Fundamentals of Machine Learning for Distributed Systems

Francis Bach

INRIA - Ecole Normale Supérieure, Paris, France

Summer school on distributed learning, Sept. 2023 Slides available at www.di.ens.fr/~fbach/rsd2023.pdf

Fundamentals of Machine Learning for Distributed Systems

Francis Bach

INRIA - Ecole Normale Supérieure, Paris, France

Summer school on distributed learning, Sept. 2023 Slides available at www.di.ens.fr/~fbach/rsd2023.pdf

Scientific context

- Proliferation of digital data
 - Personal data
 - Industry
 - Scientific: from bioinformatics to humanities
- Need for automated processing of massive data

Scientific context

- Proliferation of digital data
 - Personal data
 - Industry
 - Scientific: from bioinformatics to humanities
- Need for automated processing of massive data
- Series of "hypes"

 $\begin{array}{l} \mbox{Big data} \rightarrow \mbox{Data science} \rightarrow \mbox{Machine Learning} \\ \rightarrow \mbox{Deep Learning} \rightarrow \mbox{Artificial Intelligence} \end{array}$

From translate.google.fr

From translate.google.fr

- (1) Massive data
- (2) **Computing power**
- (3) Methodological and scientific progress

From translate.google.fr

- (1) Massive data
- (2) **Computing power**
- (3) Methodological and scientific progress

"Intelligence" = models + algorithms + data + computing power

From translate.google.fr

- (1) Massive data
- (2) **Computing power**
- (3) Methodological and scientific progress

"Intelligence" = models + algorithms + data + computing power

- Large-scale supervised machine learning: large d, large n
 - -d: dimension of each observation (input) or number of parameters
 - -n: number of observations
- **Examples**: computer vision, advertising, bioinformatics, etc.

Advertising

Object / action recognition in images

car under elephant

person in cart

person ride dog

person on top of traffic light

From Peyré, Laptev, Schmid and Sivic (2017)

Bioinformatics

- Predicting multiple functions and interactions of **proteins**
- Massive data: up to 1 millions for humans!
- Complex data
 - Amino-acid sequence
 - Link with DNA
 - Tri-dimensional molecule

- Large-scale supervised machine learning: large d, large n
 - -d: dimension of each observation (input), or number of parameters
 - -n: number of observations
- **Examples**: computer vision, advertising, bioinformatics, etc.
- Ideal running-time complexity: O(dn) (single machine)

- Large-scale supervised machine learning: large d, large n
 - -d: dimension of each observation (input), or number of parameters
 - -n: number of observations
- **Examples**: computer vision, advertising, bioinformatics, etc.
- Ideal running-time complexity: O(dn) (single machine)
- Going back to simple methods
 - Stochastic gradient methods (Robbins and Monro, 1951)
- Goal: Present classical algorithms and some recent progress

- Large-scale supervised machine learning: large d, large n
 - d: dimension of each observation (input), or number of parameters
 - -n: number of observations
- **Examples**: computer vision, advertising, bioinformatics, etc.
- Ideal running-time complexity: O(dn) (single machine)
- Going back to simple methods
 - Stochastic gradient methods (Robbins and Monro, 1951)
- Goal: Present classical algorithms and some recent progress
 - Disclaimer: Significant focus on optimization

Outline

1. Introduction/motivation: Supervised machine learning

- Machine learning \approx optimization of finite sums
- Batch optimization methods

2. Fast stochastic gradient methods for convex problems

- Variance reduction: for *training* error
- Single pass SGD: for *testing* error

3. Beyond convex problems

- Generic algorithms with generic "guarantees"
- Global convergence for over-parameterized neural networks

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \dots, n$
- Prediction function $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \dots, n$
- Prediction function $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$

- Advertising: $n > 10^9$
 - $\Phi(x) \in \{0,1\}^d$, $d > 10^9$ - Navigation history + ad

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \dots, n$
- Prediction function $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$

- Advertising: $n > 10^9$
 - $\Phi(x) \in \{0,1\}^d$, $d > 10^9$ - Navigation history + ad
- Linear predictions

$$-h(x,\theta) = \theta^{\top} \Phi(x)$$

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \dots, n$
- Prediction function $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$

 $y_1 = 1$ $y_2 = 1$ $y_3 = 1$ $y_4 = -1$ $y_5 = -1$ $y_6 = -1$

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \dots, n$
- Prediction function $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$

 $y_1 = 1$ $y_2 = 1$ $y_3 = 1$ $y_4 = -1$ $y_5 = -1$ $y_6 = -1$

- Neural networks $(n, d > 10^6)$: $h(x, \theta) = \theta_m^\top \sigma(\theta_{m-1}^\top \sigma(\cdots \theta_2^\top \sigma(\theta_1^\top x)))$

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \dots, n$
- Prediction function $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \quad \ell(y_i, h(x_i, \theta)) \quad + \quad \lambda \Omega(\theta)$$

data fitting term + regularizer

Usual losses

• Regression: $y \in \mathbb{R}$, prediction $\hat{y} = h(x, \theta)$

– quadratic loss $\frac{1}{2}(y-\hat{y})^2 = \frac{1}{2}(y-h(x,\theta))^2$

Usual losses

- **Regression**: $y \in \mathbb{R}$, prediction $\hat{y} = h(x, \theta)$ - quadratic loss $\frac{1}{2}(y - \hat{y})^2 = \frac{1}{2}(y - h(x, \theta))^2$
- Classification : $y \in \{-1, 1\}$, prediction $\hat{y} = \operatorname{sign}(h(x, \theta))$
 - loss of the form $\ell(y\,h(x,\theta))$
 - "True" 0-1 loss: $\ell(y h(x, \theta)) = 1_{y h(x, \theta) < 0}$

