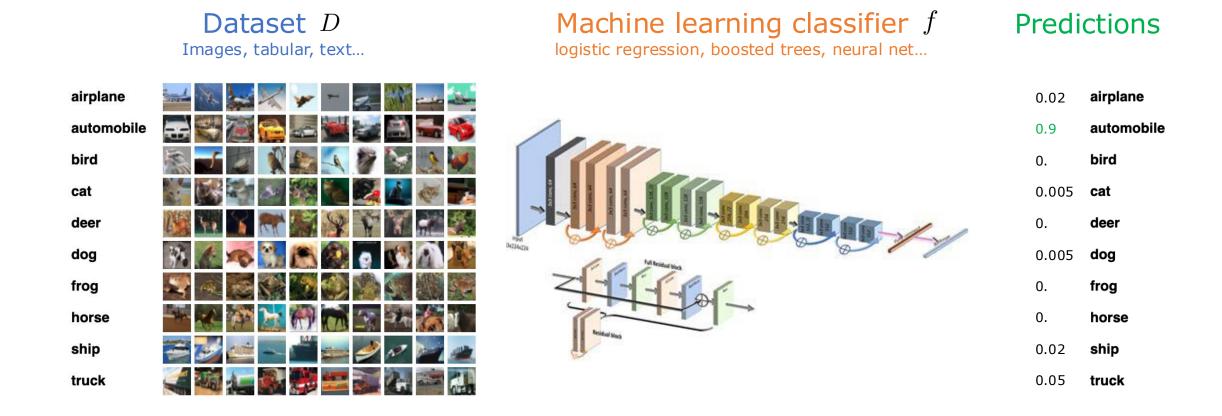
Rethinking Early Stopping: Refine, Then Calibrate

Eugène Berta, David Holzmüller, Michael I. Jordan, Francis Bach

Outline

- Motivating example
- Loss function decomposition in classification
- Proposed method
- Empirical results
- A (simple)theoretical analysis: logistic regression in the high dimensional Gaussian data model

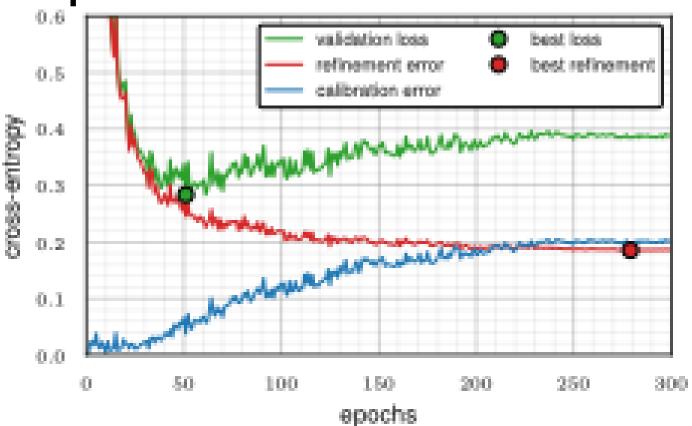
Motivating example



Motivating example

Model fitting training, hyper-parameter search...

$$\min_{f\in\mathcal{F}}\operatorname{Risk}_D(f)$$



Training a ResNet-18 on CIFAR-10. We plot the cross-entropy loss on the validation set, with its calibration and refinement error terms.

What is this decomposition?

Is there a better way to train classifiers?

Proper loss functions in classification

Predictions in $\Delta_k = \{p \in [0,1]^k | \mathbf{1}^\top p = 1\}$, labels in $\mathcal{Y}_k = \{y \in \{0,1\}^k | \mathbf{1}^\top y = 1\}$.

Evaluated with loss functions $\ell : \Delta_k \times \mathcal{Y}_k \to \mathbb{R}_+$, such as:

- The Brier score
$$\ell(p,y) = \|y-p\|_2^2$$

- The log-loss $\ell(p,y) = -\sum_{i=1}^k y_i \log(p_i)$

We overload the notation: $\ell(p,q) = \mathbb{E}_{y \sim q}[\ell(p,y)]$

A natural requirement is that $\,\ell(q,q) \leq \ell(p,q),\,\forall p,q\,$.

