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Abstract. We consider the problem of decomposing a regular nonnegative function as a sum
of squares of functions which preserve some form of regularity. In the same way as decomposing
nonnegative polynomials as sum of squares of polynomials allows one to derive methods in order
to solve global optimization problems on polynomials, decomposing a regular function as a sum of
squares allows one to derive methods to solve global optimization problems on more general functions.
As the regularity of the functions in the sum of squares decomposition is a key indicator in analyzing
the convergence and speed of convergence of optimization methods, it is important to have theoretical
results guaranteeing such a regularity. In this work, we show second order sufficient conditions in
order for a p times continuously differentiable nonnegative function to be a sum of squares of p - 2
differentiable functions. The main hypothesis is that, locally, the function grows quadratically in
directions which are orthogonal to its set of zeros. The novelty of this result, compared to previous
works is that it allows sets of zeros which are continuous as opposed to discrete, and also applies
to manifolds as opposed to open sets of \BbbR d. This has applications in problems where manifolds of
minimizers or zeros typically appear, such as in optimal transport, and for minimizing functions
defined on manifolds.
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1. Introduction. The relationship between nonnegative functions and functions
decomposable as sums of squares is a fundamental question in both theoretical and
applied mathematics. From a theoretical viewpoint, the decomposability of a non-
negative function in terms of sum of squares is the basis of important theoretical
objects and properties: quadratic modules [18] in algebraic geometry, regularizing
operators such as Laplacians or sub-Laplacians in (sub-)Riemannian geometry [6, 12],
nonnegative symbols in pseudodifferential calculus [13, 34]. From an applied view-
point, representing a nonnegative function in terms of sum of squares simplifies the
analysis of probability representations and optimization problems [16, 19]. Restricting
oneself to the case of nonnegative polynomials, this has been applied to global opti-
mization and generalized methods of moments [10, 16]. In a more recent line of work,
the decomposition of nonnegative p-times differentiable functions allowed us to derive
simple and fast optimization algorithms in the context of global optimization [28],
the Kantorovich problem in optimal transport [35], and some formulations of optimal
control [5]. Moreover, it allowed us to obtain effective and concise representations
for probability densities, with applications in probabilistic inference, sampling, and
machine learning [20, 27].
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DECOMPOSING SMOOTH FUNCTIONS AS SUMS OF SQUARES 617

1.1. Motivation: Widening the scope of optimization methods based
on analytical sum of squares decompositions. The main motivation of this
work is to extend the class of functions under which optimization methods based on
sum of squares decompositions [4, 28] have fast convergence rates. For simplicity, we
will focus on the method introduced by [28], but the same reasoning can be applied
to any method whose convergence properties depend on a regular sum of squares
decomposition of the target function.

Regular sum of squares decompositions imply fast convergence of optimization
methods. We will denote the method introduced by [28] as Algorithm 1 with
AnalyticalSoSOpt. In a nutshell, given a function f of class Cp defined on a bounded
d-dimensional box in \BbbR d, and n random points sampled from that box,
AnalyticalSoSOpt returns \widehat x=AnalyticalSoSOpt(f,n), an approximation of the min-
imizer of f . Denote with f \star the minimum of f .

The original work shows that AnalyticalSoSOpt(f,n) has a near optimal conver-
gence rate in n (close to the optimal n - p/d rate, [23]), in polynomial time in n, under
the assumption that f can be decomposed as a sum of squares of functions of class
Cp - 2 for some p\geq 2.1 We have simplified the result in the following proposition.

Proposition 1.1 (see Theorem 3 from [28] and its implications for the proof of
Theorem 6). If f - f \star is a sum of squares of functions of class Cp - 2, AnalyticalSoSOpt
satisfies

f(AnalyticalSoSOpt(f,n)) - f \star \leq Cd,f n
 - p/d+1/2+3/d.(1.1)

Understanding under which conditions a function f can be decomposed as its
minimum plus a sum of squares of functions of class Cp - 2 is therefore crucial to
understand for which functions f the algorithm AnalyticalSoSOpt converges at the
fast rate given in (1.1) (by fast, we mean that the regularity p allows it to go faster
than the n - 1/d rate).

In this paper, we therefore provide interpretable sufficient conditions for nonneg-
ative functions f to be decomposable as sum of squares of class Cp - 2, which directly
implies the fast convergence of AnalyticalSoSOpt when applied to these functions
(plus their minimum) by virtue of Proposition 1.1. Our main theorem, summarized
in Theorem 1.3, is a nichtnegativstellensatz for regular functions.

Preserving regularity in the analytical sum of squares decomposition. The main
difficulty in analytical sum of squares decompositions is not to find a sum of squares
decomposition in itself, but to find one where the different functions in the decom-
position preserve some regularity properties of the original function. Indeed, if no
constraints are added on the regularity of the decomposition, this is a trivial problem
as writing f = (

\surd 
f)2 would offer an immediate solution. However, regularity is not

necessarily preserved when taking the square root: the map (x, y) \mapsto \rightarrow x2+y2 is smooth
and a sum of smooth squares, but its square root is not differentiable at (0,0).

1.2. Precise setting and results. In this work, we will concentrate on decom-
posing nonnegative functions f of class Cp for p\in \BbbN \cup \{ \infty \} , p\geq 2, on open sets of \BbbR d

(or any d-dimensional manifolds M , but we keep to \BbbR d in this introduction). We will

1We take p\geq 2 and use p - 2 in the decomposition to be coherent with the results presented in
the paper, in which f is of class Cp and the decomposition of class Cp - 2.
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618 U. MARTEAU-FEREY, F. BACH, AND A. RUDI

show that under a certain condition on the set of zeros \scrZ of f , it can be decomposed
as2

f =
\sum 
i\in I

f2i , fi \in Cp - 2,(1.2)

where (fi) is an at most countable family and has locally finite support. Two elements
are important in (1.2): the locally finite aspect and the regularity of the functions
fi, i.e., p  - 2. This is a consequence of the fact that we will consider second order
sufficient conditions, hence the loss of two derivatives.

1.2.1. Intuition and previous results. We start by proving that this decom-
position holds locally in a neighborhood of any x0 \in \BbbR d. It is then possible to invoke
a result to ``glue"" the local decompositions together; we develop the tools to do so
in subsection 3.2 (this is one of the key differences between results for polynomials
and results for functions). For any fixed x0 \in \BbbR d, if f(x0) > 0, then f1 :=

\surd 
f is well

defined and of class Cp around x0, and so (1.2) holds locally around x0 since f = f21 .
The crux of the problem is to determine whether f can be decomposed as a sum of
squares around a point in the set of zeros \scrZ of f , i.e., the set of points x such that
f(x) = 0. Since f is nonnegative, all such points are necessarily minimizers of f , hence
the following necessary second-order condition:

\forall x0 \in \scrZ , \nabla f(x0) = 0, \nabla 2f(x0)\succeq 0.(1.3)

Around any x0 \in \scrZ , f can be approximated by a parabola since the eigenvalues of
\nabla 2f(x0) are nonnegative: f(x) = x\top \nabla 2f(x0)x + o(\| x\| 2) using a Taylor expansion.
Since any parabola can be written as the sum of at most d squares of linear functions
(just write the eigendecomposition of \nabla 2f(x0)), we see that up to the o(\| x\| 2) factor,
we can indeed write f as a sum of at most d squares around x0. The whole difficulty
of the following results is to go beyond this o(\| x\| 2) approximation and have an exact
decomposition, using the Taylor expansion with integral remainder.

In the case where \nabla 2f(x0)\succ 0, i.e., the Hessian has strictly positive eigenvalues,
this decomposition can be made exact. We will call this condition the strict Hessian
condition (SHC) at x0. This result exists in recent work: it is a particular case of
Theorem 2 of [28], applied to the set \scrH =Cp - 2. Precisely, it states the following.

Theorem 1.2 (Theorem 2 of [28]). Let f be a nonnegative function of class Cp

for p \geq 2, p \in \BbbN \cup \{ \infty \} , and assume that the zeros \scrZ of f satisfy the strict Hessian
condition

\forall x0 \in \scrZ , \nabla 2f(x0)\succ 0.(1.4)

If f has a finite number m= | \scrZ | of zeros, then f satisfies (1.2) with dm+1 functions
fi.

This situation is illustrated on the left hand side of Figure 1, where the Hessian
is positive definite at all four zeros of f and hence satisfies the SHC: by Theorem 1.2,
it can be decomposed as a sum of squares. It is not the case on the right-hand side,
where there is a continuous subspace of zeros; in that case, f does not satisfy the
SHC.

2If p=\infty , we take the convention p - k=\infty for any fixed k \in \BbbN 
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DECOMPOSING SMOOTH FUNCTIONS AS SUMS OF SQUARES 619

Fig. 1. Plots of functions z = f(x, y), where the zeros of f are highlighted in black. left: f
satisfies the SHC, right: f satisfies the normal Hessian condition but not the SHC.

1.2.2. Main contribution: A nichtnegativstellensatz. While the SHC con-
dition (1.4) already offers a nice result in Theorem 1.2, there is a big gap with (1.3).
Previous results in the literature show that satisfying (1.3) is not sufficient to be de-
composed as a sum of squares of Cp - 2 functions as soon as the dimension d is greater
than 3 (see Theorem 1.5 in the background section for more details). On the other
hand, (1.4) is very restrictive and implies that the set \scrZ of zeros is discrete. In some
situations such as that of [35], however, the set of zeros has a natural structure, which
can be a submanifold of \BbbR d. In this paper, we show that if the set \scrZ of zeros is a
submanifold of \BbbR d such that the Hessian of f along this manifold is positive along
all directions which are not tangent to \scrZ , then (1.2) still holds. This is the case for
the function depicted in the right-hand side of Figure 1, and illustrates the difference
between previous works and our contributions. More formally, we prove the following
result.

Theorem 1.3. Let f be a nonnegative function of class Cp, where p \in \BbbN \cup \{ \infty \} ,
p\geq 2, and let \scrZ denote the set of zeros of f . If \scrZ is a submanifold of \BbbR d of class C1

such that

\forall x0 \in \scrZ \forall h\in \BbbR d \setminus Tx0
\scrZ , h\top \nabla 2f(x0)h> 0,(1.5)

then f satisfies (1.2) and \scrZ is of class Cp - 1. Here, Tx0
\scrZ denotes the tangent space

to \scrZ at x0, which is a vector subspace of \BbbR d.

This theorem is proved as Theorem 2.9 in section 2, and the assumption (1.5)
will be referred to as the normal Hessian condition (or NHC). The NHC assumption
encompasses that of the SHC assumption of Theorem 1.2; in that case, the results
presented in this paper make the result tighter by removing the assumption that \scrZ is
finite and by needing only d+ 1 squares to represent the function, and not d| \scrZ | + 1
(see the full version of Theorem 2.9).

We want to emphasize that the NHC is different from the classical nonlinear
optimization second order sufficient conditions. These conditions usually imply that
the function grows at least quadratically in all directions pointing inside the domain
of definition of the function f (which would include the set Tx\scrZ in our setting; see
[17]), and which imply that the set of minimizers is discrete. On the contrary, the
goal of this work is to go beyond isolated minima.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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620 U. MARTEAU-FEREY, F. BACH, AND A. RUDI

The proof techniques used to prove this theorem differ from the proof of [28]
and use tools from differential geometry and Morse theory. In particular, the proof
extends naturally to functions defined on d-dimensional manifolds, which is the object
of section 3 and Theorem 3.9. This opens the way to new problems, which are more
naturally defined on standard manifolds like the d-dimensional sphere Sd or the d-
dimensional torus \BbbT d \approx (S1)d.

