
Fundamentals of Machine Learning
for Distributed Systems

Francis Bach

INRIA - Ecole Normale Supérieure, Paris, France

ÉCOLE NORMALE

S U P É R I E U R E

Summer school on distributed learning, Sept. 2023

Slides available at www.di.ens.fr/~fbach/rsd2023.pdf

Fundamentals of Machine Learning
for Distributed Systems

Francis Bach

INRIA - Ecole Normale Supérieure, Paris, France

ÉCOLE NORMALE

S U P É R I E U R E

Summer school on distributed learning, Sept. 2023

Slides available at www.di.ens.fr/~fbach/rsd2023.pdf

Scientific context

• Proliferation of digital data

– Personal data

– Industry

– Scientific: from bioinformatics to humanities

• Need for automated processing of massive data

Scientific context

• Proliferation of digital data

– Personal data

– Industry

– Scientific: from bioinformatics to humanities

• Need for automated processing of massive data

• Series of “hypes”

Big data → Data science → Machine Learning

→ Deep Learning → Artificial Intelligence

Recent progress in perception (vision, audio, text)

person ride dog

From translate.google.fr From Peyré et al. (2017)

Recent progress in perception (vision, audio, text)

person ride dog

From translate.google.fr From Peyré et al. (2017)

(1) Massive data

(2) Computing power

(3) Methodological and scientific progress

Recent progress in perception (vision, audio, text)

person ride dog

From translate.google.fr From Peyré et al. (2017)

(1) Massive data

(2) Computing power

(3) Methodological and scientific progress

“Intelligence” = models + algorithms + data

+ computing power

Recent progress in perception (vision, audio, text)

person ride dog

From translate.google.fr From Peyré et al. (2017)

(1) Massive data

(2) Computing power

(3) Methodological and scientific progress

“Intelligence” = models + algorithms + data

+ computing power

Machine learning for large-scale data

• Large-scale supervised machine learning: large d, large n

– d : dimension of each observation (input) or number of parameters

– n : number of observations

• Examples: computer vision, advertising, bioinformatics, etc.

– Ideal running-time complexity: O(dn)

• Going back to simple methods

− Stochastic gradient methods (Robbins and Monro, 1951)

• Goal: Present recent progress

Advertising

Object / action recognition in images

car under elephant person in cart

person ride dog person on top of traffic light

From Peyré, Laptev, Schmid and Sivic (2017)

Bioinformatics

• Predicting multiple functions and

interactions of proteins

• Massive data: up to 1 millions for

humans!

• Complex data

– Amino-acid sequence

– Link with DNA

– Tri-dimensional molecule

Machine learning for large-scale data

• Large-scale supervised machine learning: large d, large n

– d : dimension of each observation (input), or number of parameters

– n : number of observations

• Examples: computer vision, advertising, bioinformatics, etc.

• Ideal running-time complexity: O(dn) (single machine)

• Going back to simple methods

− Stochastic gradient methods (Robbins and Monro, 1951)

• Goal: Present recent progress

Machine learning for large-scale data

• Large-scale supervised machine learning: large d, large n

– d : dimension of each observation (input), or number of parameters

– n : number of observations

• Examples: computer vision, advertising, bioinformatics, etc.

• Ideal running-time complexity: O(dn) (single machine)

• Going back to simple methods

– Stochastic gradient methods (Robbins and Monro, 1951)

• Goal: Present classical algorithms and some recent progress

Machine learning for large-scale data

• Large-scale supervised machine learning: large d, large n

– d : dimension of each observation (input), or number of parameters

– n : number of observations

• Examples: computer vision, advertising, bioinformatics, etc.

• Ideal running-time complexity: O(dn) (single machine)

• Going back to simple methods

– Stochastic gradient methods (Robbins and Monro, 1951)

• Goal: Present classical algorithms and some recent progress

– Disclaimer: Significant focus on optimization

Outline

1. Introduction/motivation: Supervised machine learning

− Machine learning ≈ optimization of finite sums

− Batch optimization methods

2. Fast stochastic gradient methods for convex problems

– Variance reduction: for training error

– Single pass SGD: for testing error

3. Beyond convex problems

– Generic algorithms with generic “guarantees”

– Global convergence for over-parameterized neural networks

Parametric supervised machine learning

• Data: n observations (xi, yi) ∈ X × Y, i = 1, . . . , n

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ R
d

Parametric supervised machine learning

• Data: n observations (xi, yi) ∈ X × Y, i = 1, . . . , n

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ R
d

• Advertising: n > 109

– Φ(x) ∈ {0, 1}d, d > 109

– Navigation history + ad

- Linear predictions

- h(x, θ) = θ⊤Φ(x)

Parametric supervised machine learning

• Data: n observations (xi, yi) ∈ X × Y, i = 1, . . . , n

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ R
d

• Advertising: n > 109

– Φ(x) ∈ {0, 1}d, d > 109

– Navigation history + ad

• Linear predictions

– h(x, θ) = θ⊤Φ(x)

Parametric supervised machine learning

• Data: n observations (xi, yi) ∈ X × Y, i = 1, . . . , n

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ R
d

x1 x2 x3 x4 x5 x6

y1 = 1 y2 = 1 y3 = 1 y4 = −1 y5 = −1 y6 = −1

Parametric supervised machine learning

• Data: n observations (xi, yi) ∈ X × Y, i = 1, . . . , n

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ R
d

x1 x2 x3 x4 x5 x6

y1 = 1 y2 = 1 y3 = 1 y4 = −1 y5 = −1 y6 = −1

– Neural networks (n, d > 106): h(x, θ) = θ⊤mσ(θ⊤m−1σ(· · · θ⊤2 σ(θ⊤1 x))

x y

θ1
θ3

θ2

Parametric supervised machine learning

• Data: n observations (xi, yi) ∈ X × Y, i = 1, . . . , n

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ R
d

• (regularized) empirical risk minimization: find θ̂ solution of

min
θ∈Rd

1

n

n
∑

i=1

{

ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)
}

=
1

n

n
∑

i=1

fi(θ)

data fitting term + regularizer

Usual losses

• Regression: y ∈ R, prediction ŷ = h(x, θ)

