Learning on images
with segmentation graph kernels

Zaid Harchaoui Francis Bach
Telecom, Paris Ecole des Mines de Paris
/
TELECOM

supérieure des

télécommunications MI N ES PARIS

May 2007



Outline

e Learning on images

e Kernel methods

e Segmentation graph kernels
e Experiments

e Conclusion



Learning tasks on images

e Multiplication of digital media

e Many different tasks to be solved

— Associated with different machine learning problems



Classification, ranking, outlier detection
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Image retrieval
Classification, ranking, outlier detection
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Image annotation
Classification, clustering




Personal photos
Classification, clustering, visualisation
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Learning tasks on images

e Multiplication of digital media

e Many different tasks to be solved

— Associated with different machine learning problems
e Application: retrieval/indexing of images

e Common issues:

— Complex tasks
— Heterogeneous data — links with other medias (text and sound)
— Massive data



Learning tasks on images

e Multiplication of digital media

e Many different tasks to be solved

— Associated with different machine learning problems
e Application: retrieval/indexing of images

e Common issues:

— Complex tasks
— Heterogeneous data — links with other medias (text and sound)
— Massive data

= Kernel methods



Kernel methods for machine learning

e Motivation:

— Develop modular and versatile methods to learn from data
— Minimal assumptions regarding the type of data (vectors, strings,

graphs)
— Theoretical guarantees



Kernel methods for machine learning

e Motivation:

— Develop modular and versatile methods to learn from data
— Minimal assumptions regarding the type of data (vectors, strings,

graphs)
— Theoretical guarantees

¢ Main idea:

— use only pairwise comparison between objects through dot-products
— use algorithms that depend only on those dot-products ( “linear
algorithms" )



Kernel trick : linear = non linear




Kernel trick : linear = non linear

Non linear map ¢ : x € X — ®(x) € F
Linear estimation in “feature space” F

Assumption: results only depend on dot products (®(z;), ®(x,)) for
pairs of data points

Kernel: k(z,z") = (®(x), P(2))

Implicit embedding!



Kernel methods for machine learning

e Definition: given a set of objects A, a positive definite kernel is
a symmetric function k(x,z’) such that for all finite sequences of
points x; € X and «; € R,

Zi,j Oéi()éjk(ﬂi’i,ilfj) 2 0
l.e., the matrix (k(x;, x;)) iIs symmetric positive semi-definite
j

e Aronszajn theorem (1950): k is a positive definite kernel if and
only if there exists a Hilbert space F and a mapping ¢ : X — F
such that

V(z,o') € X%, k(x,2) = (®(x), D(2'))x
e X = “input space”, F = “feature space”, & = “feature map”

e Functional view: reproducing kernel Hilbert spaces



Kernel trick and modularity

e Kernel trick: any algorithm for finite-dimensional vectors that only
uses pairwise dot-products can be applied in the feature space.

— Replacing dot-products by kernel functions
— Implicit use of (very) large feature spaces
— Linear to non-linear learning methods



Kernel trick and modularity

e Kernel trick: any algorithm for finite-dimensional vectors that only
uses pairwise dot-products can be applied in the feature space.

— Replacing dot-products by kernel functions
— Implicit use of (very) large feature spaces
— Linear to non-linear learning methods

e Modularity of kernel methods

1. Work on new algorithms and theoretical analysis
2. Work on new kernels for specific data types



Kernel algorithms

e Classification and regression

— Support vector machine, linear regression, etc...
e Clustering
e Outlier detection
e Ranking

e Integration of heterogeneous data

= Developed independently of specific kernel instances



Kernels : kernels on vectors © € R

o Linear kernel k(z,y) =z 'y

— Linear functions

e Polynomial kernel k(x,y) = (r + sz ' y)?

— Polynomial functions

e Gaussian-RBF kernels k(z,y) = exp(—a|lz — y[|?)

— Smooth functions

e Structured objects? Choice of parameters?



Kernels for images

e Most applications of kernel methods to images
— Compute a set of features (e.g., wavelets)
— Run an SVM with many training examples

e \Why not design specific kernels?

