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Abstract

Active learning refers to algorithmic frameworks aimedalesting training data
points in order to reduce the number of required training gatints and/or im-
prove the generalization performance of a learning methiodthis paper, we
present an asymptotic analysis of active learning for gaized linear models.
Our analysis holds under the common practical situation @fieh misspecifica-
tion, and is based on realistic assumptions regarding theeaf the sampling
distributions, which are usually neither independent dentical. We derive un-
biased estimators of generalization performance, as welbtimators of expected
reduction in generalization error after adding a new trjrdata point, that allow
us to optimize its sampling distribution through a convexiraation problem.
Our analysis naturally leads to an algorithm for sequeatitie learning which is
applicable for all tasks supported by generalized lineadet®(e.g., binary clas-
sification, multi-class classification, regression) and lsa applied in non-linear
settings through the use of Mercer kernels.

1 Introduction

The goal of active learning is to select training data pogutshat the number of required training
data points for a given performance is smaller than the nawhéh is required when randomly
sampling those points. Active learning has emerged as andigrfeeld of research in machine learn-
ing and statistics [1], from early works in optimal experimed design [2, 3], to recent theoretical
results [4] and applications, in text retrieval [5], imagérieval [6] or bioinformatics [7].

Despite the numerous successful applications of activailegto reduce the number of required
training data points, many authors have also reported cakese widely applied active learning
heuristic schemes such as maximum uncertainty samplifigrpeworse than random selection [8,
9], casting doubt into the practical applicability of aetiearning: why would a practitioner use an
active learning strategy that is not ensuring, unless the sktisfy possibly unrealistic and usually
non verifiable assumptions, that it performs better thanleer? The objectives of this paper are
(1) to provide a theoretical analysis of active learningwéalistic assumptions and (2) to derive a
principled algorithm for active learning with guaranteeshsistency.

In this paper, we consideeneralized linear model[d.0], which provide flexible and widely used
tools for many supervised learning tasks (Section 2). Oalyais is based on asymptotic arguments,
and follows previous asymptotic analysis of active leagrihl, 12, 9, 13]; however, as shown in
Section 4, we do not rely on correct model specification asdrag that the data are not identically
distributed and may not be independent. As shown in Secti@mubtheoretical results naturally
lead to convex optimization problems for selecting trajndata point in a sequential design. In
Section 6, we present simulations on synthetic data, ilitisg our algorithms and comparing them
favorably to usual active learning schemes.



2 Generalized linear models

Given datar € R¢, and targetg in a set), we consider the problem of modeling the conditional
probability p(y|z) through a generalized linear model (GLIM) [10]. We assunat the are given
an exponential family adapted to our prediction task, offten p(y|n) = exp(n' T'(y) — ¥(n)),
whereT (y) is ak-dimensional vector of sufficient statisties< R* is vector of natural parameters
andy(n) is the convex log-partition function. We then consider teaeralized linear model defined
asp(y|z,0) = exp(tr(0T2T(y) ") — (0" x)), whered € © C R?¥**. The framework of GLIMs is
general enough to accomodate many supervised learning [tek in particular:

e Binary classification: the Bernoulli distribution leads ltgistic regressionwith ) =
{0,1}, T(y) = y andy(n) = log(1 + ).

e k-class classification: the multinomial distribution lead softmax regressiqrwith ) =
{y € {0,135, 320w = 13, T(y) = y andy(n) = log(;_, 7).

e Regression: the normal distribution leads)to= R, T'(y) = (y,—3y*) " € R?, and

2
Y, me) = —% logn2 + %log 21 + 2% When bothy); andn, depends linearly om, we
have an heteroscedastic model, whiledfis constant for allz, we obtain homoscedastic

regression (constant noise variance).