– quadratic loss 1
2(y − ŷ)2 = 1

2(y − h(x, θ))2

Usual losses

• Regression: y ∈ R, prediction ŷ = h(x, θ)

– quadratic loss 1
2(y − ŷ)2 = 1

2(y − h(x, θ))2

• Classification : y ∈ {−1, 1}, prediction ŷ = sign(h(x, θ))

– loss of the form ℓ(y h(x, θ))

– “True” 0-1 loss: ℓ(y h(x, θ)) = 1y h(x,θ)<0

– Usual convex losses:

−3 −2 −1 0 1 2 3 4
0

1

2

3

4

5

0−1
hinge
square
logistic

Usual regularizers

• Main goal: avoid overfitting

• (squared) Euclidean norm: ‖θ‖22 =
∑d

j=1 |θj|2

– Numerically well-behaved if h(x, θ) = θ⊤Φ(x)

– Representer theorem and kernel methods : θ =
∑n

i=1αiΦ(xi)

– See, e.g., Schölkopf and Smola (2001); Shawe-Taylor and

Cristianini (2004)

Usual regularizers

• Main goal: avoid overfitting

• (squared) Euclidean norm: ‖θ‖22 =
∑d

j=1 |θj|2

– Numerically well-behaved if h(x, θ) = θ⊤Φ(x)

– Representer theorem and kernel methods : θ =
∑n

i=1αiΦ(xi)

– See, e.g., Schölkopf and Smola (2001); Shawe-Taylor and

Cristianini (2004)

• Sparsity-inducing norms

– Main example: ℓ1-norm ‖θ‖1 =
∑d

j=1 |θj|
– Perform model selection as well as regularization

– Non-smooth optimization and structured sparsity

– See, e.g., Bach, Jenatton, Mairal, and Obozinski (2012a,b)

Parametric supervised machine learning

• Data: n observations (xi, yi) ∈ X × Y, i = 1, . . . , n

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ R
d

• (regularized) empirical risk minimization: find θ̂ solution of

min
θ∈Rd

1

n

n
∑

i=1

{

ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)
}

=
1

n

n
∑

i=1

fi(θ)

data fitting term + regularizer

Parametric supervised machine learning

• Data: n observations (xi, yi) ∈ X × Y, i = 1, . . . , n

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ R
d

• (regularized) empirical risk minimization: find θ̂ solution of

min
θ∈Rd

1

n

n
∑

i=1

{

ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)
}

=
1

n

n
∑

i=1

fi(θ)

data fitting term + regularizer

Parametric supervised machine learning

• Data: n observations (xi, yi) ∈ X × Y, i = 1, . . . , n

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ R
d

• (regularized) empirical risk minimization: find θ̂ solution of

min
θ∈Rd

1

n

n
∑

i=1

{

ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)
}

=
1

n

n
∑

i=1

fi(θ)

data fitting term + regularizer

• Optimization: optimization of regularized risk training cost

Parametric supervised machine learning

• Data: n observations (xi, yi) ∈ X × Y, i = 1, . . . , n, i.i.d.

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ R
d

• (regularized) empirical risk minimization: find θ̂ solution of

min
θ∈Rd

1

n

n
∑

i=1

{

ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)
}

=
1

n

n
∑

i=1

fi(θ)

data fitting term + regularizer

• Optimization: optimization of regularized risk training cost

• Statistics: guarantees on Ep(x,y)ℓ(y, h(x, θ)) testing cost

Smoothness and (strong) convexity

• A function g : R
d → R is L-smooth if and only if it is twice

differentiable and

∀θ ∈ R
d,

∣

∣eigenvalues
[

g′′(θ)
]∣

∣ 6 L

smooth non-smooth

Smoothness and (strong) convexity

• A function g : R
d → R is L-smooth if and only if it is twice

differentiable and

∀θ ∈ R
d,

∣

∣eigenvalues
[

g′′(θ)
]∣

∣ 6 L

• Machine learning

– with g(θ) = 1
n

∑n
i=1 ℓ(yi, h(xi, θ))

– Smooth prediction function θ 7→ h(xi, θ) + smooth loss

– (see next slide)

Board

• Function g(θ) = 1
n

∑n
i=1 ℓ(yi, θ

⊤Φ(xi))

• Gradient g′(θ) = 1
n

∑n
i=1 ℓ

′(yi, θ
⊤Φ(xi))Φ(xi)

• Hessian g′′(θ) = 1
n

∑n
i=1 ℓ

′′(yi, θ
⊤Φ(xi))Φ(xi)Φ(xi)

⊤

– Smooth loss ⇒ ℓ′′(yi, θ
⊤Φ(xi)) bounded

Smoothness and (strong) convexity

• A twice differentiable function g : Rd → R is convex

if and only if

∀θ ∈ R
d, eigenvalues

[

g′′(θ)
]

> 0

convex

Smoothness and (strong) convexity

• A twice differentiable function g : Rd → R is µ-strongly convex

if and only if

∀θ ∈ R
d, eigenvalues

[

g′′(θ)
]