— Using natural structure of images beyond flat wavelet
representations
— Using prior information to lower the number of training samples



kernel methods for images

e "Natural’ representations

— Vector of pixels + kernels between vectors (most of learning
theory!)
— Bags of pixels: leads to kernels between histograms

(Chapelle & Haffner, 1999, Cuturi et al, 2006)
— Large set of hand-crafted features (e.g., Osuna and Freund, 1998)



Input picture




Wavelets




kernel methods for images

e "Natural’ representations

— Vector of pixels
— Bags of pixels
— Large set of hand-crafted features

e Loss of natural global geometry

— Often requires a lot of training examples

e Natural representations

— Salient points (SIFT features, Lowe, 2004)
— Segmentation



SIFT features
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Segmentation

e Goal: extract objects of interest

e Many methods available, ....

— ... but, rarely find the object of interest entirely

e Segmentation graphs

— Allows to work on “more reliable” over-segmentation
— Going to a large square grid (millions of pixels) to a small graph
(dozens or hundreds of regions)



Image as a segmentation graph

e Segmentation method

— LAB Gradient with oriented edge filters (Malik et al, 2001)
— Watershed transform with post-processing (Meyer, 2001)
— Very fast!



Watershed

gradient watershed

287 segments 64 segments 10 segments

-.




Watershed

gradient watershed




Image as a segmentation graph

e Segmentation method

— LAB Gradient with oriented edge filters (Malik et al, 2001)
— Watershed transform with post-processing (Meyer, 2001)

e Labelled undirected Graph

— Vertices: connected segmented regions
— Edges: between spatially neighboring regions
— Labels: region pixels




Image as a segmentation graph

e Segmentation method

— LAB Gradient with oriented edge filters (Malik et al, 2001)
— Watershed transform with post-processing (Meyer, 2001)

e Labelled undirected Graph

— Vertices: connected segmented regions
— Edges: between spatially neighboring regions
— Labels: region pixels

e Difficulties

— Extremely high-dimensional labels
— Planar undirected graph
— Inexact matching



Kernels between structured objects
Strings, graphs, etc...

e Numerous applications (text, bio-informatics)
e From probabilistic models on objects (e.g., Saunders et al, 2003)

e Enumeration of subparts (Haussler, 1998, Watkins, 1998)

— Efficient for strings

— Possibility of gaps, partial matches, very efficient algorithms
(Leslie et al, 2002, Lodhi et al, 2002, etc... )

e Most approaches fails for general graphs (even for undirected trees!)

— NP-Hardness results (Gartner et al, 2003)
— Need alternative set of subparts



Paths and walks

e Given a graph G,

— A path is a sequence of distinct neighboring vertices
— A walk is a sequence of neighboring vertices

e Apparently similar notions
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Walk kernel (Kashima, 2004, Borgwardt, 2005)

o W¢ (resp. Wy;) denotes the set of walks of length p in G (resp. H)

e Given basis kernel on labels k(¢,¢")

e p-th order walk kernel:

p

kD, (GLH) = > ] E(ta(r:), tals:)).

(r1y...,71p) € Wgr =1




Dynamic programming for the walk kernel

e Dynamic programming in O(pdgdungnu)
o k1, (G,H,r,s) = sum restricted to walks starting at r and s

e recursion between p — 1-th walk and p-th walk kernel

Ko(GH,rs)=k(la(r), fu(s) Y k) (G, H,r',s").
r’ e Ng(r)
s’ € Nu(s)

_— e — — = T



Dynamic programming for the walk kernel

Dynamic programming in O(pdgdungng)

ko, (G, H,r, s) = sum restricted to walks starting at r and s

recursion between p — 1-th walk and p-th walk kernel
Ko (G H, 7, 8)=k(la(r), tu(s) Y ki, (G, H,r',s)

r’ e Ng(r)
s’ € Nu(s)

Kernel obtained as k5*(G,H) = »  k2%(G,H,r,s)

reVa,seVy

NB: more flexible than matrix inversion approaches



Subtrees and tree patterns

e subtree = subgraph with no cycle

e tree-walks (or tree patterns)