1.2.3. Consequence: Convergence guarantees for analytic sum of
squares algorithms. As explained in subsection 1.1, having such a nichtnegativstel-
lensatz implies fast convergence of algorithms such as AnalyticalSoSOpt. In [28], con-
vergence of AnalyticalSoSOpt was established for functions satisfying the SHC. Using
Theorem 1.3, we actually show that satisfying the NHC is sufficient to guarantee the
same speed of convergence. This therefore extends the scope of AnalyticalSoSOpt to
a broader class of functions, which contains (i) functions defined on a manifold and
not only on a box and (ii) functions with a continuous set of zeros, which was not the
case in the original result by [28]. In subsection 2.3, we give examples of interesting
functions which satisfy the NHC and verify that AnalyticalSoSOpt indeed returns a
good approximation of the minimizer on toy examples in different dimensions.

1.3. Background.

1.3.1. Regular decompositions of functions. The problem of decomposing
Cp functions as sums of squares has appeared in the context of symbolic calculus, in
the proof of the Fefferman--Phong inequality, which is an important regularity result
for partial differential operators (see [9] for the original article and [6] for the link with
sum of squares decompositions, as well as [34]). In this context, the following result
is proved (with Ck,1

loc denoting the set of k times differentiable functions with locally
Lispchitz kth derivative).

Theorem 1.4 (Fefferman--Phong [9], Theorem 1.1 of [8]). Let \Omega be an open set
of \BbbR d, d\geq 1, and f \in C3,1

loc (\Omega ) be a nonnegative function. Then f can be written as a
finite sum of squares of C1,1

loc (\Omega ) functions.

In the context of preserving regularity, a natural question which arises is whether
increasing the regularity of f can increase the regularity of the functions in a sum of
squares decomposition. In [7, 8], it is shown that the general answer (under no further
assumptions) is negative. More precisely, if f is a function defined on a neighborhood
of 0, a local decomposition of f around 0 of class \scrC is a finite family (fi)i\in I of functions
of class \scrC defined on an open neighborhood U of 0 such that

\sum 
i\in I f

2
i = f on U .

Theorem 1.5 (Theorem 2.1 of [8]). In all the following cases, there exists f \in C\infty 

defined on an open neighborhood of 0 in \BbbR d such that the following hold:
\bullet if d\geq 4, f has no local decomposition of class C2;
\bullet if d= 3, f has no local decomposition of class C3.

The case d = 1 is explored in [7]: it is shown in Theorem 1 that if f is of class
C2m for m finite, then f can be written as the sum of squares of two functions of
class Cm. Moreover, this is shown to be tight: there exists a function f \in C2m with
no local decomposition as a sum of squares of functions of class Cm+k, for k\geq 1. The
case d = 2 has been explored less in the literature (some results exist when dealing
with flat minima; see, for example, Theorem 2 of [7]). To summarize, these results
show that without additional assumptions, as soon as the dimension is greater than
3, inheriting the Cp regularity properties of the function f in the sum of squares
decomposition is not possible in a satisfactory way, and motivates the introduction of
additional geometric assumptions such as the NHC.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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DECOMPOSING SMOOTH FUNCTIONS AS SUMS OF SQUARES 621

1.3.2. Polynomials and analytic functions. Decomposing nonnegative poly-
nomial, and later analytic, functions as sums of squares has been related to important
problems in algebraic geometry during the 20th century. In 1927, on his way to the
resolution of Hilbert's 17th problem, Artin [3] proved that any nonnegative polyno-
mial is a sum of squares of rational functions (that is, formal fractions of polynomials
P (x)/Q(x)). Similarly, it has been established that under certain conditions on its
null set, a semidefinite (i.e., nonnegative) analytic function on \BbbR n can be expressed as
a potentially infinite sum of squares of meromorphic functions, which are, in a sense,
the analytic analog of rational functions (see [1, 29] for an introduction to those re-
sults). Moreover, Hilbert had earlier proved that there exist nonnegative polynomials
which cannot be written as sum of squares of polynomials in [11] (for more than 3
variables and with degree at least 6 for example), and it can also be established that
certain semidefinite analytic functions cannot be expressed as a sum of squares of
analytic functions (again, see [1]). In algebraic geometry, an important question is to
understand under which sufficient conditions a polynomial P which is positive on an
algebraic set, i.e., defined by polynomial inequalities of the formQi \geq 0 for polynomials
Qi, can be written in the form P = P0+

\sum N
i=1PiQi, where the Pi are sum of squares.

The theoretical literature regroups these results under the name ""positivstellensatz""
(or nichtnegativstellensatz if P is assumed to be nonnegative). The most often seen
in the sum of squares optmization literature are the Stengle [33], Schm\"ugden [31], and
Putinar [26] positivstellens\"atzen. If these algebraic geometry considerations seem far
from applications and from decomposing smooth functions as sums of squares (indeed,
polynomials are much more rigid than smooth functions) at first glance, they are ac-
tually related in two ways. First, as smooth functions can be locally approximated by
polynomials, results on polynomials give a good intuition of the difficulties one can
encounter at the local level when decomposing a function as a sum of squares (see
[7, 8]). Second, the certificates given by positivstellensatz on the decomposability of
certain nonnegative polynomials can be algorithmically checked in some cases, using
semidefinite programming. This has paved the way to so-called sum of squares hierar-
chies, and optimization of polynomial objective functions with polynomial constraints.
These have been developed by Lasserre [16] (based on the Putinar postivstellensatz
[26]) and Parrilo [24] (based on the Stengle and Schm\"ugden positivstellensatz [31, 33]).
Using these theoretical results, they can provide certificates of lower bounds for cer-
tain optimization problems (or upper bound in the dual ``moment problem""; see [16]).
Moreover, to have more interpretable results for these more applied settings, theses
works have motivated more practical positivstellens\"atzen or nichtnegativstellens\"atzen,
like that in [18], which provides a condition for writing a polynomial with a finite set
of zeros as a sum of squares. This result has in turned been used in [22] in order to
show the finite convergence of the Lasserre hierarchy under second order conditions
which are analoguous to those of constrained nonlinear optimization [17] (these are
called boundary Hessian conditions and become the SHC in the unconstrained case).

1.3.3. Analytical sum of squares algorithms and comparison with poly-
nomial optimization. In the same spirit as the polynomial hierarchies but for reg-
ular functions, recent works [4, 19, 27, 28] have developed models and methods based
on sum of squares to optimize regular functions (such as AnalyticalSoSOpt, defined
in subsection 1.1). The computational properties of these methods such as (1.1) are
based on the fact that Cpfunctions can be well approximated by functions of the form\sum 

i\alpha ik(\cdot , xi), where k is a so-called positive definite kernel [2] and can be adapted to
the regularity.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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622 U. MARTEAU-FEREY, F. BACH, AND A. RUDI

Let us very briefly describe AnalyticalSoSOpt from [28]. Let f be a Cp function
and \Omega its domain (we can assume it is a box). As in the case of polynomial optimiza-
tion (see [16]), the starting point of this method is to cast the optimization problem
as a convex problem: finding the supremum of lower bounds

f\ast =min
x\in \Omega 

f(x) = sup
c\in \BbbR 

c s.t. f(x) - c\geq 0, x\in \Omega (1.6)

\geq fs = sup
c\in \BbbR 

c s.t. f  - c=
\sum 
i\in I

g2i , gi \in Cp - 2(\Omega ), I finite.(1.7)

The constraint f  - c =
\sum 

i\in I g
2
i is further discretized and enforced on a discrete

set of randomly sampled points (x1, . . . , xn), and the problem is regularized with a
trace norm to avoid interpolation. The constraints that gi \in Cp - 2(\Omega ) is relaxed to
gi belonging to a reproducing kernel Hilbert space with kernel k containing these
functions (such as a Sobolev space), in order to cast the problem as an n dimensional
semidefinite program using the representer theorem from [19]. The approximation of
the minimizer \widehat x = AnalyticalSoSOpt(f,n) is obtained by using certain properties of
the dual variable, described in [28].

Compared to polynomial optimization methods, these ``analytical"" methods can
tackle functions beyond polynomials. This comes at the cost of losing the exactness
and a posteriori guarantees given by polynomial optimization methods (trading it off
for convergence rates in the number of evaluation points n). However, they are not
designed to tackle more polynomials than pure polynomial methods. Examples of
polynomials which are not sums of squares of polynomials are typically homogeneous
of degree greater than 4, and hence cannot satisfy second order assumptions such as
the NHC. Moreover, the set of zeros of nonnegative polynomials can have algebraic
variety structures (such as the set x2 = y2 = z2 for the Robinson polynomial), which
is out of scope for the NHC as these varieties are not differentiable manifolds. This
analytical sum of squares framework must therefore be seen as a parallel rather than
competing line of work to polynomial optimization.

Organization of the work. In section 2, we formalize the different notions
needed to state Theorem 1.3 in the case of nonnegative functions defined on open sets
of \BbbR d. In particular, we start by presenting a local decomposition in Theorem 2.3,
which will be the cornerstone of the work. In section 3, we extend Theorem 1.3 to
the manifold setting, and detail the procedure in which we glue local decompositions
into a global one, using traditional tools from differential geometry. In section 4, we
formally prove Theorem 2.3. We finish by a discussion on the result presented in this
paper, as well as possible extensions in section 5.

2. Decomposition as sums of squares given second order conditions
(Euclidean case). In this section, we present our results on decomposing a Cp

function f as a sum of squares of Cp - 2 functions on open sets of \BbbR d. After some
notations and definitions on submanifolds, we present the cornerstone technical result
of this paper in subsection 2.1, Theorem 2.3, as well as a sketch of its proof. In sub-
section 2.2, we present Theorem 2.9, which shows that a function can be decomposed
as a locally finite sum of squares of functions defined on \Omega under the NHC. Finally,
in subsection 2.3, we present some classes of functions satisfying the NHC and show
that AnalyticalSoSOpt indeed optimizes them correctly.