> µ

convex

strongly
convex

Smoothness and (strong) convexity

• A twice differentiable function g : Rd → R is µ-strongly convex

if and only if

∀θ ∈ R
d, eigenvalues

[

g′′(θ)
]

> µ

– Condition number κ = L/µ > 1

(small κ = L/µ) (large κ = L/µ)

Smoothness and (strong) convexity

• A twice differentiable function g : Rd → R is µ-strongly convex

if and only if

∀θ ∈ R
d, eigenvalues

[

g′′(θ)
]

> µ

• Convexity in machine learning

– With g(θ) = 1
n

∑n
i=1 ℓ(yi, h(xi, θ))

– Convex loss and linear predictions h(x, θ) = θ⊤Φ(x)

Smoothness and (strong) convexity

• A twice differentiable function g : Rd → R is µ-strongly convex

if and only if

∀θ ∈ R
d, eigenvalues

[

g′′(θ)
]

> µ

• Convexity in machine learning

– With g(θ) = 1
n

∑n
i=1 ℓ(yi, h(xi, θ))

– Convex loss and linear predictions h(x, θ) = θ⊤Φ(x)

• Relevance of convex optimization

– Easier design and analysis of algorithms

– Global minimum vs. local minimum vs. stationary points

– Gradient-based algorithms only need convexity for their analysis

Smoothness and (strong) convexity

• A twice differentiable function g : Rd → R is µ-strongly convex

if and only if

∀θ ∈ R
d, eigenvalues

[

g′′(θ)
]

> µ

• Strong convexity in machine learning

– With g(θ) = 1
n

∑n
i=1 ℓ(yi, h(xi, θ))

– Strongly convex loss and linear predictions h(x, θ) = θ⊤Φ(x)

Smoothness and (strong) convexity

• A twice differentiable function g : Rd → R is µ-strongly convex

if and only if

∀θ ∈ R
d, eigenvalues

[

g′′(θ)
]

> µ

• Strong convexity in machine learning

– With g(θ) = 1
n

∑n
i=1 ℓ(yi, h(xi, θ))

– Strongly convex loss and linear predictions h(x, θ) = θ⊤Φ(x)

– Invertible covariance matrix 1
n

∑n
i=1Φ(xi)Φ(xi)

⊤ ⇒ n > d (slide)

– Even when µ > 0, µ may be arbitrarily small!

Board

• Function g(θ) = 1
n

∑n
i=1 ℓ(yi, θ

⊤Φ(xi))

• Gradient g′(θ) = 1
n

∑n
i=1 ℓ

′(yi, θ
⊤Φ(xi))Φ(xi)

• Hessian g′′(θ) = 1
n

∑n
i=1 ℓ

′′(yi, θ
⊤Φ(xi))Φ(xi)Φ(xi)

⊤

– Smooth loss ⇒ ℓ′′(yi, θ
⊤Φ(xi)) bounded

• Square loss ⇒ ℓ′′(yi, θ
⊤Φ(xi)) = 1

– Hessian proportional to 1
n

∑n
i=1Φ(xi)Φ(xi)

⊤

Smoothness and (strong) convexity

• A twice differentiable function g : Rd → R is µ-strongly convex

if and only if

∀θ ∈ R
d, eigenvalues

[

g′′(θ)
]

> µ

• Strong convexity in machine learning

– With g(θ) = 1
n

∑n
i=1 ℓ(yi, h(xi, θ))

– Strongly convex loss and linear predictions h(x, θ) = θ⊤Φ(x)

– Invertible covariance matrix 1
n

∑n
i=1Φ(xi)Φ(xi)

⊤ ⇒ n > d (slide)

– Even when µ > 0, µ may be arbitrarily small!

• Adding regularization by µ
2‖θ‖2

– creates additional bias unless µ is small, but reduces variance

– Typically
√
n 6 κ = L/µ 6 n

Iterative methods for minimizing smooth functions

• Assumption: g convex and L-smooth on R
d

• Gradient descent: θt = θt−1 − γt g
′(θt−1) (line search)

g(θt)− g(θ∗) 6 O(1/t)

g(θt)− g(θ∗) 6 O(e−t(µ/L)) = O(e−t/κ)

(small κ = L/µ) (large κ = L/µ)

Iterative methods for minimizing smooth functions

• Assumption: g convex and L-smooth on R
d

• Gradient descent: θt = θt−1 − γt g
′(θt−1) (line search)

g(θt)− g(θ∗) 6 O(1/t)

g(θt)− g(θ∗) 6 O((1−µ/L)t) = O(e−t(µ/L)) if µ-strongly convex

(small κ = L/µ) (large κ = L/µ)

Iterative methods for minimizing smooth functions

• Assumption: g convex and L-smooth on R
d

• Gradient descent: θt = θt−1 − γt g
′(θt−1)

– O(1/t) convergence rate for convex functions

– O(e−t/κ) linear if strongly-convex

Iterative methods for minimizing smooth functions

• Assumption: g convex and L-smooth on R
d

• Gradient descent: θt = θt−1 − γt g
′(θt−1)

– O(1/t) convergence rate for convex functions

– O(e−t/κ) linear if strongly-convex ⇔ O(κ log 1
ε) iterations

• Newton method: θt = θt−1 − g′′(θt−1)
−1g′(θt−1)

– O
(

e−ρ2t
)

quadratic rate ⇔ O(log log 1
ε) iterations

Iterative methods for minimizing smooth functions

• Assumption: g convex and L-smooth on R
d

• Gradient descent: θt = θt−1 − γt g
′(θt−1)

– O(1/t) convergence rate for convex functions

– O(e−t/κ) linear if strongly-convex ⇔ complexity = O(nd · κ log 1
ε)