— natural extensions to subtrees to the “walk world"”
— a-ary tree-walk (a.k.a tree pattern) of G : rooted directed a-ary
tree whose vertices are vertices of 3, such that if they are neighbors

in the tree pattern, they must be neighbors in G as well



Subtrees
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Tree patterns
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Treewalk kernel

o 7% (resp. Tip'”) denotes the set of a-ary tree patterns of G (resp.
H) of depth p

o k7%(G,H) is defined as the sum over all tree patterns in 7, o(G)
and all tree patterns in 7, ,(H) (that share the same tree structure)




Dynamic programming

e Dynamic programming in O(pa?dgdungnm)

e NB: need planarity to avoid exponential complexity

k2 (G, H,r,s) = k(la(r), u(s)) X

> Il # " GHS).
I eZ&(r)rel
JeIi(s)s'ed

PG H) = Y k%(G,H,r,s).

r e Ve
s € Vu



Planar graphs and neighborhoods

e Natural cyclic ordering of neighbors for planar graphs

e Example: intervals of length 2
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Engineering segmentation kernels

e kernels between segments:

2
— Chi-square metric: di(P7 Q) - Zj\le %

— Py = the histogram of colors of region labelled by /¢
k(0,0)) = ky(Py, Py) = e M (PeFe)

— Segments weighting scheme k(¢,¢') = )\AZAZ,G_“di(PE’PE’) where
Ay is the area of the corresponding region

Kernel free param. | fixed param.
Histogram L4

e Many (7) parameters: Walk D o o=1
Tree-walk p,a > 1 [y A
Weighted tree-walk | p,a > 1,7 | u, A




Multiple kernel learning

e Given set of basis kernels K;, learn a linear combination

K(n) = Zm’Kg‘

e Convex optimization problem which jointly learns 1 and the classifier
obtained from K(n)
(Lanckriet et al, 2004, Bach et al, 2004, 2005)

e Kernel selection

e Fusion of heterogeneous kernels from different data sources



Classification experiments

e Coill100: database of 7200 images of 100 objects in a uniform
background, with 72 images per object.




Classification experiments

e Corell4 is a database of 1400 natural images of 14 different classes




Comparison of kernels

e kernels :

— histogram kernel (H)

— walk-based kernel (W)

— tree-walk kernel (TW)

— weighted-vertex tree-walk kernel (WTW)

— combination of the above by multiple kernel learning (M)

e Hyperparameters selected by cross-validation

e Error rates on ten replications:

H W T™W wiW | M
Coil100 | 1.2% 08% |0.0% |0.0% | 0.0%
Corell4d | 10.36% | 8.52% | 7.24% | 6.12% | 5.38%




Performance on Corell4 dataset

Performance comparison on Corell4

histogram kernel (H) olal '
011}
walk-based kernel (W) - o
0.1}
S
tree-walk kernel (TW) @ 0.09/ . -
§ 0.08f o :
weighted-vertex  tree- 007l ' T
walk kernel (wTW) | — :
0.06} e
combination by MKL 0.05; | | | .
(M) H W TW wTW M

Kernels



Multiple kernel learning

e 100 kernels corresponding to 100 settings of hyperparameters

Kernel free param. | fixed param.
Histogram L4

Walk D A, a0 =1
Tree-walk p,a > 1 by A
Weighted tree-walk | p,a > 1,7 | u, A

e Selected kernels
p,a,v|10,3,0.6|7,1,0.6/10, 3,0.3(5, 3,0.0/8,1,0.0
n 0.12 0.17 0.10 0.07 0.04




Semi-supervised learning
e Kernels give task flexibility
e Example: semi-supervised algorithm of Chapelle and Zien (2004)

e 10% labelled examples, 10% test examples, 10% to 80% unlabelled

examples
Influence of the unlabeled examples

0.45F o

0.4r
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Conclusion

e Learning on images with kernels on segmentation graphs

— Based on a natural and still noisy representation of images
— Prior information allows better generalization performances
— Modularity

e Current work and natural extensions:

— Non-tottering trick (Mahé et al, 2005)
— Allows gaps (Saunders et al, 2001)

— Shock graphs (e.g., Suard et al., 2005)
— SIFT features

e Application to image retrieval