Definitions and notations. In general, given two topological sets M and N as
well as x0 \in M and y0 \in N , we will say that \phi : (x0,M) \rightarrow (y0,N) is a local map

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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DECOMPOSING SMOOTH FUNCTIONS AS SUMS OF SQUARES 623

satisfying a property (P ) if there exists an open neighborhood U of x0 inM such that
\phi : U \rightarrow N is well defined, satisfies \phi (x0) = y0, and property (P ). We will say that
\phi :U \subset \BbbR d \rightarrow \BbbR e defined on an open set U is of class Ck if it is k times differentiable,
and its derivatives of order k are continuous. For any function \phi : (x,\BbbR d) \rightarrow \BbbR e of
class C1, we denote with d\phi (x) its differential at x. It is an element of Hom(\BbbR d,\BbbR e),
the set of linear maps from \BbbR d to \BbbR e. We will write d\phi (x)\xi or d\phi (x)[\xi ], the evaluation
of d\phi (x) at \xi . The Jacobian of \phi at x is the matrix J\phi (x)\in \BbbR e\times d which is the matrix
of d\phi (x) in the canonical bases. Writing the coordinates of \phi : \phi = (\phi 1, . . . , \phi e), we

have [J\phi ]ij =
\partial \phi i

\partial xj (x).
For a comprehensive introduction to submanifolds, see Chapter 1 of [15], sec-

tion 2.2 of [25] (in French), or [32]. Intuitively, a d0 dimensional submanifold N is
a subset of \BbbR d which can be locally parametrized by \BbbR d0 . More formally, a map
\phi : U \rightarrow \BbbR d defined on an open neighborhood U of 0 in \BbbR d0 is said to be a local
parametrization of N around x0 of class Ck for k \geq 1 if \phi is of class Ck, and if there
exists an open set V \subset \BbbR d such that the following conditions are satisfied:

(i) \phi (0) = x0, \phi (U) = N \cap V , and \phi : U \rightarrow \phi (U) is a homeomorphism, i.e., it is
bijective and has a continuous inverse;

(ii) its differential at 0 is injective (one to one), i.e., d\phi (t0) \in Hom(\BbbR d0 ,\BbbR d) is
injective.

N is said to be a submanifold of \BbbR d and of class Ck if there exists a local parame-
trization \phi of class Ck around each point x \in N . On any connected component of
N , the dimension is well defined (it must be the same at every point). Similarly, the
subspace TxN := d\phi (x)\BbbR d0 is uniquely defined for all x and is called the tangent space
to N at x (see Figures 2 and 3 ).

Example 2.1. All open sets of \BbbR d are submanifolds of \BbbR d. The d-dimensional
sphere Sd is a submanifold of \BbbR d+1. S1 is represented in the left hand side (l.h.s.)
of Figure 2 and S2 in the l.h.s. of Figure 3. Given a submanifold N of \BbbR d, the
intersection of N with any open set of \BbbR d is a submanifold of \BbbR d.

2.1. Local decomposition as a sum of squares. In this section, f will always
denote a nonnegative function defined on an open set of \BbbR d. We will assume that f
is of class Cp for p\in \BbbN \cup \{ \infty \} , p\geq 2. We will also denote with \scrZ the set of zeros of f .
In this section, we will make local assumptions on the Hessian of f at points x \in \scrZ 
such that the function f can be decomposed as a sum of squares locally around x.

Fig. 2. Examples of submanifolds of \BbbR 2; points are denoted with pt. Left: connected subman-
ifold of dimension 1 (a circle). Center: a submanifold of 4 connected components which are all
points, i.e., of dimension 0 (their tangent space is not represented since it is reduced to \{ 0\} ). Right:
a submanifold of two connected components, one point pt of dimension 0 and one of dimension 1.
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624 U. MARTEAU-FEREY, F. BACH, AND A. RUDI

Fig. 3. Two examples of submanifolds of \BbbR 3. The blue affine spaces represent tangent spaces.
Left: connected submanifold of dimension 2 (the sphere S1). Right: a submanifold of two connected
components, one of dimension 2 (homeomorphic to the torus \BbbT 2 on which lies x0), and one of
dimension 1 on which lies x1.

We will denote with d2f(x) the second differential of f (which we will sometimes
call abusively its Hessian), which is a symmetric bilinear form on \BbbR d. We denote
with d2f(x)[\xi , \eta ] its evaluation on vectors \xi , \eta . We denote with \nabla 2f(x) \in \BbbR d\times d the
Hessian matrix of f at x, which is the matrix of d2f(x) in the canonical basis of \BbbR d,
and we have d2f(x)[\xi , \eta ] = \eta \top \nabla 2f(x)\xi . For any vector subspace space S \subset \BbbR d, and
any bilinear form H on \BbbR d, we denote with H| S the restriction of H to S, which is a
bilinear form on F . We say that a bilinear form H is positive semidefinite if H[\xi , \xi ]\geq 0
for any \xi \in \BbbR d, and is positive definite if H[\xi , \xi ] > 0 for all \xi \in \BbbR d \setminus \{ 0\} . We use the
same terminology for matrices.

We are now ready to state Theorem 2.3, which is the cornerstone of this work.
For the rest of this section (subsection 2.1), let x0 \in \BbbR d and f : (x0,\BbbR d) \rightarrow \BbbR be a
nonnegative Cp function, for p\in \BbbN \cup \{ \infty \} , p\geq 2, such that f(x0) = 0. We claim that
if there is a submanifold of class C1 and of dimension d0 around x0 of zeros of f ,
and if the Hessian of f at x0 has rank d - d0 (which we will call the normal Hessian
condition), then it can be decomposed as a sum of squares as in (1.2).

Definition 2.2 (normal Hessian condition). Let \scrZ denote the set of zeros of f .
We say that f satisfies the NHC at x0 \in \scrZ with regularity k \in \BbbN \cup \{ \infty \} , k \geq 1, if
\scrZ is a submanifold of dimension of class Ck around x0 (i.e., this holds on an open
neighborhood of x0), and such that d2f(x0)| Tx0

\scrZ \bot is positive definite, that is

\forall h\in Tx0
\scrZ \bot \setminus \{ 0\} , d2f(x0)[h,h]> 0.(2.1)

The proof of Theorem 2.3 can be found in section 4. To illustrate the definition
of the NHC, we refer to Figure 4 which represents the local behavior of functions f
defined locally around a point x0 \in \BbbR 2 in the set of zeros and which satisfies the NHC
for d0 = 1.

Theorem 2.3. Assume f satisfies the NHC at x0 (Definition 2.2) with regularity
k, and let d0 be the dimension of the submanifold \scrZ in the neighborhood x0. There
exists an open neighborhood U of x0 in \BbbR d on which f is defined and such that U \cap \scrZ 
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DECOMPOSING SMOOTH FUNCTIONS AS SUMS OF SQUARES 625

Fig. 4. Local view of the function around a minimum lying on a 1-dimensional manifold. Left:
function around the minimum x0. Right: decomposition of \BbbR 2 at x0 between tangent space and nor-
mal tangent space Tx0N+Tx0N

\bot , and positive eigenvector of the Hessian in red. Reparametrization
in the right coordinate system, and representation of the map \varphi (x) given by the Morse lemma. (Note
that color appears only in the online article.)

is a submanifold of \BbbR d of dimension d0 and of class Cmax(k,p - 1), and there exist
functions fi \in Cp - 2(U), where 1\leq i\leq d - d0 such that

\forall x\in U, f(x) =
d - d0\sum 
i=1

f2i (x).(2.2)

The proof of this theorem relies on the Morse lemma, initially stated in [21] in
order to decompose a function at a critical point.

Lemma 2.4 (Morse lemma [21, Lemma 2.2]). Let f : (x0,\BbbR d)\rightarrow \BbbR be of class Cp,
p \in \BbbN \cup \{ \infty \} , p \geq 2, and let x0 be a critical point of f (i.e., df(x0) = 0) such that
d2f(x0) is nonsingular with index s (that is with s positive eigenvalues). Then there
exists a Cp - 2 local coordinate system around x0: z1, . . . , zd : (x0,\BbbR d) \rightarrow \BbbR such that
f = f(x0) +

\sum s
i=1 z

2
i  - 

\sum d
i=s+1 z

2
i in a neighborhood of x0.

Note that under the SHC, this lemma directly yields the desired local decomposi-
tion of f as a sum of squares, as the index s= d since the Hessian is positive definite.
In [12, Lemma C.6.1], which we restate and prove as Lemma B.3, this lemma is ex-
tended to include the case where the Hessian is nonsingular with respect to certain
coordinates, which is necessary to include manifolds of zeros and work under the NHC
(see also (2.3)).

Main steps of the proof of Theorem 2.3. The main steps of this proof are repre-
sented geometrically in Figure 4.

Step 1. We show that under the NHC at x0, we have Tx0
N = ker(\nabla 2f(x0)) and

hence that d2f(x0)| Tx0
N\bot is positive definite.

Step 2. Reparametrizing f on a basis adapted to Tx0
N\bot \oplus Tx0

N as f(x\bot , x\shortparallel ), we
apply the Morse lemma (see Lemma B.3), which decomposes the function f into the
form

f(x\bot , x\shortparallel ) = f(\varphi (x\shortparallel ), x\shortparallel ) +

d - d0\sum 
i=1

f2i (x\bot , x\shortparallel )(2.3)
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626 U. MARTEAU-FEREY, F. BACH, AND A. RUDI

for a certain function \varphi of class Cp - 1 and fi of class C
p - 2 in a certain open set around

x0 (for an easy visualization, see Figure 4).
Step 3. We characterize the manifold of zeros around x0.
Step 4. We show that the first term of the result of the Morse lemma is equal to

zero using the previous characterization, which shows (2.2).

Example 2.5 (case where d0 = 0). When d0 = 0, the NHC at x0 is simply the SHC
(1.4), that is the condition that x0 be a strict minimum. In that case, Theorem 2.3
simply states that there exists an open neighborhood U of x0 such that U \cap \scrZ = \{ x0\} 
and on which f can be decomposed as the sum of d squares.

Remark 2.6 (smoothing effect). Theorem 2.3 induces a smoothing effect; indeed,
if we simply assume that there exists a d0 dimensional manifold of class C1 of zeros
with which the NHC is satisfied, one sees that this manifold is actually of class Cp - 1

in a neighborhood of x0.

2.2. Global decomposition as a sum of squares for functions on \BbbR \bfitd . In
this section, we fix f to be a nonnegative Cp function defined on an open subset \Omega 
of \BbbR d. Once again, we assume p \in \BbbN \cup \{ \infty \} , p \geq 2. The goal is to find a condition
on f to be written as a sum of squares of functions defined on \Omega . In this work, this
condition is simply that the NHC holds at every x0 \in \scrZ .

Definition 2.7 (global NHC). We say that f satisfies the global NHC (with
regularity k \geq 1) if for all x0 in its null set \scrZ , f satisfies the local NHC at x0 (with
regularity k\geq 1).

This definition of the global NHC as a local condition holding everywhere can be
reformulated in a more global and geometric way.

Remark 2.8 (reformulation of the NHC). f satisfies the global NHC (with regu-
larity k \geq 1) if and only if its null set \scrZ is a submanifold of class Cmax(k,p - 1), and if
f is positive normally to \scrZ , i.e.,

\forall x\in \scrZ \forall h\in Tx\scrZ \bot \setminus \{ 0\} , d2f(x)[h,h]> 0.(2.4)

Examples of functions satisfying the global NHC can be found in Figure 5. They
have manifolds of zeros \scrZ which are depicted in the same order in Figure 2. There
can be more than one connected component in \scrZ (see the second and third examples
in Figure 5).

Under this geometric condition, we will show in Theorem 2.9 that f can be written
as a sum of squares of Cp - 2 functions with locally finite support, defined below.

Locally finite support. Let X be a topological space (see [14] for full definitions).
We say that a family (Si) of subsets of X is locally finite if for every x \in X, there
exists an open set Ux containing x which intersects a finite number of the Si, i.e.,
| \{ i \in I : Ux \cap Si \not = \emptyset \} | < \infty . A family (fi) of functions on a topological space X
has locally finite support if the family of supports (supp(fi))i\in I is locally finite (recall
that supp(fi) = \{ x : f(x) \not = 0\} ). In particular, if (fi) has locally finite support, the
function

\sum 
i\in I f

2
i is well defined and it is also of class Cq if the functions are of class

Cq. Using this terminology, the global result can be stated as follows.