- Usual convex losses:

Usual regularizers

- Main goal: avoid overfitting
- (squared) Euclidean norm: $\|\theta\|_2^2 = \sum_{j=1}^d |\theta_j|^2$
 - Numerically well-behaved if $h(x, \theta) = \theta^{\top} \Phi(x)$
 - Representer theorem and kernel methods : $\theta = \sum_{i=1}^{n} \alpha_i \Phi(x_i)$
 - See, e.g., Schölkopf and Smola (2001); Shawe-Taylor and Cristianini (2004)

Usual regularizers

- Main goal: avoid overfitting
- (squared) Euclidean norm: $\|\theta\|_2^2 = \sum_{j=1}^d |\theta_j|^2$
 - Numerically well-behaved if $h(x, \theta) = \theta^{\top} \Phi(x)$
 - Representer theorem and kernel methods : $\theta = \sum_{i=1}^{n} \alpha_i \Phi(x_i)$
 - See, e.g., Schölkopf and Smola (2001); Shawe-Taylor and Cristianini (2004)
- Sparsity-inducing norms
 - Main example: ℓ_1 -norm $\|\theta\|_1 = \sum_{j=1}^d |\theta_j|$
 - Perform model selection as well as regularization
 - Non-smooth optimization and structured sparsity
 - See, e.g., Bach, Jenatton, Mairal, and Obozinski (2012a,b)

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \dots, n$
- Prediction function $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \quad \ell(y_i, h(x_i, \theta)) \quad + \quad \lambda \Omega(\theta)$$

data fitting term + regularizer

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \dots, n$
- Prediction function $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \left\{ \ell(y_i, h(x_i, \theta)) + \lambda \Omega(\theta) \right\} = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$$

data fitting term + regularizer

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \dots, n$
- Prediction function $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \left\{ \ell(y_i, h(x_i, \theta)) + \lambda \Omega(\theta) \right\} = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$$

data fitting term + regularizer

• Optimization: optimization of regularized risk training cost

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$, i.i.d.
- Prediction function $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \left\{ \ell(y_i, h(x_i, \theta)) + \lambda \Omega(\theta) \right\} = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$$

data fitting term + regularizer

- Optimization: optimization of regularized risk training cost
- Statistics: guarantees on $\mathbb{E}_{p(x,y)}\ell(y,h(x,\theta))$ testing cost

• A function $g: \mathbb{R}^d \to \mathbb{R}$ is *L*-smooth if and only if it is twice differentiable and

$$\forall \theta \in \mathbb{R}^d, | eigenvalues[g''(\theta)] | \leq L$$

• A function $g: \mathbb{R}^d \to \mathbb{R}$ is *L*-smooth if and only if it is twice differentiable and

$$\forall \theta \in \mathbb{R}^d, | eigenvalues[g''(\theta)] | \leq L$$

• Machine learning

- with $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, h(x_i, \theta))$
- Smooth prediction function $\theta \mapsto h(x_i, \theta)$ + smooth loss
- (see next slide)

Board

- Function $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^{\top} \Phi(x_i))$
- Gradient $g'(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell'(y_i, \theta^{\top} \Phi(x_i)) \Phi(x_i)$
- Hessian $g''(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell''(y_i, \theta^{\top} \Phi(x_i)) \Phi(x_i) \Phi(x_i)^{\top}$
 - Smooth loss $\Rightarrow \ell''(y_i, \theta^{\top} \Phi(x_i))$ bounded

• A twice differentiable function $g:\mathbb{R}^d\to\mathbb{R}$ is convex if and only if

$$\forall \theta \in \mathbb{R}^d, \text{ eigenvalues}[g''(\theta)] \ge 0$$

• A twice differentiable function $g:\mathbb{R}^d\to\mathbb{R}$ is $\mu\text{-strongly convex}$ if and only if

$$\forall \theta \in \mathbb{R}^d, \text{ eigenvalues}[g''(\theta)] \ge \mu$$

• A twice differentiable function $g:\mathbb{R}^d\to\mathbb{R}$ is $\mu\text{-strongly convex}$ if and only if

 $\forall \theta \in \mathbb{R}^d, \text{ eigenvalues}[g''(\theta)] \ge \mu$

– Condition number $\kappa = L/\mu \geqslant 1$

• A twice differentiable function $g: \mathbb{R}^d \to \mathbb{R}$ is μ -strongly convex if and only if

$$\forall \theta \in \mathbb{R}^d, \text{ eigenvalues}[g''(\theta)] \geqslant \mu$$

• Convexity in machine learning

- With $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, h(x_i, \theta))$
- Convex loss and linear predictions $h(x, \theta) = \theta^{\top} \Phi(x)$

• A twice differentiable function $g:\mathbb{R}^d\to\mathbb{R}$ is $\mu\text{-strongly convex}$ if and only if

$$\forall \theta \in \mathbb{R}^d, \text{ eigenvalues}[g''(\theta)] \geqslant \mu$$

