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Context

Machine learning for “big data”

• Large-scale machine learning: large p, large n, large k

– p : dimension of each observation (input)

– k : number of tasks (dimension of outputs)

– n : number of observations

• Examples: computer vision, bioinformatics

• Ideal running-time complexity: O(pn+ kn)

• Going back to simple methods

– Stochastic gradient methods (Robbins and Monro, 1951)

– Mixing statistics and optimization

– It is possible to improve on the sublinear convergence rate?



Outline

• Introduction

– Supervised machine learning and convex optimization

– Beyond the separation of statistics and optimization

• Stochastic approximation algorithms (Bach and Moulines, 2011)

– Stochastic gradient and averaging

– Strongly convex vs. non-strongly convex

• Going beyond stochastic gradient (Le Roux, Schmidt, and Bach,

2012)

– More than a single pass through the data

– Linear (exponential) convergence rate



Supervised machine learning

• Data: n observations (xi, yi) ∈ X × Y, i = 1, . . . , n, i.i.d.

• Prediction as a linear function θ⊤Φ(x) of features Φ(x) ∈ F = R
p

• (regularized) empirical risk minimization: find θ̂ solution of

min
θ∈F

1

n

n
∑

i=1

ℓ
(

yi, θ
⊤Φ(xi)

)

+ µΩ(θ)

convex data fitting term + regularizer



Usual losses

• Regression: y ∈ R, prediction ŷ = θ⊤Φ(x)

– quadratic loss 1
2(y − ŷ)2 = 1

2(y − θ⊤Φ(x))2



Usual losses

• Regression: y ∈ R, prediction ŷ = θ⊤Φ(x)

– quadratic loss 1
2(y − ŷ)2 = 1

2(y − θ⊤Φ(x))2

• Classification : y ∈ {−1, 1}, prediction ŷ = sign(θ⊤Φ(x))

– loss of the form ℓ(y · θ⊤Φ(x))
– “True” cost: ℓ(y · θ⊤Φ(x)) = 1y·θ⊤Φ(x)<0

– Usual convex costs:
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Usual regularizers

• Goal: avoid overfitting

• (squared) Euclidean norm: ‖θ‖22 =
∑p

j=1 |θj|2

– Numerically well-behaved

– Representer theorem and kernel methods : θ =
∑n

i=1αiΦ(xi)

– See, e.g., Schölkopf and Smola (2001); Shawe-Taylor and

Cristianini (2004)

• Sparsity-inducing norms

– Main example: ℓ1-norm ‖θ‖1 =
∑p

j=1 |θj|
– Perform model selection as well as regularization

– Non-smooth optimization and structured sparsity

– See, e.g., Bach, Jenatton, Mairal, and Obozinski (2011)
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Supervised machine learning

• Data: n observations (xi, yi) ∈ X × Y, i = 1, . . . , n, i.i.d.

• Prediction as linear function θ⊤Φ(x) of features Φ(x) ∈ F = R
p

• (regularized) empirical risk minimization: find θ̂ solution of

min
θ∈F

1

n

n
∑

i=1

ℓ
(

yi, θ
⊤Φ(xi)

)

+ µΩ(θ)

convex data fitting term + regularizer

• Empirical risk: f̂(θ) = 1
n

∑n
i=1 ℓ(yi, θ

⊤Φ(xi)) training cost

• Expected risk: f(θ) = E(x,y)ℓ(y, θ
⊤Φ(x)) testing cost

• Two fundamental questions: (1) computing θ̂ and (2) analyzing θ̂



Smoothness and strong convexity

• A function g : Rp → R is L-smooth if and only if it is differentiable

and its gradient is L-Lipschitz-continuous

∀θ1, θ2 ∈ R
p, ‖g′(θ1)− g′(θ2)‖ 6 L‖θ1 − θ2‖

• If g is twice differentiable: ∀θ ∈ R
p, g′′(θ) 4 L · Id

smooth non−smooth



Smoothness and strong convexity

• A function g : Rp → R is L-smooth if and only if it is differentiable

and its gradient is L-Lipschitz-continuous

∀θ1, θ2 ∈ R
p, ‖g′(θ1)− g′(θ2)‖ 6 L‖θ1 − θ2‖

• If g is twice differentiable: ∀θ ∈ R
p, g′′(θ) 4 L · Id

• Machine learning

– with g(θ) = 1
n

∑n
i=1 ℓ(yi, θ

⊤Φ(xi))

