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Motivating example
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Predictions
0.02  airplane
0.9 automobile
0. bird
0.005 cat
0. deer
0.005 dog
0. frog
0. horse
0.02  ship
0.05  truck
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Motivating example
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Training a ResNet-18 on CIFAR-10. We plot the
cross-entropy loss on the validation set, with its
calibration and refinement error terms.
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What is this decomposition?

Is there a better way to train classifiers?



Proper loss functions in classification
Predictions in Ay = {p € [0,1)|1Tp =1}, labels in Vi = {y € {0,1}" 1Ty =1},

Evaluated with loss functions ¢ : Ap x Vi, — R,

such as: )
- The Brier score 4(p,y) = ||y — pl|5

k
- The log-loss  £(p,y) = — > _ yilog(p))
1=1

We overload the notation: ¢(p,q) = E,~[¢(p,y)]

The probability simplex (blue

A natural requirement is that £(q,q) < £(p,q), Vp,q . triangle) and label space (red
dots) for k=3.

Then, { is called proper (log-loss and brier are proper losses).

Gneiting, T., & Raftery, A. E. (2007). Strictly Proper Scoring Rules, Prediction, and Estimation. Journal of the American Statistical Association.



Decomposition of Brier score

In machine learning, we usually have (X,Y) ~D .
We make predictions p = f(X) with a model f: X — Ag.

In this setting, for the Brier score,

Riskp(f) = Ep[|lf(X)-YI3] = Ep [[|Y -E[Y[f(X)]lI3] + Ep [|If(X)—E[}]f(X)]I3]

Brocker, J. (2009). Reliability, sufficiency, and the decomposition of proper scores. Quarterly Journal of the Royal Meteorological Society.

Kull, M., & Flach, P. (2015). Novel decompositions of proper scoring rules for classification: Score adjustment as precursor to calibration.
Machine Learning and Knowledge Discovery in Databases: European Conference.



Decomposition of proper losses

In machine learning, we usually have (X,Y) ~D .
We make predictions p = f(X) with a model f: X — Ag.
In this setting, for any proper loss,

Riskp(f) = Epll(f(X),Y)] = Epld/(f(X),C)] + Eple/(C)]

with de(p, q) = (p,q) — £(q,q) , ee(q) = £(q,q) ,and C =Ep[Y[f(X)] .

Brocker, J. (2009). Reliability, sufficiency, and the decomposition of proper scores. Quarterly Journal of the Royal Meteorological Society.

Kull, M., & Flach, P. (2015). Novel decompositions of proper scoring rules for classification: Score adjustment as precursor to calibration.
Machine Learning and Knowledge Discovery in Databases: European Conference.



Decomposition of proper losses

Eol0(f(X),Y)] = Ep[di(f(X), C)] + Epler(C)]

\ J J
I 1

Risk Calibration error Refinement error

Risk: How good are my predictions?

Calibration error: is my model over/under confident?
+
Refinement error: how well does my model separates classes? (accuracy, AUROC)

Proper loss ¢ Divergence dy Entropy ey
Logloss KL divergence = Shannon entropy
—> i vilog(pi) >, qilog ¥ — > Gilog g
Brier score Squared distance Gini index
ly — pli3 lp — qll? > ai(1 — ai)
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A new variational decomposition

Proposition

[BHIB,2025]: Refinement error: Ry(f) = min Riskp(g o f)

g

Calibration error: KCy( f) = Riskp(f) — min Riskp(g o f)

g
refinement err. calib. err.
MSS gM
(  — ——— N
0 inf s« R(f*)  inf, R(go f) R(f)
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A new variational decomposition

Proposition

[BHIB,2025]: Refinement error: Ry(f) = min Riskp(g o f)

g

Proof for log loss: mgin Ep[l(Y,g(f(X)))] = — ZED Y;log g(f(X))s)

minimized when g(f(X)) =E|Y|f(X)]

k

with value Ep [e,(E[Y]f(X)])] = — > E[Y;|f(X)] log(E[Yi| £ (X))



Calibration in the ML literature
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Post-hoc calibration

Empirical probability
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Post-hoc calibration

Isotonic regression

min Riskp,(g o f)
9/

Preserves the ROC convex hull.
Theoretical guarantees.
X 1l defined in the multi-class case.

Temperature scaling

min Riskp,(ga o f)

acR

Where ga(p) = Softmax(clog(p))

Preserves refinement error.
Inherently multi-class.
X No theoretical guarantees?

Zadrozny, B., & Elkan, C. (2002). Transforming classifier scores into accurate multiclass probability estimates. International conference on KDD.
Berta, E., Bach, F. & Jordan, M.. (2024). Classifier Calibration with ROC-Regularized Isotonic Regression. AISTATS
Guo, C,, Pleiss, G., Sun, Y., & Weinberger, K. Q. (2017). On calibration of modern neural networks. International conference on machine learning.



A new variational decomposition

Proposition

[BHIB,2025]: Refinement error: Ry(f) = mgjn Riskp(g o f)

Calibration error:  ICy(f) = Riskp(f) — min Riskp(g o f)
g

Consequences: Post-hoc calibration

1. is an estimator of (bounds on) the calibration error
2. reduces calibration error

3. does not impact refinement error



Our method: Refine, Then Calibrate

l Risk early stopping ] [ Refinement early stopping J

i /

o-0+0
Calibration !
\ Early stopping | Training minimizes Post hoc minimizes
Risk Cal. + Ref. Cal.
?ﬂﬂ }?ﬂ: Refinement Ref. Cal.
calibration

\

Final loss
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How can we estimate refinement?

Validation accuracy? Area under the ROC curve?

