xw)+ ( w)

Norm to promote sparsity

{ square loss + 1-norm ) basis pursuitin signal processing (Chen

et al., 2001),Lassan statistics/machine learning (Tibshirani, 1996)
{ Proxy forinterpretability

{ Allow high-dimensional inference¢logp = O(n)




Sparsity in unsupervised machine learning



Sparsity in unsupervised machine learning

xXxono o . 0
min Ly ; Xwh)+  (w)

xXxeon o . 0
min min Ly ; Xwh)+  (w)

{ Olshausen and Field (1997); Elad and Aharon (2006); Mairtad
(2009a)

sparse PCA: replacekx'k, 6 1 by ( x/)6 1

e



Sparsity in signal processing

Multiple responses/signalg = (x*;::::x¥) 2 R" ¥
xXxon | -0
min L(x};D D+ (1)
1w K2RP

xaon | -0
min min L(x};D N+ (1))
D=(dl::dpP) 1. k2 RP =1

{ Olshausen and Field (1997); Elad and Aharon (2006); Maitad
(2009a)

sparse PCA: replacekd k, 6 1 by ( d)6 1

e



Why structured sparsity?

Interpretability

{ Structured dictionary elements (Jenatton et al., 2009b)
{ Dictionary elements \organized" in d@ree or a grid (Kavukcuoglu
et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)



Structured sparse PCA (Jenatton et al., 2009Db)

_-:_
EM&.EEI
IR n;-.,f; g zﬁ“
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raw data sparse PCA
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Unstructed sparse PCA many zeros do not lead to better
Interpretability



Structured sparse PCA (Jenatton et al., 2009b)
o
B B
I
a1
Holen 4y
TR

raw data sparse PCA

Unstructed sparse PCA many zeros do not lead to better
Interpretability



Structured sparse PCA (Jenatton et al., 2009b)

raw data Structured sparse PCA

Enforce selection ofconvex nonzero patterns) robustness to
occlusion in face identi cation



Structured sparse PCA (Jenatton et al., 2009b)

raw data Structured sparse PCA

Enforce selection ofconvex nonzero patterns) robustness to
occlusion in face identi cation



Why structured sparsity?

Interpretability

{ Structured dictionary elements (Jenatton et al., 2009b)
{ Dictionary elements \organized" in d@ree or a grid (Kavukcuoglu
et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)



Why structured sparsity?

Interpretability

{ Structured dictionary elements (Jenatton et al., 2009b)
{ Dictionary elements \organized" in dree or a grid (Kavukcuoglu
et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)

Stability and identi ability

{ Optimization problemmin,ore L(y;Xw)+ kwk; IS unstable
{ \Codes" w! often used in later processing (Mairal et al., 2009c)

Prediction or estimation performance

{ When prior knowledge matches data (Haupt and Nowak, 2006
Baraniuk et al., 2008; Jenatton et al., 2009a; Huang et alQ(®)

Numerical e ciency

{ Non-linear variable selection witP® subsets (Bach, 2008c)



Classical approaches to structured sparsity

Many application domains

{ Computer vision (Cevher et al., 2008; Mairal et al., 2009b)

{ Neuro-imaging (Gramfort and Kowalski, 2009; Jenatton et,al.
2011)

{ Bio-informatics (Rapaport et al., 2008; Kim and Xing, 2010)

Non-convex approaches

{ Haupt and Nowak (2006); Baraniuk et al. (2008); Huang et al.
(2009)

Convex approaches

{ Design of sparsity-inducing norms
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Sparsity-inducing norms

Popular choice for
{ The 1- 2 norm,

X X X
kwgk, = W
G2H G2H j2G -

{ with H apartition of f1;:::;pg .
{ The 1-, norm sets to zerogroups of non-overlapping
variables(as opposed to single variables for thenorm)

{ For the square loss, group Lasso (Yuan and Lin, 2006) |



Unit norm balls
Geometric Interpretation

kwks kwky " W + W5 + jws]




Sparsity-inducing norms

Popular choice for
{ The 1- 2 norm,

X X X
1=2
kwgk, = w? Gy

G2H G2H j2G -+

{ with H a partition of f1;:::;pg T
{ The 1-, norm sets to zerogroups of non-overlapping

variables(as opposed to single variables for thenorm) GB
{ For the square loss, group Lasso (Yuan and Lin, 2006) |

However, the 1- > norm encodesxed/static prior information
requires to know in advance how to group the variables

What happens if the set of groupd Is not a partition anymore?