The probability simplex (blue triangle) and label space (red dots) for k=3.

Then, *l* is called proper (log-loss and brier are proper losses).

Gneiting, T., & Raftery, A. E. (2007). Strictly Proper Scoring Rules, Prediction, and Estimation. *Journal of the American Statistical Association*.

Decomposition of Brier score

In machine learning, we usually have $\,(X,Y)\sim \mathcal{D}\,$.

We make predictions $\, p = f(X) \,$ with a model $\, f : \mathcal{X}
ightarrow \Delta_k$.

In this setting, for the Brier score,

 $\operatorname{Risk}_{\mathcal{D}}(f) = \mathbb{E}_{\mathcal{D}}\left[\|f(X) - Y\|_{2}^{2}\right] = \mathbb{E}_{\mathcal{D}}\left[\|Y - \mathbb{E}[Y|f(X)]\|_{2}^{2}\right] + \mathbb{E}_{\mathcal{D}}\left[\|f(X) - \mathbb{E}[Y|f(X)]\|_{2}^{2}\right]$

Bröcker, J. (2009). Reliability, sufficiency, and the decomposition of proper scores. *Quarterly Journal of the Royal Meteorological Society.* Kull, M., & Flach, P. (2015). Novel decompositions of proper scoring rules for classification: Score adjustment as precursor to calibration. *Machine Learning and Knowledge Discovery in Databases: European Conference.*

Decomposition of proper losses

In machine learning, we usually have $(X,Y)\sim \mathcal{D}$.

We make predictions $\, p = f(X) \,$ with a model $\, f : \mathcal{X}
ightarrow \Delta_k$.

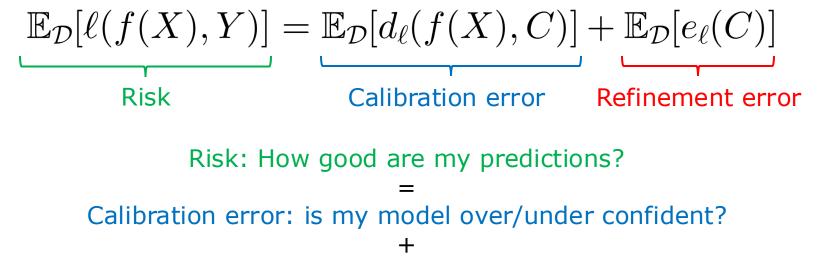
In this setting, for any proper loss,

 $\operatorname{Risk}_{\mathcal{D}}(f) = \mathbb{E}_{\mathcal{D}}[\ell(f(X), Y)] = \mathbb{E}_{\mathcal{D}}[d_{\ell}(f(X), C)] + \mathbb{E}_{\mathcal{D}}[e_{\ell}(C)]$

with
$$d_{\ell}(p,q) = \ell(p,q) - \ell(q,q)$$
, $e_{\ell}(q) = \ell(q,q)$, and $C = \mathbb{E}_{\mathcal{D}}[Y|f(X)]$.
l-divergence *l*-entropy Calibrated scores

Bröcker, J. (2009). Reliability, sufficiency, and the decomposition of proper scores. *Quarterly Journal of the Royal Meteorological Society*. Kull, M., & Flach, P. (2015). Novel decompositions of proper scoring rules for classification: Score adjustment as precursor to calibration. *Machine Learning and Knowledge Discovery in Databases: European Conference*.