• Newton method: θt = θt−1 − g′′(θt−1)
−1g′(θt−1)

– O
(

e−ρ2t
)

quadratic rate ⇔ complexity = O((nd2 + d3) · log log 1
ε)

Iterative methods for minimizing smooth functions

• Assumption: g convex and L-smooth on R
d

• Gradient descent: θt = θt−1 − γt g
′(θt−1)

– O(1/t) convergence rate for convex functions

– O(e−t/κ) linear if strongly-convex ⇔ complexity = O(nd · κ log 1
ε)

• Newton method: θt = θt−1 − g′′(θt−1)
−1g′(θt−1)

– O
(

e−ρ2t
)

quadratic rate ⇔ complexity = O((nd2 + d3) · log log 1
ε)

• Key insights for machine learning (Bottou and Bousquet, 2008)

1. No need to optimize below statistical error

2. Cost functions are averages

3. Testing error is more important than training error

Iterative methods for minimizing smooth functions

• Assumption: g convex and L-smooth on R
d

• Gradient descent: θt = θt−1 − γt g
′(θt−1)

– O(1/t) convergence rate for convex functions

– O(e−t/κ) linear if strongly-convex ⇔ complexity = O(nd · κ log 1
ε)

• Newton method: θt = θt−1 − g′′(θt−1)
−1g′(θt−1)

– O
(

e−ρ2t
)

quadratic rate ⇔ complexity = O((nd2 + d3) · log log 1
ε)

• Key insights for machine learning (Bottou and Bousquet, 2008)

1. No need to optimize below statistical error

2. Cost functions are averages

3. Testing error is more important than training error

Outline

1. Introduction/motivation: Supervised machine learning

– Machine learning ≈ optimization of finite sums

– Batch optimization methods

2. Fast stochastic gradient methods for convex problems

− Variance reduction: for training error

− Single pass SGD: for testing error

3. Beyond convex problems

– Generic algorithms with generic “guarantees”

– Global convergence for over-parameterized neural networks

Parametric supervised machine learning

• Data: n observations (xi, yi) ∈ X × Y, i = 1, . . . , n, i.i.d.

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ R
d

• (regularized) empirical risk minimization: find θ̂ solution of

min
θ∈Rd

1

n

n
∑

i=1

{

ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)
}

=
1

n

n
∑

i=1

fi(θ)

data fitting term + regularizer

• Optimization: optimization of regularized risk training cost

• Statistics: guarantees on Ep(x,y)ℓ(y, h(x, θ)) testing cost

Stochastic gradient descent (SGD) for finite sums

min
θ∈Rd

g(θ) =
1

n

n
∑

i=1

fi(θ)

• Iteration: θt = θt−1 − γtf
′

i(t)(θt−1)

– Sampling with replacement: i(t) random element of {1, . . . , n}
– Polyak-Ruppert averaging: θ̄t =

1
t+1

∑t
u=0 θu

Stochastic gradient descent (SGD) for finite sums

min
θ∈Rd

g(θ) =
1

n

n
∑

i=1

fi(θ)

• Iteration: θt = θt−1 − γtf
′

i(t)(θt−1)

– Sampling with replacement: i(t) random element of {1, . . . , n}
– Polyak-Ruppert averaging: θ̄t =

1
t+1

∑t
u=0 θu

• Convergence rate if each fi is convex L-smooth and g µ-strongly-

convex:

Eg(θ̄t)− g(θ∗) 6

{

O(1/
√
t) if γt = 1/(L

√
t)

O(L/(µt)) = O(κ/t) if γt = 1/(µt)

– No adaptivity to strong-convexity in general

– Running-time complexity: O(d · κ/ε)

Deterministic and stochastic methods

• Minimize g(θ) =
1

n

n
∑

i=1

fi(θ) with fi(θ) = ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)

Deterministic and stochastic methods

• Minimize g(θ) =
1

n

n
∑

i=1

fi(θ) with fi(θ) = ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)

• Gradient descent: θt = θt−1 − γ∇g(θt−1) = θt−1 −
γ

n

n
∑

i=1

∇fi(θt−1)

(Cauchy, 1847)

- Stochastic gradient descent: θt = θt−1 − γ∇fi(t)(θt−1)

(Robbins and Monro, 1951)

4

6

8

10

12

14

16

18

20

Deterministic and stochastic methods

• Minimize g(θ) =
1

n

n
∑

i=1

fi(θ) with fi(θ) = ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)

• Gradient descent: θt = θt−1 − γ∇g(θt−1) = θt−1 −
γ

n

n
∑

i=1

∇fi(θt−1)

(Cauchy, 1847)

• Stochastic gradient descent: θt = θt−1 − γ∇fi(t)(θt−1)

(Robbins and Monro, 1951)

4

6

8

10

12

14

16

18

20

Stochastic gradient with exponential convergence

• Variance reduction

– SAG (Le Roux, Schmidt, and Bach, 2012)

– SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)

– SAGA (Defazio, Bach, and Lacoste-Julien, 2014)

θt = θt−1 − γ
[

∇fi(t)(θt−1)+
1

n

n
∑

i=1

yt−1
i − yt−1

i(t)

]

Stochastic gradient with exponential convergence

• Variance reduction

– SAG (Le Roux, Schmidt, and Bach, 2012)

– SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)

– SAGA (Defazio, Bach, and Lacoste-Julien, 2014)

θt = θt−1 − γ
[

∇fi(t)(θt−1)+
1

n

n
∑

i=1

yt−1
i − yt−1

i(t)

]

Stochastic gradient with exponential convergence

• Variance reduction

– SAG (Le Roux, Schmidt, and Bach, 2012)

– SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)