- Convexity in machine learning
 - With $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, h(x_i, \theta))$
 - Convex loss and linear predictions $h(x, \theta) = \theta^{\top} \Phi(x)$

• Relevance of convex optimization

- Easier design and analysis of algorithms
- Global minimum vs. local minimum vs. stationary points
- Gradient-based algorithms only need convexity for their analysis

• A twice differentiable function $g: \mathbb{R}^d \to \mathbb{R}$ is μ -strongly convex if and only if

$$\forall \theta \in \mathbb{R}^d, \text{ eigenvalues}[g''(\theta)] \geqslant \mu$$

• **Strong** convexity in machine learning

- With $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, h(x_i, \theta))$
- Strongly convex loss and linear predictions $h(x, \theta) = \theta^{\top} \Phi(x)$

• A twice differentiable function $g: \mathbb{R}^d \to \mathbb{R}$ is μ -strongly convex if and only if

$$\forall \theta \in \mathbb{R}^d, \text{ eigenvalues}[g''(\theta)] \ge \mu$$

• **Strong** convexity in machine learning

- With $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, h(x_i, \theta))$
- Strongly convex loss and linear predictions $h(x, \theta) = \theta^{\top} \Phi(x)$
- Invertible covariance matrix $\frac{1}{n} \sum_{i=1}^{n} \Phi(x_i) \Phi(x_i)^{\top} \Rightarrow n \ge d$ (slide)
- Even when $\mu > 0$, μ may be arbitrarily small!

Board

- Function $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^{\top} \Phi(x_i))$
- Gradient $g'(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell'(y_i, \theta^{\top} \Phi(x_i)) \Phi(x_i)$
- Hessian $g''(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell''(y_i, \theta^{\top} \Phi(x_i)) \Phi(x_i) \Phi(x_i)^{\top}$
 - Smooth loss $\Rightarrow \ell''(y_i, \theta^{\top} \Phi(x_i))$ bounded
- Square loss $\Rightarrow \ell''(y_i, \theta^{\top} \Phi(x_i)) = 1$
 - Hessian proportional to $\frac{1}{n} \sum_{i=1}^{n} \Phi(x_i) \Phi(x_i)^{\top}$

• A twice differentiable function $g: \mathbb{R}^d \to \mathbb{R}$ is μ -strongly convex if and only if

$$\forall \theta \in \mathbb{R}^d, \text{ eigenvalues}[g''(\theta)] \ge \mu$$

• **Strong** convexity in machine learning

- With $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, h(x_i, \theta))$
- Strongly convex loss and linear predictions $h(x, \theta) = \theta^{\top} \Phi(x)$
- Invertible covariance matrix $\frac{1}{n} \sum_{i=1}^{n} \Phi(x_i) \Phi(x_i)^{\top} \Rightarrow n \ge d$ (slide)
- Even when $\mu > 0$, μ may be arbitrarily small!
- Adding regularization by $\frac{\mu}{2} \|\theta\|^2$
 - creates additional bias unless μ is small, but reduces variance

– Typically
$$\sqrt{n}\leqslant\kappa=L/\mu\leqslant n$$

- Assumption: g convex and L-smooth on \mathbb{R}^d
- Gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1})$ (line search)

- Assumption: g convex and L-smooth on \mathbb{R}^d
- Gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1})$ (line search)

$$\begin{split} g(\theta_t) &- g(\theta_*) \leqslant O(1/t) \\ g(\theta_t) &- g(\theta_*) \leqslant O((1-\mu/L)^t) = O(e^{-t(\mu/L)}) \text{ if } \mu\text{-strongly convex} \end{split}$$

- Assumption: g convex and L-smooth on \mathbb{R}^d
- Gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1})$
 - O(1/t) convergence rate for convex functions – $O(e^{-t/\kappa})$ linear if strongly-convex

- Assumption: g convex and L-smooth on \mathbb{R}^d
- Gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1})$
 - O(1/t) convergence rate for convex functions - $O(e^{-t/\kappa})$ linear if strongly-convex $\Leftrightarrow O(\kappa \log \frac{1}{\epsilon})$ iterations
- Newton method: $\theta_t = \theta_{t-1} g''(\theta_{t-1})^{-1}g'(\theta_{t-1})$
 - $-O(e^{-\rho 2^t})$ quadratic rate $\Leftrightarrow O(\log \log \frac{1}{\varepsilon})$ iterations

- Assumption: g convex and L-smooth on \mathbb{R}^d
- Gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1})$

- O(1/t) convergence rate for convex functions - $O(e^{-t/\kappa})$ linear if strongly-convex \Leftrightarrow complexity = $O(nd \cdot \kappa \log \frac{1}{\varepsilon})$

• Newton method: $\theta_t = \theta_{t-1} - g''(\theta_{t-1})^{-1}g'(\theta_{t-1})$

 $- O(e^{-\rho 2^t}) \text{ quadratic rate} \Leftrightarrow \text{complexity} = O((nd^2 + d^3) \cdot \log \log \frac{1}{\varepsilon})$

- Assumption: g convex and L-smooth on \mathbb{R}^d
- Gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1})$

- O(1/t) convergence rate for convex functions - $O(e^{-t/\kappa})$ linear if strongly-convex \Leftrightarrow complexity = $O(nd \cdot \kappa \log \frac{1}{\varepsilon})$

• Newton method: $\theta_t = \theta_{t-1} - g''(\theta_{t-1})^{-1}g'(\theta_{t-1})$