Theorem 2.9. If f satisfies the global NHC in Definition 2.7, there exists an at
most countable family (fi)i\in I \in (Cp - 2(\Omega ))I with locally finite support such that
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DECOMPOSING SMOOTH FUNCTIONS AS SUMS OF SQUARES 627

Fig. 5. Examples of functions f which satisfy the global NHC, with submanifolds \scrZ of zeros
corresponding to the first and last submanifolds presented in Figure 2.

\forall x\in \Omega , f(x) =
\sum 
i\in I

fi(x)
2.(2.5)

Moreover,
\bullet if f satisfies the strict Hessian condition, \scrZ is discrete and we can find such
a decomposition such that | I| \leq d+ 1;

\bullet if \scrZ is compact, then | I| can be taken to be finite.

For the formal proof of this result, we refer to the next section, where this result
will be proved more generally for functions defined on manifolds (see Theorem 3.9
and section 3).

Main steps of the proof. For subtleties pertaining to the SHC case, we refer to
section 3. The gluing done in that section is slightly more elaborate.

Step 1. Since the local NHC holds at any point in \scrZ , using Theorem 2.3 shows
that at any point x, there exists an open neighborhood Ux of x, an integer nx, and
functions (fx,j)1\leq j\leq nx

of class Cp - 2 on Ux such that f =
\sum nx

j=1 f
2
x,j on Ux. The

collection of sets Ux is then an open covering of \scrZ . Since \BbbR d is Hausdorff and second-
countable (see section 3 for precise definitions), only at most countable subsets of
them are necessary to cover \scrZ (even a finite number if \scrZ is included in a compact,
since it is then itself a compact). Denote with (Ui)i\in I this open covering, and replace
x by i to denote the associated fi,j and ni.

Step 2. Since \scrZ is closed, as the set of zeros of a continuous function, the set
U>0 := \{ x\in \Omega : f(x)> 0\} is open and the map f1 :=

\surd 
f :U>0 \rightarrow \BbbR is of class Cp and

satisfies f21 = f . We can therefore add U>0 to the collection (Ui) and still guarantee
the following property: for all i\in I, there exists ni \in \BbbN and fi,j \in Cp - 2(Ui) such that
f =

\sum ni

j=1 f
2
i,j . Moreover, (Ui) becomes an open covering of \Omega ; in particular, if Ui was

a finite covering of \scrZ , it now becomes a finite covering of \Omega .
Step 3. Using Lemma 3.6, we can take a partition of unity (\chi i) adapted to the

open covering
\bigcup 

iUi such that
\sum 

i \chi 
2
i = 1 and which is locally finite. Define \~fi,j = fi,j\chi i

which is now defined on the whole of \Omega (indeed, it can be extended as zero to \Omega \setminus Ui

since the support ot \chi i is included in Ui). The \~fi,j satisfy
\sum 

i,j
\~f2i,j = f on the whole

of \Omega , and is a finite family if the covering Ui is finite (if \scrZ is assumed to be compact
for example).
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628 U. MARTEAU-FEREY, F. BACH, AND A. RUDI

2.3. Examples of functions satisfying the NHC, and applying optimiza-
tion schemes.

2.3.1. Optimal transport. A natural example to motivate the results of this
work is that of [35], in which the authors need to represent a nonnegative function f
defined on a product X \times Y of open sets of \BbbR d as sum of squares to apply a method
similar to AnalyticalSoSOpt to solve an optimization problem. The aim is to min-
imize the transport cost between two probability measures \mu and \nu , which can be
cast as a linear problem with a nonnegativity constraint of the form f(x, y)\geq 0. The
optimal nonnegative function f\ast is of the form f\ast (x, y) =

1
2\| x - y\| 2  - u\ast (x) - v\ast (y),

where u\ast and v\ast are so-called Kantorovich potentials. A consequence of Brenier's
theorem for quadratic optimal transport [30, Theorem 1.22], and proved in [35, The-
orem 5], the two following facts hold. (i) The null set of f\ast is the graph of a function
T : X \rightarrow Y called the transport map and (ii) orthogonally to this graph, f\ast grows
quadratically. Hence, implicitly, the authors show that the NHC holds for their prob-
lem, and hence that f can be decomposed as a sum of squares. Using tools similar to
AnalyticalSoSOpt, this allows us to derive an algorithm to compute an approximation
of the optimal transport cost with convergence rate of n - m/d and in a time which is
polynomial in n, where n is the number of samples available from \mu ,\nu and m is the
regularity of the Kantorovich potentials.

2.3.2. An example class of functions satisfying the NHC. Consider func-
tions F :\BbbR d1 \times \BbbR d2 \rightarrow \BbbR of the form

F (x, y) = g(\| y - f(x)\| 2), f :\BbbR d
1 \rightarrow \BbbR d2 , g :\BbbR + \rightarrow \BbbR ,(2.6)

where f, g are of class Cp, p\geq 2, and g reaches its unique minimum at 0 and satisfies
g\prime (0) > 0. It is easy to check that such functions F satisfy the NHC and have a
continuous set of minimizer: the graph of f . With complex g, these functions can
also be quite elaborate; for example, they can have multiple local minimizers which are
not global. Applying Theorem 2.9 for functions of type (2.6), and combining it with
Proposition 1.1, AnalyticalSoSOpt will converge with almost optimal rates, depending
on the smoothness p of the functions. Note that these functions do not satisfy the
SHC: the novelty of this work is to show that such functions can be optimized using
AnalyticalSoSOpt with good convergence rates.

We illustrate the good convergence of AnalyticalSoSOpt by applying it to func-
tions F defined as above with g = tanh and fi(x1, . . . , xd1

) = cos(wi \cdot x), 1 \leq i \leq 
d2, where wi satisfy

\sum d1

j=1 | wi| = 1. The wi have been generated randomly, and
we test AnalyticalSoSOpt for different dimensions (d1, d2) = (d, d) with d ranging
from 1 to 5. In Table 1, we report the performance of AnalyticalSoSOpt for cer-
tain values of n, compared to the naive method of taking the discretization point
from the n points where f is minimal. We compute \epsilon = n1/d(min1\leq i\leq n f(xi)  - 
f(AnalyticalSoSOpt(f,n))) to measure how much better our method is compared
to the naive random sampling (positive = better). We report the mean and standard
deviation of \epsilon on five different seeds.

3. Global decomposition as a sum of squares for functions on manifolds.
In this section, we present results analogous to those of section 2 but in the more
general context of manifolds. After a brief recap of the terminology and definitions
related to manifolds, in subsection 3.1, we will adapt the definitions of the local and
global NHCs, as well as state the equivalent result to Theorem 2.3 in the context
manifolds. In subsection 3.2, we will introduce the tools to glue local decompositions
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DECOMPOSING SMOOTH FUNCTIONS AS SUMS OF SQUARES 629

Table 1
Performance of AnalyticalSoSOpt w.r.t. the naive baseline, for different values of d and n.

d n \epsilon 

1 30 0.16\pm 0.15
2 100 0.13\pm 0.14

3 300 0.15\pm 0.13

4 300 0.10\pm 0.12
5 400 0.14\pm 0.20

Fig. 6. Left: Representation of the manifold M = S2 as well as a submanifold N homeomorphic
to a circle. The tangent spaces at a given point x0 \in N \subset M are represented as well. Right:
Representation of a nonnegative function on the sphere as a color map; it satisfies the NHC, and
its null space \scrZ is represented in black. (Note that color appears only in the online article.)

as sum of squares together. Finally, in subsection 3.3, we prove Theorem 3.9, the
equivalent of Theorem 2.9 in the broader context of manifolds.

Additional definitions and notations for manifolds. In this section, we
recall the basic terminology of manifolds. We assume that a reader of this section
is familiar with this topic. The main idea behind the introduction of manifolds as
opposed to submanifolds of \BbbR d is to consider the intrinsic geometric object, and not its
relation to the euclidean space it is embedded in (as such an embedding is not unique).
An example of manifold as well as a representation of the tangent space is provided in
the left of Figure 6. For introductions to manifolds, we refer to [15, 25, 32]. Informally,
a manifold M of dimension d is a set which ``looks like \BbbR d"" locally. This means that
at every point x\in M , we can find a chart \phi which is a homeomorphism from an open
neighborhood U of x onto an open set of \BbbR d. The family of charts \scrA = (\phi \rangle ) is called
an atlas. We further assume that M is a second-countable,3 Hausdorff4 space. It is
of class Ck if all transition maps \phi i \circ \phi  - 1

j are of class Ck. If M is a manifold of class
at least C1, we can define its tangent space TxM at each point x. A map from M
to \BbbR p is of class Cq if its composition with any chart is of class Cq. If q \geq 1, we will
denote with df(x)\in Hom(TxM,\BbbR p) its differential at x.

Example 3.1. All sub-manifolds of \BbbR d are manifolds. The notions of regularity,
dimension, and tangent space coincide.

3A topological space is said to be second-countable if there exists a countable sequence of open
sets Un such that any open set U in the topology is a reunion of a part of the Un.

4A topological space is Hausdorff if for any two points x \not = x\prime , there exist two open sets U,V such
that x\in U and x\prime \in V and U \cap V = \emptyset 
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630 U. MARTEAU-FEREY, F. BACH, AND A. RUDI

3.1. Assumptions in the manifold case. In this section, we formulate the
local NHC in the case of manifolds, and rewrite Theorem 2.3 in this setting. We also
extend the definitions of being positively normal and the global NHC (Definition 2.7).

Fix p \in \BbbN \cup \{ \infty \} , p \geq 2, and a manifold M of regularity at least Cp and of
dimension d \in \BbbN . To start with, let f : \Omega \rightarrow \BbbR be a nonnegative function defined on
an open set of M and of class Cp. As before, define \scrZ to be the set of zeros of f .

Contrary to the \BbbR d case, the second differential of the function f cannot be
identified as a symmetric bilinear form everywhere. However, it is the case at so-
called critical points, i.e., points x\in \Omega such that df(x) = 0. In particular, since all the
zeros of a C1 nonnegative function are critical points, this Hessian will be defined at
all points in the set of zeros \scrZ of f .

Lemma 3.2 (definition of the Hessian). Let x be a critical point of f . Then there
exists a unique symmetric bilinear form Hf (x) : TxM \times TxM \rightarrow \BbbR such that for any
local chart \phi : (M,x)\rightarrow (\BbbR d,0) it holds that

\forall \xi , \eta \in TxM \times TxM, Hf (x)[\xi , \eta ] = d2(f \circ \phi  - 1)(0)[d\phi (x)\xi , d\phi (x)\eta ].

In order to prove this lemma, we simply define the bilinear form as such for a
given chart \phi around x, and then show that this definition does not depend on the
chart \phi using the fact that x is a critical point. This is completely proved in section 2
of [21]. In order to formulate the definition of the NHC in the setting of manifolds,
we further need a definition of what a submanifold of M is. A subset N \subset M is said
to be a submanifold of M of class Ck if M is of class Ck and if, for any x \in N and
any local chart \phi :U \rightarrow \BbbR d defined on a neighborhood of x, \phi (U \cap N) is a submanifold
of \BbbR d of class Ck. In the literature, this is also called a proper submanifold (see on
the left of Figure 6 for an example).