– SAGA (Defazio, Bach, and Lacoste-Julien, 2014)

• Number of individual gradient computations to reach error ε

(convex objectives with condition number κ)

Gradient descent
∣

∣

∣
nκ × log 1

ε

Stochastic gradient descent
∣

∣

∣
κ × 1

ε

Variance reduction
∣

∣

∣
(n+ κ) × log 1

ε

Stochastic gradient with exponential convergence

• Variance reduction

– SAG (Le Roux, Schmidt, and Bach, 2012)

– SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)

– SAGA (Defazio, Bach, and Lacoste-Julien, 2014)

• Number of individual gradient computations to reach error ε

(convex objectives with condition number κ)

Gradient descent
∣

∣

∣
nκ × log 1

ε

Stochastic gradient descent
∣

∣

∣
κ × 1

ε

Variance reduction
∣

∣

∣
(n+ κ) × log 1

ε

• Empirical behavior close to complexity bounds

Exponentially convergent SGD for finite sums

From theory to practice and vice-versa

time

lo
g(
ex
ce
ss

co
st
)

deterministic

stochastic

new

✵ ✶✵ ✷✵ ✸✵ ✹✵ ✺✵

✶✵
✲�✁

✶✵
✲�✂

✶✵
✲✄

✶✵
✲☎

✶✵
✲✆

✶✵
✲✁

✶✵
✂

❊✝✝✞✟✠✡☛✞ ☞✌✍✍✞✍

❖
✎
✏✑
✒
✓✔
✕
✑
✖
✔✗
✘
✙
❖
✚
✓✔
✖
✘
✖

AFG

L−BFGS

SG

ASG

IAG

SAG−LS

• Empirical performance “matches” theoretical guarantees

Exponentially convergent SGD for finite sums

From theory to practice and vice-versa

time

lo
g(
ex
ce
ss

co
st
)

deterministic

stochastic

new

✵ ✶✵ ✷✵ ✸✵ ✹✵ ✺✵

✶✵
✲�✁

✶✵
✲�✂

✶✵
✲✄

✶✵
✲☎

✶✵
✲✆

✶✵
✲✁

✶✵
✂

❊✝✝✞✟✠✡☛✞ ☞✌✍✍✞✍

❖
✎
✏✑
✒
✓✔
✕
✑
✖
✔✗
✘
✙
❖
✚
✓✔
✖
✘
✖

AFG

L−BFGS

SG

ASG

IAG

SAG−LS

• Empirical performance “matches” theoretical guarantees

• Theoretical analysis suggests practical improvements

– Non-uniform sampling, acceleration

– Matching upper and lower bounds

From training to testing errors

• rcv1 dataset (n = 697 641, d = 47 236)

– NB: IAG, SG-C, ASG with optimal step-sizes in hindsight

Training cost Testing cost

Effective Passes

0 10 20 30 40 50

O
b
j
e
c
t
i
v
e

m
i
n
u
s

O
p
t
i
m
u
m

10
-20

10
-15

10
-10

10
-5

10
0

AGD
L-BFGS

SG-C

ASG

IAG

S
A
G

From training to testing errors

• rcv1 dataset (n = 697 641, d = 47 236)

– NB: IAG, SG-C, ASG with optimal step-sizes in hindsight

Training cost Testing cost

Effective Passes

0 10 20 30 40 50

O
b
j
e
c
t
i
v
e

m
i
n
u
s

O
p
t
i
m
u
m

10
-20

10
-15

10
-10

10
-5

10
0

AGD
L-BFGS

SG-C

ASG

IAG

S
A
G

Effective Passes

0 10 20 30 40 50

T
e
s
t

L
o
g
i
s
t
i
c

L
o
s
s

�10
5

0

0.5

1

1.5

2

2.5

AGD

L-BFGS

SG-C

ASG

IAG

SAG

SGD minimizes the testing cost!

• Goal: minimize f(θ) = Ep(x,y)ℓ(y, h(x, θ))

– Given n independent samples (xi, yi), i = 1, . . . , n from p(x, y)

– Given a single pass of stochastic gradient descent

– Bounds on the excess testing cost Ef(θ̄n)− infθ∈Rd f(θ)

SGD minimizes the testing cost!

• Goal: minimize f(θ) = Ep(x,y)ℓ(y, h(x, θ))

– Given n independent samples (xi, yi), i = 1, . . . , n from p(x, y)

– Given a single pass of stochastic gradient descent

– Bounds on the excess testing cost Ef(θ̄n)− infθ∈Rd f(θ)

• Optimal convergence rates: O(1/
√
n) and O(1/(nµ))

– Optimal for non-smooth losses (Nemirovski and Yudin, 1983)

– Attained by averaged SGD with decaying step-sizes

SGD minimizes the testing cost!

• Goal: minimize f(θ) = Ep(x,y)ℓ(y, h(x, θ))

– Given n independent samples (xi, yi), i = 1, . . . , n from p(x, y)

– Given a single pass of stochastic gradient descent

– Bounds on the excess testing cost Ef(θ̄n)− infθ∈Rd f(θ)

• Optimal convergence rates: O(1/
√
n) and O(1/(nµ))

– Optimal for non-smooth losses (Nemirovski and Yudin, 1983)

– Attained by averaged SGD with decaying step-sizes

• Constant-step-size SGD

– Convergence up to the noise level (Solodov, 1998)

– Full convergence and robustness to ill-conditioning

(Bach and Moulines, 2013)

Perspectives

• Linearly-convergent stochastic gradient methods

– Provable and precise rates

– Improves on two known lower-bounds (by using structure)