 $- O(e^{-\rho 2^{t}}) \text{ quadratic rate} \Leftrightarrow \text{complexity} = O((nd^{2} + d^{3}) \cdot \log \log \frac{1}{\varepsilon})$

• Key insights for machine learning (Bottou and Bousquet, 2008)

- 1. No need to optimize below statistical error
- 2. Cost functions are averages
- 3. Testing error is more important than training error

- Assumption: g convex and L-smooth on \mathbb{R}^d
- Gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1})$

- O(1/t) convergence rate for convex functions - $O(e^{-t/\kappa})$ linear if strongly-convex \Leftrightarrow complexity = $O(nd \cdot \kappa \log \frac{1}{\varepsilon})$

• Newton method: $\theta_t = \theta_{t-1} - g''(\theta_{t-1})^{-1}g'(\theta_{t-1})$

 $- O(e^{-\rho 2^{t}}) \text{ quadratic rate} \Leftrightarrow \text{complexity} = O((nd^{2} + d^{3}) \cdot \log \log \frac{1}{\varepsilon})$

• Key insights for machine learning (Bottou and Bousquet, 2008)

- 1. No need to optimize below statistical error
- 2. Cost functions are averages
- 3. Testing error is more important than training error

Outline

1. Introduction/motivation: Supervised machine learning

- Machine learning \approx optimization of finite sums
- Batch optimization methods

2. Fast stochastic gradient methods for convex problems

- Variance reduction: for *training* error
- Single pass SGD: for *testing* error

3. Beyond convex problems

- Generic algorithms with generic "guarantees"
- Global convergence for over-parameterized neural networks

Parametric supervised machine learning

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$, i.i.d.
- Prediction function $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \left\{ \ell(y_i, h(x_i, \theta)) + \lambda \Omega(\theta) \right\} = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$$

data fitting term + regularizer

- Optimization: optimization of regularized risk training cost
- Statistics: guarantees on $\mathbb{E}_{p(x,y)}\ell(y,h(x,\theta))$ testing cost

Stochastic gradient descent (SGD) for finite sums

$$\min_{\theta \in \mathbb{R}^d} g(\theta) = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$$

- Iteration: $\theta_t = \theta_{t-1} \gamma_t f'_{i(t)}(\theta_{t-1})$
 - Sampling with replacement: i(t) random element of $\{1, \ldots, n\}$
 - Polyak-Ruppert averaging: $\bar{\theta}_t = \frac{1}{t+1} \sum_{u=0}^t \theta_u$

Stochastic gradient descent (SGD) for finite sums

$$\min_{\theta \in \mathbb{R}^d} g(\theta) = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$$

- Iteration: $\theta_t = \theta_{t-1} \gamma_t f'_{i(t)}(\theta_{t-1})$
 - Sampling with replacement: i(t) random element of $\{1, \ldots, n\}$
 - Polyak-Ruppert averaging: $\bar{\theta}_t = \frac{1}{t+1} \sum_{u=0}^t \theta_u$
- Convergence rate if each f_i is convex L-smooth and g μ-stronglyconvex:

$$\mathbb{E}g(\bar{\theta}_t) - g(\theta_*) \leqslant \begin{cases} O(1/\sqrt{t}) & \text{if } \gamma_t = 1/(L\sqrt{t}) \\ O(L/(\mu t)) = O(\kappa/t) & \text{if } \gamma_t = 1/(\mu t) \end{cases}$$

- No adaptivity to strong-convexity in general
- Running-time complexity: $O(d \cdot \kappa/\varepsilon)$

Deterministic and stochastic methods

• Minimize
$$g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$$
 with $f_i(\theta) = \ell(y_i, h(x_i, \theta)) + \lambda \Omega(\theta)$

Deterministic and stochastic methods

• Minimize
$$g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$$
 with $f_i(\theta) = \ell(y_i, h(x_i, \theta)) + \lambda \Omega(\theta)$

• Gradient descent: $\theta_t = \theta_{t-1} - \gamma \nabla g(\theta_{t-1}) = \theta_{t-1} - \frac{\gamma}{n} \sum_{i=1} \nabla f_i(\theta_{t-1})$ (Cauchy, 1847)

Deterministic and stochastic methods

• Minimize
$$g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$$
 with $f_i(\theta) = \ell(y_i, h(x_i, \theta)) + \lambda \Omega(\theta)$

- Gradient descent: $\theta_t = \theta_{t-1} \gamma \nabla g(\theta_{t-1}) = \theta_{t-1} \frac{\gamma}{n} \sum_{i=1} \nabla f_i(\theta_{t-1})$ (Cauchy, 1847)
- Stochastic gradient descent: $\theta_t = \theta_{t-1} \gamma \nabla f_{i(t)}(\theta_{t-1})$ (Robbins and Monro, 1951)

• Variance reduction

- SAG (Le Roux, Schmidt, and Bach, 2012)
- SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)
- SAGA (Defazio, Bach, and Lacoste-Julien, 2014)

$$\theta_t = \theta_{t-1} - \gamma \Big[\nabla f_{i(t)}(\theta_{t-1}) \Big]$$

• Variance reduction

- SAG (Le Roux, Schmidt, and Bach, 2012)
- SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)
- SAGA (Defazio, Bach, and Lacoste-Julien, 2014)

$$\theta_t = \theta_{t-1} - \gamma \left[\nabla f_{i(t)}(\theta_{t-1}) + \frac{1}{n} \sum_{i=1}^n y_i^{t-1} - y_{i(t)}^{t-1} \right]$$