– Hessian ≈ covariance matrix 1
n

∑n
i=1Φ(xi)Φ(xi)

⊤

– Bounded data



Smoothness and strong convexity

• A function g : Rp → R is µ-strongly convex if and only if

∀θ1, θ2 ∈ R
p, g(θ1) > g(θ2) + 〈g′(θ2), θ1 − θ2〉+ µ

2‖θ1 − θ2‖2

• Equivalent definition: θ 7→ g(θ)− µ
2‖θ‖22 is convex

• If g is twice differentiable: ∀θ ∈ R
p, g′′(θ) < µ · Id

convex
strongly
convex



Smoothness and strong convexity

• A function g : Rp → R is µ-strongly convex if and only if

∀θ1, θ2 ∈ R
p, g(θ1) > g(θ2) + 〈g′(θ2), θ1 − θ2〉+ µ

2‖θ1 − θ2‖2

• Equivalent definition: θ 7→ g(θ)− µ
2‖θ‖22 is convex

• If g is twice differentiable: ∀θ ∈ R
p, g′′(θ) < µ · Id

• Machine learning

– with g(θ) = 1
n

∑n
i=1 ℓ(yi, θ

⊤Φ(xi))

– Hessian ≈ covariance matrix 1
n

∑n
i=1Φ(xi)Φ(xi)

⊤

– Data with invertible covariance matrix (low correlation/dimension)

– ... or with regularization by µ
2‖θ‖22



Statistical analysis of empirical risk minimization

• Fundamental decomposition:

generalisation error = estimation error + approximation error

• Approximation error

– Bias introduced by choice of features and use of regularization

• Estimation error

– Variance introduced by using a finite sample

– See Boucheron et al. (2005); Sridharan et al. (2008); Boucheron

and Massart (2011)

– O(1/n) for strongly convex functions, O(1/
√
n) otherwise



Iterative methods for minimizing smooth functions

• Assumption: g convex and smooth on F (Hilbert space or Rp)

• Gradient descent: θt = θt−1 − γtg
′(θt−1)

– O(1/t) convergence rate for convex functions

– O(e−ρt) convergence rate for strongly convex functions

• Newton method: θt = θt−1 − g′′(θt−1)
−1g′(θt−1)

– O
(

e−ρ2t
)

convergence rate



Iterative methods for minimizing smooth functions

• Assumption: g convex and smooth on F (Hilbert space or Rp)

• Gradient descent: θt = θt−1 − γtg
′(θt−1)

– O(1/t) convergence rate for convex functions

– O(e−ρt) convergence rate for strongly convex functions

• Newton method: θt = θt−1 − g′′(θt−1)
−1g′(θt−1)

– O
(

e−ρ2t
)

convergence rate

• Key insights from Bottou and Bousquet (2008)

1. In machine learning, no need to optimize below estimation error

2. In machine learning, cost functions are averages

⇒ Stochastic approximation



Outline

• Introduction

– Supervised machine learning and convex optimization

– Beyond the separation of statistics and optimization

• Stochastic approximation algorithms (Bach and Moulines, 2011)

– Stochastic gradient and averaging

– Strongly convex vs. non-strongly convex

• Going beyond stochastic gradient (Le Roux, Schmidt, and Bach,

2012)

– More than a single pass through the data

– Linear (exponential) convergence rate



Stochastic approximation

• Goal: Minimizing a function f defined on a Hilbert space H
– given only unbiased estimates f ′

n(θn) of its gradients f ′(θn) at

certain points θn ∈ H

• Stochastic approximation

– Observation of f ′
n(θn) = f ′(θn) + εn, with εn = i.i.d. noise



Stochastic approximation

• Goal: Minimizing a function f defined on a Hilbert space H
– given only unbiased estimates f ′

n(θn) of its gradients f ′(θn) at

certain points θn ∈ H

• Stochastic approximation

– Observation of f ′
n(θn) = f ′(θn) + εn, with εn = i.i.d. noise

• Machine learning - statistics

– loss for a single pair of observations: fn(θ) = ℓ(yn, θ
⊤Φ(xn))

– f(θ) = Efn(θ) = E ℓ(yn, θ
⊤Φ(xn)) = generalization error

– Expected gradient: f ′(θ) = Ef ′
n(θ) = E

{

ℓ′(yn, θ
⊤Φ(xn))Φ(xn)