Definition 3.3 (NHC for a manifold). Let x\in \Omega be a point in the domain of f .
We say that f satisfies the NHC at a point x in its null set \scrZ (with regularity k\geq 1)
if \scrZ is a submanifold of M of class Ck around x, and such that

\forall \xi \in TxM \setminus TxN, Hf (x)[\xi , \xi ]> 0.(3.1)

Using any local chart around the point x in the domain of f , one can apply
Theorem 2.3 to obtain the following theorem as a corollary.

Theorem 3.4. Assume f satisfies the NHC at x0 with regularity k, and let d0 be
the dimension of the submanifold \scrZ around x0. There exists an open neighborhood
U of x0 in M on which f is defined and such that U \cap \scrZ is a submanifold of M of
dimension d0 and of class Cmax(k,p - 1); and there exist functions fi \in Cp - 2(U) where
1\leq i\leq d - d0 such that

\forall x\in U, f(x) =
d - d0\sum 
i=1

f2i (x).(3.2)

Exactly in the same way as for the definition of the NHC for manifolds, we can
similarly extend the definition of a function satisfying the global NHC with regularity
k \geq 1 in Definition 2.7. We will therefore say that f :M \rightarrow \BbbR which is nonnegative
satisfies the global NHC with regularity k \geq 1 if it satisfies the local NHC with
regularity k \geq 1 at every point in its set of zeros \scrZ or, equivalently if it is positive
normally to \scrZ (see (2.4)) which is a submanifold of M of class Cmax(k,p - 1). On the
right-hand side of Figure 6, we represent a function which satisfies the NHC on the
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DECOMPOSING SMOOTH FUNCTIONS AS SUMS OF SQUARES 631

sphere S2 through a colormap, with a continuous set of zeros. The goal is to prove
that such a function can be decomposed as a sum of squares on S2.

3.2. Gluing local decompositions to form a global one. In this section,
we present and develop the tools to glue local decompositions such as Theorem 3.4
into a global one, which will lead to Theorem 3.9.

The first result we need is a simple result to ``extend"" a function defined on an
open set U ofM toM by multiplying it by a function defined onM whose support lies
in U (Lemma 3.5). The second one is a variant of the fundamental result of existence
of partitions of unity on a manifold, adapted to our sum of squares setting (Lemma
3.6). Recall that the support of a function has been defined in subsection 2.2. The
proof of these results can be found in subsection A.1.

Lemma 3.5 (extension lemma). Let q \in \BbbN , M be a manifold of class at least Cq.
Let U be an open set of M , g :U \rightarrow \BbbR be a Cq function defined on U , and \chi :M \rightarrow \BbbR 
be a Cq function defined on the whole of M but with support included in U . Then the
function \chi g : U \rightarrow \BbbR extended as 0 on M \setminus U , is of class Cq on the whole of M and
has support included in supp(\chi )\subset U . We still denote with \chi g its extension to M .

Lemma 3.6 (gluing lemma). Let (Ui)i\in I be an open covering of a manifold M of
class Ck (i.e.,

\bigcup 
i\in I Ui =M). There exists a family of functions \chi i :M \rightarrow [0,1] of class

Ck with locally finite support, such that supp(\chi i)\subset Ui for all i\in I and satisfying:\sum 
i\in I

\chi 2
i = 1.

We can now proceed from local to global in two steps. First, we use the gluing
lemma to glue decompositions in a single connected component of the manifold of
zeros (Lemma 3.7). We then glue these different decompositions into a single global
one (Lemma 3.8).

Lemma 3.7. Assume f satisfies the global NHC. Let N be a connected component
of its manifold of zeros \scrZ . There exists an open neighborhood U of N as well as a
locally finite, at most countable family (fj)j\in J of functions of class Cp - 2 such that

\forall x\in U, f(x) =
\sum 
j\in J

fj(x)
2.(3.3)

Moreover, we can find J such that (a) | J | = d if N = \{ x0\} is a single point and (b) J
is finite if N is compact.

Proof. The case where N = \{ x0\} is simply Theorem 3.4 applied to x0. In the
other cases, note that for all x \in N , by Theorem 2.3 since the NHC is satisfied at x,
there exists an open neighborhood Ux of x as well as functions (fx,i)1\leq i\leq d of class

Cp - 2 such that f =
\sum d

i=1 f
2
x,i on Ux. Since (Ux)x\in N covers N , we can extract a

covering (Uxj
)j\in J of N such that (a) J is finite if N is compact and (b) J is at most

countable otherwise, since N is second-countable and Hausdorff. Denote with (Uj)j\in J

this open covering, and replace x by j to denote the associated fj,i. Denote with U
the open set

\bigcup 
j Uj .

Applying Lemma 3.6 to the manifold U , we can find a family of functions (\chi j)j\in J

with locally finite support, such that supp(\chi j) \subset Uj and
\sum 

j \chi 
2
j = 1 on U . By the

extension Lemma 3.5, we can therefore define the functions \widetilde fj,i := \chi j fj,i for i \in 
\{ 1, . . . , d\} and j \in J which are defined on the whole ofM . Since supp( \~fj,i)\subset supp(\chi j)
and since 1\leq i\leq d, the support of ( \~fj,i) is also locally finite. To conclude, we use the
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632 U. MARTEAU-FEREY, F. BACH, AND A. RUDI

property that
\sum 

j \chi 
2
j = 1 on U as well as the fact that

\sum 
i f

2
j,i = f on supp(\chi j)\subset Uj to

show that
\sum 

i,j
\~f2j,i = f on U . The number of functions \~fj,i is finite if N is compact

since J is finite, and is at most countable else since J is at most countable.

Lemma 3.8. Let \scrZ = \sqcup i\in INi be the manifold of zeros decomposed along its con-
nected components. Assume that there exists an index set J , such that for all i \in I,
there exists an open neighborhood Ui of Ni on which f can be decomposed as a sum
of squares indexed by J :

\forall i\in I, \exists (fi,j)j\in J \in (Cp - 2(Ui))
J , \forall x\in Ui, f(x) =

\sum 
j\in J

fi,j(x)
2,(3.4)

and such that the families (fi,j)j\in J are all locally finite. Then there exists a locally
finite family (gj)j\in J\cup \{  \star \} of Cp - 2 functions on M (we add an extra element  \star to J),
such that

\forall x\in M, f(x) =
\sum 

j\in J\cup \{  \star \} 

gj(x)
2.(3.5)

Proof. By Lemma A.4, there exist disjoint open sets Vi \subset M such that Ni \subset Vi,
since \scrZ is a proper submanifold of M by Definition 2.7 (directly adapted to the
manifold case). Hence, we can assume that the Ui are disjoint (considering instead
Ui \cap Vi, the property still holds). Define U \star = \{ f > 0\} . Since the Ui's cover \scrZ ,
U \star \cup 

\bigcup 
i\in I Ui covers M since f is nonnegative; take \chi  \star , (\chi i)i\in I to be a gluing family

adapted to that covering given by Lemma 3.6. For any i, i\prime \in I, we have \chi i\chi i\prime = 0 since
\chi i is supported on Ui and the Ui are disjoint. Consider the function gj =

\sum 
i\in I \chi ifi,j ,

which is well defined on M and Cp - 2 by Lemma 3.5. We have g2j =
\sum 

i\in I \chi 
2
i f

2
i,j since

\chi i\chi i\prime = 0 when i \not = i\prime .
Assertion: the family (gj)j\in J has locally finite support. Let x \in \BbbR d and assume

gj(x) \not = 0. Then there exists i\in I such that \chi i(x)> 0, and hence there exists an open
set Ux around x such that Ux \subset Ui. But in that case, \chi i\prime (x

\prime ) = 0 for all other i\prime and
for all x\prime \in Ux since the Ui are disjoint and \chi i\prime is supported on Ui\prime . Moreover, since
(fi,j)j\in J is locally finite, there exists an open set Vx around x as well as a finite J0 \subset J
such that fi,j = 0 on Vx for all j \in J \setminus J0. Hence, for any j \in J \setminus J0 and any x\prime \in Ux\cap Vx,
we have fi,j(x

\prime ) = 0 and \chi i\prime (x
\prime ) = 0 thus gj(x

\prime ) = 0. Thus, Ux \cap Vx \subset M \setminus supp(gj) for
all j /\in J0; the family gj is locally finite.

Conclusion. Define g \star = \chi  \star 

\surd 
f , which is of class Cp since \chi  \star is supported on

\{ f > 0\} . Since the addition of one function changes nothing to the locally finite
property of a family of functions, the family (gj)j\in J \cup g \star is still locally finite. Using
the fact that g2j =

\sum 
i\in I \chi 

2
i f

2
i,j , that

\sum 
j\in I\cup \{  \star \} \chi 

2
i = 1, and (3.4), it holds that\sum 

j\in J\cup \{  \star \} 

g2j = \chi 2
 \star f +

\sum 
j\in J

g2j = \chi 2
 \star f +

\sum 
j\in J

\sum 
i\in I

\chi 2
i f

2
i,j

= \chi 2
 \star f +

\sum 
i\in I

\sum 
j\in J

\chi 2
i f

2
i,j = \chi 2

 \star f +
\sum 
i\in I

\chi 2
i f = f.

3.3. Main results. We are now ready to state our main result on manifolds.
On the right-hand side of Figure 6, we represent a case where this theorem applies
for a nonnegative function defined on S2.

Theorem 3.9. Let M be a manifold and f : M \rightarrow \BbbR be a nonnegative map of
class Cp. Assume f satisfies the global NHC. Then there exists I which is at most
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DECOMPOSING SMOOTH FUNCTIONS AS SUMS OF SQUARES 633

countable and functions fi \in Cp - 2(M) for i \in I such that the family (fi) has locally
finite support and

\forall x\in M, f(x) =
\sum 
i\in I

fi(x)
2.(3.6)

Moreover,
\bullet if f satisfies the strict Hessian condition, \scrZ is discrete and we can find such
a decomposition such that | I| \leq d+ 1;

\bullet if \scrZ is compact, then | I| can be taken to be finite.

Proof. The proof of this theorem is a simple consequence of Lemmas 3.7 and 3.8.
The global NHC Definition 2.7 shows that \scrZ is a submanifold of M . Let Ni denote
the connected components of \scrZ . By Lemma A.4, we can find disjoints open sets Ui

such that Ni \subset Ui.
General case. Without any more assumptions, we know from Lemma 3.7 that on

any connected component Ni, we can have a decomposition of the form f =
\sum 

j\in J f
2
i,j

with fi,j \in Cp - 2 a family with locally finite support on an open neighborhood Vi of
Ni. Moreover, we know that J is at most countable. Adding zeros when necessary,
and reindexing, we can assume that J = \BbbN . Now applying Lemma 3.8, we prove the
general case.