• Variance reduction

- SAG (Le Roux, Schmidt, and Bach, 2012)
- SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)
- SAGA (Defazio, Bach, and Lacoste-Julien, 2014)
- Number of individual gradient computations to reach error ε (convex objectives with condition number κ)

Gradient descent	$n\kappa$	$\times \log \frac{1}{\varepsilon}$
Stochastic gradient descent	κ	$\times \frac{1}{\varepsilon}$
Variance reduction	$(n+\kappa)$	$\times \log \frac{1}{\varepsilon}$

• Variance reduction

- SAG (Le Roux, Schmidt, and Bach, 2012)
- SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)
- SAGA (Defazio, Bach, and Lacoste-Julien, 2014)
- Number of individual gradient computations to reach error ε (convex objectives with condition number κ)

Gradient descent	$n\kappa$	$\times \log \frac{1}{\varepsilon}$
Stochastic gradient descent	κ	$\times \frac{1}{\varepsilon}$
Variance reduction	$(n+\kappa)$	$\times \log \frac{1}{\varepsilon}$

• Empirical behavior close to complexity bounds

Exponentially convergent SGD for finite sums From theory to practice and vice-versa

• Empirical performance "matches" theoretical guarantees

Exponentially convergent SGD for finite sums From theory to practice and vice-versa

- Empirical performance "matches" theoretical guarantees
- Theoretical analysis suggests practical improvements
 - Non-uniform sampling, acceleration
 - Matching upper and lower bounds

From training to testing errors

- rcv1 dataset ($n = 697 \ 641$, $d = 47 \ 236$)
 - NB: IAG, SG-C, ASG with optimal step-sizes in hindsight

From training to testing errors

- rcv1 dataset ($n = 697 \ 641$, $d = 47 \ 236$)
 - NB: IAG, SG-C, ASG with optimal step-sizes in hindsight

SGD minimizes the testing cost!

- **Goal**: minimize $f(\theta) = \mathbb{E}_{p(x,y)}\ell(y, h(x, \theta))$
 - Given n independent samples (x_i, y_i) , $i = 1, \ldots, n$ from p(x, y)
 - Given a single pass of stochastic gradient descent
 - Bounds on the excess testing cost $\mathbb{E}f(\bar{\theta}_n) \inf_{\theta \in \mathbb{R}^d} f(\theta)$

SGD minimizes the testing cost!

- **Goal**: minimize $f(\theta) = \mathbb{E}_{p(x,y)}\ell(y, h(x, \theta))$
 - Given n independent samples (x_i, y_i) , $i = 1, \ldots, n$ from p(x, y)
 - Given a single pass of stochastic gradient descent
 - Bounds on the excess testing cost $\mathbb{E}f(\bar{\theta}_n) \inf_{\theta \in \mathbb{R}^d} f(\theta)$
- Optimal convergence rates: $O(1/\sqrt{n})$ and $O(1/(n\mu))$
 - Optimal for non-smooth losses (Nemirovski and Yudin, 1983)
 - Attained by averaged SGD with decaying step-sizes

SGD minimizes the testing cost!

- **Goal**: minimize $f(\theta) = \mathbb{E}_{p(x,y)}\ell(y, h(x, \theta))$
 - Given n independent samples (x_i, y_i) , $i = 1, \ldots, n$ from p(x, y)
 - Given a single pass of stochastic gradient descent
 - Bounds on the excess testing cost $\mathbb{E}f(\bar{\theta}_n) \inf_{\theta \in \mathbb{R}^d} f(\theta)$
- Optimal convergence rates: $O(1/\sqrt{n})$ and $O(1/(n\mu))$
 - Optimal for non-smooth losses (Nemirovski and Yudin, 1983)
 - Attained by averaged SGD with decaying step-sizes
- Constant-step-size SGD
 - Convergence up to the noise level (Solodov, 1998)
 - Full convergence and robustness to ill-conditioning (Bach and Moulines, 2013)

Perspectives

• Linearly-convergent stochastic gradient methods

- Provable and precise rates
- Improves on two known lower-bounds (by using structure)
- Several extensions / interpretations / accelerations

Perspectives

• Linearly-convergent stochastic gradient methods

- Provable and precise rates
- Improves on two known lower-bounds (by using structure)
- Several extensions / interpretations / accelerations

• Extensions and future work

- Matching lower bounds (Woodworth and Srebro, 2016; Lan, 2015)
- Sampling without replacement (Gurbuzbalaban et al., 2015)

Perspectives

• Linearly-convergent stochastic gradient methods

- Provable and precise rates
- Improves on two known lower-bounds (by using structure)
- Several extensions / interpretations / accelerations

• Extensions and future work

- Matching lower bounds (Woodworth and Srebro, 2016; Lan, 2015)
- Sampling without replacement (Gurbuzbalaban et al., 2015)
- Parallelization (Leblond, Pedregosa, and Lacoste-Julien, 2016; Hendrikx, Bach, and Massoulié, 2019)
- Non-convex problems (Reddi et al., 2016)

Outline

1. Introduction/motivation: Supervised machine learning

- Machine learning \approx optimization of finite sums
- Batch optimization methods