Decomposition of proper losses



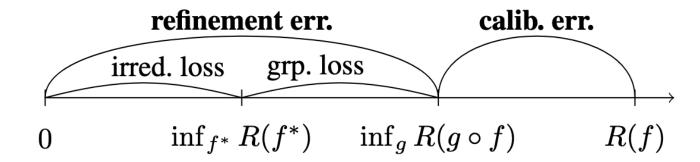
Refinement error: how well does my model separates classes? (accuracy, AUROC)

Proper loss ℓ	Divergence d_ℓ	Entropy e_{ℓ}
$\frac{\text{Logloss}}{-\sum_i y_i \log(p_i)}$	KL divergence $\sum_i q_i \log \frac{q_i}{p_i}$	Shannon entropy $-\sum_i q_i \log q_i$
Brier score $\ y-p\ _2^2$	Squared distance $\ p-q\ _2^2$	Gini index $\sum_i q_i (1-q_i)$

A new variational decomposition

Proposition [BHJB,2025]: Refinement error: $\mathcal{R}_{\ell}(f) = \min_{g} \operatorname{Risk}_{\mathcal{D}}(g \circ f)$

Calibration error:
$$\mathcal{K}_{\ell}(f) = \operatorname{Risk}_{\mathcal{D}}(f) - \min_{g} \operatorname{Risk}_{\mathcal{D}}(g \circ f)$$



A new variational decomposition

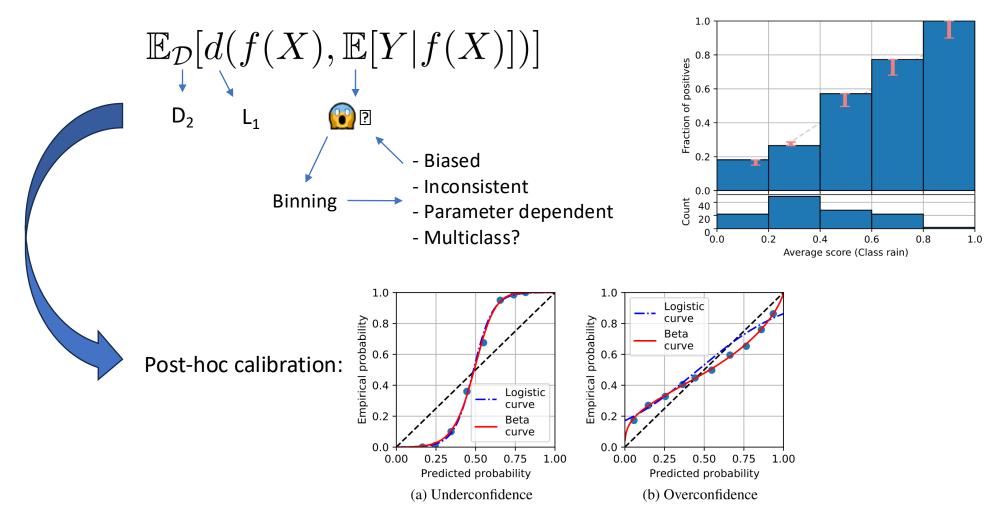
Proposition [BHJB,2025]: Refinement error: $\mathcal{R}_{\ell}(f) = \min_{g} \operatorname{Risk}_{\mathcal{D}}(g \circ f)$

Proof for log loss:
$$\min_{g} \mathbb{E}_{\mathcal{D}}[\ell(Y, g(f(X)))] = -\sum_{i=1}^{k} \mathbb{E}_{\mathcal{D}}[Y_i \log g(f(X))_i)$$

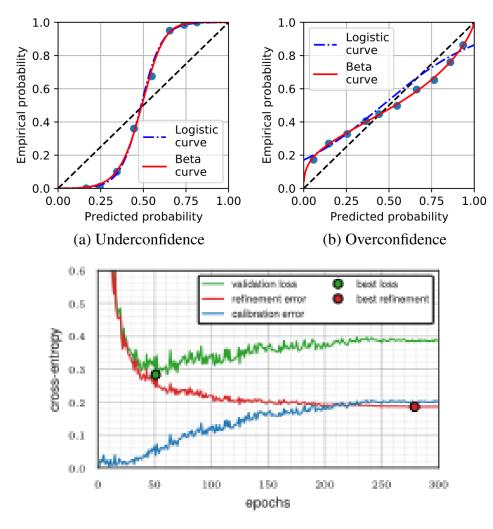
minimized when $g(f(X)) = \mathbb{E}[Y|f(X)]$