Compact case. If we assume that N is compact, since the Ui cover N , necessarily
the number of connected components is finite (just extract a finite covering of N from
the Ui). We know from Lemma 3.7 that on any connected component Ni, we can
have a decomposition of the form f =

\sum ni

j=1 f
2
i,j with fi,j \in Cp - 2 and ni \in \BbbN on

an open neighborhood Vi of Ni, since Ni is compact. Hence, up to adding fi,j = 0,
we can assume that ni = n = maxi(ni) since there are a finite number of connected
components. Now applying Lemma 3.8 with J = \{ 1, . . . , n\} , the result is proven in
the compact case with n+ 1 functions.

SHC case. If we assume that the SHC holds, every connected component Ni

is a singleton \{ xi\} ; we know from Lemma 3.7 we can have a decomposition of the
form f =

\sum d
j=1 f

2
i,j with fi,j \in Cp - 2 on an open neighborhood Vi of Ni, since Ni is

compact. Now applying Lemma 3.8 with J = \{ 1, . . . , d\} , the result is proven with d+1
functions.

Remark 3.10. The difference between the number of functions in the SHC case
is better than the one obtained in [28]. This is because of the two step procedure in
the gluing: first in a connected component, and then between connected components.
The long term goal is to be able to prove that we need only a finite number N(d) of
functions per connected component (in the compact case), and hence to have an ex-
plicit bound after gluing the connected components together, rather than just relying
on a compact extraction argument, which is not as precise.

4. Proof of the local decomposition as a sum of squares. In this section,
we formally prove the key result of the paper, Theorem 2.3.

Proof. Assume the slightly weaker condition that there exists a submanifold N of
dimension d0 and regularity k which contains x0 and is included in \scrZ (but not equal
a priori; we will show that it is equal to \scrZ around x0), such that d2f(x0)| Tx0

N\bot \succ 0.
N can be locally parametrized around x0 (see, for instance, Theorem 1.21 of [15]):

there exists an open neighborhood \widetilde W0 of 0 in \BbbR d0 , an open neighborhood Ux0
of x0

in \BbbR d, and a Ck immersion \phi :\widetilde W0 \rightarrow Ux0
of class Ck such that \phi is a homeomorphism

from \widetilde W0 onto Ux0
\cap N . Since the result is local, without loss of generality, we assume
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634 U. MARTEAU-FEREY, F. BACH, AND A. RUDI

that N = im(\phi ) for a Ck immersion \phi : (0,\BbbR d0) \rightarrow (x0,\BbbR d). We will denote with
Tx0 := d\phi 0(\BbbR d0) = Tx0N the tangent space to N at x0.

Before starting the proof, recall that for any x \in \scrZ , it holds that df(x) = 0 and
d2f(x) \succeq 0 (or equivalently \nabla 2f(x) \succeq 0). Moreover, if A \in \BbbS +(\BbbR d) is a symmetric
positive semidefinite matrix, if a vector k \in \BbbR d satisfies k\top Ak= 0, then Ak= 0 (this is
a trivial consequence of the spectral theorem by decomposing k along an orthonormal
basis of eigenvectors).

Step 1: characterizing the null-space of the Hessian. We will prove that under
the assumptions of the theorem, (a) Tx0

is equal to the null-space ker(\nabla 2f(x0)) of
the Hessian of f at x0 and (b) that for any supplementary S to Tx0

, the restricted
Hessian \nabla 2f(x0)| S is positive definite.

To prove (a), assume that there exists an element in k \in Tx0 such that\nabla 2f(x0)k \not =
0. Since \nabla 2f(x0) is positive semidefinite, this implies that k\top \nabla 2f(x0)k > 0. Let
h \in \BbbR d0 such that d\phi 0h = k, and let xt = \phi (th) which is defined for t in an open
neighborhood of 0. Using the Taylor expansion of f around x0,

f(x) - f(x0) - df(x0)[x - x0] =
1
2 (x - x0)

\top \nabla 2f(x0)(x - x0) + \epsilon (x - x0)\| x - x0\| 2,

where \epsilon (x) \rightarrow 
\| x\| \rightarrow 0

0. Now applying this for xt, since f(xt) = f(x0) = 0 and df(x0) = 0,

it holds that

0 =
1

2
(xt  - x0)

\top \nabla 2f(x0)(xt  - x0) + \epsilon (xt  - x0)\| xt  - x0\| 2.

Using the fact that \phi is differentiable at 0 yields xt  - x0 = td\phi (0)[h] + ot\rightarrow 0(t) =
tk+ ot\rightarrow 0(t). Injecting this into the equation above yields

0 = t2 1
2k

\top \nabla 2f(x0)k+ ot\rightarrow 0(t
2).

Hence, necessarily, k\top \nabla 2f(x0)k = 0, which is a contradiction. This proves that
Tx0 \subset ker(\nabla 2f(x0)), and in particular, d0 \leq dim(ker(\nabla 2f(x0))). Since the rank of
\nabla 2f(x0) is actually d - d0, the rank theorem shows that dim(ker(\nabla 2f(x0))) = d0 and
hence Tx0

=ker(\nabla 2f(x0)).
To prove (b), we just need to prove that the restriction to any supplementary to

the null space of \nabla 2f(x0) is positive definite. Using the small result at the beginning
of the proof, any vector k \in \BbbR d \setminus Tx0 satisfies k\top \nabla 2f(x0)k > 0. In particular, this
means that the restriction of \nabla 2f(x0) to any supplementary subspace S of Tx0

is
positive definite.

Step 2: applying the Morse lemma. Let P = (P1, P2) \in Od(\BbbR ) be the matrix
of an orthonormal basis adapted to the decomposition \BbbR d = T\bot 

x0
\oplus Tx0

. Note that
P1 \in \BbbR d\times (d - d0) and P2 \in \BbbR d\times d0 are also orthonormal matrices, and that since P1

spans T\bot 
x0
, in particular P\top 

1 \nabla 2f(x0)P1 \succ 0.
Define g : (x\prime , y\prime ) \in \BbbR d - d0 \times \BbbR d0 \mapsto \rightarrow f(P1x

\prime + P2y
\prime + x0) = f(\scrA (x\prime , y\prime )), where

\scrA (x\prime , y\prime ) = P (x\prime , y\prime )+x0 is an isometry5 (\scrA  - 1x= P\top (x - x0)). We have \nabla x\prime g(0,0) =
P\top 
1 \nabla f(x0) = 0 and \nabla 2

x\prime x\prime g(0,0) = P\top 
1 \nabla 2f(x0)P1 \succ 0, which is nonsingular with index

s= d - d0. We can therefore apply the Morse lemma, Lemma B.3, to g: there exists
two open neighborhoods of zero V \subset \BbbR d - d0 ,W \subset \BbbR d0 as well as \varphi :W \rightarrow V of class
Cp - 1 such that \{ (x\prime , y\prime )\in V \times W : \nabla x\prime g(x\prime , y\prime ) = 0\} = \{ (x\prime , y\prime )\in V \times W : x\prime =\varphi (y\prime )\} 
and g : V \times W \rightarrow \BbbR d - d0 of class Cp - 2 such that

5An isometry is simply a map which preserves distances, and can be defined as an orthogonal
transformation plus an affine shift.
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DECOMPOSING SMOOTH FUNCTIONS AS SUMS OF SQUARES 635

\forall (x\prime , y\prime )\in V \times W, g(x\prime , y\prime ) = g(\varphi (y\prime ), y\prime ) +

d - d0\sum 
i=1

g2i (x
\prime , y\prime ).(4.1)

We see that if we can show that g(\varphi (y\prime ), y\prime ) = 0 in a neighborhood of (0,0), since we
can go back to the original coordinate system through \scrA  - 1, we will have shown the
theorem.

Step 3: characterizing \scrZ in a neighborhood of x0. Denote with G\varphi = \{ (\varphi (y), y) :
y \in W\} the graph of \varphi which is a submanifold of class Cp - 1 of \BbbR d - d0\times \BbbR d (see theorem
1.21, point (iv) of [15]). Since \scrA is an isometry, the set \scrA (G\varphi ) is also a submanifold
of class Cp - 1 of \BbbR d.

Let \widetilde W = \phi  - 1(\scrA (V \times W )); it is an open neighborhood of 0. Note that \phi (\widetilde W ) \subset 
\scrZ \cap \scrA (V \times W ) by assumption, and since for any x \in \scrZ , we have \nabla f(x) = 0, it holds
in particular that for any x\in \scrZ \cap \scrA (V \times W ), we have \nabla x\prime g(\scrA  - 1(x)) = P\top 

1 \nabla f(x) = 0.

Hence, by the result of the Morse lemma, it holds that \scrA  - 1(\phi (\widetilde W ))\subset \scrA  - 1(\scrZ )\cap (V \times 
W )\subset G\varphi .

Define \psi : (x\prime , y\prime )\in V \times W \mapsto \rightarrow (x\prime  - \varphi (y\prime ), y\prime ) which is a Cp - 1 diffeomorphism onto
its image with inverse (t, u) \mapsto \rightarrow (t+\varphi (u), u). Note that \psi maps G\varphi onto \{ 0\BbbR d - d0\} \times W .
If \pi 2 denotes the canonical projection \pi 2 :\BbbR d - d0 \times \BbbR d0 \rightarrow \BbbR d0 , we see that \pi 2 \circ \psi maps
G\varphi injectively onto W \subset \BbbR d0 .

Take \Phi = \pi 2 \circ \psi \circ \scrA  - 1 \circ \phi : \widetilde W \rightarrow \BbbR d0 , which is well defined by the definition
of \widetilde W , and C1 by composition. It is an immersion at 0. Indeed (i) \phi maps 0 onto
x0 and is an immersion at 0 by assumption, hence d\phi 0 is injective; (ii) \psi \circ \scrA  - 1

is a Cp - 1 diffeomorphism from \scrA (V \times W ) (containing x0) to its image, and hence
its differential is invertible at x0, and thus by composition, the differential d(\psi \circ 
\scrA  - 1 \circ \phi )(0) is injective; (iii) since \scrA  - 1(\phi (\widetilde W )) \subset G\varphi by a previous statement, and
since \psi (G\varphi ) \subset \{ 0\} \times W also by a previous statement, it holds that the differential
d(\psi \circ \scrA  - 1\circ \phi )(0)\BbbR d0 \subset \{ 0\} \times \BbbR d0 and hence applying \pi 2 does not change the injectivity
of the differential; hence \Phi is an immersion at 0. But since d\Phi 0 is a linear map from
\BbbR d0 to \BbbR d0 , d\Phi 0 being injective is equivalent to d\Phi 0 being invertible. Hence, by the
local inversion theorem, Theorem B.1, there exists an open neighborhood of 0 \widetilde W \prime \subset \widetilde W
and an open neighborhood of 0 W \prime \subset W such that \Phi is a C1 diffeomorphism from \widetilde W \prime 

to W \prime .
Define U = (\pi 2 \circ \psi \circ \scrA  - 1) - 1(W \prime ) = \scrA (\psi  - 1(\BbbR d - d0 \times W \prime )), which is an open

neighborhood of x0. Since \Phi is a diffeomorphism from \widetilde W \prime to W \prime , we have \phi (\widetilde W \prime ) \subset 
U . Moreover, since \psi is defined on V \times W , we have U \subset \scrA (V \times W ). Finally, let

u \in U \cap \scrA (G\varphi ). Since u \in U , there exists \~w\prime \in \widetilde W \prime such that \pi 2 \circ \psi \circ \scrA  - 1(\phi ( \~w\prime )) =
\pi 2 \circ \psi \circ \scrA  - 1(u). Moreover, since \pi 2 \circ \psi is injective on G\varphi , and since both \scrA  - 1(\phi ( \~w\prime ))

and \scrA  - 1(u) belong to G\varphi (the first using the previous point since \widetilde W \prime \subset \widetilde W and the
second by assumption), we have \scrA  - 1(\phi ( \~w\prime )) = \scrA  - 1(u) and hence u = \phi ( \~w\prime ) since \scrA 
is one to one. This shows that U \cap \scrA (G\varphi )\subset \phi (\widetilde W \prime ).

Moreover, a previous point shows that \scrA  - 1(\phi (\widetilde W )) \subset \scrA  - 1(\scrZ ) \cap (V \times W ) \subset G\varphi .

Now since\scrA is one to one and since \widetilde W \prime \subset \widetilde W we have \phi (\widetilde W )\subset \scrZ \cap (\scrA (V\times W ))\subset \scrA (G\varphi ).

Since \phi (\widetilde W \prime ) \subset U , we therefore have \phi (\widetilde W \prime ) \subset \scrZ \cap U \subset \scrA (G\varphi ) \cap U . Combining this
with the previous result, we finally have

\phi (\widetilde W \prime )\subset \scrZ \cap U \subset \scrA (G\varphi )\cap U \subset \phi (\widetilde W \prime ) =\Rightarrow \phi (\widetilde W \prime ) =\scrZ \cap U =\scrA (G\varphi )\cap U.(4.2)

Step 4: conclusion. (4.2) shows that \phi (\widetilde W \prime ) =\scrZ \cap U =\scrA (G\varphi )\cap U .
On the one hand, this shows that U \cap \scrZ is the intersection between an open set

U and a submanifold \scrA (G\varphi ) of \BbbR d of class Cp - 1 (since it is the composition of the
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636 U. MARTEAU-FEREY, F. BACH, AND A. RUDI

graph of \varphi which is Cp - 1, which is a Cp - 1 manifold by [15], by an isometry which
is in particular a diffeomorphism). Moreover, since \phi is a Ck immersion which is a

homeomorphism on its image, \phi (\widetilde W \prime ) is a submanifold of class Ck. Thus, U \cap \scrZ is a
submanifold of \BbbR d of class Cmax(k,p - 1).

On the other, since \scrA  - 1(U)\subset V \times W , (4.1) becomes

\forall u\in U, g(\scrA  - 1(u)) = g(\varphi (y\prime ), y\prime ) +

d - d0\sum 
i=1

g2i (\scrA  - 1(u)), (x\prime , y\prime ) =\scrA  - 1(u).(4.3)

Let u \in U and write (x\prime , y\prime ) = \scrA  - 1(u). First, \scrA (\varphi (y\prime ), y\prime ) \in \scrA (G\varphi ). Moreover, since
\scrA  - 1u \in \psi  - 1(\BbbR d - d0 \times W \prime ) by the definition of U , this shows that y\prime \in W \prime and hence
(\varphi (y\prime ), y\prime ) = \psi  - 1(0, y\prime )\in \psi  - 1(\BbbR d - d0 \times W \prime ). This in turn shows that \scrA (\varphi (y\prime ), y\prime )\in U .
Hence, \scrA (\varphi (y\prime ), y\prime )\in \scrA (G\varphi )\cap U =\scrZ \cap U and thus g((\varphi (y\prime ), y\prime )) = f(\scrA (\varphi (y\prime ), y\prime )) = 0.
Finally, using this in (4.3), recalling that g= f \circ \scrA , and defining fi : u\in U \mapsto \rightarrow gi(\scrA  - 1u),
we have

\forall u\in U, f(u) =
d - d0\sum 
i=1

f2i (u).(4.4)

We see that fi is of class Cp - 2 since gi was of class Cp - 2 and \scrA  - 1 is an isometry;
this concludes the proof of the theorem.

5. Discussion and possible extensions. In this work, we have provided sec-
ond order sufficient conditions in order for a nonnegative Cp function to be written as
a sum of squares of Cp - 2 functions. We hope this will help provide a theoretical basis
to algorithms which use functional sum of squares methods such as [27, 28, 35], which
rely on the smoothness of such decompositions. The main avenue of future research
we would like to explore is, as in the polynomial case, to handle functions f which
are nonnegative on a constrained set defined by inequalities fi \geq 0. This would imply
both a theoretical component, similar to this one, and an algorithmic one, similar to
[28].

Appendix A. Around partitions of unity and gluing functions. In this
section, we detail a few topological properties of manifolds, in order to (a) decompose
a manifold or a submanifold in connected components and (b) use partitions of unity
as a tool to glue functions together. These specific properties are needed for subsection
3.2. For basics on topological spaces (what is a topology, the notion of continuity, of
homeomorphism), we refer to Chapter 1 of [14]. The main references for manifolds
can be found in [15, 25, 32]. Recall from subsection 3.3 the definition of a manifold
M equipped with its atlas \scrA of class Ck, and of a chart on M . A chart \phi is said to
be of class Ck\prime 

for k\prime \leq k if it is compatible with the atlas up to k\prime smoothness, i.e., if
the transitions maps \phi \circ \phi  - 1

i and \phi i \circ \phi  - 1 are all Ck\prime 
. A priori, the atlas of a manifold

of class Ck is not unique in the sense that more than one atlas generates the same
structure. To make it so, and to be able to say the atlas of M of class Ck, we consider
the maximal atlas on M , i.e., the collection of all charts of class Ck on M .

A.1. Paracompactness and partitions of unity. The main point of asking
a (differential) manifold to be second-countable and Hausdorff, (and not just to be
locally homeomorphic to \BbbR d), is for the manifold to be paracompact, and and hence to
be equipped with partitions of unity. In this section, we introduce the main definitions
and results on this topic.
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DECOMPOSING SMOOTH FUNCTIONS AS SUMS OF SQUARES 637

Recall that a family of subsets (U\alpha ) of a space X is said to be a covering of X
if
\bigcup 

\alpha U\alpha = X. It is said to be locally finite if for any x \in X, there exists an open
neighborhood U of x which intersects only a finite number of the U\alpha . A family (V\beta )
is said to be a refinement of (U\alpha ) if for all \beta , there exists an \alpha such that V\beta \subset U\alpha .

A topological space X is said to be paracompact if for any open covering (U\alpha ) of
X, there exists an open refinement (V\beta ) of (U\alpha ) such that (V\beta ) is locally finite, and is
an open covering of X. The following lemma is proved in the first part of proposition
2.3 of [25] or can be found in Theorem 2.13 of [32].

Lemma A.1. A manifold is paracompact.

In [32], a manifold is defined to be a metric space locally like \BbbR d. In proposition
2.2 of [25], it is shown that being metric and second countable is equivalent to the
countable Hausdorff condition (under the condition of being locally homeomorphic
to \BbbR d). Spivak's condition in [32] is, however, a bit more general; in fact, it allows
a manifold M to be a union of a possible noncountable connected component (as
theorem 2 of [32] shows that any connected component of a metric space locally
homeomorphic to \BbbR d is actually second-countable).

Paracompactness is an important property as it yields the existence of partitions
of unity. The following lemma is standard (a proof can be found in [25, Proposition
2.3]). The result is of course also true for k= 0, but is more technical to prove.

Lemma A.2 (standard gluing lemma, [25]). Let (Ui)i\in I be an open covering of
a manifold M of class Ck (i.e.,

\bigcup 
i\in I Ui = M). There exists a family of functions

\chi i :M \rightarrow [0,1] of class Ck such that supp(\chi i)\subset Ui for all i\in I and with locally finite
support satisfying \sum 

i\in I

\chi i = 1.

We now prove the two technical results need in subsection 3.2.

Proof of Lemma 3.5. The proof of this lemma is immediate. Indeed, by multipli-
cation, we already know that \chi g is well defined and Cq on U . Moreover, for any point
x in V =M \setminus supp(\chi ), which is an open set, (\chi g)(x) = 0 (by definition if x \in M \setminus U
and since \chi (x) = 0 if x\in U) and hence is Cq on V . Since V \cup U =M as supp(\chi )\subset U ,
the property holds. Moreover, since \chi g= 0 on V , supp(\chi g)\subset supp(\chi )\subset U .

Proof of Lemma 3.6. The proof of this result is a consequence of Lemma A.2.
Indeed, this result shows that there exists a family of function \widetilde \chi i :M \rightarrow [0,1] of class
Ck such that (i) for all i \in I, supp(\widetilde \chi i) \subset Ui, (ii) the support of (\widetilde \chi i) is locally finite,
and (iii)

\sum 
i \widetilde \chi i = 1.

Define \phi =
\sum 

i \widetilde \chi 2
i . Since

\sum 
i \widetilde \chi i = 1, and \widetilde \chi \geq 0, necessarily, \phi > 0. Hence

\surd 
\phi 

is of class Ck, and hence \chi i := \widetilde \chi i/
\surd 
\phi is of class Ck, and satisfies all the desired

properties.

A.2. Connected components. Connectedness is a key topological notion for
manifolds, and allows us to decompose a manifold into separate blocks. Recall that
two points x,x\prime of a topological set X are connected if there exists no two open sets
U,V such that X =U \cup V , x\in U, and x\prime \in V . Since being connected is an equivalence
relation, we can partition X into classes with respect to that relation, which are called
``connected components."" Connected components are both open and closed.6 On a

6For more details on connected components, see [14]
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638 U. MARTEAU-FEREY, F. BACH, AND A. RUDI

connected component of a manifold, the dimension d of the charts \phi : U \rightarrow \BbbR d is
the same, and is called the dimension of that connected component (for more details,
see any of the references on manifolds). As a manifold M is assumed to be second-
countable, it has at most a countable number of connected components. Recall that
a submanifold is defined in the main text as follows (such a definition can be found
in section 2.4.2 of [25]).

Definition A.3. Let M be a manifold of class Ck\prime 
, k \leq k\prime . N is a submanifold

of M of class Ck if for any x\in N , and any chart \phi :U \rightarrow \BbbR d defined around x and of
class Ck, \phi (U \cap N) is a submanifold (in the sense of \BbbR d; see [15]) of \BbbR d around \phi (x).
It is equivalent to asking the existence of one such chart per point x.

Let N be a submanifold of class Ck of a manifold M of class Ck\prime 
. Then it is

naturally a manifold of class Ck in its own right. Indeed, consider that (i) N is
equipped with the topology of M , i.e., V is open in N if and only if V = U \cap N for
some open set ofM , and (ii) the atlas of N is (the completion of) the set of restrictions
of charts \phi | U\cap N , where \phi :U \rightarrow \BbbR d is a Ck chart onM such that \phi (U\cap N)\subset \BbbR d\prime \times \{ 0\} ,
where d\prime is the dimension of N at x \in U (we identify \BbbR d\prime \times \{ 0\} \approx \BbbR d\prime 

). The second-
countable Hausdorff condition directly follows from that of M . Moreover, the Ck

compatibility of the charts is evident. From now on, when considering a submanifold
N \subset M as a manifold, it will be with this structure. The reason for the introduction
of all these concepts is to obtain the following lemma, which while it seems natural,
we have not found as such in the literature.

Lemma A.4. Let N be a submanifold of a manifold M . Let (Ni)i\in I be the con-
nected components of N . There exists a collection of disjoint open sets (Ui)i\in I of M
such that each Ni \subset Ui.

Proof. This proof relies mainly on paracompactness.
Step 1. For all x\in N , there exists Ux, an open set inM such that Ux\cap N is included

in the unique connected component of x in N . Indeed, by Definition A.3, there exists
a chart \phi : U \rightarrow N, where U is an open neighborhood of x. But since \phi (U \cap N) is
a submanifold of \BbbR d of class Ck around \phi (x), by Theorem 2.5 of [25], there exists a
Ck diffeomorphism \psi : (\phi (x), V )\rightarrow (0,W ), where V is such that \psi (\phi (U \cap N) \cap V ) =
W \cap (\BbbR d\prime \times \{ 0\} ) for some d\prime . Taking \widetilde \phi =\psi \circ \phi on \widetilde U = \phi  - 1(V )\cap U , we have a chart of
class Ck around x such that \widetilde \phi : \widetilde U \rightarrow W \subset \BbbR d such that \widetilde \phi (\widetilde U \cap N) =W \cap (\BbbR d\prime \times \{ 0\} ).
Now let r be a radius such that the closed ball B(0, r) \subset W . Set Ux = \widetilde \phi  - 1(B(0, r)),
which is an open neighborhood of x included in \widetilde U . Note that Ux \subset \widetilde \phi  - 1(B(0, r))\subset \widetilde U
since \widetilde \phi is continuous. Since Ux \cap N = \widetilde \phi  - 1(B(0, r)\cap (\BbbR d\prime \times \{ 0\} )) which is connected,
we have that Ux \cap N is connected and hence is included in the unique connected
component of x.

Step 2. Consider the collection of open sets Ux. By paracompactness of U :=\bigcup 
x\in N Ux (it is a manifold), we can find an open cover (U\alpha ) of U which is locally

finite, and which still satisfies the condition that for all \alpha , U\alpha \cap N is included in at
most one connected component of N . Let (Ni)i\in I denote the connected components
of N . For i \in I, let (Vi,\alpha )\alpha \in Ai

denote the collection of open sets U\alpha such that
U\alpha \cap N \subset Ni and U\alpha \cap N \not = \emptyset . These collections satisfy (a) the (Vi,\alpha )\alpha \in Ai

cover Ni;
(b) the collection (Vi,\alpha )i\in I, \alpha \in Ai has locally finite support; and (c) Vi,\alpha \cap Ni \subset Ni for
all i\in I, \alpha \in Ai.

Step 3. For all i \in I, define Fi =
\bigcup 

j\in I\setminus \{ i\} ,\beta \in Aj
V j,\beta and for all \alpha \in Ai, consider

that the set Wi,\alpha = Vi,\alpha \setminus Fi. Wi,\alpha is open, and Wi,\alpha \cap N = Vi,\alpha \cap N . Indeed,
let x \in Wi,\alpha . Since the (Vj,\beta ) are locally finite, there exists Vx \subset Vi,\alpha such that Vx
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DECOMPOSING SMOOTH FUNCTIONS AS SUMS OF SQUARES 639

intersects a finite number of the Vj,\beta and hence of the V j,\beta . Hence, Vx\setminus Fi is still open.
Hence Wi,\alpha is open. The second condition comes from the fact that V i,\alpha \cap N \subset Ni,
and that the connected components are disjoint Finally, taking Wi =

\bigcup 
\alpha \in Ai

Wi,\alpha , the
Wi satisfy all the desired properties (they are disjoint thanks to the previous point
and cover Ni since the Vi,\alpha covered Ni).

Appendix B. Morse lemma. In order for this article to be self-contained, we
restate the following classical lemmas from differential geometry and topology. Recall
that a Ck-diffeomorphism is a map \phi : U \subset \BbbR d \rightarrow V \subset \BbbR d\prime 

which is of class Ck and
whose inverse is of class Ck (in that case, necessarily, d = d\prime ). The following results
are classical.

Theorem B.1 (Theorem 1.13 of [15]). Let f : (x0,\BbbR d) \rightarrow \BbbR d be a function of
class Ck (k \geq 1) defined around x0 and such that df(x0) is invertible. Then there
exists a neighborhood U of x0 such that f(U) is open and f : U \rightarrow f(U) is a Ck

diffeomorphism.

Theorem B.2 (Theorem 1.18 of [15]). Let f : (x0,\BbbR d1)\rightarrow (y0,\BbbR d2) be a function
of class Ck (k \geq 1) defined around x0 s.t. df(x0) is surjective and f(x0) = y0. Then
there exists an open neighborhood U of x0 in \BbbR d1 , V of y0 in \BbbR d2 , as well as a function
g : V \rightarrow U of class Ck such that g(y0) = x0 and f \circ g= Id\BbbR d2 .

We restate and reprove Lemma C.6.1 from [13], which is a generalization of the
so-called Morse lemma (see Lemma 2.2 of [21]), and which is the basis of Morse theory.
We will consider a function of two variables f(x, y) defined on \BbbR d1 \times \BbbR d2 . We will
denote with \nabla xf(x, y) its gradient with respect to the first variable taken at point
(x, y); it is an element of \BbbR d1 . Similarly, we will use the notation \nabla 2

xxf(x, y)\in \BbbR d1\times d1

to denote the Hessian matrix taken with respect to the first coordinate at point (x, y).
It is symmetric.

Lemma B.3 (Lemma C.6.1 from [13]). Let d1, d2 \in \BbbN , p\in \BbbN \cup \{ \infty \} with p\geq 2. Let
f : (x, y) \in U0 \subset \BbbR d1 \times \BbbR d2 \mapsto \rightarrow f(x, y) \in \BbbR be a Cp function defined on a neighborhood
U0 of (0,0). Assume that \nabla xf(0,0) = 0 and that \nabla 2

xxf(0,0) is nonsingular with index
s (that is with s positive eigenvalues).

There exists an open convex neighborhood V of 0 in \BbbR d1 and an open convex
neighborhood W of 0 in \BbbR d2 such that V \times W \subset U0, a map \varphi \in Cp - 1(W,V ), and a
map z \in Cp - 2(V \times W,\BbbR d1) such that for any (x, y)\in V \times W \nabla xf(x, y) = 0 if and only
if x=\varphi (y), and

\forall (x, y)\in V \times W, f(x, y) = f(\varphi (y), y) +
s\sum 

i=1

zi(x, y)
2  - 

d1\sum 
i=s+1

zi(x, y)
2.(B.1)

To simplify the proof, we first show an intermediate result which gives \varphi .

Lemma B.4. Under the assumptions of Lemma B.3, there exist two open convex
neighborhoods of zero, V0 \subset \BbbR d1 , W0 \subset \BbbR d2 , and \varphi :W0 \rightarrow V0 of class Cp - 1 such that
(a) V0 \times W0 \subset U0 and (b) \forall (x, y)\in V0 \times W0, \nabla xf(x, y) = 0\leftrightarrow x=\varphi (y).

Proof. Consider the map \psi : (x, y)\in U0 \subset \BbbR d1\times \BbbR d2 \mapsto \rightarrow (\nabla xf(x, y), y). Its Jacobian
at (0,0) is of the form (H  \star 

0 \bfitI d2
). Since H is nonsingular, this matrix is nonsingular.

Applying the local inversion lemma Theorem B.1, there exists an open neighborhood
U1 \subset U0 such that \psi is a Cp - 1 diffeomorphism from U1 to \psi (U1).

Let \widetilde V0 \subset \BbbR d1 , \widetilde W0 \subset \BbbR d2 be open convex neighborhoods of 0 such that \widetilde V0 \times \widetilde W0 \subset 
U1\cap \psi (U1). Define \varphi :w \in \widetilde W0 \mapsto \rightarrow \pi 1(\psi 

 - 1(0,w))\in \BbbR d1 . Defining V0 = \~V0 andW0 \subset \BbbR d2
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640 U. MARTEAU-FEREY, F. BACH, AND A. RUDI

to be an open convex neighborhood of 0 included in \varphi  - 1(V0)\cap \widetilde W0, we have \varphi (W0)\subset V0
and V0 \times W0 \subset U1 \subset U0.

Moreover, for any (x, y) \in V0 \times W0 \subset U1 \cap \psi (U1), \nabla 1f(x, y) = 0 if and only if
\psi (x, y) = (0, y) \in \psi (U1), if and only if (x, y) = \psi  - 1(0, y) = (\varphi (y), y), if and only if
x=\varphi (y).

We can now prove our main result.

Proof of Lemma B.3. Fix V0,W0 satisfying the properties of Lemma B.4. Let
(x, y)\in V0 \times W0. For t\in [0,1], define xt =\varphi (y)+ t(x - \varphi (y)). By the convexity of V0,
(xt, y) \in V0 \times W0 \subset U1 \subset U0 for all t \in [0,1]. Thus, the map g : t \in [0,1] \mapsto \rightarrow f(xt, y) is

well defined, and we can apply the Taylor formula g(1) = g(0)+g\prime (0)+
\int 1

0
(1 - t)g\prime \prime (t)dt

and the fact that g\prime (0) =\nabla xf(\varphi (y), y) \cdot (x - \varphi (y)) = 0 to obtain

f(x, y) = f(\varphi (y), y) + (x - \varphi (y))\top 
\biggl( \int 1

0

(1 - t)\nabla 2
xxf(xt, y)dt

\biggr) 
(x - \varphi (y)).

Defining B : V0 \times W0 \rightarrow S(\BbbR d1), such that B(x, y) := 2
\int 1

0
(1 - t)\nabla 2

xxf(xt, y)dt, the
previous equation can simply be written f(x, y) = f(\varphi (y), y)+ 1

2 (x - \varphi (y))
\top B(x, y)(x - 

\varphi (y)). Note that B \in Cp - 2(V1 \times W1, S(\BbbR d1)) and B(0,0) = H. Now define G : R \in 
\BbbR d1\times d1 \mapsto \rightarrow R\top HR \in S(\BbbR d1) which is C\infty and whose differential in \bfitI \BbbR d1 is surjective
(see [13]). Theorem B.2 shows there exists a neighborhood \scrO of H in S(\BbbR d1) and
a C\infty function F : \scrO \rightarrow \BbbR d1\times d1 such that (G \circ F )(B) = B for all B \in \scrO . Let

V \subset \BbbR d1 ,\widetilde W \subset \BbbR d2 be two open convex neighborhoods of 0 such that V \times \widetilde W \subset B - 1(\scrO ).

Let W be an open convex neighborhood of 0 such that W \subset \widetilde W \cap \varphi  - 1(V ) and define\widetilde z(x, y) = (F \circ B)(x, y)(x  - \varphi (y)). The function \widetilde z satisfies, by the definition of F ,
f(x, y) = f(\varphi (y), y) + 1

2\widetilde z(x, y)\top H\widetilde z(x, y). Taking an eigendecomposition of H in the

form H =
\sum s

i=1 | \lambda i| uiu\top i  - 
\sum d1

i=s+1 | \lambda i| uiu\top i , where s is the index of H, and setting

zi(x, y) =
\sqrt{} 
| \lambda i| /2u\top i \widetilde z(x, y), z satisfies (B.1).
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