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Scientific context

• Proliferation of digital data

– Personal data

– Industry

– Scientific: from bioinformatics to humanities

• Need for automated processing of massive data

• Series of “hypes”

Big data → Data science → Machine Learning

→ Deep Learning → Artificial Intelligence
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(1) Massive data

(2) Computing power

(3) Methodological and scientific progress



Recent progress in perception (vision, audio, text)

person ride dog

From translate.google.fr From Peyré et al. (2017)
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Machine learning for large-scale data

• Large-scale supervised machine learning: large d, large n

– d : dimension of each observation (input) or number of parameters

– n : number of observations

• Examples: computer vision, advertising, bioinformatics, etc.

– Ideal running-time complexity: O(dn)

• Going back to simple methods

− Stochastic gradient methods (Robbins and Monro, 1951)

• Goal: Present recent progress



Advertising



Object / action recognition in images

car under elephant person in cart

person ride dog person on top of traffic light

From Peyré, Laptev, Schmid and Sivic (2017)



Bioinformatics

• Predicting multiple functions and

interactions of proteins

• Massive data: up to 1 millions for

humans!

• Complex data

– Amino-acid sequence

– Link with DNA

– Tri-dimensional molecule
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Machine learning for large-scale data

• Large-scale supervised machine learning: large d, large n

– d : dimension of each observation (input), or number of parameters

– n : number of observations

• Examples: computer vision, advertising, bioinformatics, etc.

• Ideal running-time complexity: O(dn) (single machine)

• Going back to simple methods

– Stochastic gradient methods (Robbins and Monro, 1951)

• Goal: Present classical algorithms and some recent progress

– Disclaimer: Significant focus on optimization



Outline

1. Introduction/motivation: Supervised machine learning

− Machine learning ≈ optimization of finite sums

− Batch optimization methods

2. Fast stochastic gradient methods for convex problems

– Variance reduction: for training error

– Single pass SGD: for testing error

3. Beyond convex problems

– Generic algorithms with generic “guarantees”

– Global convergence for over-parameterized neural networks
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Parametric supervised machine learning

• Data: n observations (xi, yi) ∈ X × Y, i = 1, . . . , n

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ R
d

x1 x2 x3 x4 x5 x6

y1 = 1 y2 = 1 y3 = 1 y4 = −1 y5 = −1 y6 = −1

– Neural networks (n, d > 106): h(x, θ) = θ⊤mσ(θ⊤m−1σ(· · · θ⊤2 σ(θ⊤1 x))

x y

θ1
θ3

θ2



Parametric supervised machine learning

• Data: n observations (xi, yi) ∈ X × Y, i = 1, . . . , n

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ R
d

• (regularized) empirical risk minimization: find θ̂ solution of

min
θ∈Rd

1

n

n
∑

i=1

{

ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)
}

=
1

n

n
∑

i=1

fi(θ)

data fitting term + regularizer
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Usual losses

• Regression: y ∈ R, prediction ŷ = h(x, θ)

– quadratic loss 1
2(y − ŷ)2 = 1

2(y − h(x, θ))2

• Classification : y ∈ {−1, 1}, prediction ŷ = sign(h(x, θ))

– loss of the form ℓ(y h(x, θ))

– “True” 0-1 loss: ℓ(y h(x, θ)) = 1y h(x,θ)<0

– Usual convex losses:

−3 −2 −1 0 1 2 3 4
0

1

2

3

4

5

0−1
hinge
square
logistic



Usual regularizers

• Main goal: avoid overfitting

• (squared) Euclidean norm: ‖θ‖22 =
∑d

j=1 |θj|2

– Numerically well-behaved if h(x, θ) = θ⊤Φ(x)

– Representer theorem and kernel methods : θ =
∑n

i=1αiΦ(xi)

– See, e.g., Schölkopf and Smola (2001); Shawe-Taylor and

Cristianini (2004)



Usual regularizers

• Main goal: avoid overfitting

• (squared) Euclidean norm: ‖θ‖22 =
∑d

j=1 |θj|2

– Numerically well-behaved if h(x, θ) = θ⊤Φ(x)