Structured sparsity with overlapping groups
(Jenatton, Audibert, and Bach, 2009a)

When penalizing by thé;-", norm, Gl
X X X

kwgk, = W G,

G2H G2H j2G 1 |

{ The 1 norm induces sparsity at the group level:
Somewg's are set to zero — G3

{ Inside the groups, the, norm does not promote sparsity




Structured sparsity with overlapping groups
(Jenatton, Audibert, and Bach, 2009a)

When penalizing by thé;-"» norm, Gl
X X X 1=

kwgk, = W G,

G2H G2H j2G 1 | =

{ The 1 norm induces sparsity at the group level:
Somewg's are set to zero — G3

{ Inside the groups, the, norm does not promote sparsity

The zero pattern ofw Is given by

[
fj; wi =0g= G for someH® H
G2HO
Zero patterns are unions of groups



Examples of set of groups H

Selection of contiguous patterns on a sequenpe, 6

-

{ H Is the set of blue groups

{ Any union of blue groups set to zero leads to the selection of
contiguous pattern



Examples of set of groups H

Selection of rectangles on a 2-D grids= 25

{ H Is the set of blue/green groups (with their not displayed
complements)

{ Any union of blue/green groups set to zero leads to the setect
of a rectangle



Examples of set of groups H

Selection of diamond-shaped patterns on a 2-D grigds; 25.
{ Itis possible to extend such settings to 3-D space, or monaplex
topologies




Unit norm balls
Geometric Interpretation

kwk P W2 + W3 + jWa] kwkz + Jwy] + Jw)




Optimization for sparsity-inducing norms
(see Bach, Jenatton, Mairal, and Obozinski, 2011)

Gradient descent as proximal method (di erentiable functions)

. B
{ Wrr =arg min L(w)) +(w  w)”r L(w)+—=kw wk3
w2 RP 2

{ Wi+, = Wi Blr L(Wt)



Optimization for sparsity-inducing norms
(see Bach, Jenatton, Mairal, and Obozinski, 2011)

Gradient descent as proximal method (di erentiable functions)

. B
{ Wisr =arg min L(w)) +(w  w)7r L(w)+—=kw wk3
w2 RP 2

{ Wi+, = Wi Blr L(Wt)

Problems of the form] min L(w) + ( w)
w2 RP

{ Wiep =arg min L(w))+(w w)”r L(w)+  ( w)+ 5w Wi k3
w2 RP 2

{ ( w)= kwky; ) Thresholded gradient descent

Similar convergence rates than smooth optimization

{ Acceleration methods (Nesterov, 2007; Beck and Teboul@)9



Comparison of optimization algorithms
(Mairal, Jenatton, Obozinski, and Bach, 2010)
Small scale

Speci ¢ norms which can be implemented through network ows

n=100, p=1000, one-dimensional DCT

2 " | == ProxFlox
—_—SG
—~ Of N |===ADMM
£ 2\ | -©~Lin-ADMM
£ 2 | A-0QP
o /)
5 4l —#—CP
T
£
g 6
(@)]
O gt
-10 .
-2 0 2 4

log(Seconds)



Comparison of optimization algorithms
(Mairal, Jenatton, Obozinski, and Bach, 2010)
Large scale

Speci ¢ norms which can be implemented through network ows

n=1024, p=10000, one-dimensional DCT n=1024, p=100000, one-dimensional DCT

| == ProxFlox

log(Primal-Optimum)
N
log(Primal-Optimum)

-6 —_—SG | == ProxFlox
= = = ADMM —SG
-8 [| =@~ Lin-ADMM -8 [| - = - ADMM
CP -©- Lin-ADMM
-10 ‘ ‘ -10 ‘ ‘
-2 0 2 4 -2 0 2 4

log(Seconds) log(Seconds)



Approximate proximal methods
(Schmidt, Le Roux, and Bach, 2011)

. . 1
Exact computation of proximal operatarg nglgp ékw zk§+ (w)
W

{ Closed form for {-norm
{ E cient for overlapping group norms (Jenatton et al., 2010; Mral
et al., 2010)

Convergence rateO(1=t) and O(1=t?) (with acceleration)

Gradient or proximal operator may be only approximate

{ Preserved convergence rate with appropriate control
{ Approximate gradient with non-random errors
{ Complex regularizers



Application to background subtraction
(Mairal, Jenatton, Obozinski, and Bach, 2010)

Input “1-norm Structured norm



Application to background subtraction
(Mairal, Jenatton, Obozinski, and Bach, 2010)

Background “1-norm Structured norm



Application to neuro-imaging
Structured sparsity for fMRI (Jenatton et al., 2011)

\Brain reading": prediction of (seen) object size

Multi-scale activity levels through hierarchical penalion
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Application to neuro-imaging
Structured sparsity for fMRI (Jenatton et al., 2011)

\Brain reading": prediction of (seen) object size

Multi-scale activity levels through hierarchical penalion



Sparse Structured PCA
(Jenatton, Obozinski, and Bach, 2009b)