2. Fast stochastic gradient methods for convex problems

- Variance reduction: for *training* error
- Single pass SGD: for *testing* error

2. Beyond convex problems

- Generic algorithms with generic "guarantees"
- Global convergence for over-parameterized neural networks

Parametric supervised machine learning

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \dots, n$
- Prediction function $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$
- (regularized) empirical risk minimization:

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \quad \ell(y_i, h(x_i, \theta)) \quad + \quad \lambda \Omega(\theta)$$

data fitting term + regularizer

• Actual goal: minimize test error $\mathbb{E}_{p(x,y)}\ell(y,h(x,\theta))$
Convex optimization problems

- Convexity in machine learning
 - Convex loss and linear predictions $h(x, \theta) = \theta^{\top} \Phi(x)$

Convex optimization problems

• Convexity in machine learning

– Convex loss and linear predictions $h(x,\theta) = \theta^{\top} \Phi(x)$

• (approximately) matching theory and practice

- Fruitful discussions between theoreticians and practitioners
- Quantitative theoretical analysis suggests practical improvements

Convex optimization problems

• Convexity in machine learning

– Convex loss and linear predictions $h(x,\theta) = \theta^{\top} \Phi(x)$

• (approximately) matching theory and practice

- Fruitful discussions between theoreticians and practitioners
- Quantitative theoretical analysis suggests practical improvements

• Golden years of convexity in machine learning (1995 to 2020+)

- Support vector machines and kernel methods
- Inference in graphical models
- Sparsity / low-rank models (statistics + optimization)
- Convex relaxation of unsupervised learning problems
- Optimal transport
- Stochastic methods for large-scale learning and online learning

Convex optimization for machine learning From theory to practice and vice-versa

- Empirical performance "matches" theoretical guarantees
- Theoretical analysis suggests practical improvements

Convex optimization for machine learning From theory to practice and vice-versa

- Empirical performance "matches" theoretical guarantees
- Theoretical analysis suggests practical improvements
- Many other well-understood areas
 - Single pass SGD and generalization errors
 - From least-squares to convex losses
 - High-dimensional inference
 - Non-parametric regression
 - Randomized linear algebra
 - Bandit problems
 - etc...

Convex optimization for machine learning From theory to practice and vice-versa

- Empirical performance "matches" theoretical guarantees
- Theoretical analysis suggests practical improvements
- Many other well-understood areas
 - Single pass SGD and generalization errors
 - From least-squares to convex losses
 - High-dimensional inference
 - Non-parametric regression
 - Randomized linear algebra
 - Bandit problems
 - etc...
- What about deep learning?

Theoretical analysis of deep learning

• Multi-layer neural network $h(x,\theta) = \theta_m^{\top} \sigma(\theta_{m-1}^{\top} \sigma(\cdots \theta_2^{\top} \sigma(\theta_1^{\top} x)))$

- NB: already a simplification

Theoretical analysis of deep learning

• Multi-layer neural network $h(x,\theta) = \theta_m^{\top} \sigma(\theta_{m-1}^{\top} \sigma(\cdots \theta_2^{\top} \sigma(\theta_1^{\top} x)))$

- Generalization guarantees
 - See "MythBusters: A Deep Learning Edition" by Sasha Rakhlin
 - Bartlett et al. (2017); Golowich et al. (2018)

Theoretical analysis of deep learning

• Multi-layer neural network $h(x,\theta) = \theta_m^{\top} \sigma(\theta_{m-1}^{\top} \sigma(\cdots \theta_2^{\top} \sigma(\theta_1^{\top} x)))$

- Generalization guarantees
 - See "MythBusters: A Deep Learning Edition" by Sasha Rakhlin
 - Bartlett et al. (2017); Golowich et al. (2018)

• Optimization

- Non-convex optimization problems

Optimization for multi-layer neural networks

- What can go wrong with non-convex optimization problems?
 - Local minima
 - Stationary points
 - Plateaux
 - Bad initialization
 - etc...

Optimization for multi-layer neural networks

- What can go wrong with non-convex optimization problems?
 - Local minima
 - Stationary points
 - Plateaux
 - Bad initialization
 - etc...

- Generic local theoretical guarantees
 - Convergence to stationary points or local minima
 - See, e.g., Lee et al. (2016); Jin et al. (2017)

Optimization for multi-layer neural networks

- What can go wrong with non-convex optimization problems?
 - Local minima
 - Stationary points
 - Plateaux
 - Bad initialization
 - etc...

• General global performance guarantees impossible to obtain

• Predictor:
$$h(x) = \theta_2^{\top} \sigma(\theta_1^{\top} x) = \sum_{i=1}^m \theta_2(i) \cdot \sigma[\theta_1(\cdot, i)^{\top} x]$$

• Goal: minimize $R(h) = \mathbb{E}_{p(x,y)}\ell(y,h(x))$, with R convex

• **Predictor**:
$$h(x) = \theta_2^\top \sigma(\theta_1^\top x) = \sum_{i=1}^m \theta_2(i) \cdot \sigma[\theta_1(\cdot, i)^\top x]$$

- Family:
$$h = \frac{1}{m} \sum_{i=1}^{m} \Psi(w_i)$$
 with $\Psi(w_i)(x) = m\theta_2(i) \cdot \sigma[\theta_1(\cdot, i)^\top x]$