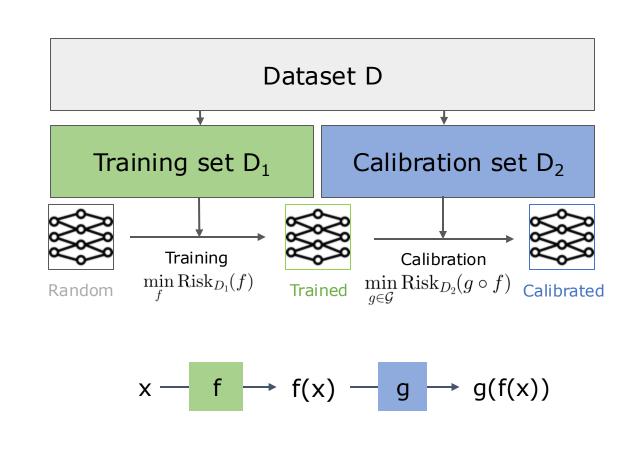
with value
$$\mathbb{E}_{\mathcal{D}}\left[e_{\ell}(\mathbb{E}[Y|f(X)])\right] = -\sum_{i=1}^{k} \mathbb{E}[Y_i|f(X)]\log(\mathbb{E}[Y_i|f(X)])$$

Calibration in the ML literature



Post-hoc calibration





Post-hoc calibration

Isotonic regression

 $\min \operatorname{Risk}_{D_2}(g \circ f)$ $g \nearrow$

Preserves the ROC convex hull.
 Theoretical guarantees.
 X III defined in the multi-class case.

Temperature scaling

 $\min_{lpha \in \mathbb{R}} \operatorname{Risk}_{D_2}(g_lpha \circ f)$

Where $g_{\alpha}(p) = \operatorname{Softmax}(\alpha \log(p))$

Preserves refinement error.
 Inherently multi-class.
 X No theoretical guarantees?

Zadrozny, B., & Elkan, C. (2002). Transforming classifier scores into accurate multiclass probability estimates. *International conference on KDD*. Berta, E., Bach, F. & Jordan, M. (2024). Classifier Calibration with ROC-Regularized Isotonic Regression. *AISTATS* Guo, C., Pleiss, G., Sun, Y., & Weinberger, K. Q. (2017). On calibration of modern neural networks. *International conference on machine learning*.

A new variational decomposition

Proposition [BHJB,2025]: Refinement error: $\mathcal{R}_{\ell}(f) = \min_{g} \operatorname{Risk}_{\mathcal{D}}(g \circ f)$

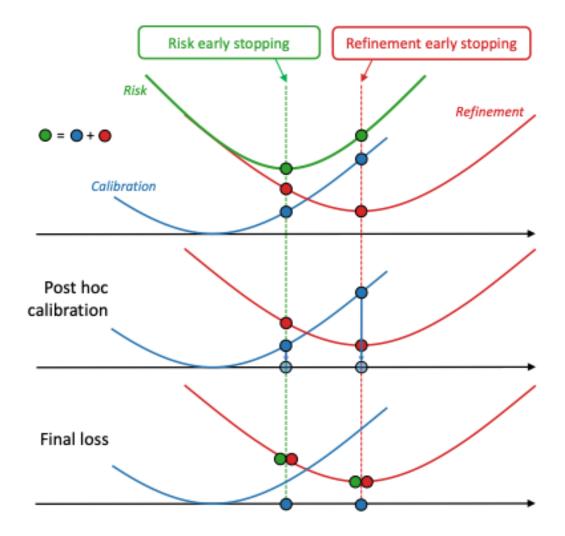
Calibration error:
$$\mathcal{K}_{\ell}(f) = \operatorname{Risk}_{\mathcal{D}}(f) - \min_{g} \operatorname{Risk}_{\mathcal{D}}(g \circ f)$$

Consequences: Post-hoc calibration

1. is an estimator of (bounds on) the calibration error

- 2. reduces calibration error
- 3. does not impact refinement error

Our method: Refine, Then Calibrate



Early stopping	Training minimizes	Post hoc minimizes
Risk	Cal. + Ref.	Cal.
Refinement	Ref.	Cal.