– Representer theorem and kernel methods : θ =
∑n

i=1αiΦ(xi)

– See, e.g., Schölkopf and Smola (2001); Shawe-Taylor and

Cristianini (2004)

• Sparsity-inducing norms

– Main example: ℓ1-norm ‖θ‖1 =
∑d

j=1 |θj|
– Perform model selection as well as regularization

– Non-smooth optimization and structured sparsity

– See, e.g., Bach, Jenatton, Mairal, and Obozinski (2012a,b)
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Parametric supervised machine learning

• Data: n observations (xi, yi) ∈ X × Y, i = 1, . . . , n, i.i.d.

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ R
d

• (regularized) empirical risk minimization: find θ̂ solution of

min
θ∈Rd

1

n

n
∑

i=1

{

ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)
}

=
1

n

n
∑

i=1

fi(θ)

data fitting term + regularizer

• Optimization: optimization of regularized risk training cost

• Statistics: guarantees on Ep(x,y)ℓ(y, h(x, θ)) testing cost



Smoothness and (strong) convexity

• A function g : R
d → R is L-smooth if and only if it is twice

differentiable and

∀θ ∈ R
d,

∣

∣eigenvalues
[

g′′(θ)
]∣

∣ 6 L

smooth non-smooth



Smoothness and (strong) convexity

• A function g : R
d → R is L-smooth if and only if it is twice

differentiable and

∀θ ∈ R
d,

∣

∣eigenvalues
[

g′′(θ)
]∣

∣ 6 L

• Machine learning

– with g(θ) = 1
n

∑n
i=1 ℓ(yi, h(xi, θ))

– Smooth prediction function θ 7→ h(xi, θ) + smooth loss

– (see next slide)



Board

• Function g(θ) = 1
n

∑n
i=1 ℓ(yi, θ

⊤Φ(xi))

• Gradient g′(θ) = 1
n

∑n
i=1 ℓ

′(yi, θ
⊤Φ(xi))Φ(xi)

• Hessian g′′(θ) = 1
n

∑n
i=1 ℓ

′′(yi, θ
⊤Φ(xi))Φ(xi)Φ(xi)

⊤

– Smooth loss ⇒ ℓ′′(yi, θ
⊤Φ(xi)) bounded
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convex
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• A twice differentiable function g : Rd → R is µ-strongly convex

if and only if

∀θ ∈ R
d, eigenvalues

[

g′′(θ)
]

> µ

convex

strongly
convex



Smoothness and (strong) convexity

• A twice differentiable function g : Rd → R is µ-strongly convex

if and only if

∀θ ∈ R
d, eigenvalues

[

g′′(θ)
]

> µ

– Condition number κ = L/µ > 1

(small κ = L/µ) (large κ = L/µ)
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Smoothness and (strong) convexity

• A twice differentiable function g : Rd → R is µ-strongly convex

if and only if

∀θ ∈ R
d, eigenvalues

[

g′′(θ)
]

> µ

• Convexity in machine learning

– With g(θ) = 1
n

∑n
i=1 ℓ(yi, h(xi, θ))

– Convex loss and linear predictions h(x, θ) = θ⊤Φ(x)

• Relevance of convex optimization

– Easier design and analysis of algorithms

– Global minimum vs. local minimum vs. stationary points

– Gradient-based algorithms only need convexity for their analysis
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Smoothness and (strong) convexity

• A twice differentiable function g : Rd → R is µ-strongly convex

if and only if

∀θ ∈ R
d, eigenvalues

[

g′′(θ)
]

> µ

• Strong convexity in machine learning

– With g(θ) = 1
n

∑n
i=1 ℓ(yi, h(xi, θ))

– Strongly convex loss and linear predictions h(x, θ) = θ⊤Φ(x)

– Invertible covariance matrix 1
n

∑n
i=1Φ(xi)Φ(xi)

⊤ ⇒ n > d (slide)

– Even when µ > 0, µ may be arbitrarily small!