• Goal: minimize $R(h) = \mathbb{E}_{p(x,y)}\ell(y,h(x))$, with R convex

• **Predictor**:
$$h(x) = \theta_2^\top \sigma(\theta_1^\top x) = \sum_{i=1}^m \theta_2(i) \cdot \sigma[\theta_1(\cdot, i)^\top x]$$

m

- Family:
$$h = \frac{1}{m} \sum_{i=1}^{m} \Psi(w_i)$$
 with $\Psi(w_i)(x) = m\theta_2(i) \cdot \sigma[\theta_1(\cdot, i)^\top x]$

- Goal: minimize $R(h) = \mathbb{E}_{p(x,y)}\ell(y,h(x))$, with R convex
- Main insight

• **Predictor**:
$$h(x) = \theta_2^\top \sigma(\theta_1^\top x) = \sum_{i=1}^m \theta_2(i) \cdot \sigma[\theta_1(\cdot, i)^\top x]$$

- Family:
$$h = \frac{1}{m} \sum_{i=1}^{m} \Psi(w_i)$$
 with $\Psi(w_i)(x) = m\theta_2(i) \cdot \sigma \left[\theta_1(\cdot, i)^\top x\right]$

- Goal: minimize $R(h) = \mathbb{E}_{p(x,y)}\ell(y,h(x))$, with R convex
- Main insight

$$-h = \frac{1}{m} \sum_{i=1}^{m} \Psi(w_i) = \int_{\mathcal{W}} \Psi(w) d\mu(w) \text{ with } d\mu(w) = \frac{1}{m} \sum_{i=1}^{m} \delta_{w_i}$$

- Overparameterized models with m large \approx measure μ with densities
- Barron (1993); Kurkova and Sanguineti (2001); Bengio et al. (2006); Rosset et al. (2007); Bach (2017)

Optimization on measures

- Minimize with respect to measure μ : $R\Big(\int_{\mathcal{W}} \Psi(w)d\mu(w)\Big)$
 - Convex optimization problem on measures
 - Frank-Wolfe techniques for incremental learning
 - Non-tractable (Bach, 2017), not what is used in practice

Optimization on measures

- Minimize with respect to measure μ : $R\Big(\int_{\mathcal{W}} \Psi(w) d\mu(w)\Big)$
 - Convex optimization problem on measures
 - Frank-Wolfe techniques for incremental learning
 - Non-tractable (Bach, 2017), not what is used in practice
- Represent μ by a finite set of "particles" $\mu = \frac{1}{m} \sum_{i=1}^{m} \delta_{w_i}$
 - Backpropagation = gradient descent on (w_1, \ldots, w_m)

• Two questions:

- Algorithm limit when number of particles m gets large
- Global convergence

• General framework: minimize $F(\mu) = R\left(\int_{\mathcal{W}} \Psi(w)d\mu(w)\right)$

- Algorithm: minimizing
$$F_m(w_1, \dots, w_m) = R\Big(\frac{1}{m}\sum_{i=1}^m \Psi(w_i)\Big)$$

- General framework: minimize $F(\mu) = R\left(\int_{\mathcal{W}} \Psi(w)d\mu(w)\right)$
 - Algorithm: minimizing $F_m(w_1, \ldots, w_m) = R\left(\frac{1}{m}\sum_{i=1}^m \Psi(w_i)\right)$
 - Gradient flow $\dot{W} = -m\nabla F_m(W)$, with $W = (w_1, \ldots, w_m)$
 - Idealization of (stochastic) gradient descent

• General framework: minimize $F(\mu) = R\left(\int_{\mathcal{W}} \Psi(w)d\mu(w)\right)$

– Algorithm: minimizing
$$F_m(w_1, \dots, w_m) = R\left(\frac{1}{m}\sum_{i=1}^m \Psi(w_i)\right)$$

- Gradient flow $\dot{W} = -m\nabla F_m(W)$, with $W = (w_1, \ldots, w_m)$
- Idealization of (stochastic) gradient descent
- \bullet Limit when m tends to infinity
 - Wasserstein gradient flow (Nitanda and Suzuki, 2017; Chizat and Bach, 2018; Mei, Montanari, and Nguyen, 2018; Sirignano and Spiliopoulos, 2018; Rotskoff and Vanden-Eijnden, 2018)

• Two ingredients: homogeneity and initialization

- **Two ingredients**: homogeneity and initialization
- Homogeneity (see, e.g., Haeffele and Vidal, 2017; Bach et al., 2008)
 - Full or partial, e.g., $\Psi(w_i)(x) = m\theta_2(i) \cdot \sigma [\theta_1(\cdot, i)^\top x]$
 - Applies to rectified linear units (but also to sigmoid activations)
- Sufficiently spread initial measure
 - Needs to cover the entire sphere of directions

Simple simulations with neural networks

• ReLU units with d = 2 (optimal predictor has 5 neurons)

Conclusions Optimization for machine learning

• Well understood

- Convex case with a single machine
- Matching lower and upper bounds for variants of SGD
- Non-convex case: SGD for local risk minimization

Conclusions Optimization for machine learning

• Well understood

- Convex case with a single machine
- Matching lower and upper bounds for variants of SGD
- Non-convex case: SGD for local risk minimization
- Not well understood: many open problems
 - Step-size schedules and acceleration, conditioning
 - Dealing with non-convexity
 - (global minima vs. local minima and stationary points)
 - Distributed learning: multiple cores, GPUs, and cloud
 - Beyond running time