– Several extensions / interpretations / accelerations

Perspectives

• Linearly-convergent stochastic gradient methods

– Provable and precise rates

– Improves on two known lower-bounds (by using structure)

– Several extensions / interpretations / accelerations

• Extensions and future work

– Matching lower bounds (Woodworth and Srebro, 2016; Lan, 2015)

– Sampling without replacement (Gurbuzbalaban et al., 2015)

Perspectives

• Linearly-convergent stochastic gradient methods

– Provable and precise rates

– Improves on two known lower-bounds (by using structure)

– Several extensions / interpretations / accelerations

• Extensions and future work

– Matching lower bounds (Woodworth and Srebro, 2016; Lan, 2015)

– Sampling without replacement (Gurbuzbalaban et al., 2015)

– Parallelization (Leblond, Pedregosa, and Lacoste-Julien, 2016;

Hendrikx, Bach, and Massoulié, 2019)

– Non-convex problems (Reddi et al., 2016)

Outline

1. Introduction/motivation: Supervised machine learning

– Machine learning ≈ optimization of finite sums

– Batch optimization methods

2. Fast stochastic gradient methods for convex problems

– Variance reduction: for training error

– Single pass SGD: for testing error

2. Beyond convex problems

– Generic algorithms with generic “guarantees”

– Global convergence for over-parameterized neural networks

Parametric supervised machine learning

• Data: n observations (xi, yi) ∈ X × Y, i = 1, . . . , n

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ R
d

• (regularized) empirical risk minimization:

min
θ∈Rd

1

n

n
∑

i=1

{

ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)
}

=
1

n

n
∑

i=1

fi(θ)

data fitting term + regularizer

• Actual goal: minimize test error Ep(x,y)ℓ(y, h(x, θ))

Convex optimization problems

• Convexity in machine learning

– Convex loss and linear predictions h(x, θ) = θ⊤Φ(x)

Convex optimization problems

• Convexity in machine learning

– Convex loss and linear predictions h(x, θ) = θ⊤Φ(x)

• (approximately) matching theory and practice

– Fruitful discussions between theoreticians and practitioners

– Quantitative theoretical analysis suggests practical improvements

Convex optimization problems

• Convexity in machine learning

– Convex loss and linear predictions h(x, θ) = θ⊤Φ(x)

• (approximately) matching theory and practice

– Fruitful discussions between theoreticians and practitioners

– Quantitative theoretical analysis suggests practical improvements

• Golden years of convexity in machine learning (1995 to 2020+)

– Support vector machines and kernel methods

– Inference in graphical models

– Sparsity / low-rank models (statistics + optimization)

– Convex relaxation of unsupervised learning problems

– Optimal transport

– Stochastic methods for large-scale learning and online learning

Convex optimization for machine learning

From theory to practice and vice-versa

• Empirical performance “matches” theoretical guarantees

• Theoretical analysis suggests practical improvements

Convex optimization for machine learning

From theory to practice and vice-versa

• Empirical performance “matches” theoretical guarantees

• Theoretical analysis suggests practical improvements

• Many other well-understood areas

– Single pass SGD and generalization errors

– From least-squares to convex losses

– High-dimensional inference

– Non-parametric regression

– Randomized linear algebra

– Bandit problems

– etc...

Convex optimization for machine learning

From theory to practice and vice-versa

• Empirical performance “matches” theoretical guarantees

• Theoretical analysis suggests practical improvements

• Many other well-understood areas

– Single pass SGD and generalization errors

– From least-squares to convex losses

– High-dimensional inference

– Non-parametric regression

– Randomized linear algebra

– Bandit problems

– etc...

• What about deep learning?

Theoretical analysis of deep learning

• Multi-layer neural network h(x, θ) = θ⊤mσ(θ⊤m−1σ(· · · θ⊤2 σ(θ⊤1 x))

x y

θ1
θ3

θ2

– NB: already a simplification

Theoretical analysis of deep learning

• Multi-layer neural network h(x, θ) = θ⊤mσ(θ⊤m−1σ(· · · θ⊤2 σ(θ⊤1 x))

x y

θ1
θ3

θ2

• Generalization guarantees

– See “MythBusters: A Deep Learning Edition” by Sasha Rakhlin

– Bartlett et al. (2017); Golowich et al. (2018)

Theoretical analysis of deep learning

• Multi-layer neural network h(x, θ) = θ⊤mσ(θ⊤m−1σ(· · · θ⊤2 σ(θ⊤1 x))

x y

θ1
θ3

θ2

• Generalization guarantees

– See “MythBusters: A Deep Learning Edition” by Sasha Rakhlin

– Bartlett et al. (2017); Golowich et al. (2018)

• Optimization

– Non-convex optimization problems

Optimization for multi-layer neural networks

• What can go wrong with non-convex optimization problems?

– Local minima

– Stationary points

– Plateaux

– Bad initialization

– etc...
1 0.5 0 0.5 1

1

0.5

0

0.5

1 2

1.5

1

0.5

0

Optimization for multi-layer neural networks

• What can go wrong with non-convex optimization problems?

– Local minima

– Stationary points

– Plateaux

– Bad initialization

– etc...
1 0.5 0 0.5 1

1

0.5

0

0.5

1 2

1.5

1

0.5

0

• Generic local theoretical guarantees

– Convergence to stationary points or local minima

– See, e.g., Lee et al. (2016); Jin et al. (2017)

Optimization for multi-layer neural networks

• What can go wrong with non-convex optimization problems?