}



Convex smooth stochastic approximation

• Key properties of f and/or fn

– Smoothness: f L-smooth

– Strong convexity: f µ-strongly convex



Convex smooth stochastic approximation

• Key properties of f and/or fn

– Smoothness: f L-smooth

– Strong convexity: f µ-strongly convex

• Key algorithm: Stochastic gradient descent (a.k.a. Robbins-Monro)

θn = θn−1 − γnf
′
n(θn−1)

– Polyak-Ruppert averaging: θ̄n = 1
n

∑n−1
k=0 θk

– Which learning rate sequence γn? Classical setting: γn = Cn−α



Convex smooth stochastic approximation

• Key properties of f and/or fn

– Smoothness: f L-smooth

– Strong convexity: f µ-strongly convex

• Key algorithm: Stochastic gradient descent (a.k.a. Robbins-Monro)

θn = θn−1 − γnf
′
n(θn−1)

– Polyak-Ruppert averaging: θ̄n = 1
n

∑n−1
k=0 θk

– Which learning rate sequence γn? Classical setting: γn = Cn−α

• Desirable practical behavior

– Applicable (at least) to least-squares and logistic regression

– Robustness to (potentially unknown) constants (L, µ)

– Adaptivity to difficulty of the problem (e.g., strong convexity)



Convex stochastic approximation

Related work

• Machine learning/optimization

– Known minimax rates of convergence (Nemirovski and Yudin, 1983;

Agarwal et al., 2010)

– Strongly convex: O(n−1)

– Non-strongly convex: O(n−1/2)

– Achieved with and/or without averaging (up to log terms)

– Non-asymptotic analysis (high-probability bounds)

– Online setting and regret bounds

– Bottou and Le Cun (2005); Bottou and Bousquet (2008); Hazan

et al. (2007); Shalev-Shwartz and Srebro (2008); Shalev-Shwartz

et al. (2007, 2009); Xiao (2010); Duchi and Singer (2009)

– Nesterov and Vial (2008); Nemirovski et al. (2009)



Convex stochastic approximation

Related work

• Stochastic approximation

– Asymptotic analysis

– Non convex case with strong convexity around the optimum

– γn = Cn−α with α = 1 is not robust to the choice of C

– α ∈ (1/2, 1) is robust with averaging

– Broadie et al. (2009); Kushner and Yin (2003); Kul′chitskĭı and

Mozgovŏı (1991); Polyak and Juditsky (1992); Ruppert (1988);

Fabian (1968)



Problem set-up - General assumptions

• Unbiased gradient estimates:

– fn(θ) is of the form h(zn, θ), where zn is an i.i.d. sequence

– e.g., fn(θ) = h(zn, θ) = ℓ(yn, θ
⊤Φ(xn)) with zn = (xn, yn)

– NB: can be generalized

• Variance of estimates: There exists σ2 > 0 such that for all n > 1,

E(‖f ′
n(θ

∗)− f ′(θ∗)‖2) 6 σ2, where θ∗ is a global minimizer of f

• Specificity of machine learning

– Full function θ 7→ fn(θ) = h(θ, zn) is observed

– Beyond i.i.d. assumptions



Problem set-up - Smoothness/convexity assumptions

• Smoothness of fn: For each n > 1, the function fn is a.s. convex,

differentiable with L-Lipschitz-continuous gradient f ′
n:

∀n > 1, ∀θ1, θ2 ∈ H, ‖f ′
n(θ1)− f ′

n(θ2)‖ 6 L‖θ1 − θ2‖ , w.p.1



Problem set-up - Smoothness/convexity assumptions

• Smoothness of fn: For each n > 1, the function fn is a.s. convex,

differentiable with L-Lipschitz-continuous gradient f ′
n:

∀n > 1, ∀θ1, θ2 ∈ H, ‖f ′
n(θ1)− f ′

n(θ2)‖ 6 L‖θ1 − θ2‖ , w.p.1

• Strong convexity of f : The function f is strongly convex with

respect to the norm ‖ · ‖, with convexity constant µ > 0:

∀θ1, θ2 ∈ H, f(θ1) > f(θ2) + 〈f ′(θ2), θ1 − θ2〉+ µ
2‖θ1 − θ2‖2



Summary of new results (Bach and Moulines, 2011)

• Stochastic gradient descent with learning rate γn = Cn−α

• Strongly convex smooth objective functions

– Old: O(n−1) rate achieved without averaging for α = 1

– New: O(n−1) rate achieved with averaging for α ∈ [1/2, 1]

