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1.1 Motivation

Nowadays, data are everywhere and it has become crucial (as well industrially as scientif-
ically) to learn from this always growing amount of data. As the way to obtain data has
improved, the major problem faced in this context is that we collect many instances of a sin-
gle phenomenon which can be quite complex in terms of data : that is we get n observations
of an object in a d-dimensional space with n and d “quite big”.

For instance when someone is searching information on a web search engine; in order to
recommend the most likely interesting web pages the search engine has a database composed
of n users of the engine and d variables assigned to existing web pages indicating if they
were visited or not. The same situation appears in marketing where the goal is to make the
“best” personalized recommendation to one potential buyer knowing some information about
him/her and other users.

Such a problem appears also in scientific contexts, for example when we aim at visual
object recognition, d is the “size” of the picture we want to give information about and n
is the number of pictures we already have information about or in bioinformatics when it
comes about dealing with the millions of proteins playing important roles and represented
by very complex structured data.

In this course we will thus consider a large-scale machine learning context, that is :

• the number of observations n will be large.

• the dimension d of each observation will be large as well.

Our main objective will be to show how to deal with the problem of machine learning in
this large-scale context with statistical and optimizational tools allowing a tractable running-
time complexity; the ideal complexity being the time needed to read the data : O(nd), or
more generally the number of non-zeros when dealing with sparse inputs.

1.2 Supervised Learning

Context : We’re looking at n observations (xi, yi) ∈ X × Y , i = 1, . . . , n i.i.d and knowing x
we would like to give a prediction of an unseen y thanks to a function θ⊤Φ(x) linear in the
“features” Φ(x) ∈ R

d.
To perform this task, the most common approach is regularized empirical risk minimiza-

tion which main goal is to find θ̂ which minimizes the regularized empirical risk, that is, to
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solve the optimization problem :

min
θ∈Rd

(

1

n

n∑

i=1

ℓ
(
yi, θ

⊤Φ(xi)
)
+ µΩ(θ)

)

,

where ℓ : Y × R → R
+ is a loss function and Ω(θ) is called a regularizer. The solution to

this optimization problem is then called “mpirical risk minimizer ” and abbreviated ERM.

Note 1.2.1 In order to choose Φ well-adapted to the problem, deep learning techniques can
be used but that is out of the scope of this course and Φ is supposed to be known in the
following classes. See, e.g., [1].

There are two fundamentals questions : how to compute θ̂ and how to analyze its statisti-
cal properties. These questions can be tackled separately but dealing with it simultaneously
actually allows much better results in term of running-time complexity. To perform this
task, the two following quantities will be considered :

• the empirical risk f̂(θ) = 1
n

∑n

i=1 ℓ
(
yi, θ

⊤Φ(xi)
)

(computable with the only data).

• the expected risk f(θ) = E(x,y)

[
ℓ
(
yi, θ

⊤Φ(xi)
)]

(which is practically unknown because
we do not know the distribution the data are sampled from).

Our ERM as defined previously is often used in practice. There is an equivalent definition
using Lagrange duality :

min
θ∈Rd

(

1

n

n∑

i=1

ℓ
(
yi, θ

⊤Φ(xi)
)

)

such that Ω(θ) 6 D.

This definition is easier to analyze in theory. It can be used in practice as well but one needs
to be really careful about the choice of D.

1.2.1 Usual losses

The most common loss in regression is the quadratic loss function. Let y ∈ R and ŷ = θ⊤Φ(x)
our prediction. The quadratic loss function is then defined as

ℓ(y, ŷ) =
1

2

(
y − θ⊤Φ(x)

)2
.

In classification we use the binary loss defined by ℓ(y, ŷ) = 1yŷ<0 which is the most natural
loss (leading to the usual error rate).

Nevertheless, this loss function is neither differentiable nor continuous and hence there is
no way to effectively optimize the empirical risk using it. The trick is to use instead convex
loss functions known as a convex surrogates (see Figure 1.1). The three convex losses we will
consider in this case are :

• the hinge loss : ℓ
(
y, θ⊤Φ(x)

)
= max

({
1− yθ⊤Φ(x), 0

})
.

• the logistic loss: ℓ
(
y, θ⊤Φ(x)

)
= log

(
1 + exp

(
−yθ⊤Φ(x)

))
.

• the quadratic loss function (already mentioned).
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Figure 1.1. Convex surrogates for binary classification.

1.2.2 Usual regularizers

The goal of a regularizer is to avoid overfitting by penalizing values of the parameter θ which
would account well for the learning sample but would show poor generalization performances.
The most commonly used regularizers are :

• the euclidean norm ‖θ‖22 =
∑d

j=1 |θj|2 which is convex and hence numerically feasible
and is convenient because of the representer theorem related to it existing in RKHS-
theory [3].

• the lasso ℓ1-norm ‖θ‖1 =
∑d

j=1 |θj | which induces sparsity allowing not only variable
selection but also model selection (see, e.g., [4] and references therein for structured
situations).

When looking for theoretical properties of an optimization problem, it is often easier to use
the constrained version of it but when concentrating on the computation of solutions to the
problem, it is easier to consider the regularized version.

1.3 General assumptions

We then make the following additional assumption on the features :

∃R > 0/∀x ∈ R
d, ‖Φ(x)‖2 6 R.

We define the loss for a single observation:

∀i ∈ {1, . . . , n}, fi(θ) = ℓ(yi, θ
⊤Φ(xi))

so that ∀i ∈ {1, . . . , n}, f(θ) = E [fi(θ)].
We then assume that fi, fand f̂ have the following properties :

• they are convex on R
d.

• they are Lipschitz-continuous, smooth and/or strongly convex.
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Figure 1.2. Subgradient.

1.3.1 Convexity

Definition 1.1 (Convexity) A function g : Rd → R is convex, if and only if :

• Without further assumption :

∀(θ1, θ2) ∈
(
R

d
)2

, α ∈ [0, 1], g(αθ1 + (1− α)θ2) 6 αg(θ1) + (1− α)g(θ2).

• Assuming differentiability :

∀(θ1, θ2) ∈
(
R

d
)2

, g(θ1) > g(θ2) + g′(θ2)
⊤(θ1 − θ2).

• If twice differentiable :

∀θ ∈ R
d, g′′(θ) < 0 positive semi-definite Hessian.

The main reasons why we use convex functions is that a local minimum is in fact a global
minimum and that it allows to use convex duality to solve optimization problems.

1.3.2 Subgradients and subdifferientials

Definition 1.2 (Subgradients and subdifferentials) Let g : Rd → R be a convex func-
tion. s ∈ R

d is said to be a subgradient of g at point θ ∈ R
d if and only if:

∀θ′ ∈ R
d, g(θ′) > g(θ) + s⊤(θ′ − θ)

The set of all the subgradients of g at point θ ∈ R
d written ∂g(θ) is called the subdifferential

of at point θ. See Figure 1.2.

Example 1.3.1 The function g : R → R defined by g(x) = |x| = max(−x, x) is such that :

∀θ ∈ R, ∂g(θ) =







{−1} if θ < 0.

[−1,+1] if θ = 0.

{+1} if θ > 0.

Example 1.3.2 With the hinge loss h(u) = max{1− u, 0}, we have ∂h(1) = [−1, 0].

Theorem 1.3 If g : R
d → R is a convex differentiable function at point θ ∈ R

d, then,
∂g(θ) = {g′(θ)}.
Theorem 1.4 For any convex function defined on R

d, the differential is non-empty at all
points θ.
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1.3.3 Lipschitz continuity

Definition 1.5 (Lipschitz continuity) If g : Rd → R is a convex differentiable function,
then, the two following properties are equivalent :

∀θ ∈ R
d, ‖θ‖2 6 D ⇒ ‖g′(θ)‖2 6 B

⇔

∀(θ, θ′) ∈
(
R

d
)2

, ‖θ‖2, ‖θ′‖2 6 D ⇒ |g(θ)− g(θ′)| 6 B‖θ − θ′‖2.
In this case, we say that g has gradients uniformly bounded by B on the ball of center 0 and
radius D or equivalently that g is B-Lipschitz continuous on the ball of center 0 and radius
D (with respect to ‖.‖2).

Example 1.3.3 Coming back to our ERM, let g be defined by g(θ) = 1
n

∑n

i=1 ℓ
(
yi, θ

⊤Φ(xi)
)
.

If we assume that the loss is differentiable and G-Lipschitz and that the data are R-bounded,

we easily compute the following upper bound ∀ (θ, θ′) ∈
(
R

d
)2

:

|f(θ)− f(θ′)| 6 1

n

n∑

i=1

∣
∣ℓ
(
yi, θ

⊤Φ(xi)
)
− ℓ
(
yi, θ

′⊤Φ(xi)
)∣
∣

6
1

n

n∑

i=1

G
∣
∣θ⊤Φ(xi)− θ′⊤Φ(xi)

∣
∣

6
1

n

n∑

i=1

RG‖θ − θ′‖2 = RG‖θ − θ′‖2.

Thus we get that g is B-Lipschitz continuous with B = GR.

1.3.4 Smoothness

Definition 1.6 A function g : Rd → R is L-smooth if and only if it is differentiable and its
gradient is L-Lipschitz-continuous with respect to ‖.‖2 :

∀(θ1, θ2) ∈
(
R

d
)2

, ‖g′(θ1)− g′(θ2)‖2 6 L‖θ1 − θ2‖2.

Theorem 1.7 If g : Rd → R is twice differentiable then g is L-smooth if and only if ∀θ ∈
R

d, g′′(θ) 4 L · Id.

Example 1.3.4 Coming back to our ERM with g defined by g(θ) = 1
n

∑n

i=1 ℓ(yi, θ
⊤Φ(xi))

and assuming that the loss ℓ is twice differentiable Lloss-smooth and that the data are R-
bounded, we can use the previous theorem.

We compute the first and second derivative of g with respect to θ.
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For the first derivative we get :

g′(θ) =
1

n

n∑

i=1

ℓ′(yi, θ
⊤Φ(xi))Φ(xi).

Hence for the second derivative, where ℓ′′ is the second-derivative with respect to the second
variable:

g′′(θ) =
1

n

n∑

i=1

ℓ′′(yi, θ
⊤Φ(xi))Φ(xi)Φ(xi)

⊤.

Since the loss ℓ is Lloss-smooth so that ℓ′′ 4 Lloss and writing Σ = 1
n

∑n
i=1Φ(xi)Φ(xi)

⊤ the
uncentered empirical covariance matrix of the features, it comes :

g′′(θ) 4 Lloss

1

n

n∑

i=1

Φ(xi)Φ(xi)
⊤ = LlossΣ.

Furthermore, writing λmax (S) the largest eigenvalue of any symmetric matrix S and using
that the data are R-bounded we finally get that :

λmax (LlossΣ) 6 Tr

(

Lloss

1

n

n∑

i=1

Φ(xi)Φ(xi)
⊤

)

= Lloss

1

n

n∑

i=1

Tr
(
Φ(xi)

⊤Φ(xi)
)

6 Lloss

1

n

n∑

i=1

R2 = LlossR
2.

Thus, g is L-smooth with L = LlossR
2.

1.3.5 Strong convexity

Definition 1.8 A function g : Rd → R is µ-strongly convex if and only if

∀(θ1, θ2) ∈
(
R

d
)2

, g(θ1) > g(θ2) + g′(θ2)
⊤(θ1 − θ2) +

µ

2
‖θ1 − θ2‖22.

Example 1.3.5 Coming back to our ERM with g defined by g(θ) = 1
n

∑n
i=1 ℓ(yi, θ

⊤Φ(xi))
and assuming that the loss ℓ is twice differentiable µloss-strongly convex, we can use the
previous theorem.

Reusing the calculations of the previous example and since the loss l is µloss-strongly
convex so that ℓ′′ < µloss · Id and writing again Σ = 1

n

∑n

i=1Φ(xi)Φ(xi)
⊤ the uncentered

empirical covariance matrix of the features, it comes :

g′′(θ) < µ
1

n

n∑

i=1

Φ(xi)Φ(xi)
⊤ = µlossΣ.
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Furthermore, writing λmin (S) the smallest eigenvalue of any symmetric matrix S and assum-
ing that the uncentered empirical covariance matrix of the features is invertible (⇔ λmin (Σ) >
0) we finally get that :

λmin (µlossΣ) > µlossλmin (Σ) > 0.

Thus, g is µ-strictly convex with µ = µlossλmin (Σ).

� Note that strong-convexity is a strong assumption. In particular, in a machine learn-
ing context, this imposes that n > d. Moreover, in practice, even when n is much

larger than d, µ is tiny.

1.4 Analysis of ERM

Approximation and estimation errors: Θ = {θ ∈ R
d,Ω(θ) 6 D}

f(θ̂)− min
θ∈Rd

(f(θ)) =

[

f(θ̂)−min
θ∈Θ

(f(θ))

]

︸ ︷︷ ︸

+

[

min
θ∈Θ

(f(θ))− min
θ∈Rd

(f(θ))

]

︸ ︷︷ ︸

estimation error approximation error

The estimation error is due to the fact that θ̂ has been computed using f̂ instead of f
and the aprroximation error is due the fact that the minimization is made only on Θ and
not on the whole parameter space R

d.

Note 1.4.1 Instead of comparing the performance of the estimator θ̂ with the best linear
prediction min

θ∈Rd

(f(θ)), it is also possible to compare it to the best (non-linear) prediction.

1.4.1 Uniform deviation bounds

Let θ̂ ∈ argminθ∈Θ

(

f̂(θ)
)

be the empirical (constrained) risk minimizer, and θ∗Θ ∈ argminθ∈Θ (f(θ)) .

From the definitions of θ̂ and θ∗Θ, we directly deduce that :

f̂(θ̂)− f̂(θ∗Θ) 6 0.

Using this inequality and rewriting the estimation error as :

f(θ̂)−min
θ∈Θ

(f(θ)) =
[

f(θ̂)− f̂(θ̂)
]

+
[

f̂(θ̂)− f̂(θ∗Θ)
]

+
[

f̂(θ∗Θ)− f(θ∗Θ)
]

,

we get :

f(θ̂)−min
θ∈Θ

(f(θ)) 6 sup
θ∈Θ

[

f(θ)− f̂(θ)
]

+ sup
θ∈Θ

[

f̂(θ)− f(θ)
]

6 2 sup
θ∈Θ

(

|f(θ)− f̂(θ)|
)

.
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1.5 Slow rate for supervised learning

We will show what happens with a quadratic loss function. We remember that in this case
ℓ(y, θ⊤Φ(x)) = 1

2
(y − θ⊤Φ(x))2. From that we get

f̂(θ)− f(θ) =
1

2
θ⊤

(

1

n

n∑

i=1

Φ(xi)Φ(xi)
⊤ − E

[
Φ(X)Φ(X)⊤

]

)

θ

−θ⊤

(

1

n

n∑

i=1

yiΦ(xi)− E [Y Φ(X)]

)

+
1

2

(

1

n

n∑

i=1

y2i − E
[
Y 2
]

)

.

Hence

sup
‖θ‖26D

(

|f(θ)− f̂(θ)|
)

6
D2

2

∥
∥
∥
∥
∥

1

n

n∑

i=1

Φ(xi)Φ(xi)
⊤ − E

[
Φ(X)Φ(X)⊤

]

∥
∥
∥
∥
∥
op

+D

∥
∥
∥
∥
∥

1

n

n∑

i=1

yiΦ(xi)− E [Y Φ(X)]

∥
∥
∥
∥
∥
2

+
1

2

∣
∣
∣
∣
∣

1

n

n∑

i=1

y2i − E
[
Y 2
]

∣
∣
∣
∣
∣
.

sup
‖θ‖26D

(

|f(θ)− f̂(θ)
)

| 6 O(1/
√
n) with high probability from 3 concentration inequalities.

This particular case gives the impression that it should be possible to get such a rate in
O(1/

√
n) for other type of losses than the quadratic loss... See [5] for more details.

Note that in this section, we do not require the loss to be convex.

Definition 1.9 (Rademacher complexity) The Rademacher complexity of the class of
functions (X, Y ) 7→ ℓ(Y, θ⊤Φ(X)) is defined as :

Rn = E

[

sup
θ∈Θ

(

1

n

n∑

i=1

εifi(θ)

)]

.

The “Empirical” Rademacher average R̂n of the class of functions (X, Y ) 7→ ℓ(Y, θ⊤Φ(X))
is defined as :

R̂n = E

[

sup
θ∈Θ

(

1

n

n∑

i=1

εifi(θ)

)∣
∣
∣
∣
D
]

.

Theorem 1.10

E

[

sup
θ∈Θ

(

f(θ)− f̂(θ)
)]

= E

[

sup
θ∈Θ

(

f̂(θ)− f(θ)
)]

6 2Rn.

Proof Let D′ = {x′
1, y

′
1, . . . , x

′
n, y

′
n} an independent copy of the data D = {x1, y1, . . . , xn, yn},

with corresponding loss functions f ′
i(θ). Let (εi)i∈{1,...,n} be i.i.d random variables uniformly
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distributed in {-1,1} and independent of D and D′. It then comes :

E

[

sup
θ∈Θ

f(θ)− f̂(θ)

]

= E

[

sup
θ∈Θ

(

f(θ)− 1

n

n∑

i=1

fi(θ)

)]

= E

[

sup
θ∈Θ

(

1

n

n∑

i=1

E [f ′
i(θ)− fi(θ)|D]

)]

6 E

[

E

[

sup
θ∈Θ

(

1

n

n∑

i=1

(f ′
i(θ)− fi(θ))

)∣
∣
∣
∣
D
]]

= E

[

sup
θ∈Θ

(

1

n

n∑

i=1

(f ′
i(θ)− fi(θ))

)]

= E

[

sup
θ∈Θ

(

1

n

n∑

i=1

εi (f
′
i(θ)− fi(θ))

)]

by symmetry of the εi law

6 2E

[

sup
θ∈Θ

(

1

n

n∑

i=1

εifi(θ)

)]

= 2Rn.

And so it seems that assuming Lipschitz-continuity of the loss function only affords to get a
slow rate for the bound on the estimation error.

Lemma 1.11 (Ledoux-Talagrand refined by Meir and Zhang [2])

R̂n 6 GEε

[

sup
‖θ‖26D

(

1

n

n∑

i=1

εiθ
⊤Φ(xi)

)]

.

Proof Given any b, ai : Θ → R (no assumption) and ϕi : R → R any 1-Lipschitz-functions,
i = 1, . . . , n

Eε

[

sup
θ∈Θ

(

b(θ) +
n∑

i=1

εiϕi(ai(θ))

)]

6 Eε

[

sup
θ∈Θ

(

b(θ) +
n∑

i=1

εiai(θ)

)]

.

We proceed by induction on n ∈ N.
The base case n = 0 is immediatly satisfied.
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Assuming the result holds for n ∈ N, it comes for n + 1 :

Eε1,...,εn+1

[

sup
θ∈Θ

(

b(θ) +

n+1∑

i=1

εiϕi(ai(θ))

)]

= Eε1,...,εn

[

sup
θ,θ′∈Θ

(

b(θ) + b(θ′)

2
+

n∑

i=1

εi
ϕi(ai(θ)) + ϕi(ai(θ

′))

2
+

ϕn+1(an+1(θ))− ϕn+1(an+1(θ
′))

2

)]

= Eε1,...,εn

[

sup
θ,θ′∈Θ

(

b(θ) + b(θ′)

2
+

n∑

i=1

εi
ϕi(ai(θ)) + ϕi(ai(θ

′))

2
+

|ϕn+1(an+1(θ))− ϕn+1(an+1(θ
′))|

2

)]

6 Eε1,...,εn

[

sup
θ,θ′∈Θ

(

b(θ) + b(θ′)

2
+

n∑

i=1

εi
ϕi(ai(θ)) + ϕi(ai(θ

′))

2
+

|an+1(θ)− an+1(θ
′)|

2

)]

= Eε1,...,εnEεn+1

[

sup
θ∈Θ

(

b(θ) + εn+1an+1(θ) +

n∑

i=1

εiϕi(ai(θ))

)]

6 Eε1,...,εn,εn+1

[

sup
θ∈Θ

(

b(θ) + εn+1an+1(θ) +

n∑

i=1

εiai(θ)

)]

by our induction hypothesis.

By mathematical induction, the desired result is then true for all n ∈ N.

Theorem 1.12 If the regularizer is the Euclidean norm ‖.‖2 and that the loss is G-Lipschitz
so that f and f̂ are GR-Lipschitz on the set Θ = {‖θ‖2 6 D} then for 0 < δ < 1, with
probability greater than 1− δ, we get :

sup
θ∈Θ

(

|f̂(θ)− f(θ)|
)

6
ℓ0 +GRD√

n

(

2 +

√

2 log
1

δ

)

.

Furthermore, it holds the following upper bound :

E

[

sup
θ∈Θ

(∣
∣
∣f̂(θ)− f(θ)

∣
∣
∣

)]

6
2GRD√

n
6

2(ℓ0 +GRD)√
n

.

Proof Let’s define Z = supθ∈Θ

(

|f(θ)− f̂(θ)|
)

.

By changing the pair (xi, yi), relying on the G-Lipschitz continuity of the loss on the set
Θ = {‖θ‖2 6 D} and the R-boundedness of the features, Z may only change by :

2

n
sup

(∣
∣ℓ(Y, θ⊤Φ(X))

∣
∣
)
=

2

n
sup

(
|ℓ(Y, 0)|+

∣
∣ℓ(Y, θ⊤Φ(X))− ℓ(Y, 0)

∣
∣
)

6
2

n

(
sup

(
|ℓ(Y, 0)|+G

∣
∣θ⊤Φ(X)θ

∣
∣
))

by G-Lipschitz continuity of ℓ

6
2

n
(sup (|ℓ(Y, 0)|+GRD)) by Cauchy-Schwarz inequality

6
2

n
(ℓ0 +GRD) = c.
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with sup |ℓ(Y, 0)| = ℓ0 so that Z is a Lipschitz-continuous fonction in the (xi, yi).
Hence, the MacDiarmid inequality yields that with probability greater than 1 − δ, it

holds :

Z 6 EZ + c

√

n

2
log

(
1

δ

)

6 2Rn + (ℓ0 +GRD)

√

2

n
log

(
1

δ

)

.

Noticing that Rn = E

[

R̂n

]

and remembering Ledoux-Talagrand result given by the

previous lemma, it then comes :

Rn 6 GE

[

sup
‖θ‖26D

(

1

n

n∑

i=1

εiθ
⊤Φ(xi)

)]

= GE

[∥
∥
∥
∥
∥
D
1

n

n∑

i=1

εiΦ(xi)

∥
∥
∥
∥
∥
2

]

by Cauchy-Schwarz inequality

6 GD

√
√
√
√
√E





∥
∥
∥
∥
∥

1

n

n∑

i=1

εiΦ(xi)

∥
∥
∥
∥
∥

2

2



 by Jensen’s inequality

6
GRD√

n
by using ‖Φ(x)‖2 6 R and independence of the εi.

Using that E

[

supθ∈Θ

(

f(θ)− f̂(θ)
)]

= E

[

supθ∈Θ

(

f̂(θ)− f(θ)
)]

6 2Rn, we get the

expected estimation error :

E

[

sup
θ∈Θ

(

|f̂(θ)− f(θ)|
)]

6
2GRD√

n
6

2(ℓ0 +GRD)√
n

.

Replacing the later in the MacDiarmid inequality, we have with probability greater
than 1− δ:

sup
θ∈Θ

(∣
∣
∣f(θ)− f̂(θ)

∣
∣
∣

)

6
1√
n

(

2GRD + (GRD + ℓ0)

√

2 log

(
1

δ

))

6
1√
n
(ℓ0 +GRD)

(

2 +

√

2 log

(
1

δ

))

.

Finally getting back to our uniform deviation bounds for the ERM, we get :

Theorem 1.13

f(θ̂)−min
θ∈Θ

(f(θ)) 6 2 sup
θ∈Θ

(∣
∣
∣f̂(θ)− f(θ)

∣
∣
∣

)

6
2√
n
(ℓ0 +GRD)

(

2 +

√

2 log
1

δ

)

.
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So far, we have considered an exact minimizer θ̂ ∈ argminθ∈Θ(f̂(θ̂)) of f̂ but we can’t
always afford exact minimization and instead compute an inexact minimizer η ∈ Θ of f̂ .
The decomposition of the excess risk yields then :

f(η)−min
θ∈Θ

(f(θ)) 6 2 sup
θ∈Θ

(

|f̂(θ)− f(θ)|
)

+
[

f̂(η)− f̂(θ̂)
]

.

And the upper bound on supθ∈Θ(|f̂(θ) − f(θ)|) with high probability ensures that we only
need to optimize with precision 2√

n
(ℓ0 +GRD) : this shows again that it’s worth considering

simultaneously statistical analysis and optimization of our estimator.

1.6 Fast rate for supervised learning

Motivation from mean estimation. We sometimes have better than slow rate conver-
gence if we compute things differently.

Let’s have a mean estimator θ̂ such that :

θ̂ =
1

n

n∑

i=1

zi = argmin
θ∈R

(

1

2n

n∑

i=1

(θ − zi)
2

)

= f̂(θ).

If we use previous results we get something like :

• f(θ) = 1
2
E
[
(θ − z)2

]
= 1

2
(θ − E [z])2 + 1

2
Var(z) = f̂(θ) +O(1/

√
n).

• f(θ̂) = 1
2

(

θ̂ − E [z]
)2

+ 1
2
Var(z) = f (E [z]) +O(1/

√
n).

But we can get way better bound using directly :

f(θ̂)− f(E [z]) =
1

2

(

θ̂ − E [z]
)2

.

E

[

f(θ̂)− f (E [z])
]

=
1

2
E





(

1

n

n∑

i=1

zi − E [z]

)2


 =
1

2n
Var(z).

We get a bound only on θ̂ instead of a uniform bound.

General situation. Let f be the expected risk, f̂ the empirical risk. We supposed fur-
thermore that :

• Features are bounded and the function loss is Lipschitz.

• f is convex.

• Regularized risks: fµ(θ) = f(θ) + µ

2
‖θ‖22 and f̂µ(θ) = f̂(θ) + µ

2
‖θ‖22.

As defined, fµ(θ) is µ-strongly convex.
Under these assumptions we get the following result :
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Theorem 1.14 (Sridharan, Srebro, Shalev-Shwartz (2008)) For any a > 0, with prob-
ability greater than 1− δ, for all θ ∈ R

d :

fµ(θ̂)− min
η∈Rd

(fµ(η)) 6
8(1 + 1

a
)G2R2(32 + log

(
1
δ

)
)

µn
.

In contrast to Lipschitz-continuous functions, we observe that strongly convex functions give
a fast rate convergence for supervised learning.

Though the µ term adds a bias to our error so it is important that µ decreases with n to
reduce the approximation error.
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