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Supervised learning and regularization

• Data: xi ∈ X , yi ∈ Y, i = 1, . . . , n

• Minimize with respect to function f : X → Y:

n∑

i=1

ℓ(yi, f(xi)) +
λ

2
‖f‖2

Error on data + Regularization

Loss & function space ? Norm ?

• Two theoretical/algorithmic issues:

1. Loss

2. Function space / norm



Regularizations

• Main goal: avoid overfitting

• Two main lines of work:

1. Euclidean and Hilbertian norms (i.e., ℓ2-norms)

– Possibility of non linear predictors

– Non parametric supervised learning and kernel methods

– Well developped theory and algorithms (see, e.g., Wahba, 1990;

Schölkopf and Smola, 2001; Shawe-Taylor and Cristianini, 2004)



Regularizations

• Main goal: avoid overfitting

• Two main lines of work:

1. Euclidean and Hilbertian norms (i.e., ℓ2-norms)

– Possibility of non linear predictors

– Non parametric supervised learning and kernel methods

– Well developped theory and algorithms (see, e.g., Wahba, 1990;

Schölkopf and Smola, 2001; Shawe-Taylor and Cristianini, 2004)

2. Sparsity-inducing norms

– Usually restricted to linear predictors on vectors f(x) = w⊤x

– Main example: ℓ1-norm ‖w‖1 =
∑p

i=1 |wi|
– Perform model selection as well as regularization

– Theory and algorithms “in the making”



ℓ2 vs. ℓ1 - Gaussian hare vs. Laplacian tortoise

• First-order methods (Fu, 1998; Wu and Lange, 2008)
• Homotopy methods (Markowitz, 1956; Efron et al., 2004)



Lasso - Two main recent theoretical results

1. Support recovery condition (Zhao and Yu, 2006; Wainwright, 2009;

Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistent if and

only if

‖QJcJQ
−1
JJ sign(wJ)‖∞ 6 1,

where Q = limn→+∞
1
n

∑n
i=1 xix

⊤
i ∈ R

p×p
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2. Exponentially many irrelevant variables (Zhao and Yu, 2006;

Wainwright, 2009; Bickel et al., 2009; Lounici, 2008; Meinshausen

and Yu, 2008): under appropriate assumptions, consistency is possible

as long as

log p = O(n)



Going beyond the Lasso

• ℓ1-norm for linear feature selection in high dimensions

– Lasso usually not applicable directly

• Non-linearities

• Dealing with exponentially many features

• Sparse learning on matrices



Going beyond the Lasso

Non-linearity - Multiple kernel learning

• Multiple kernel learning

– Learn sparse combination of matrices k(x, x′) =
∑p

j=1 ηjkj(x, x′)
– Mixing positive aspects of ℓ1-norms and ℓ2-norms

• Equivalent to group Lasso

– p multi-dimensional features Φj(x), where

kj(x, x′) = Φj(x)⊤Φj(x
′)

– learn predictor
∑p

j=1 w⊤
j Φj(x)

– Penalization by
∑p

j=1 ‖wj‖2



Going beyond the Lasso

Structured set of features

• Dealing with exponentially many features

– Can we design efficient algorithms for the case log p ≈ n?

– Use structure to reduce the number of allowed patterns of zeros

– Recursivity, hierarchies and factorization

• Prior information on sparsity patterns

– Grouped variables with overlapping groups



Going beyond the Lasso

Sparse methods on matrices

• Learning problems on matrices

– Multi-task learning

– Multi-category classification

– Matrix completion

– Image denoising

– NMF, topic models, etc.

• Matrix factorization

– Two types of sparsity (low-rank or dictionary learning)



Sparse methods for machine learning

Outline

• Introduction - Overview

• Sparse linear estimation with the ℓ1-norm

– Convex optimization and algorithms

– Theoretical results

• Structured sparse methods on vectors

– Groups of features / Multiple kernel learning

– Extensions (hierarchical or overlapping groups)

• Sparse methods on matrices

– Multi-task learning

– Matrix factorization (low-rank, sparse PCA, dictionary learning)



Why ℓ1-norm constraints leads to sparsity?

• Example: minimize quadratic function Q(w) subject to ‖w‖1 6 T .