– Non-asymptotic analysis with explicit constants

– Forgetting of initial conditions

– Robustness to the choice of C

• Proof technique

– Derive deterministic recursion for δn = E‖θn − θ∗‖2

δn 6 (1− 2µγn + 2L2γ2
n)δn−1 + 2σ2γ2

n

– Mimic SA proof techniques in a non-asymptotic way



Robustness to wrong constants for γn = Cn−α

• f(θ) = 1
2|θ|2 with i.i.d. Gaussian noise (p = 1)

• Left: α = 1/2

• Right: α = 1
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lo
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f(
θ n)−

f∗ ]

α = 1/2

 

 
sgd − C=1/5
ave − C=1/5
sgd − C=1
ave − C=1
sgd − C=5
ave − C=5

0 2 4
−5

0

5

log(n)

lo
g[

f(
θ n)−

f∗ ]

α = 1

 

 
sgd − C=1/5
ave − C=1/5
sgd − C=1
ave − C=1
sgd − C=5
ave − C=5

• See also http://leon.bottou.org/projects/sgd
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Summary of new results (Bach and Moulines, 2011)

• Stochastic gradient descent with learning rate γn = Cn−α

• Strongly convex smooth objective functions

– Old: O(n−1) rate achieved without averaging for α = 1

– New: O(n−1) rate achieved with averaging for α ∈ [1/2, 1]

– Non-asymptotic analysis with explicit constants

• Non-strongly convex smooth objective functions

– Old: O(n−1/2) rate achieved with averaging for α = 1/2

– New: O(max{n1/2−3α/2, n−α/2, nα−1}) rate achieved without

averaging for α ∈ [1/3, 1]

• Take-home message

– Use α = 1/2 with averaging to be adaptive to strong convexity



Robustness to lack of strong convexity

• Left: f(θ) = |θ|2 between −1 and 1

• Right: f(θ) = |θ|4 between −1 and 1

• affine outside of [−1, 1], continuously differentiable.
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Comparison on non strongly convex

logistic regression problems

• Left: synthetic example

• Right: “alpha” dataset

• Learning constant C learned from n/10 iterations
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Comparison on non strongly convex

logistic regression problems

• Left: synthetic example

• Right: “alpha” dataset

• Learning constant C = 1/L (suggested from bounds)
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Conclusions / Extensions

Stochastic approximation for machine learning

• Mixing convex optimization and statistics

– Non-asymptotic analysis through moment computations

– Averaging with longer steps is (more) robust and adaptive

– Bounded gradient assumption leads to better rates

• Future/current work - open problems

– High-probability through all moments E‖θn − θ∗‖2d
– Analysis for logistic regression using self-concordance (Bach, 2010)

– Including a non-differentiable term (Xiao, 2010; Lan, 2010)

– Non-random errors (Schmidt, Le Roux, and Bach, 2011)

– Line search for stochastic gradient

– Non-parametric stochastic approximation

– Going beyond a single pass through the data
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Going beyond a single pass over the data

• Stochastic approximation

– Assumes infinite data stream

– Observations are used only once

– Directly minimizes testing cost Ezh(θ, z) = E(x,y) ℓ(y, θ
⊤Φ(x))



Going beyond a single pass over the data

• Stochastic approximation

– Assumes infinite data stream

– Observations are used only once

– Directly minimizes testing cost Ezh(θ, z) = E(x,y) ℓ(y, θ
⊤Φ(x))

• Machine learning practice

– Finite data set (z1, . . . , zn)

– Multiple passes

– Minimizes training cost 1
n

∑n
i=1 h(θ, zi) =

1
n

∑n
i=1 ℓ(yi, θ

⊤Φ(xi))

– Need to regularize (e.g., by the ℓ2-norm) to avoid overfitting



Stochastic vs. deterministic

• Assume finite dataset: f̂(θ) =
1

n

n
∑

i=1

fi(θ) and strong convexity of f̂

• Batch gradient descent: θt = θt−1 −
γt
n

n
∑

i=1

f ′
i(θt−1)

– Linear (e.g., exponential) convergence rate

– Iteration complexity is linear in n

• Stochastic gradient descent: θt = θt−1 − γtf
′

i(t)(θt−1)

– i(t) random element of {1, . . . , n}: sampling with replacement

– Convergence rate in O(1/t)

– Iteration complexity is independent of n

• Best of both worlds: linear rate with O(1) iteration cost



Stochastic vs. deterministic

• Goal: hybrid = best of both worlds
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Stochastic vs. deterministic

• Goal: hybrid = best of both worlds

hybridlo
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Accelerating batch gradient - Related work

• Nesterov acceleration

– Nesterov (1983, 2004)

– Better linear rate but still O(n) iteration cost

• Increasing batch size

– Friedlander and Schmidt (2011)

– Better linear rate but still iteration cost not independent of n



Accelerating stochastic gradient - Related work

• Momentum, gradient/iterate averaging, stochastic version of

accelerated batch gradient methods

– Polyak and Juditsky (1992); Tseng (1998); Sunehag et al. (2009);

Ghadimi and Lan (2010); Xiao (2010)

– Can improve constants, but still have sublinear O(1/t) rate

• Constant step-size stochastic gradient (SG), accelerated SG

– Kesten (1958); Delyon and Juditsky (1993); Solodov (1998); Nedic

and Bertsekas (2000)

– Linear convergence, but only up to a fixed tolerance.

• Hybrid methods, incremental average gradient

– Bertsekas (1997); Blatt et al. (2008)

– Linear rate, but iterations make full passes through the data.



Stochastic average gradient

(Le Roux, Schmidt, and Bach, 2012)

• Stochastic average gradient (SAG) iteration

– Keep in memory the gradients of all functions fi, i = 1, . . . , n

– Random selection i(t) ∈ {1, . . . , n} with replacement

– Iteration: θt = θt−1 −
γt
n

n
∑

i=1

yti with yti =

{

f ′
i(θt−1) if i = i(t)

yt−1
i otherwise

• Stochastic version of incremental average gradient (Blatt et al., 2008)

• Extra memory requirement: same size as original data



Stochastic average gradient

Convergence analysis - I

• Assume that each fi is L-smooth and 1
n

∑n
i=1 fi is µ-strongly convex

• Constant step size γt =
1

2nL
:

E
[

‖θt − θ∗‖2
]

6

(

1− µ

8Ln

)t[

3‖θ0 − θ∗‖2 + 9σ2

4L2

]

– Linear rate with iteration cost independent of n ...

– ... but, same behavior as batch gradient and IAG (cyclic version)

• Proof technique

– Designing a quadratic Lyapunov function for a n-th order non-linear

stochastic dynamical system



Stochastic average gradient

Convergence analysis - II

• Assume that each fi is L-smooth and 1
n

∑n
i=1 fi is µ-strongly convex

• Constant step size γt =
1

2nµ
, if

µ

L
>

8

n

E
[

f̂(θt)− f̂(θ∗)
]

6 C
(

1− 1

8n

)t

with C =

[

16L
3n ‖θ0 − θ∗‖2 + 4σ2

3nµ

(

8 log
(

1 + µn
4L

)

+ 1
)

]

– Linear rate with iteration cost independent of n

– Linear convergence rate “independent” of the condition number

– After each pass through the data, constant error reduction



Rate of convergence comparison

• Assume that L = 100, µ = .01, and n = 80000

– Full gradient method has rate
(

1− µ

L

)

= 0.9999

– Accelerated gradient method has rate
(

1−
√

µ

L

)

= 0.9900

– Running n iterations of SAG for the same cost has rate
(

1− 1

8n

)n

= 0.8825

– Fastest possible first-order method has rate
(√

L−√
µ√

L+
√
µ

)2

= 0.9608



Stochastic average gradient

Implementation details and extensions

• The algorithm can use sparsity in the features to reduce the storage

and iteration cost

• Grouping functions together can further reduce the memory

requirement

• We have obtained good performance when L is not known with a

heuristic line-search

• Algorithm allows non-uniform sampling

• It also seems possible to make proximal, coordinate-wise, and

Newton-like variants



Stochastic average gradient

Simulation experiments

• protein dataset (n = 145751, p = 74)

• Dataset split in two (training/testing)
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Stochastic average gradient

Simulation experiments

• cover type dataset (n = 581012, p = 54)

• Dataset split in two (training/testing)
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Conclusions / Extensions

Stochastic average gradient

• Going beyond a single pass through the data

– Keep memory of all gradients for finite training sets

– Linear convergence rate with O(1) iteration complexity

– Randomization leads to easier analysis and faster rates

– Beyond machine learning

• Future/current work - open problems

– Including a non-differentiable term

– Line search

– Using second-order information or non-uniform sampling

– Going beyond finite training sets (bound on testing cost)
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