How can we estimate refinement?

Validation accuracy? Area under the ROC curve?

$$\mathcal{R}_{\ell}(f) = \min_{g} \operatorname{Risk}_{\mathcal{D}}(g \circ f)$$

$$\mathcal{R}_{\ell}(f) \simeq \min_{g \in \mathcal{G}} \operatorname{Risk}_{D_2}(g \circ f)$$

Validation loss after post-hoc calibration.

Choosing \mathcal{G}

Large G?
e.g. Isotonic regression
☑ little bias in our estimator
X over-fitting the validation set D₂

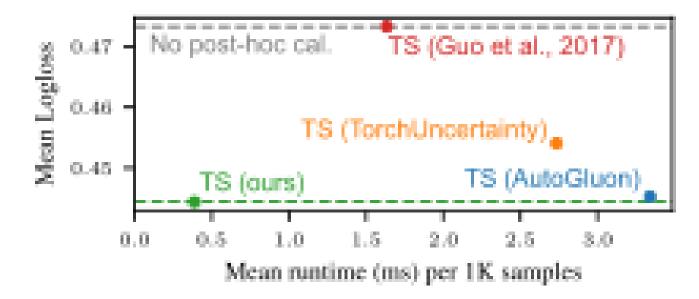
Small G?

e.g. Temperature scaling robust to over-fitting kiased estimator? Unless close to $g^*(f(X)) = \mathbb{E}_{\mathcal{D}}[Y|f(X)]$

We evaluate **TS-refinement** = validation loss after temperature scaling

▲ Could be any other refinement estimator.

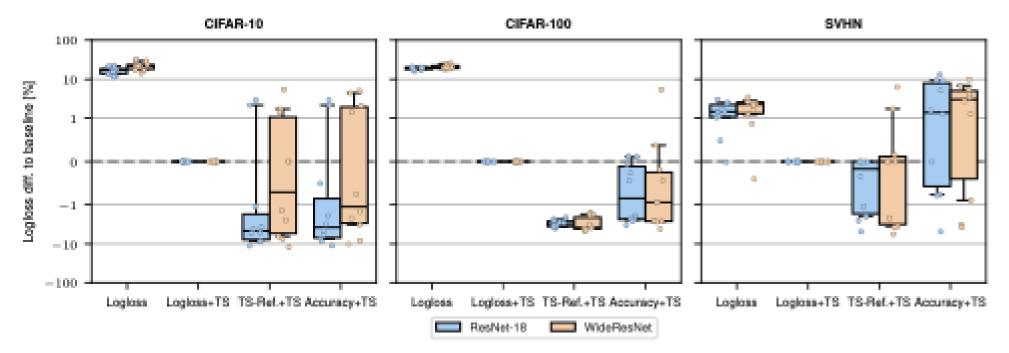
Use the best implementation, ours!



Runtime versus mean benchmark scores of different TS implementations. Runtimes are averaged over validation sets with 10K+ samples. Evaluation is on XGBoost models trained with default parameters, using the epoch with the best validation accuracy.

github.com/dholzmueller/probmetrics

Results – computer vision

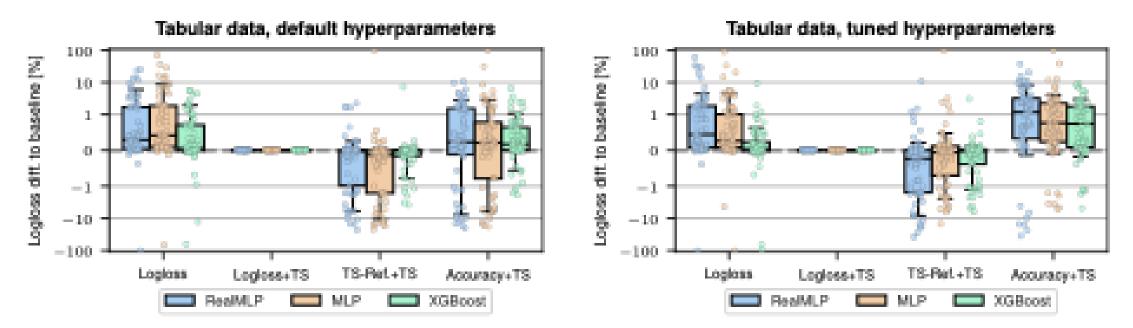


Relative differences in test log-loss (lower is better) between logloss+TS and other procedures on vision datasets.