Maximum likelihood estimation ~ We assume that we are given independent and identically dis-
tributed (i.i.d.) data sampled from the distributipf(x, y) = po(2)po(y|z). Themaximum likeli-
hood population estimatdt, is defined as the minimizer of the expectation ungeof the negative
log-likelihood ¢(y, z,0) = —tr(0T2T(y) ") + ¥(6 " z). The functioné(y, z, 6) is convex ind and
by taking derivatives and using the classical relation$legipveen the derivative of the log-partition
and the expected sufficient statistics [10], the populati@ximum likelihood estimate is defined
by:

Epg (0, VI, 7,00) = Epy () {2(Bp(y1,00) T(¥) = Epo(yly 7)) '} =0 @)
Given i.i.d data(z;, y;), i = 1,...,n, we use the penalized maximum likelihood estimator, which
minimizes) " | ((y;, x,0) + %meﬁe. The minimization is performed by Newton’s method [14].

Model specification A GLIM is said well-specifiedis there exists & € R?** such that for
all z € R, Epy10.0T(y) = Epyy1x)T(y). A sufficient condition for correct specification is that

there exist) € R?** such that for all: € R%, y € Y, p(y|z,0) = po(y|z). This condition is
necessary for the Bernoulli and multinomial exponentiedifg, but not for example for the normal
distribution. In practice, the model is often misspecified & is thus of importance to consider
potential misspecification while deriving asymptotic exgians.

Kernels The theoretical results of this paper mainly focus on gdizexdlinear models; however,
they can be readily generalized to non-linear settings liyguslercer kernels [15], for example
leading to kernel logistic regression or kernel ridge regi@n. When the data are given by a kernel
matrix, we can use the incomplete Cholesky decompositi6htfilfind an approximate basis of the
feature space on which the usual linear methods can be dppl@e that our asymptotic results do
not hold when the number of parameters may grow with the detich is the case for kernels such
as the Gaussian kernel). However, our dimensionality réslu@rocedure uses a non-parametric
method on the entire (usually large) training dataset anthese consider a finite dimensional prob-
lem on a much smaller sample. If the whole training datasktrgee enough, then the dimension
reduction procedure may be considered deterministic andrgaria may apply.

3 Active learning set-up

We consider the following “pool-based” active learningrsméo: we have a large set of i.i.d. data

pointsz; € RY, i = 1,...,m sampled frompy(z). The goal of active learning is to select the points
to label, i.e., the points for which the correspondipgwill be observed. We assume that given
x;, 1 =1,...,n, the targets;;, i = 1,...,n are independent and sampled from the corresponding

conditional distributiorpo (y;|x;). This active learning set-up is well studied and appeansraby
in many applications where the input distributiay{«) is only known through i.i.d. samples [5, 17].
For alternative scenarii, where the dengityx) is known, see e.qg. [18, 19, 20].



More precisely, we assume that the points are selected sequentially, and we let denote
gi(z;|z1,...,z;—1) the sampling distribution ofc; given the previously observed points. In
situations where the data are not sampled from the testisigilaition, it has proved advanta-
geous to consider likelihood weighting techniques [13, B9ld we thus consider weights =
wi(z;i|z1, ..., zi—1). We letd,, denote the weighted penalized ML estimator, defined as thée mi
mum with respect t@ of

Yo wil(yi, @i, 0) + %trGTQ. @)
In this paper, we work with two different assumptions regagdthe sequential sampling dis-
tributions: (1) the variables:; are independent, i.eq;(z;|z1,...,zi—1) = q¢(z;), (2) the
variable x; depends oney,...,2;_1 only through the current empirical ML estimatéy, i.e.,
gi(zi|me, ..., zim1) = q(x)0;), whereq(z;|0) is a pre-specified sampling distribution. The first
assumption is not realistic, but readily leads to asymptetpansions. The second assumption is
more realistic, as most of the heuristic schemes for seg@tive learning satisfy this assumption.
It turns out that under certain assumption, the asymptapeamsions of the expected generalization
performance for both sets of assumptions are identical.

4 Asymptotic expansions

In this section, we derive the asymptotic expansions thitleed to active learning algorithms in
Section 5. Throughout this section, we assumejthét) has a compact suppakf and has a twice
differentiable density with respect to the Lebesgue measurd that all sampling distributions have
a compact support included in the onepgfz) and have twice differentiable densities.

We first make the assumption that the variabtesreindependenti.e., we have sampling distri-
butionsg; (z;) and weightsw;(z;), both measurable, and such tha{z;) > 0 forall z; € K. In
Section 4.4, we extend some of our results to the dependset ca

4.1 Bias and variance of ML estimator

The following proposition is a simple extension to non ideaty distributed observations, of clas-
sical results on maximum likelihood for misspecified gefieed linear models [21, 13]. We Idip
andvarp denote the expectation and variance with respect to theltlat& (z;,v;), i = 1,...,n}.

Proposition 1 We letd,, denote the minimizer of;_; Eq,(2)po(ys o) Wi () L(yi, x4, 0). If (@) the
weight functionsw,, and the sampling densitieg, are pointwise strictly positive and such that
wy, ()gn () converges in thé>°-norm, and (b)E, . w3 () is bounded , thed,, — ,, converges
to zero in probability and we have

Epby, =0, +O(n ') and varp 0, = LJ 11,01 + O(n~?) (3)

whereJ, = L 3% | B, ywi(2)V2¢(x, 0,) can be consistently estimated By = 1 S°7 | w;h;
andl, = L3 Ey ypowle)wi(2)?VLy, z,0,)Ve(y,z,0,) " can be consistently estimated by

I, = %Z?:l wzzgigi—r! whereg; = V{(y;, x4, én) andh; = V3{(x;, én)'

From Proposition 1, it is worth noting that in genefalwill not converge to the population maxi-
mum likelihood estimaté,, i.e., using a different sampling distribution thag(x) may introduce

a non asymptotically vanishing bias in estimatthg Thus, active learning requires to ensure that
(a) our estimators have a low bias and variance in estimétjngnd (b) tha®¥,, does actually con-
verge tod,. This double objective is taken care of by our estimates négaization performance in
Propositions 2 and 3.

There are two situations, however, whégis equal tofy. First, if the model is well specified,
then whatever the sampling distributions atg,is the population ML estimate (which is a simple
consequence of the fact thal,,1,.0,)T(y) = Epyyj2)T (y), for all z, implies that, for allg(x),

Eqg@ypo(vla) VI, 7,0) = Ey(a) {2(Ep(y12.60) T (W) = Epo(y1a)T()) "} = 0)-
Second, Whenw,, (z) = po(x)/q.(x), thend,, is also equal tdy, and we refer to this weighting

scheme as the unbiased reweighting scheme, which was ug2€]by the context of active learn-
ing. We refer to the weighta“ = po(z,)/g.(x,) as theimportanceweights. Note however, that



restricting ourselves to such unbiased estimators, asiddt@] might not be optimal because they
may lead to higher variance [13], in particular due to theeptiil high variance of the importance
weights (see simulations in Section 6).

4.2 Expected generalization performance

We let L*(0) = Ep, (x)po (412){(y, , 0) denote the generalization performahoéthe parametef.

We now provide an unbiased estimator of the expected gezretiah error ofd,,, which generalized
the Akaike information criterion [22] (for a proof, see [23]

Proposition 2 In addition to the assumptions of Proposition 1, we assumat th
By, () (po(z) /g (x))? is bounded. Let

/G\ = % Z;l:l wff(yu T, én) + % (% Z?:l wrw’bg;r(jn)_lgl) ) (4)

wherew! = po(x;)/q:(x;). G is an asymptotically unbiased estimatorf L* (6,,), i.e., EpG =
EpL*(0,) +O(n~?).

The criterionG is a sum of two terms: the second term corresponds to a vari@nm and will
converge to zero in probability at rate(n—!); the first term, however, which corresponds to a
selection bias induced by a specific choice of samplingiligions, will not always converge to
the minimum possible valué“(6,). Thus, in order to ensure that our active learning method are
consistent, we have to ensure that this first term is gointstminimum value. One simple way to

achieve this is to always optimize our weights so that thieneseG is smaller than the estimate for
the unbiased reweighting scheme (see Section 5).

4.3 Expected performance gain

We now look at the following situation: we are given the finstlata points(xl, y;) and the cur-
rent estimatéd),,, the grad|ent.°gl = VU(y;, x:,0,), the Hessiang; = V2{(x;,0,) and the third

derivativesT; = V3/{(z;, Gn), we consider the following criterion, which depends on thmpling
distributions and weights of thg: + 1)-th point:

f[(anrl, Wni1la, B) = n_ld 2?21 aiw?wnJrl(x%)M + ZZ 1 Biwdt wn+1(l’z)2% 5)

po () po(
where o; = —(n+1 )nngj A— w'w“gl hig; +w;'g; Jngi — 292’ B
_w’Lg’L J gz + T [gz» C] 2wz Th A + T [Aug]iv gz] (6)
B = TJugz +A higi (7)

with §; = Jlgi, A = Jnli M wtg, B = Y0 wiwihigi, C = Y0 wiwlgig) , JE =
lzn wuh‘
n =1 i 'Y

The following proposition shows thﬁ(q,L+1,w,L+1|a,ﬂ) is an estimate of the expected perfor-
mance gain of choosing a point . ; according to distribution,, ; and weightw,, 1 (and marginal-
izing overy, 1) and may be used as an objective function for learning theilisionsq,, 1, wy,+1
(for a proof, see [23]). In Section 5, we show that if the dligttions and weights are properly
parameterized, this leads to a convex optimization problem

Proposition 3 We assume thak, w2 (z) and £, () (p o(2)/qn(2))? are bounded. We let de-
noted,, denote the weighted ML estimator obtained from the firpbints, and§n+1 the one-step
estimator obtained from the firat+ 1 points, i.e.f,, 11 is obtained by one Newton step frém[24];

then the criterion defined in Eq. (5) is such th&s H (¢,41, wpi1) = EpL*(8,) — EpL*(0p41)+
O(n~—?), whereEp denotes the expectation with respect to the firstl data points and their labels.
Moreover, forn large enough, all values ¢f; are positive.

1In this paper, we use the negative log-likelihood as a measure of penfime, which allows simple asymp-
totic expansions, and the focus of the paper is about the different@sdretesting and training sampling
distributions. The study of potentially different costs for testing and traiisifiggyond the scope of this paper.



Note that many of the terms in Eq. (6) and Eg. (7) are dedicateeeighting schemes for the first
n points other than the unbiased reweighting scheme. Forrthmsed reweighting scheme where
w; = wf, fori =1,...,n,thenA = 0 and the equations may be simplified.

4.4 Dependent observations

In this section, we show that under a certain form of weak ddpece between the data points
x;, ¢ = 1,...,n, then the results presented in Propositions 1 and 2 stidl. hBor simplicity and
brevity, we restrict ourselves to the unbiased reweighticlgeme, i.e.w, (z,|z1,...,Tn_1) =
po(xn)/qn(zn|2z1,. .., 2e—1) for all n, and we assume that those weights are uniformly bounded
away from zero and infinity. In addition, we only prove ouruién the well-specified case, which
leads to a simpler argument for the consistency of the e&tima

Many sequential active learning schemes select a trairate gbint with a distribution or criterion
that depends on the estimate so far (see Section 6 for Jetdits thus assume that the sampling

distributiong,, is of the formg(z,,|f,,), whereg(z|9) is a fixed set of smooth parameterized densities.

Proposition 4 (for a proof, see [23]) Let
G = LS willyi,wi,02) + 1 (L X1 w?el (J)1g:)) (®)

wherew; = w¥ = po(z;)/q(x]6;). G is an asymptotically unbiased estimator®$ L* (6,,), i.e.,
EpG = EpL*(6,) + O(log(n)n=2).

The estimator is the same as in Proposition 2. The effecteoflépendence is asymptotically negli-
gible and only impacts the result with the presence of antiaddil log(n) term. In the algorithms
presented in Section 5, the distributignis obtained as the solution of a convex optimization prob-
lem, and thus the previous theorem does not readily appheder, whem gets largeq,, depends
on the previous data points only through the first two deifreatof the objective function of the
convex problem, which are empirical averages of certairctfons of all currently observed data
points; we are currently working out a generalization ofg@sition 4 that allows the dependence
on certain empirical moments and potential misspecificatio

5 Algorithms

In Section 4, we have derived a criterighin Eqg. (5) that enables to optimize the sampling density

of the (n + 1)-th point, and an estimat@ in Eqg. (4) and Eq. (8) of the generalization error. Our
algorithms are composed of the following three ingredients

1. Those criteria assume that the variance of the importae@ghtsw? = po(z,)/qn(xy) iS
controlled. In order to make sure that those results appiyafgorithms will ensure that
this condition is met.

2. The sampling density,_; will be obtained by minimizing?l(wnﬂ, gn+1|c, B) for a cer-
tain parameterization af,+1 andw, 1. It turns out that those minimization problems are
convexand can thus be efficiently solved, without local minima.

3. Once a new sample has been selected, and its label obgerepdsition 4 is used in a way
similar to [13], in order to search for the best mixture betwéhe current weightsy; ) and
the importance weightgv}), i.e., we look at weights of the form (w®)! =7 and perform

a grid search on to find v such thaiG in Eq. (4) is minimum.

The main interest of the first and third points is that we abtaifinal estimator of, which is at
least provably consistent: indeed, although our critenéeodtained from an assumption of indepen-
dence, the generalization performance result also holdSmeakly” dependent observations and
thus ensures the consistency of our approach. Thus, aserppmsnost previous active learning
heuristics, our estimator will always converge (in prolighito the ML estimator. In Section 6, we
show empirically that usual heuristic schemes do not shésetoperty.

Convex optimization problem  We assume that we have a fixed set of candidate distributions
si(z) of the formsg(z) = po(z)rx(x). Note that the multiplicative form of our candidate distri-



butions allows efficient sampling from a pool of samplep@f We look at distributiong,, 1 ()
with mixture density of the forms(z|n) = >, nksk(z) = po(z)r(z), where the weightg are

non-negative and sum to one. The criterifi{g,+1,w,+1|a, B) in Eq. (5) is thus a function
H(n|e, B) of n. We consider two weighting schemes: (a) one with all weiglesal to one (unit
weighting scheme) which leads #,(n|«, 5), and (b) the unbiased reweighting scheme, where
Wpt1(x) = po(x)/gn+1(x), which leads tdH, (n|«, 3). We have

Ho(nle, B) = L3 e (i (i + Bi)wtsk(x;)), 9
Hi(nla,f) = 5 X0 aawf + 3000, % (10)

The functionHy(n) is linear inn, while the functionH;(n) is the sum of a constant and positive
inverse functions, and is thus convex [14].

Unless natural candidate distributiofigz) can be defined for the active learning problem, we use
the set of distributions obtained as follows: we perform Kams clustering with a large numbeof

clusters (e.g., 100 or 200), and then consider functigis) of the formry, (z) = Ae~ oo,
where ay, is one element of a finite given set of parameters, apds one of thep centroids
Yi,.-.,Yp, Obtained from K-means. We let; denote the number of data points assigned to the
centroidy;. We normalize byz;, = S°7_ e+ lvi—mll” /5P 45, We thus obtained(p) can-
didate distributionsy (), which, if p is large enough, provides a flexible yet tractable set of uméxt
distributions.

One additional element is the constraint on the varianchefrhportance weights. The variance of

wi,, can be estimated aswwy;,; = >0, oy — 1= 27, W — 1 = V(n), which
Q k o\

is convex inn. Thus constraining the variance of the new weights leadsdonaex optimization

problem, with convex objective and convex constraints,civltian be solved efficiently by the log-

barrier method [14], with cubic complexity in the number ahdidate distributions.

Algorithms ~ We have three versions of our algorithm, one with unit wesglnéferred to as “no
weight”) which optimizesH, (n|«, 3) at each iteration, one with the unbiased reweighting scheme
which optimizesH; (n|a, 8) (referred to as "unbiased”) and one which does both and esotbe

A

best one, as measured B¥ (referred to as "full”): in the initialization phase, K-mesis run to
generate candidate distributions that will be used througthe sampling of new points. Then, in
order to select the new training data paint, 1, the scoresx and3 are computed from Eg. (6) and
Eq. (7), then the appropriate cost functidfy, (n|a, 3), Hi(n|«, 5) (or both) is minimized and once
7 is obtained, we sample, ., from the corresponding distribution, and compute the wisigh .,
andw?, ;. As described earlier, we then findsuch thatG((w; (w}*)!~7);) in Eq. (4) is minimized
and update weights accordingly.

Regularization parameter In the active learning set-up, the number of samples usdddoning
varies a lot. It is thus not possible to use a constant reigakion parameter. We thus learn it by
cross-validation every 10 new samples.

6 Simulation experiments

In this section, we present simulation experiments on ®titlexamples (sampled from Gaussian
mixtures in two dimensions), for the task of binary and 3slalassification. We compare our al-
gorithms to the following three active learning frameworksthemaximum uncertaintframework
(referred to as “maxunc”), the next training data point iesked such that the entropy pfy|z, én)

is maximal [17]. In themaximum variance reductidramework [25, 9] (referred to as “varred”), the
next point is selected so that the variance of the resulstigrator has the lowest determinant, which
is equivalent to finding: such thatrV (z, 8,,).J;* is minimum. Note that this criterion has theo-
retical justification under correct model specification.the minimum prediction erroframework
(referred to as “minpred”), the next point is selected soittraduces the most the expected log-loss,
with the current model as an estimate of the unknown corritiprobabilityp, (y|z) [5, 8].

Sampling densities In Figure 1, we look at the limit selected sampling densjties, we assume

that a large number of points has been sampled, and we lodteatriteriond in Eq. (5). We
show the density obtained from the unbiased reweightingreeh(middle of Figure 1), as well as
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Figure 1: Proposal distributions: (Left) densjty(x) with the two different classes (red and blue),

(Middle) best density with unbiased reweighting, (Rightdétion~(x) such thatf[(qn+1(x)7 1) =
[ v(@)gn+1(x)dz (see text for details).
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Figure 2: Error rates vs. number of samples averaged ovegdigations sampled from same dis-
tribution as in Figure 1: (Left) random sampling and act&arhing "full”, with standard deviations,
(Middle) Comparison of the two schemes “unbiased” and "nigh&, (Right) Comparison with
other methods.

the function(x) (right of Figure 1) such that, for the unit weighting schem¥g,,1(z),1) =

J 7(@)gnt1(x)dz. In this framework, minimizing the cost without any congttdeads to a Dirac
at the maximum ofy(x), while minimizing with a constraint on the variance of theresponding
importance weights will select point with high valuesfr). We also show the liné] z = 0.
From Figure 1, we see that (a) the unit weighting scheme tientols more selective (i.e., finer grain)
than the unbiased scheme, and (b) that the mode of the optanalties are close to the maximum
uncertainty hyperplane but some parts of this hyperplaeénafact leading to negative cost gains
(e.g., the part of the hyperplane crossing the central blahjing at the bad potential behavior of
the maximum uncertainty framework.

Comparison with other algorithms  In Figure 2 and Figure 1, we compare the performance of
our active learning algorithms. In the left of Figure 2, we #eat our active learning framework does
perform better on average but also leads to smaller varidndbe middle of Figure 2, we compare
the two schemes “no weight” and “unbiased”, showing the saggy of the unit weighting scheme
and the significance of our asymptotic results in Propasificand 3 which extend the unbiased
framework of [13]. In the right of Figure 2 and in Figure 3, wengpare with the other usual
heuristic schemes: our “full” algorithm outperforms otBehemes; moreover, in those experiments,
the other schemes do perform worse than random samplingaavergie to the wrong estimator, a
bad situation that our algorithms provably avoid.

7 Conclusion

We have presented a theoretical asymptotic analysis okdetirning for generalized linear models,
under realistic sampling assumptions. From this analysispbtain convex criteria which can be
optimized to provide algorithms for online optimization thie sampling distributions. This work
naturally leads to several extensions. First, our framkwsnot limited to generalized linear mod-
els, but can be readily extended to any convex differergidbtestimators [24]. Second, it seems
advantageous to combine our active learning analysis witti-supervised learning frameworks, in
particular ones based on data-dependent regularizat&jn ffhally, we are currently investigating
applications to large scale image retrieval tasks, whelabetied data are abundant but labelled data
are scarce.



7 ——random
R - - ~ful
04 1"'\ “ minpred

- - -varred
maxunc

error rate
o
w

o
[N

N Y

- -

1
0 0 50 100

number of samples
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