– Local minima

– Stationary points

– Plateaux

– Bad initialization

– etc...
1 0.5 0 0.5 1

1

0.5

0

0.5

1 2

1.5

1

0.5

0

• General global performance guarantees impossible to obtain

Gradient descent for a single hidden layer

• Predictor: h(x) = θ⊤2 σ(θ
⊤
1 x) =

∑m
i=1 θ2(i) · σ

[

θ1(·, i)⊤x
]

- Family: h =
1

m

m
∑

i=1

Ψ(wi) with Ψ(wi)(x) = mθ2(i)·σ
[

θ1(·, i)⊤x
]

• Goal: minimize R(h) = Ep(x,y)ℓ(y, h(x)), with R convex

h(x; θ)x

θ1

θ2

Gradient descent for a single hidden layer

• Predictor: h(x) = θ⊤2 σ(θ
⊤
1 x) =

∑m
i=1 θ2(i) · σ

[

θ1(·, i)⊤x
]

– Family: h =
1

m

m
∑

i=1

Ψ(wi) with Ψ(wi)(x) = mθ2(i)·σ
[

θ1(·, i)⊤x
]

• Goal: minimize R(h) = Ep(x,y)ℓ(y, h(x)), with R convex

h(x; θ)x

θ1

θ2

Gradient descent for a single hidden layer

• Predictor: h(x) = θ⊤2 σ(θ
⊤
1 x) =

∑m
i=1 θ2(i) · σ

[

θ1(·, i)⊤x
]

– Family: h =
1

m

m
∑

i=1

Ψ(wi) with Ψ(wi)(x) = mθ2(i)·σ
[

θ1(·, i)⊤x
]

• Goal: minimize R(h) = Ep(x,y)ℓ(y, h(x)), with R convex

• Main insight

– h =
1

m

m
∑

i=1

Ψ(wi) =

∫

W

Ψ(w)dµ(w) with dµ(w) =
1

m

m
∑

i=1

δwi

w1w2w3w4 w5 w6 w1

µ(w)

Gradient descent for a single hidden layer

• Predictor: h(x) = θ⊤2 σ(θ
⊤
1 x) =

∑m
i=1 θ2(i) · σ

[

θ1(·, i)⊤x
]

– Family: h =
1

m

m
∑

i=1

Ψ(wi) with Ψ(wi)(x) = mθ2(i)·σ
[

θ1(·, i)⊤x
]

• Goal: minimize R(h) = Ep(x,y)ℓ(y, h(x)), with R convex

• Main insight

– h =
1

m

m
∑

i=1

Ψ(wi) =

∫

W

Ψ(w)dµ(w) with dµ(w) =
1

m

m
∑

i=1

δwi

– Overparameterized models withm large ≈ measure µ with densities

– Barron (1993); Kurkova and Sanguineti (2001); Bengio et al.

(2006); Rosset et al. (2007); Bach (2017)

Optimization on measures

• Minimize with respect to measure µ: R
(

∫

W

Ψ(w)dµ(w)
)

– Convex optimization problem on measures

– Frank-Wolfe techniques for incremental learning

– Non-tractable (Bach, 2017), not what is used in practice

Optimization on measures

• Minimize with respect to measure µ: R
(

∫

W

Ψ(w)dµ(w)
)

– Convex optimization problem on measures

– Frank-Wolfe techniques for incremental learning

– Non-tractable (Bach, 2017), not what is used in practice

• Represent µ by a finite set of “particles” µ = 1
m

∑m
i=1 δwi

– Backpropagation = gradient descent on (w1, . . . , wm)

• Two questions:

– Algorithm limit when number of particles m gets large

– Global convergence

Many particle limit and global convergence

(Chizat and Bach, 2018)

• General framework: minimize F (µ) = R
(

∫

W

Ψ(w)dµ(w)
)

– Algorithm: minimizing Fm(w1, . . . , wm) = R
(1

m

m
∑

i=1

Ψ(wi)
)

Many particle limit and global convergence

(Chizat and Bach, 2018)

• General framework: minimize F (µ) = R
(

∫

W

Ψ(w)dµ(w)
)

– Algorithm: minimizing Fm(w1, . . . , wm) = R
(1

m

m
∑

i=1

Ψ(wi)
)

– Gradient flow Ẇ = −m∇Fm(W), with W = (w1, . . . , wm)

– Idealization of (stochastic) gradient descent

Many particle limit and global convergence

(Chizat and Bach, 2018)

• General framework: minimize F (µ) = R
(

∫

W

Ψ(w)dµ(w)
)

– Algorithm: minimizing Fm(w1, . . . , wm) = R
(1

m

m
∑

i=1

Ψ(wi)
)

– Gradient flow Ẇ = −m∇Fm(W), with W = (w1, . . . , wm)

– Idealization of (stochastic) gradient descent

• Limit when m tends to infinity

– Wasserstein gradient flow (Nitanda and Suzuki, 2017; Chizat and

Bach, 2018; Mei, Montanari, and Nguyen, 2018; Sirignano and

Spiliopoulos, 2018; Rotskoff and Vanden-Eijnden, 2018)

Many particle limit and global convergence

(Chizat and Bach, 2018)

• Two ingredients: homogeneity and initialization

Many particle limit and global convergence

(Chizat and Bach, 2018)

• Two ingredients: homogeneity and initialization

• Homogeneity (see, e.g., Haeffele and Vidal, 2017; Bach et al., 2008)

– Full or partial, e.g., Ψ(wi)(x) = mθ2(i) · σ
[

θ1(·, i)⊤x
]

– Applies to rectified linear units (but also to sigmoid activations)

• Sufficiently spread initial measure

– Needs to cover the entire sphere of directions

Simple simulations with neural networks

• ReLU units with d = 2 (optimal predictor has 5 neurons)

5 neurons 10 neurons 100 neurons

video!