Board

• Function g(θ) = 1
n

∑n
i=1 ℓ(yi, θ

⊤Φ(xi))

• Gradient g′(θ) = 1
n

∑n
i=1 ℓ

′(yi, θ
⊤Φ(xi))Φ(xi)

• Hessian g′′(θ) = 1
n

∑n
i=1 ℓ

′′(yi, θ
⊤Φ(xi))Φ(xi)Φ(xi)

⊤

– Smooth loss ⇒ ℓ′′(yi, θ
⊤Φ(xi)) bounded

• Square loss ⇒ ℓ′′(yi, θ
⊤Φ(xi)) = 1

– Hessian proportional to 1
n

∑n
i=1Φ(xi)Φ(xi)

⊤



Smoothness and (strong) convexity

• A twice differentiable function g : Rd → R is µ-strongly convex

if and only if

∀θ ∈ R
d, eigenvalues

[

g′′(θ)
]

> µ

• Strong convexity in machine learning

– With g(θ) = 1
n

∑n
i=1 ℓ(yi, h(xi, θ))

– Strongly convex loss and linear predictions h(x, θ) = θ⊤Φ(x)

– Invertible covariance matrix 1
n

∑n
i=1Φ(xi)Φ(xi)

⊤ ⇒ n > d (slide)

– Even when µ > 0, µ may be arbitrarily small!

• Adding regularization by µ
2‖θ‖2

– creates additional bias unless µ is small, but reduces variance

– Typically
√
n 6 κ = L/µ 6 n



Iterative methods for minimizing smooth functions

• Assumption: g convex and L-smooth on R
d

• Gradient descent: θt = θt−1 − γt g
′(θt−1) (line search)

g(θt)− g(θ∗) 6 O(1/t)

g(θt)− g(θ∗) 6 O(e−t(µ/L)) = O(e−t/κ)

(small κ = L/µ) (large κ = L/µ)
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• Gradient descent: θt = θt−1 − γt g
′(θt−1) (line search)

g(θt)− g(θ∗) 6 O(1/t)

g(θt)− g(θ∗) 6 O((1−µ/L)t) = O(e−t(µ/L)) if µ-strongly convex

(small κ = L/µ) (large κ = L/µ)
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′(θt−1)

– O(1/t) convergence rate for convex functions
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−1g′(θt−1)

– O
(
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quadratic rate ⇔ O(log log 1
ε) iterations
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Outline

1. Introduction/motivation: Supervised machine learning

– Machine learning ≈ optimization of finite sums

– Batch optimization methods

2. Fast stochastic gradient methods for convex problems

− Variance reduction: for training error

− Single pass SGD: for testing error

3. Beyond convex problems

– Generic algorithms with generic “guarantees”

– Global convergence for over-parameterized neural networks



Parametric supervised machine learning

• Data: n observations (xi, yi) ∈ X × Y, i = 1, . . . , n, i.i.d.

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ R
d

• (regularized) empirical risk minimization: find θ̂ solution of

min
θ∈Rd

1

n

n
∑

i=1

{

ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)
}

=
1

n

n
∑

i=1

fi(θ)

data fitting term + regularizer

• Optimization: optimization of regularized risk training cost

• Statistics: guarantees on Ep(x,y)ℓ(y, h(x, θ)) testing cost



Stochastic gradient descent (SGD) for finite sums

min
θ∈Rd

g(θ) =
1

n

n
∑

i=1

fi(θ)

• Iteration: θt = θt−1 − γtf
′

i(t)(θt−1)

– Sampling with replacement: i(t) random element of {1, . . . , n}
– Polyak-Ruppert averaging: θ̄t =

1
t+1

∑t
u=0 θu



Stochastic gradient descent (SGD) for finite sums

min
θ∈Rd

g(θ) =
1

n

n
∑

i=1

fi(θ)

• Iteration: θt = θt−1 − γtf
′

i(t)(θt−1)

– Sampling with replacement: i(t) random element of {1, . . . , n}
– Polyak-Ruppert averaging: θ̄t =

1
t+1

∑t
u=0 θu

• Convergence rate if each fi is convex L-smooth and g µ-strongly-

convex:

Eg(θ̄t)− g(θ∗) 6

{

O(1/
√
t) if γt = 1/(L

√
t)