"+TS" indicates temperature scaling applied to the final model. Each dot represents a training run on one dataset. Box-plots show the 10%, 25%, 50%, 75%, and 90% quantiles. Relative differences (y-axis) are plotted using a log scale.

github.com/eugeneberta/RefineThenCalibrate-Vision

Results – tabular data



Relative differences in test logloss (lower is better) between logloss+TS and other procedures on tabular datasets.

"+TS" indicates temperature scaling applied to the final model. Each dot represents one dataset with 10K+ samples. Percentages are clipped to [-100, 100] due to one outlier with almost zero loss. Box-plots show the 10%, 25%, 50%, 75%, and 90% quantiles. Relative differences (y-axis) are plotted using a log scale.

github.com/dholzmueller/pytabkit

Theoretical analysis: the Gaussian data model

Gaussian data model:

$$X \in \mathbb{R}^{p}, Y \in \{-1, 1\} \begin{cases} X \sim \mathcal{N}(\mu, \Sigma) \text{ if } Y = 1\\ X \sim \mathcal{N}(-\mu, \Sigma) \text{ if } Y = -1 \end{cases}$$

Linear classifier:

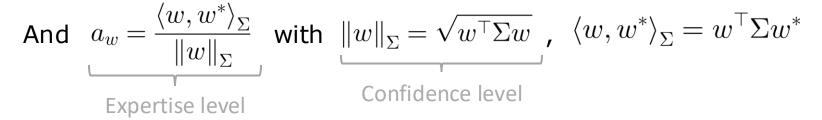
$$f(X) = \sigma(w^{\top}X) \qquad \text{with} \quad \sigma(x) = \frac{1}{1 + \exp(-x)}$$

In this well studied setting, $\,w^*=2\Sigma^{-1}\mu\,$

Jordan, M. I. Why the logistic function? a tutorial discussion on probabilities and neural networks. Computational Cognitive Science Technical Report 9503, 1995.

Theoretical analysis: the Gaussian data model

The error rate writes $\operatorname{err}(w) = \Phi(-a_w/2)$ with, $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x \exp(-\frac{t^2}{2}) dt$



Theorem 5.1. For proper loss ℓ , the calibration and refinement errors of our model are

$$\begin{aligned} \mathcal{K}_{\ell}(w) &= \mathbb{E}\Big[d_{\ell}\Big(\sigma\Big(\|w\|_{\Sigma}\Big(z+\frac{a_{w}}{2}\Big)\Big), \sigma\Big(a_{w}\Big(z+\frac{a_{w}}{2}\Big)\Big)\Big)\Big]\\ \mathcal{R}_{\ell}(w) &= \mathbb{E}\Big[e_{\ell}\Big(\sigma\Big(a_{w}\Big(z+\frac{a_{w}}{2}\Big)\Big)\Big)\Big]\,,\end{aligned}$$

where the expectation is taken on $z \sim \mathcal{N}(0, 1)$.

Theorem 5.2. The re-scaled weight vector $w_s \leftarrow sw$ with $s = \langle w, w^* \rangle_{\Sigma} / ||w||_{\Sigma}^2$ yields null calibration error $\mathcal{K}(w_s) = 0$ while preserving the refinement error $\mathcal{R}(w_s) = \mathcal{R}(w)$.