Learningsparse and structured dictionary elements:

1 X _ . xP | |
min ~—  ky' Xw'ks+ ( X)) s.t. 8i; kw'k, 1
K n-. p kN 2
W2R* X 2R i1 =1



Application to face databases (1/3)

raw data (unstructured) NMF

NMF obtains partially local features



Application to face databases (2/3)

(unstructured) sparse PCA  Structured sparse PCA

Enforce selection ofconvex nonzero patterns) robustness to
occlusion



Application to face databases (2/3)

(unstructured) sparse PCA  Structured sparse PCA

Enforce selection ofconvex nonzero patterns) robustness to
occlusion



Application to face databases (3/3)

Quantitative performance evaluation on classi cation task

45

''''' raw data
~—=PCA
| == NMF
40 —SPCA
%shared-SPCA
SSPCA
shared-SSPCA

w
a1

w
o

et L

N

% Correct classification

20 40 60 80 100 120 140
Dictionary size



Structured sparse PCA on resting state activity
(Varoquaux, Jenatton, Gramfort, Obozinski, Thirion,
and Bach, 2010)




Dictionary learning vs. sparse structured PCA
Exchange roles of X and w

Sparse structured PCAstructured dictionary elements ):

1 X _ . XK | .
min = ky' Xw'ks+ ( x!) s.t. 8i; kw'ks
kK n-. p kN 2
W 2Rk N:X 2R - =1

Dictionary learning withstructured sparsity for codes w:

. 1 X
min —

ky!  Xw'ks+ (w') s.t. 8j; kxlky
W2RKk n:X 2RP kN -

1
Optimization :

{ Alternating optimization
{ Modularity of implementation if proximal step is e cient
(Jenatton et al., 2010; Mairal et al., 2010)

1

1



Hierarchical dictionary learning
(Jenatton, Mairal, Obozinski, and Bach, 2010)

Structure on codesv (not on dictionary X))

Hierarchical penalization: ( w) = 5,4 kwgk, where groupsG
In H are equal toset of descendantef some nodes in a tree

Variable selected after its ancestors (Zhao et al., 2009; [B8a2008c)



Hierarchical dictionary learning
Modelling of text corpora

Each document is modelled through word counts

{ Low-rank matrix factorization of word-document matrix
{ Similar to NMF with multinomial loss

Probabilistic topic models (Blel et al., 2003a)

{ Similar structures based on non parametric Bayesian megh(&lel
et al., 2004)

{ Can we achieve similar performance with simple matrix
factorization formulation?



Topic models and matrix factorization

Latent Dirichlet allocation (Blei et al., 2003b)

{ For a document, sample 2 R* from a Dirichlet( )

{ For the n-th word of the same document,
sample a topiz, from a multinomial with parameter
sample a wordv, from a multinomial with parameter (z,;:)

Interpretation as multinomial PCA (Buntine and Perttu, 2003)

{ Marginalizing over topi,, gi\ﬁgn , each woraw,, Is selected from
a multinomial with parameter 5:1 , (z;)= ~
{ Row of = dictionary elements, code for a document



Modelling of text corpora - Dictionary tree
Probabilistic topic models (Blei et al., 2004)



Modelling of text corpora - Dictionary tree
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Topic models, NMF and matrix factorization

Three di erent views on the same problem

{ Interesting parallels to be made
{ Common problems to be solved

Structure on dictionary/decomposition coe cients  with adapted
priors, e.g., nested Chinese restaurant processes (Blal.e2004)

Learning hyperparameters from data
ldenti ability and interpretation/evaluation of results

Discriminative tasks (Blei and McAulie, 2008; Lacoste-Julien
et al., 2008; Mairal et al., 2009c)

Optimization and local minima



Digital zooming (Couzinie-Devy et al., 2011)



Digital zooming (Couzinie-Devy et al., 2011)



Inverse half-toning (Mairal et al., 2011)



Inverse half-toning (Mairal et al., 2011)



Ongoing Work - Inverse half-toning
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Ongoing Work - Inverse half-toning
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Structured sparsity - Audio processing
Source separation (Leévre et al., 2011)
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Structured sparsity - Audio processing
Musical instrument separation (Leévre et al., 2011)

Unsupervised source separation with group-sparsity prior

{ Top: mixture

{ Left: source tracks (guitar, voice). Right: separated track
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Outline

Introduction: Sparse methods for machine learning

{ Short tutorial

{ Need for structured sparsityGoing beyond the ;-norm
Classical approaches to structured sparsity

{ Linear combinations of,-norms

{ Applications

Structured sparsity through submodular functions

{ Relaxation of the penalization of supports
{ Uni ed algorithms and analysis



“1-norm = convex envelope of cardinality of support

Cardinality of support : kwky = Card(Supp(w))

Convex envelope = largest convex lower bound (see, e.g.dBow
Vandenberghe, 2004)

AN A S

1 1

“1-norm = convex envelope ofp-quasi-norm on the ; -ball[ 1; 1]



Convex envelopes of general functions of the support
(Bach, 2010)

LetF : 2Y I R be aset-function

{ AssumeF Is non-decreasing (i.,e., A B ) F(A)6 F(B))
{ Explicit prior knowledge on supports (Haupt and Nowak, 2006
Baraniuk et al., 2008; Huang et al., 2009)

Dene ( w)= F(Supp(w)): How to get its convex envelope?

1. Possible ifF is alsosubmodular
2. Allowsuni ed theory and algorithm
3. Providesnew regularizers



Submodular functions (Fujishige, 2005; Bach, 2010)

F :2¥ 1 R issubmodular if and only if

8A;B V; FA)+ F(B)>F(A\ B)+ F(A[ B)
, 8 k2V; ATMF(A[f kg F(A) is non-increasing
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Submodular functions (Fujishige, 2005; Bach, 2010)

F :2¥ 1 Rissubmodular if and only if

8A;B V; FA)+ F(B)>F(A\ B)+ F(A[ B)
, 8 k2V; ATM'F(A[f kg F(A) is non-increasing

Intuition 1 : de ned like concave functionfdiminishing returns")

{ Example:F : A 7! g(Card(A)) is submodular ifg is concave

Intuition 2 : behave like convex functions

{ Polynomial-time minimization, conjugacy theory

Used in several areas of signal processing and machindangarn

{ Total variation/graph cuts (Chambolle, 2005; Boykov et aR001)
{ Optimal design (Krause and Guestrin, 2005)



Submodular functions - Examples

Concave functions of the cardinalibg(jAj)
Cuts

Entropies

Network ows

{ E cient representation for set covers

Rank functions of matroids



Submodular functions - Lowasz extension

Subsets may be identi ed with elements 60; 1g°

Givenany set-functionF andw such thatw;, > > w; , de ne:
f(w) = Wi [F(T1a50k@) R0k 10)]
k=1

{ Ifw=1,,f(w)= F(A)) extension fromf0O;1g° to RP
{ f Is pilecewise a ne and positively homogeneous

F I1s submodular if and only if is convex(Lowvasz, 1982)

{ Minimizing f (w) onw 2 [0; 1] equivalent to minimizing= on 2V



Submodular functions and structured sparsity

Let F : 2¥ | R be anon-decreasing submodular set-function

Proposition: the convex envelope of: w 7! F(Supp(w)) on the
"1 -ballis : w 7! f(jw)) wheref is the Lowasz extension ofF



Submodular functions and structured sparsity

Let F : 2V

R be anon-decreasing submodular set-function

Proposition: the convex envelope of: w 7! F(Supp(w)) on the

"1 -ballis : w 7! f (jwj) wheref is the Lovasz extension oF
Sparsity-inducing properties: is apolyhedralnorm
A
(0.1)/F(2) (LYFEL2) 4
(1,0)/F({1})
{ AilfstableifforallB A,B6 A) F(B)>F (A)

{ With pro

bability one, stable sets are the only allowed aetsets



Polyhedral unit balls

F(A) = JA] F(A) =min fj A}; 19 F(A) = jAjL=2
(W)= kwk, ( w) = kwk; all possible extreme points

F(A)=1¢av 1.2:3g6 2
+1liav 2:3g8 2gT1eAv 3g6 2¢
(W)= kwky + KWip.30k1 + jwaj

F(A) = Leav 1g82g F Lrav 2:3g62g
( W) = JWq) + ka2;39kl



Submodular functions and structured sparsity

Uni ed theory and algorithms

{ Generic computation of proximal operator
{ Uni ed oracle inequalities

Extensions

{ Shaping level sets through symmetric submodular functiomgBb,
2011)

{ qrelaxations of combinatorial penalties (Obozinski and cBa
2011)



Conclusion

Structured sparsity for machine learning and statistics

{ Many applications (image, audio, text, etc.)
{ May be achieved through structured sparsity-inducing nerm
{ Link with submodular functions: uni ed analysis and algbims



Conclusion

Structured sparsity for machine learning and statistics

{ Many applications (image, audio, text, etc.)
{ May be achieved through structured sparsity-inducing nerm
{ Link with submodular functions: uni ed analysis and algbims

On-going/related work on structured sparsity

{ Norm designbeyond submodular functions

{ Complementary approach of Jacob, Obozinski, and Vert (2009

{ Theoretical analysis of dictionary learning (Jenatton, &a and
Gribonval, 2011)

{ Achievinglogp = O(n) algorithmically (Bach, 2008c)
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