R¢(f) = min Riskp(g o f)

9

Re(f) ~ min Riskp,(g o f)

geg

l

Validation loss after post-hoc calibration.



Choosing G

Large G?
e.g. Isotonic regression
little bias in our estimator
¥ over-fitting the validation set D,

Small G?
e.g. Temperature scaling
robust to over-fitting

¥ biased estimator? Unless close tog™ (f (X)) = Ep|Y | f(X)]

We evaluate TS-refinement = validation loss after temperature scaling

/\ Could be any other refinement estimator.

Oberwolfach - 03/26/25
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Use the best implementation, ours!
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Runtime versus mean benchmark scores of different TS implementations.
Runtimes are averaged over validation sets with 10K+ samples. Evaluation is on
XGBoost models trained with default parameters, using the epoch with the best
validation accuracy.

github.com/dholzmueller/probmetrics
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https://github.com/dholzmueller/probmetrics

Results — computer vision
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Relative differences in test log-loss (lower is better) between logloss+TS and other
procedures on vision datasets.

“"+TS” indicates temperature scaling applied to the final model. Each dot represents a training run
on one dataset. Box-plots show the 10%, 25%, 50%, 75%, and 90% quantiles. Relative differences
(y-axis) are plotted using a log scale.

github.com/eugeneberta/RefineThenCalibrate-Vision
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https://github.com/eugeneberta/RefineThenCalibrate-Vision

Results — tabular data

Tabular data, default hyperparameters Tabular data_ tuned hyperparameters
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Relative differences in test logloss (lower is better) between logloss+TS and other procedures on

tabular datasets.
“+TS” indicates temperature scaling applied to the final model. Each dot represents one dataset with 10K+

samples. Percentages are clipped to [—100, 100] due to one outlier with almost zero loss. Box-plots show the
10%, 25%, 50%, 75%, and 90% quantiles. Relative differences (y-axis) are plotted using a log scale.

github.com/dholzmueller/pytabkit
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https://github.com/dholzmueller/pytabkit

Theoretical analysis: the Gaussian
data model|

Gaussian data model: B
X ~N(p,X)ifY =1
X eRY e {—1,1} -

X ~N(—p,X)if Y =-1

Linear classifier:

1
1 + exp(—x)

f(X)=c(w'X) with o (z) =

In this well studied setting, w" = 22—1/,L

Jordan, M. I. Why the logistic function? a tutorial discussion on probabilities and neural networks. Computational Cognitive Science Technical
Report 9503, 1995.
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Theoretical analysis: the Gaussian
data model|

Y t>
The error rate writes err(w) = ®(—a,,/2) with, ®(z) = \/T/ exp(—7)d
T J—00

w, w* _
And a, = < ] )x with [Jwlly = Ve Sw , (w,w’)y = w' Sw*
5

Theorem 5.1. For proper loss ¢, the calibration and refine-
ment errors of our model are

Ko )—E[d ( (” [ ( +a_w)) ( ( n a'_w)))i| Theorem 5.2. The re-scaled weight vector wg <— sw with
A ATUITIELET 757 o\ B Z T 5 s = (w,w*)s/||w||% yields null calibration error K(w,) =

Re(w) = E [Ge (J (Clw (Z i %ﬂ) ) )] , 0 while preserving the refinement error R(ws) = R(w).

where the expectation is taken on z ~ N (0, 1).



Theoretical analysis: regularized
logistic regression in high dimension

| i 1 < A
The weight vector learned with min — Zlog(l n exp(—yinXz-)) n §||w||2

regularized logistic regression:  weRr n

1=1

Has the following distr. when N ( —1,, 7 ~1 —1)
n,p — 00 with a constant ratio, N (A ptr2) ™", n(AIP+TE) E(AMp+7E)

We deduce Proposition 6.1. Forn,p — oo,

2nc? ]

P
3 * _>]EO'N |: 3
(wx, ) o At TO

'yfraz -+ nzcza}
(A+710)2

where the convergence is in probability.

[wAlE £ Egur |

Mai, X., Liao, Z., & Couillet, R. (2019). A large scale analysis of logistic regression: Asymptotic performance and new insights. International
Conference on Acoustics, Speech and Signal Processing.



Theoretical analysis: regularized

logistic regression in high dimension

We provide an efficient solver for the problem of computing calibration and refinement errors, under our specific

mathematical model, see github.com/eugeneberta/RefineThenCalibrate-Theory
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Cross-entropy, calibration and refinement errors when A varies. The spectral distribution F is uniform, ex = 10%, r = 1/2 . We fit a logistic regression on 2000 random

samples from our data model, we compute the resulting calibration and refinement errors and plot 95% error bars after 50 seeds.
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https://github.com/eugeneberta/RefineThenCalibrate-Theory

Theoretical analysis: regularized
logistic regression in high dimension
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Influence of problem parameters on calibration and refinement minimizers. First row: spectral distribution shape. Second row: log gap between the two
minimizers. In green regions, calibration is minimized earlier, while in red regions it is refinement. Third row: relative logloss gain (%) obtained with refinement early

stopping. github.com/eugeneberta/RefineThenCalibrate-Theory
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https://github.com/eugeneberta/RefineThenCalibrate-Theory

Conclusion

« New refinement estimator for classification

* Need a family of functions (monotonic or increasing)
« Going beyond?
» Selecting the best epoch and hyperparameters based on
refinement error
« Calibrated classifiers with lower loss!

« Improvements in most examples with little changes
* Online code

« (simple) theoretical analysis: logistic regression in the high
dimensional Gaussian data model

« Going beyond?



The end, thanks for listening!

Learning
Theory
fromFirst
Principles

¥ Read the full paper: .- HeE

Buy my
new book:

3 Use our method
on your favorite
classification task:

/ Francis

Bach
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