Theoretical analysis: regularized logistic regression in high dimension

The weight vector learned with regularized logistic regression:

$$\min_{w \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \log(1 + \exp(-y_i w^\top X_i)) + \frac{\lambda}{2} \|w\|^2$$

Has the following distr. when $n, p \rightarrow \infty$ with a constant ratio,

$$w_{\lambda} \sim \mathcal{N}\Big(\eta(\lambda I_p + \tau\Sigma)^{-1}\mu, \frac{\gamma}{n}(\lambda I_p + \tau\Sigma)^{-1}\Sigma(\lambda I_p + \tau\Sigma)^{-1}\Big)$$

We deduce **Proposition 6.1.** For $n, p \to \infty$,

$$\langle w_{\lambda}, w^{*} \rangle_{\Sigma} \xrightarrow{P} \mathbb{E}_{\sigma \sim F} \left[\frac{2\eta c^{2}}{\lambda + \tau \sigma} \right],$$

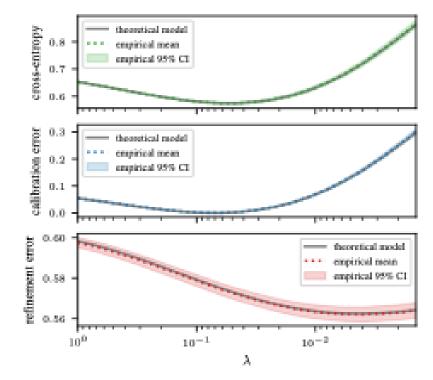
$$\|w_{\lambda}\|_{\Sigma}^{2} \xrightarrow{P} \mathbb{E}_{\sigma \sim F} \left[\frac{\gamma \tau \delta^{-} + \eta^{-} c^{-} \delta}{(\lambda + \tau \sigma)^{2}} \right],$$

where the convergence is in probability.

Mai, X., Liao, Z., & Couillet, R. (2019). A large scale analysis of logistic regression: Asymptotic performance and new insights. *International Conference on Acoustics, Speech and Signal Processing*.

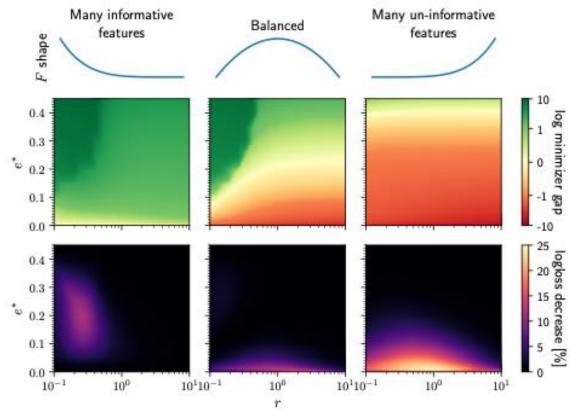
Theoretical analysis: regularized logistic regression in high dimension

We provide an efficient solver for the problem of computing calibration and refinement errors, under our specific mathematical model, see <u>github.com/eugeneberta/RefineThenCalibrate-Theory</u>



Cross-entropy, calibration and refinement errors when λ **varies.** The spectral distribution F is uniform, e* = 10%, r = 1/2. We fit a logistic regression on 2000 random samples from our data model, we compute the resulting calibration and refinement errors and plot 95% error bars after 50 seeds.

Theoretical analysis: regularized logistic regression in high dimension



Influence of problem parameters on calibration and refinement minimizers. First row: spectral distribution shape. Second row: log gap between the two minimizers. In green regions, calibration is minimized earlier, while in red regions it is refinement. Third row: relative logloss gain (%) obtained with refinement early stopping. github.com/eugeneberta/RefineThenCalibrate-Theory

Oberwolfach - 03/26/25

Conclusion

- New refinement estimator for classification
 - Need a family of functions (monotonic or increasing)
 - Going beyond?
- Selecting the best epoch and hyperparameters based on refinement error
 - Calibrated classifiers with lower loss!
 - Improvements in most examples with little changes
 - Online code
- (simple) theoretical analysis: logistic regression in the high dimensional Gaussian data model
 - Going beyond?

The end, thanks for listening!

Read the full paper:

Buy my new book: Learning

from First

Principles

Francis

Bach

Theory

Use our method on your favorite classification task:

