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Computing regularization paths
for learning multiple kernels

e Kernel methods for supervised learning:

— Predict y from z as f(z) = w' ®(x)
— Learning from data (x;,v;), i =1,...,n
— Optimization problem:

minimize Zié(yi,wT@(l‘i)) + AJw][?

“training error’ +  “regularization”

e [wo major issues:

— Choosing ®(x), i.e., the kernel k(z,y) = ®(x) " ®(y)
— Choosing the regularization parameter A



Learning multiple kernels and regularization paths

e Search over conic combinations k(x,y) = > . n;jk;(z,y), n; =20

e Equivalent to using ®(z) = (P1(x),..., Pm(x)) , w = (wq,...

and a block 1-norm:
minimize >, £(y;, ) w; ®;(x;)) + A |lwjl]

o Assume ®,(z), j =1,...,m, known, and solve for all )

= compute the regularization path: w*(\), A € Ry

e Potential gains:

— Theoretical: understand block 1-norm regularization better
— Practical: get the entire path at the cost of one point

, W)



“Classical” kernel learning (2-norm regularization)

Primal problem min,, (3, ¢;(w' ®(x;)) + 5]|w]||?)
Dual problem max,cgn ( > Yi(Aay) — —OzTKOc)
Optimality conditions Vi, (Ka); + ¥.(Aa;) =0

e Assumptions on “loss” ;:

— ;(u) strictly convex twice differentiable
— ;(v) Fenchel conjugate of w;(u), i.e., ¥;(v) = maxy,cr(vu—p;(u))

pi(u) i(v)
Least-squares 1 5 1 2
regression 2 (yi =) 2V T
Logistic (1+vy;) log(1+vy;)
log(1 —YiU;
regression og(1 + exp(=yiui)) —vy; log(—vy;)




Block 1-norm regularization

m feature spaces F; and feature maps ®,(z):

Primal problem:
: T
e D S | D w R |+ A ]l
(] J J

Convex non differentiable : reformulation using conic constraints

Dual problem:

max, — y_. ¥;(Aa;) such that Vj,a' K;a < dz



Block 1-norm regularization

e Optimality conditions:

Vi, (O_;niK )i + vi(Aai) =0
V7, ozTchv < d?,nj > 0,n,(ds — ozTKja) = 0.

e Optimal solution «, solution of the 2-norm problem with a conic
combination of basis kernels:

K =) nK,
j



Geometric intepretation

e Dual problem:

max, — »_, ¥i(Aa;) such that Vj, o' Kjo < d2

e “target” : (3; = argmax;(v)

A . /8 _

a\ % A
(target)

(solution) |




Active sets

o If J=1{j,m;, >0} is known, solution («,n) defined by

Vi, <Zjej anja)i + wé(AO"L) =0
Vj e J, ozTKja = d?

e n + |J| differentiable equations with n + |J| unknowns
= smooth path, easy to follow, but ...

e Valid while np; > 0, 5 € J, and ozTKjoz < d?, jéJ.

e Change of active sets
= piecewise smooth path, hard to follow

e NB: with one kernel, path is piecewise linear (Hastie et at., 2004)



Log-barrier regularization

e Dual problem:

max, — y_,¥;(Aa;) such that Vj, o' K;a < d3

e Regularized dual problem:
maxe — ) _; Yi(Aai) +p ) log(d5 — a' Kja)

e Properties:

— Unconstrained concave maximization

— n function of «

— (v IS unique

— «a(\) differentiable function, easy to follow

J



Predictor-corrector method

e Follow solution of F'(a, \) =0

e Predictor steps

— First order approximation using g—i‘ = — (

e Corrector steps

— Newton's method to converge back to solution

oF
oo

)—1aF

Predictor Step

Corrector
Steps

(a1, A1)

Path

[2



Predictor-corrector method: implementation issues

Corrector
Steps

Predictor Step [

(ala)\l)

Path

e Step-size selection for predictor step: 0o

— adaptive selection

e Second order approximation



Initialization

A 1 /8 _

O\ A

(target)

(solution) |
°

N
o if (%) K; (g) < d?, then a = g is solution

e Initialize using A\ = max;(3' K;3/d?)"/? and a = 3/



Link with interior point methods

e Regularized dual problem:
maxy — y_; ¥i(Aag) + p - log(ds — a' Kja)

e Interior point methods:

— A fixed, u followed from large to small

e Regularization path:

— 1 fixed small, A followed from large to small



Computational complexity

e n number of data points, m number of kernels
e Interior point method to obtain one solution: O(mn?)

e Path following method

— Each predictor-corrector step: O(n?°)
— Empirically O(m) steps
— Total complexity O(mn?)



Simulations

e Set up for given supervised learning problem:

— Build a large number of “classical” kernels
— Perform path following
— Compute performance on held out validation data

o Goals:

— Select best regularization parameter
— Understand how regularization behaves



Simple example

o Left: regression, right: classification
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— 1n; 1s not a monotonic function of A
— Canonical behavior for extreme values of A




Training /testing error
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e Canonical behavior as )\ decreases

— Training performance decreases to zero

— Testing performance decreases, increases, then stabilizes
e Importance of d; (weight of penalization = » . d;[|w;||)

— d; should be an increasing function of the “rank” of K;:

1 Y
d; = | number of eigenvalue > —>
2n

— v small = d; rank independent



Importance of d;

o Left: v =0, right: v =1

e Top: training (bold)/testing (dashed) error
bottom: number of kernels
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Conclusion

e Computing regularization paths for multiple kernels

— Same complexity than solving for one point
— Theoretical understanding of regularization
— Practical implications

e Future work:

— Theoretical complexity results
— Efficient implementation: from cubic to quadratic in n