Conclusions

Optimization for machine learning

• Well understood

– Convex case with a single machine

– Matching lower and upper bounds for variants of SGD

– Non-convex case: SGD for local risk minimization

Conclusions

Optimization for machine learning

• Well understood

– Convex case with a single machine

– Matching lower and upper bounds for variants of SGD

– Non-convex case: SGD for local risk minimization

• Not well understood: many open problems

– Step-size schedules and acceleration, conditioning

– Dealing with non-convexity

(global minima vs. local minima and stationary points)

– Distributed learning: multiple cores, GPUs, and cloud

– Beyond running time

References

F. Bach and E. Moulines. Non-strongly-convex smooth stochastic approximation with convergence

rate O(1/n). In Adv. NIPS, 2013.

F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimization with sparsity-inducing penalties.

Foundations and Trends in Machine Learning, 4(1):1–106, 2012a.

F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Structured sparsity through convex optimization,

2012b.

Francis Bach. Breaking the curse of dimensionality with convex neural networks. Journal of Machine

Learning Research, 18(1):629–681, 2017.

Francis Bach, Julien Mairal, and Jean Ponce. Convex sparse matrix factorizations. Technical Report

0812.1869, arXiv, 2008.

A. R. Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE

Transactions on Information Theory, 39(3):930–945, 1993.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for

neural networks. In Advances in Neural Information Processing Systems, pages 6240–6249, 2017.

Y. Bengio, N. Le Roux, P. Vincent, O. Delalleau, and P. Marcotte. Convex neural networks. In

Advances in Neural Information Processing Systems (NIPS), 2006.

L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In Adv. NIPS, 2008.

M. A. Cauchy. Méthode générale pour la résolution des systèmes d’équations simultanées. Comptes

rendus des séances de l’Académie des sciences, 25(1):536–538, 1847.

Lénäıc Chizat and Francis Bach. On the global convergence of gradient descent for over-parameterized

models using optimal transport. In Advances in neural information processing systems, pages

3036–3046, 2018.

A. Defazio, F. Bach, and S. Lacoste-Julien. Saga: A fast incremental gradient method with support for

non-strongly convex composite objectives. In Advances in Neural Information Processing Systems

(NIPS), 2014.

Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-independent sample complexity of neural

networks. In Conference On Learning Theory, pages 297–299, 2018.

M. Gurbuzbalaban, A. Ozdaglar, and P. Parrilo. On the convergence rate of incremental aggregated

gradient algorithms. Technical Report 1506.02081, arXiv, 2015.

Benjamin D. Haeffele and René Vidal. Global optimality in neural network training. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, pages 7331–7339, 2017.

Hadrien Hendrikx, Francis Bach, and Laurent Massoulié. Asynchronous accelerated proximal stochastic

gradient for strongly convex distributed finite sums. Technical Report 1901.09865, arXiv, 2019.

Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M. Kakade, and Michael I. Jordan. How to escape saddle

points efficiently. arXiv preprint arXiv:1703.00887, 2017.

R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance reduction.

In Advances in Neural Information Processing Systems, 2013.

V. Kurkova and M. Sanguineti. Bounds on rates of variable-basis and neural-network approximation.

IEEE Transactions on Information Theory, 47(6):2659–2665, Sep 2001.

G. Lan. An optimal randomized incremental gradient method. Technical Report 1507.02000, arXiv,

2015.

N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential convergence

rate for strongly-convex optimization with finite training sets. In Advances in Neural Information

Processing Systems (NIPS), 2012.

R. Leblond, F. Pedregosa, and S. Lacoste-Julien. Asaga: Asynchronous parallel Saga. Technical Report

1606.04809, arXiv, 2016.

Jason D. Lee, Max Simchowitz, Michael I. Jordan, and Benjamin Recht. Gradient descent only

converges to minimizers. In Conference on Learning Theory, pages 1246–1257, 2016.

Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of two-layers

neural networks. Technical Report 1804.06561, arXiv, 2018.

A. S. Nemirovski and D. B. Yudin. Problem complexity and method efficiency in optimization. Wiley

& Sons, 1983.

Atsushi Nitanda and Taiji Suzuki. Stochastic particle gradient descent for infinite ensembles. arXiv

preprint arXiv:1712.05438, 2017.

S. J. Reddi, A. Hefny, S. Sra, B. Póczós, and A. Smola. Stochastic variance reduction for nonconvex

optimization. Technical Report 1603.06160, arXiv, 2016.

H. Robbins and S. Monro. A stochastic approximation method. Ann. Math. Statistics, 22:400–407,

1951.

S. Rosset, G. Swirszcz, N. Srebro, and J. Zhu. ℓ1-regularization in infinite dimensional feature spaces.

In Proceedings of the Conference on Learning Theory (COLT), 2007.

Grant M. Rotskoff and Eric Vanden-Eijnden. Neural networks as interacting particle systems:

Asymptotic convexity of the loss landscape and universal scaling of the approximation error.

arXiv preprint arXiv:1805.00915, 2018.

B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, 2001.

J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge University Press,

2004.

Justin Sirignano and Konstantinos Spiliopoulos. Mean field analysis of neural networks. arXiv preprint

arXiv:1805.01053, 2018.

M. V. Solodov. Incremental gradient algorithms with stepsizes bounded away from zero. Computational

Optimization and Applications, 11(1):23–35, 1998.

Blake E. Woodworth and Nati Srebro. Tight complexity bounds for optimizing composite objectives.

In Advances in neural information processing systems, pages 3639–3647, 2016.

L. Zhang, M. Mahdavi, and R. Jin. Linear convergence with condition number independent access of

full gradients. In Advances in Neural Information Processing Systems, 2013.