– coupled soft thresholding

• Geometric interpretation

– NB : penalizing is “equivalent” to constraining
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ℓ1-norm regularization (linear setting)

• Data: covariates xi ∈ R
p, responses yi ∈ Y, i = 1, . . . , n

• Minimize with respect to loadings/weights w ∈ R
p:

J(w) =
n∑

i=1

ℓ(yi, w
⊤xi) + λ‖w‖1

Error on data + Regularization

• Including a constant term b? Penalizing or constraining?

• square loss ⇒ basis pursuit in signal processing (Chen et al., 2001),

Lasso in statistics/machine learning (Tibshirani, 1996)



A review of nonsmooth convex

analysis and optimization

• Analysis: optimality conditions

• Optimization: algorithms

– First-order methods

• Books: Boyd and Vandenberghe (2004), Bonnans et al. (2003),

Bertsekas (1995), Borwein and Lewis (2000)



Optimality conditions for smooth optimization

Zero gradient

• Example: ℓ2-regularization: min
w∈Rp

n∑

i=1

ℓ(yi, w
⊤xi) +

λ

2
‖w‖2

2

– Gradient ∇J(w) =
∑n

i=1 ℓ′(yi, w
⊤xi)xi + λw where ℓ′(yi, w

⊤xi)

is the partial derivative of the loss w.r.t the second variable

– If square loss,
∑n

i=1 ℓ(yi, w
⊤xi) = 1

2‖y − Xw‖2
2

∗ gradient = −X⊤(y − Xw) + λw

∗ normal equations ⇒ w = (X⊤X + λI)−1X⊤y



Optimality conditions for smooth optimization

Zero gradient

• Example: ℓ2-regularization: min
w∈Rp

n∑

i=1

ℓ(yi, w
⊤xi) +

λ

2
‖w‖2

2

– Gradient ∇J(w) =
∑n

i=1 ℓ′(yi, w
⊤xi)xi + λw where ℓ′(yi, w

⊤xi)

is the partial derivative of the loss w.r.t the second variable

– If square loss,
∑n

i=1 ℓ(yi, w
⊤xi) = 1

2‖y − Xw‖2
2

∗ gradient = −X⊤(y − Xw) + λw

∗ normal equations ⇒ w = (X⊤X + λI)−1X⊤y

• ℓ1-norm is non differentiable!

– cannot compute the gradient of the absolute value

⇒ Directional derivatives (or subgradient)



Directional derivatives - convex functions on R
p

• Directional derivative in the direction ∆ at w:

∇J(w,∆) = lim
ε→0+

J(w + ε∆) − J(w)

ε

• Always exist when J is convex and continuous

• Main idea: in non smooth situations, may need to look at all

directions ∆ and not simply p independent ones

• Proposition: J is differentiable at w, if and only if ∆ 7→ ∇J(w,∆)

is linear. Then, ∇J(w,∆) = ∇J(w)⊤∆



Optimality conditions for convex functions

• Unconstrained minimization (function defined on R
p):

– Proposition: w is optimal if and only if ∀∆ ∈ R
p, ∇J(w,∆) > 0

– Go up locally in all directions

• Reduces to zero-gradient for smooth problems

• Constrained minimization (function defined on a convex set K)

– restrict ∆ to directions so that w + ε∆ ∈ K for small ε



Directional derivatives for ℓ1-norm regularization

• Function J(w) =
n∑

i=1

ℓ(yi, w
⊤xi) + λ‖w‖1 = L(w) + λ‖w‖1

• ℓ1-norm: ‖w+ε∆‖1−‖w‖1=
∑

j, wj 6=0

{|wj + ε∆j| − |wj|}+
∑

j, wj=0

|ε∆j|

• Thus,

∇J(w,∆) = ∇L(w)⊤∆ + λ
∑

j, wj 6=0

sign(wj)∆j + λ
∑

j, wj=0

|∆j|

=
∑

j, wj 6=0

[∇L(w)j + λ sign(wj)]∆j +
∑

j, wj=0

[∇L(w)j∆j + λ|∆j|]

• Separability of optimality conditions



Optimality conditions for ℓ1-norm regularization

• General loss: w optimal if and only if for all j ∈ {1, . . . , p},

sign(wj) 6= 0 ⇒ ∇L(w)j + λ sign(wj) = 0

sign(wj) = 0 ⇒ |∇L(w)j| 6 λ

• Square loss: w optimal if and only if for all j ∈ {1, . . . , p},

sign(wj) 6= 0 ⇒ −X⊤
j (y − Xw) + λ sign(wj) = 0

sign(wj) = 0 ⇒ |X⊤
j (y − Xw)| 6 λ

– For J ⊂ {1, . . . , p}, XJ ∈ R
n×|J| = X(:, J) denotes the columns

of X indexed by J , i.e., variables indexed by J



First order methods for convex optimization on R
p

Smooth optimization

• Gradient descent: wt+1 = wt − αt∇J(wt)

– with line search: search for a decent (not necessarily best) αt

– fixed diminishing step size, e.g., αt = a(t + b)−1

• Convergence of f(wt) to f∗ = minw∈Rp f(w) (Nesterov, 2003)

– f convex and M -Lipschitz: f(wt)−f∗ = O
(
M/

√
t
)

– and, differentiable with L-Lipschitz gradient: f(wt)−f∗ = O
(
L/t

)

– and, f µ-strongly convex: f(wt)−f∗ = O
(
L exp(−4tµ

L)
)

• µ
L = condition number of the optimization problem

• Coordinate descent: similar properties

• NB: “optimal scheme” f(wt)−f∗ = O
(
Lmin{exp(−4t

√

µ/L), t−2}
)



First-order methods for convex optimization on R
p

Non smooth optimization

• First-order methods for non differentiable objective

– Subgradient descent: wt+1 = wt − αtgt, with gt ∈ ∂J(wt), i.e.,

such that ∀∆, g⊤t ∆ 6 ∇J(wt,∆)

∗ with exact line search: not always convergent (see counter-

example)

∗ diminishing step size, e.g., αt = a(t + b)−1: convergent

– Coordinate descent: not always convergent (show counter-example)

• Convergence rates (f convex and M -Lipschitz): f(wt)−f∗ = O
(

M√
t

)



Counter-example

Coordinate descent for nonsmooth objectives
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Counter-example (Bertsekas, 1995)

Steepest descent for nonsmooth objectives

• q(x1, x2) =

{
−5(9x2

1 + 16x2
2)

1/2 if x1 > |x2|
−(9x1 + 16|x2|)1/2 if x1 6 |x2|

• Steepest descent starting from any x such that x1 > |x2| >

(9/16)2|x1|

−5 0 5
−5

0

5



Sparsity-inducing norms

Using the structure of the problem

• Problems of the form min
w∈Rp

L(w) + λ‖w‖ or min
‖w‖6µ

L(w)

– L smooth

– Orthogonal projections on the ball or the dual ball can be performed

in semi-closed form, e.g., ℓ1-norm (Maculan and GALDINO

DE PAULA, 1989) or mixed ℓ1-ℓ2 (see, e.g., van den Berg et al.,

2009)

• May use similar techniques than smooth optimization

– Projected gradient descent

– Proximal methods (Beck and Teboulle, 2009)

– Dual ascent methods

• Similar convergence rates



– depends on the condition number of the loss



Cheap (and not dirty) algorithms for all losses

• Coordinate descent (Fu, 1998; Wu and Lange, 2008; Friedman

et al., 2007)

– convergent here under reasonable assumptions! (Bertsekas, 1995)

– separability of optimality conditions

– equivalent to iterative thresholding



Cheap (and not dirty) algorithms for all losses

• Coordinate descent (Fu, 1998; Wu and Lange, 2008; Friedman

et al., 2007)

– convergent here under reasonable assumptions! (Bertsekas, 1995)

– separability of optimality conditions

– equivalent to iterative thresholding

• “η-trick” (Micchelli and Pontil, 2006; Rakotomamonjy et al., 2008;

Jenatton et al., 2009b)

– Notice that
∑p

j=1 |wj| = minη>0
1
2

∑p
j=1

{w2
j

ηj
+ ηj

}

– Alternating minimization with respect to η (closed-form) and w

(weighted squared ℓ2-norm regularized problem)
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• Coordinate descent (Fu, 1998; Wu and Lange, 2008; Friedman

et al., 2007)

– convergent here under reasonable assumptions! (Bertsekas, 1995)

– separability of optimality conditions

– equivalent to iterative thresholding

• “η-trick” (Micchelli and Pontil, 2006; Rakotomamonjy et al., 2008;
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– Notice that
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{w2
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– Alternating minimization with respect to η (closed-form) and w

(weighted squared ℓ2-norm regularized problem)