References

- F. Bach and E. Moulines. Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n). In Adv. NIPS, 2013.
- F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimization with sparsity-inducing penalties. *Foundations and Trends in Machine Learning*, 4(1):1–106, 2012a.
- F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Structured sparsity through convex optimization, 2012b.
- Francis Bach. Breaking the curse of dimensionality with convex neural networks. *Journal of Machine Learning Research*, 18(1):629–681, 2017.
- Francis Bach, Julien Mairal, and Jean Ponce. Convex sparse matrix factorizations. Technical Report 0812.1869, arXiv, 2008.
- A. R. Barron. Universal approximation bounds for superpositions of a sigmoidal function. *IEEE Transactions on Information Theory*, 39(3):930–945, 1993.
- Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for neural networks. In *Advances in Neural Information Processing Systems*, pages 6240–6249, 2017.
- Y. Bengio, N. Le Roux, P. Vincent, O. Delalleau, and P. Marcotte. Convex neural networks. In *Advances in Neural Information Processing Systems (NIPS)*, 2006.
- L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In Adv. NIPS, 2008.
- M. A. Cauchy. Méthode générale pour la résolution des systèmes d'équations simultanées. *Comptes rendus des séances de l'Académie des sciences*, 25(1):536–538, 1847.

- Lénaïc Chizat and Francis Bach. On the global convergence of gradient descent for over-parameterized models using optimal transport. In *Advances in neural information processing systems*, pages 3036–3046, 2018.
- A. Defazio, F. Bach, and S. Lacoste-Julien. Saga: A fast incremental gradient method with support for non-strongly convex composite objectives. In *Advances in Neural Information Processing Systems* (NIPS), 2014.
- Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-independent sample complexity of neural networks. In *Conference On Learning Theory*, pages 297–299, 2018.
- M. Gurbuzbalaban, A. Ozdaglar, and P. Parrilo. On the convergence rate of incremental aggregated gradient algorithms. Technical Report 1506.02081, arXiv, 2015.
- Benjamin D. Haeffele and René Vidal. Global optimality in neural network training. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 7331–7339, 2017.
- Hadrien Hendrikx, Francis Bach, and Laurent Massoulié. Asynchronous accelerated proximal stochastic gradient for strongly convex distributed finite sums. Technical Report 1901.09865, arXiv, 2019.
- Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M. Kakade, and Michael I. Jordan. How to escape saddle points efficiently. *arXiv preprint arXiv:1703.00887*, 2017.
- R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance reduction. In *Advances in Neural Information Processing Systems*, 2013.
- V. Kurkova and M. Sanguineti. Bounds on rates of variable-basis and neural-network approximation. *IEEE Transactions on Information Theory*, 47(6):2659–2665, Sep 2001.
- G. Lan. An optimal randomized incremental gradient method. Technical Report 1507.02000, arXiv,

2015.

- N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential convergence rate for strongly-convex optimization with finite training sets. In *Advances in Neural Information Processing Systems (NIPS)*, 2012.
- R. Leblond, F. Pedregosa, and S. Lacoste-Julien. Asaga: Asynchronous parallel Saga. Technical Report 1606.04809, arXiv, 2016.
- Jason D. Lee, Max Simchowitz, Michael I. Jordan, and Benjamin Recht. Gradient descent only converges to minimizers. In *Conference on Learning Theory*, pages 1246–1257, 2016.
- Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of two-layers neural networks. Technical Report 1804.06561, arXiv, 2018.
- A. S. Nemirovski and D. B. Yudin. Problem complexity and method efficiency in optimization. Wiley & Sons, 1983.
- Atsushi Nitanda and Taiji Suzuki. Stochastic particle gradient descent for infinite ensembles. *arXiv* preprint arXiv:1712.05438, 2017.
- S. J. Reddi, A. Hefny, S. Sra, B. Póczós, and A. Smola. Stochastic variance reduction for nonconvex optimization. Technical Report 1603.06160, arXiv, 2016.
- H. Robbins and S. Monro. A stochastic approximation method. *Ann. Math. Statistics*, 22:400–407, 1951.
- S. Rosset, G. Swirszcz, N. Srebro, and J. Zhu. ℓ_1 -regularization in infinite dimensional feature spaces. In *Proceedings of the Conference on Learning Theory (COLT)*, 2007.

Grant M. Rotskoff and Eric Vanden-Eijnden. Neural networks as interacting particle systems:

Asymptotic convexity of the loss landscape and universal scaling of the approximation error. *arXiv preprint arXiv:1805.00915*, 2018.

- B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, 2001.
- J. Shawe-Taylor and N. Cristianini. *Kernel Methods for Pattern Analysis*. Cambridge University Press, 2004.
- Justin Sirignano and Konstantinos Spiliopoulos. Mean field analysis of neural networks. *arXiv preprint arXiv:1805.01053*, 2018.
- M. V. Solodov. Incremental gradient algorithms with stepsizes bounded away from zero. *Computational Optimization and Applications*, 11(1):23–35, 1998.
- Blake E. Woodworth and Nati Srebro. Tight complexity bounds for optimizing composite objectives. In *Advances in neural information processing systems*, pages 3639–3647, 2016.
- L. Zhang, M. Mahdavi, and R. Jin. Linear convergence with condition number independent access of full gradients. In *Advances in Neural Information Processing Systems*, 2013.