O(L/(µt)) = O(κ/t) if γt = 1/(µt)

– No adaptivity to strong-convexity in general

– Running-time complexity: O(d · κ/ε)



Deterministic and stochastic methods

• Minimize g(θ) =
1

n

n
∑

i=1

fi(θ) with fi(θ) = ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)



Deterministic and stochastic methods

• Minimize g(θ) =
1

n

n
∑

i=1

fi(θ) with fi(θ) = ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)

• Gradient descent: θt = θt−1 − γ∇g(θt−1) = θt−1 −
γ

n

n
∑

i=1

∇fi(θt−1)

(Cauchy, 1847)

- Stochastic gradient descent: θt = θt−1 − γ∇fi(t)(θt−1)

(Robbins and Monro, 1951)
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Stochastic gradient with exponential convergence

• Variance reduction

– SAG (Le Roux, Schmidt, and Bach, 2012)

– SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)

– SAGA (Defazio, Bach, and Lacoste-Julien, 2014)

θt = θt−1 − γ
[

∇fi(t)(θt−1)+
1

n

n
∑

i=1

yt−1
i − yt−1

i(t)

]
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Stochastic gradient with exponential convergence

• Variance reduction

– SAG (Le Roux, Schmidt, and Bach, 2012)

– SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)

– SAGA (Defazio, Bach, and Lacoste-Julien, 2014)

• Number of individual gradient computations to reach error ε

(convex objectives with condition number κ)

Gradient descent
∣

∣

∣
nκ × log 1

ε

Stochastic gradient descent
∣

∣

∣
κ × 1

ε

Variance reduction
∣

∣

∣
(n+ κ) × log 1

ε



Stochastic gradient with exponential convergence

• Variance reduction

– SAG (Le Roux, Schmidt, and Bach, 2012)

– SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)

– SAGA (Defazio, Bach, and Lacoste-Julien, 2014)

• Number of individual gradient computations to reach error ε

(convex objectives with condition number κ)

Gradient descent
∣

∣

∣
nκ × log 1

ε

Stochastic gradient descent
∣

∣

∣
κ × 1

ε

Variance reduction
∣

∣

∣
(n+ κ) × log 1

ε

• Empirical behavior close to complexity bounds



Exponentially convergent SGD for finite sums

From theory to practice and vice-versa

time
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• Empirical performance “matches” theoretical guarantees

• Theoretical analysis suggests practical improvements

– Non-uniform sampling, acceleration

– Matching upper and lower bounds



From training to testing errors

• rcv1 dataset (n = 697 641, d = 47 236)

– NB: IAG, SG-C, ASG with optimal step-sizes in hindsight
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SGD minimizes the testing cost!

• Goal: minimize f(θ) = Ep(x,y)ℓ(y, h(x, θ))

– Given n independent samples (xi, yi), i = 1, . . . , n from p(x, y)

– Given a single pass of stochastic gradient descent

– Bounds on the excess testing cost Ef(θ̄n)− infθ∈Rd f(θ)
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SGD minimizes the testing cost!

• Goal: minimize f(θ) = Ep(x,y)ℓ(y, h(x, θ))

– Given n independent samples (xi, yi), i = 1, . . . , n from p(x, y)

– Given a single pass of stochastic gradient descent

– Bounds on the excess testing cost Ef(θ̄n)− infθ∈Rd f(θ)

• Optimal convergence rates: O(1/
√
n) and O(1/(nµ))

– Optimal for non-smooth losses (Nemirovski and Yudin, 1983)

– Attained by averaged SGD with decaying step-sizes

• Constant-step-size SGD

– Convergence up to the noise level (Solodov, 1998)

– Full convergence and robustness to ill-conditioning

(Bach and Moulines, 2013)
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– Provable and precise rates

– Improves on two known lower-bounds (by using structure)
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Perspectives

• Linearly-convergent stochastic gradient methods

– Provable and precise rates

– Improves on two known lower-bounds (by using structure)

– Several extensions / interpretations / accelerations

• Extensions and future work

– Matching lower bounds (Woodworth and Srebro, 2016; Lan, 2015)

– Sampling without replacement (Gurbuzbalaban et al., 2015)

– Parallelization (Leblond, Pedregosa, and Lacoste-Julien, 2016;

Hendrikx, Bach, and Massoulié, 2019)

– Non-convex problems (Reddi et al., 2016)



Outline

1. Introduction/motivation: Supervised machine learning

– Machine learning ≈ optimization of finite sums

– Batch optimization methods

2. Fast stochastic gradient methods for convex problems

– Variance reduction: for training error

– Single pass SGD: for testing error

2. Beyond convex problems

– Generic algorithms with generic “guarantees”

– Global convergence for over-parameterized neural networks



Parametric supervised machine learning

• Data: n observations (xi, yi) ∈ X × Y, i = 1, . . . , n

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ R
d

• (regularized) empirical risk minimization:

min
θ∈Rd

1

n

n
∑

i=1

{

ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)
}

=
1

n

n
∑

i=1

fi(θ)

data fitting term + regularizer

• Actual goal: minimize test error Ep(x,y)ℓ(y, h(x, θ))
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Convex optimization problems

• Convexity in machine learning

– Convex loss and linear predictions h(x, θ) = θ⊤Φ(x)

• (approximately) matching theory and practice

– Fruitful discussions between theoreticians and practitioners

– Quantitative theoretical analysis suggests practical improvements



Convex optimization problems

• Convexity in machine learning

– Convex loss and linear predictions h(x, θ) = θ⊤Φ(x)

• (approximately) matching theory and practice

– Fruitful discussions between theoreticians and practitioners

– Quantitative theoretical analysis suggests practical improvements

• Golden years of convexity in machine learning (1995 to 2020+)

– Support vector machines and kernel methods

– Inference in graphical models

– Sparsity / low-rank models (statistics + optimization)

– Convex relaxation of unsupervised learning problems

– Optimal transport

– Stochastic methods for large-scale learning and online learning



Convex optimization for machine learning

From theory to practice and vice-versa

• Empirical performance “matches” theoretical guarantees

• Theoretical analysis suggests practical improvements
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Convex optimization for machine learning

From theory to practice and vice-versa

• Empirical performance “matches” theoretical guarantees

• Theoretical analysis suggests practical improvements

• Many other well-understood areas

– Single pass SGD and generalization errors

– From least-squares to convex losses

– High-dimensional inference

– Non-parametric regression

– Randomized linear algebra

– Bandit problems

– etc...

• What about deep learning?



Theoretical analysis of deep learning

• Multi-layer neural network h(x, θ) = θ⊤mσ(θ⊤m−1σ(· · · θ⊤2 σ(θ⊤1 x))

x y

θ1
θ3

θ2

– NB: already a simplification
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Theoretical analysis of deep learning

• Multi-layer neural network h(x, θ) = θ⊤mσ(θ⊤m−1σ(· · · θ⊤2 σ(θ⊤1 x))

x y

θ1
θ3

θ2

• Generalization guarantees

– See “MythBusters: A Deep Learning Edition” by Sasha Rakhlin

– Bartlett et al. (2017); Golowich et al. (2018)

• Optimization

– Non-convex optimization problems



Optimization for multi-layer neural networks

• What can go wrong with non-convex optimization problems?

– Local minima

– Stationary points

– Plateaux

– Bad initialization

– etc...
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– Local minima
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– Plateaux

– Bad initialization

– etc...
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• Generic local theoretical guarantees

– Convergence to stationary points or local minima

– See, e.g., Lee et al. (2016); Jin et al. (2017)



Optimization for multi-layer neural networks

• What can go wrong with non-convex optimization problems?

– Local minima

– Stationary points

– Plateaux

– Bad initialization

– etc...
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• General global performance guarantees impossible to obtain



Gradient descent for a single hidden layer

• Predictor: h(x) = θ⊤2 σ(θ
⊤
1 x) =

∑m
i=1 θ2(i) · σ

[

θ1(·, i)⊤x
]

- Family: h =
1

m

m
∑

i=1

Ψ(wi) with Ψ(wi)(x) = mθ2(i)·σ
[

θ1(·, i)⊤x
]

• Goal: minimize R(h) = Ep(x,y)ℓ(y, h(x)), with R convex
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Gradient descent for a single hidden layer

• Predictor: h(x) = θ⊤2 σ(θ
⊤
1 x) =

∑m
i=1 θ2(i) · σ

[

θ1(·, i)⊤x
]

– Family: h =
1

m

m
∑

i=1

Ψ(wi) with Ψ(wi)(x) = mθ2(i)·σ
[

θ1(·, i)⊤x
]

• Goal: minimize R(h) = Ep(x,y)ℓ(y, h(x)), with R convex

• Main insight

– h =
1

m

m
∑

i=1

Ψ(wi) =

∫

W

Ψ(w)dµ(w) with dµ(w) =
1

m

m
∑

i=1

δwi

– Overparameterized models withm large ≈ measure µ with densities

– Barron (1993); Kurkova and Sanguineti (2001); Bengio et al.

(2006); Rosset et al. (2007); Bach (2017)



Optimization on measures

• Minimize with respect to measure µ: R
(

∫

W

Ψ(w)dµ(w)
)

– Convex optimization problem on measures

– Frank-Wolfe techniques for incremental learning

– Non-tractable (Bach, 2017), not what is used in practice



Optimization on measures

• Minimize with respect to measure µ: R
(

∫

W

Ψ(w)dµ(w)
)

– Convex optimization problem on measures

– Frank-Wolfe techniques for incremental learning

– Non-tractable (Bach, 2017), not what is used in practice

• Represent µ by a finite set of “particles” µ = 1
m

∑m
i=1 δwi

– Backpropagation = gradient descent on (w1, . . . , wm)

• Two questions:

– Algorithm limit when number of particles m gets large

– Global convergence



Many particle limit and global convergence

(Chizat and Bach, 2018)

• General framework: minimize F (µ) = R
(

∫

W

Ψ(w)dµ(w)
)

– Algorithm: minimizing Fm(w1, . . . , wm) = R
( 1

m

m
∑

i=1

Ψ(wi)
)
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Many particle limit and global convergence

(Chizat and Bach, 2018)

• General framework: minimize F (µ) = R
(

∫

W

Ψ(w)dµ(w)
)

– Algorithm: minimizing Fm(w1, . . . , wm) = R
( 1

m

m
∑

i=1

Ψ(wi)
)

– Gradient flow Ẇ = −m∇Fm(W ), with W = (w1, . . . , wm)

– Idealization of (stochastic) gradient descent

• Limit when m tends to infinity

– Wasserstein gradient flow (Nitanda and Suzuki, 2017; Chizat and

Bach, 2018; Mei, Montanari, and Nguyen, 2018; Sirignano and

Spiliopoulos, 2018; Rotskoff and Vanden-Eijnden, 2018)



Many particle limit and global convergence
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• Two ingredients: homogeneity and initialization



Many particle limit and global convergence

(Chizat and Bach, 2018)

• Two ingredients: homogeneity and initialization

• Homogeneity (see, e.g., Haeffele and Vidal, 2017; Bach et al., 2008)

– Full or partial, e.g., Ψ(wi)(x) = mθ2(i) · σ
[

θ1(·, i)⊤x
]

– Applies to rectified linear units (but also to sigmoid activations)

• Sufficiently spread initial measure

– Needs to cover the entire sphere of directions



Simple simulations with neural networks

• ReLU units with d = 2 (optimal predictor has 5 neurons)

5 neurons 10 neurons 100 neurons

video!
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– Convex case with a single machine

– Matching lower and upper bounds for variants of SGD

– Non-convex case: SGD for local risk minimization



Conclusions

Optimization for machine learning

• Well understood

– Convex case with a single machine

– Matching lower and upper bounds for variants of SGD

– Non-convex case: SGD for local risk minimization

• Not well understood: many open problems

– Step-size schedules and acceleration, conditioning

– Dealing with non-convexity

(global minima vs. local minima and stationary points)

– Distributed learning: multiple cores, GPUs, and cloud

– Beyond running time
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