• Dedicated algorithms that use sparsity (active sets and homotopy

methods)



Special case of square loss

• Quadratic programming formulation: minimize

1

2
‖y−Xw‖2+λ

p
∑

j=1

(w+
j +w−

j ) such that w = w+−w−, w+
> 0, w−

> 0



Special case of square loss

• Quadratic programming formulation: minimize

1

2
‖y−Xw‖2+λ

p
∑

j=1

(w+
j +w−

j ) such that w = w+−w−, w+
> 0, w−

> 0

– generic toolboxes ⇒ very slow

• Main property: if the sign pattern s ∈ {−1, 0, 1}p of the solution is

known, the solution can be obtained in closed form

– Lasso equivalent to minimizing 1
2‖y −XJwJ‖2 + λs⊤J wJ w.r.t. wJ

where J = {j, sj 6= 0}.
– Closed form solution wJ = (X⊤

J XJ)−1(X⊤
J y − λsJ)

• Algorithm: “Guess” s and check optimality conditions



Optimality conditions for the sign vector s (Lasso)

• For s ∈ {−1, 0, 1}p sign vector, J = {j, sj 6= 0} the nonzero pattern

• potential closed form solution: wJ = (X⊤
J XJ)−1(X⊤

J y − λsJ) and

wJc = 0

• s is optimal if and only if

– active variables: sign(wJ) = sJ

– inactive variables: ‖X⊤
Jc(y − XJwJ)‖∞ 6 λ

• Active set algorithms (Lee et al., 2007; Roth and Fischer, 2008)

– Construct J iteratively by adding variables to the active set

– Only requires to invert small linear systems



Homotopy methods for the square loss (Markowitz,

1956; Osborne et al., 2000; Efron et al., 2004)

• Goal: Get all solutions for all possible values of the regularization

parameter λ

• Same idea as before: if the sign vector is known,

w∗
J(λ) = (X⊤

J XJ)−1(X⊤
J y − λsJ)

valid, as long as,

– sign condition: sign(w∗
J(λ)) = sJ

– subgradient condition: ‖X⊤
Jc(XJw∗

J(λ) − y)‖∞ 6 λ

– this defines an interval on λ: the path is thus piecewise affine

• Simply need to find break points and directions



Piecewise linear paths
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Algorithms for ℓ1-norms (square loss):

Gaussian hare vs. Laplacian tortoise

• Coordinate descent: O(pn) per iterations for ℓ1 and ℓ2

• “Exact” algorithms: O(kpn) for ℓ1 vs. O(p2n) for ℓ2



Additional methods - Softwares

• Many contributions in signal processing, optimization, machine

learning

– Proximal methods (Nesterov, 2007; Beck and Teboulle, 2009)

– Extensions to stochastic setting (Bottou and Bousquet, 2008)

• Extensions to other sparsity-inducing norms

• Softwares

– Many available codes

– SPAMS (SPArse Modeling Software) - note difference with

SpAM (Ravikumar et al., 2008)

http://www.di.ens.fr/willow/SPAMS/



Sparse methods for machine learning

Outline

• Introduction - Overview

• Sparse linear estimation with the ℓ1-norm

– Convex optimization and algorithms
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– Groups of features / Multiple kernel learning

– Extensions (hierarchical or overlapping groups)

• Sparse methods on matrices

– Multi-task learning

– Matrix factorization (low-rank, sparse PCA, dictionary learning)



Theoretical results - Square loss

• Main assumption: data generated from a certain sparse w

• Three main problems:

1. Regular consistency: convergence of estimator ŵ to w, i.e.,

‖ŵ − w‖ tends to zero when n tends to ∞
2. Model selection consistency: convergence of the sparsity pattern

of ŵ to the pattern w

3. Efficiency: convergence of predictions with ŵ to the predictions

with w, i.e., 1
n‖Xŵ − Xw‖2

2 tends to zero

• Main results:

– Condition for model consistency (support recovery)

– High-dimensional inference



Model selection consistency (Lasso)

• Assume w sparse and denote J = {j,wj 6= 0} the nonzero pattern

• Support recovery condition (Zhao and Yu, 2006; Wainwright, 2009;

Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistent if and

only if ‖QJcJQ
−1
JJ sign(wJ)‖∞ 6 1

where Q = limn→+∞
1
n

∑n
i=1 xix

⊤
i ∈ R

p×p (covariance matrix)



Model selection consistency (Lasso)

• Assume w sparse and denote J = {j,wj 6= 0} the nonzero pattern

• Support recovery condition (Zhao and Yu, 2006; Wainwright, 2009;

Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistent if and

only if ‖QJcJQ
−1
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1
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• Condition depends on w and J (may be relaxed)

– may be relaxed by maximizing out sign(w) or J

• Valid in low and high-dimensional settings

• Requires lower-bound on magnitude of nonzero wj



Model selection consistency (Lasso)

• Assume w sparse and denote J = {j,wj 6= 0} the nonzero pattern

• Support recovery condition (Zhao and Yu, 2006; Wainwright, 2009;

Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistent if and

only if ‖QJcJQ
−1
JJ sign(wJ)‖∞ 6 1

where Q = limn→+∞
1
n

∑n
i=1 xix

⊤
i ∈ R

p×p (covariance matrix)

• The Lasso is usually not model-consistent

– Selects more variables than necessary (see, e.g., Lv and Fan, 2009)

– Fixing the Lasso: adaptive Lasso (Zou, 2006), relaxed

Lasso (Meinshausen, 2008), thresholding (Lounici, 2008),

Bolasso (Bach, 2008a), stability selection (Meinshausen and

Bühlmann, 2008), Wasserman and Roeder (2009)



Adaptive Lasso and concave penalization

• Adaptive Lasso (Zou, 2006; Huang et al., 2008)

– Weighted ℓ1-norm: min
w∈Rp

L(w) + λ

p
∑

j=1

|wj|
|ŵj|α

– ŵ estimator obtained from ℓ2 or ℓ1 regularization

• Reformulation in terms of concave penalization

min
w∈Rp

L(w) +

p
∑

j=1

g(|wj|)

– Example: g(|wj|) = |wj|1/2 or log |wj|. Closer to the ℓ0 penalty

– Concave-convex procedure: replace g(|wj|) by affine upper bound

– Better sparsity-inducing properties (Fan and Li, 2001; Zou and Li,

2008; Zhang, 2008b)



Bolasso (Bach, 2008a)

• Property: for a specific choice of regularization parameter λ ≈ √
n:

– all variables in J are always selected with high probability

– all other ones selected with probability in (0, 1)

• Use the bootstrap to simulate several replications

– Intersecting supports of variables

– Final estimation of w on the entire dataset

J

2

1J

Bootstrap 4

Bootstrap 5

Bootstrap 2

Bootstrap 3

Bootstrap 1

Intersection

5

4

3

J

J

J



Model selection consistency of the Lasso/Bolasso

• probabilities of selection of each variable vs. regularization param. µ
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High-dimensional inference

Going beyond exact support recovery

• Theoretical results usually assume that non-zero wj are large enough,

i.e., |wj| > σ
√

log p
n

• May include too many variables but still predict well

• Oracle inequalities

– Predict as well as the estimator obtained with the knowledge of J

– Assume i.i.d. Gaussian noise with variance σ2

– We have:
1

n
E‖Xŵoracle − Xw‖2

2 =
σ2|J |

n



High-dimensional inference

Variable selection without computational limits

• Approaches based on penalized criteria (close to BIC)

min
J⊂{1,...,p}

{
min

wJ∈R|J|
‖y − XJwJ‖2

2

}
+ Cσ2|J |

(
1 + log

p

|J |
)

• Oracle inequality if data generated by w with k non-zeros (Massart,

2003; Bunea et al., 2007):

1

n
‖Xŵ − Xw‖2

2 6 C
kσ2

n

(
1 + log

p

k

)

• Gaussian noise - No assumptions regarding correlations

• Scaling between dimensions: k log p
n small

• Optimal in the minimax sense



High-dimensional inference

Variable selection with orthogonal design

• Orthogonal design: assume that 1
nX⊤X = I

• Lasso is equivalent to soft-thresholding 1
nX⊤Y ∈ R

p

– Solution: ŵj = soft-thresholding of 1
nX⊤

j y = wj + 1
nX⊤

j ε at
λ

n

t

+(|t|−a)

−a
a

sign(t)

min
w∈R

1

2
w2 − wt + a|w|

Solution w = (|t| − a)+ sign(t)



High-dimensional inference

Variable selection with orthogonal design

• Orthogonal design: assume that 1
nX⊤X = I

• Lasso is equivalent to soft-thresholding 1
nX⊤Y ∈ R

p

– Solution: ŵj = soft-thresholding of 1
nX⊤

j y = wj + 1
nX⊤

j ε at
λ

n
– Take λ = Aσ

√
n log p

• Where does the log p = O(n) come from?

– Expectation of the maximum of p Gaussian variables ≈
√

log p

– Union-bound:

P(∃j ∈ Jc, |X⊤
j ε| > λ) 6

∑

j∈Jc P(|X⊤
j ε| > λ)

6 |Jc|e−
λ2

2nσ2 6 pe−
A2

2 log p = p1−A2

2



High-dimensional inference (Lasso)

• Main result: we only need k log p = O(n)

– if w is sufficiently sparse

– and input variables are not too correlated

• Precise conditions on covariance matrix Q = 1
nX⊤X.

– Mutual incoherence (Lounici, 2008)

– Restricted eigenvalue conditions (Bickel et al., 2009)

– Sparse eigenvalues (Meinshausen and Yu, 2008)

– Null space property (Donoho and Tanner, 2005)

• Links with signal processing and compressed sensing (Candès and

Wakin, 2008)

• Assume that Q has unit diagonal



Mutual incoherence (uniform low correlations)

• Theorem (Lounici, 2008):

– yi = w⊤xi + εi, ε i.i.d. normal with mean zero and variance σ2

– Q = X⊤X/n with unit diagonal and cross-terms less than
1

14k
– if ‖w‖0 6 k, and A2 > 8, then, with λ = Aσ

√
n log p

P

(

‖ŵ −w‖∞ 6 5Aσ

(
log p

n

)1/2 )

> 1 − p1−A2/8

• Model consistency by thresholding if min
j,wj 6=0

|wj| > Cσ

√

log p

n

• Mutual incoherence condition depends strongly on k

• Improved result by averaging over sparsity patterns (Candès and Plan,

2009b)



Restricted eigenvalue conditions

• Theorem (Bickel et al., 2009):

– assume κ(k)2 = min
|J|6k

min
∆, ‖∆Jc‖16‖∆J‖1

∆⊤Q∆

‖∆J‖2
2

> 0

– assume λ = Aσ
√

n log p and A2 > 8

– then, with probability 1 − p1−A2/8, we have

estimation error ‖ŵ −w‖1 6
16A

κ2(k)
σk

√

log p

n

prediction error
1

n
‖Xŵ − Xw‖2

2 6
16A2

κ2(k)

σ2k

n
log p

• Condition imposes a potentially hidden scaling between (n, p, k)

• Condition always satisfied for Q = I



Checking sufficient conditions

• Most of the conditions are not computable in polynomial time

• Random matrices

– Sample X ∈ R
n×p from the Gaussian ensemble

– Conditions satisfied with high probability for certain (n, p, k)

– Example from Wainwright (2009): n > Ck log p

• Checking with convex optimization

– Relax conditions to convex optimization problems (d’Aspremont

et al., 2008; Juditsky and Nemirovski, 2008; d’Aspremont and

El Ghaoui, 2008)

– Example: sparse eigenvalues min|J|6k λmin(QJJ)

– Open problem: verifiable assumptions still lead to weaker results



Sparse methods

Common extensions

• Removing bias of the estimator

– Keep the active set, and perform unregularized restricted

estimation (Candès and Tao, 2007)

– Better theoretical bounds

– Potential problems of robustness

• Elastic net (Zou and Hastie, 2005)

– Replace λ‖w‖1 by λ‖w‖1 + ε‖w‖2
2

– Make the optimization strongly convex with unique solution

– Better behavior with heavily correlated variables



Relevance of theoretical results

• Most results only for the square loss

– Extend to other losses (Van De Geer, 2008; Bach, 2009b)

• Most results only for ℓ1-regularization

– May be extended to other norms (see, e.g., Huang and Zhang,

2009; Bach, 2008b)

• Condition on correlations

– very restrictive, far from results for BIC penalty

• Non sparse generating vector

– little work on robustness to lack of sparsity

• Estimation of regularization parameter

– No satisfactory solution ⇒ open problem



Alternative sparse methods

Greedy methods

• Forward selection

• Forward-backward selection

• Non-convex method

– Harder to analyze

– Simpler to implement

– Problems of stability

• Positive theoretical results (Zhang, 2009, 2008a)

– Similar sufficient conditions than for the Lasso



Alternative sparse methods

Bayesian methods

• Lasso: minimize
∑n

i=1 (yi − w⊤xi)
2 + λ‖w‖1

– Equivalent to MAP estimation with Gaussian likelihood and

factorized Laplace prior p(w) ∝
∏p

j=1 e−λ|wj| (Seeger, 2008)

– However, posterior puts zero weight on exact zeros

• Heavy-tailed distributions as a proxy to sparsity

– Student distributions (Caron and Doucet, 2008)

– Generalized hyperbolic priors (Archambeau and Bach, 2008)

– Instance of automatic relevance determination (Neal, 1996)

• Mixtures of “Diracs” and another absolutely continuous distributions,

e.g., “spike and slab” (Ishwaran and Rao, 2005)

• Less theory than frequentist methods



Comparing Lasso and other strategies for linear

regression

• Compared methods to reach the least-square solution

– Ridge regression: min
w∈Rp

1

2
‖y − Xw‖2

2 +
λ

2
‖w‖2

2

– Lasso: min
w∈Rp

1

2
‖y − Xw‖2

2 + λ‖w‖1

– Forward greedy:

∗ Initialization with empty set

∗ Sequentially add the variable that best reduces the square loss

• Each method builds a path of solutions from 0 to ordinary least-

squares solution

• Regularization parameters selected on the test set



Simulation results

• i.i.d. Gaussian design matrix, k = 4, n = 64, p ∈ [2, 256], SNR = 1

• Note stability to non-sparsity and variability
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Summary

ℓ1-norm regularization

• ℓ1-norm regularization leads to nonsmooth optimization problems

– analysis through directional derivatives or subgradients

– optimization may or may not take advantage of sparsity

• ℓ1-norm regularization allows high-dimensional inference

• Interesting problems for ℓ1-regularization

– Stable variable selection

– Weaker sufficient conditions (for weaker results)

– Estimation of regularization parameter (all bounds depend on the

unknown noise variance σ2)



Extensions

• Sparse methods are not limited to the square loss

– e.g., theoretical results for logistic loss (Van De Geer, 2008; Bach,

2009b)

• Sparse methods are not limited to supervised learning

– Learning the structure of Gaussian graphical models (Meinshausen

and Bühlmann, 2006; Banerjee et al., 2008)

– Sparsity on matrices (last part of the tutorial)

• Sparse methods are not limited to variable selection in a linear

model

– See next part of the tutorial



Questions?



Sparse methods for machine learning

Outline

• Introduction - Overview

• Sparse linear estimation with the ℓ1-norm

– Convex optimization and algorithms

– Theoretical results

• Structured sparse methods on vectors

– Groups of features / Multiple kernel learning

– Extensions (hierarchical or overlapping groups)

• Sparse methods on matrices

– Multi-task learning

– Matrix factorization (low-rank, sparse PCA, dictionary learning)



Penalization with grouped variables

(Yuan and Lin, 2006)

• Assume that {1, . . . , p} is partitioned into m groups G1, . . . , Gm

• Penalization by
∑m

i=1 ‖wGi‖2, often called ℓ1-ℓ2 norm

• Induces group sparsity

– Some groups entirely set to zero

– no zeros within groups

• In this tutorial:

– Groups may have infinite size ⇒ MKL

– Groups may overlap ⇒ structured sparsity



Linear vs. non-linear methods

• All methods in this tutorial are linear in the parameters

• By replacing x by features Φ(x), they can be made non linear in

the data

• Implicit vs. explicit features

– ℓ1-norm: explicit features

– ℓ2-norm: representer theorem allows to consider implicit features if

their dot products can be computed easily (kernel methods)



Kernel methods: regularization by ℓ2-norm

• Data: xi ∈ X , yi ∈ Y, i = 1, . . . , n, with features Φ(x) ∈ F = R
p

– Predictor f(x) = w⊤Φ(x) linear in the features

• Optimization problem: min
w∈Rp

n∑

i=1

ℓ(yi, w
⊤Φ(xi)) +

λ

2
‖w‖2

2



Kernel methods: regularization by ℓ2-norm

• Data: xi ∈ X , yi ∈ Y, i = 1, . . . , n, with features Φ(x) ∈ F = R
p

– Predictor f(x) = w⊤Φ(x) linear in the features

• Optimization problem: min
w∈Rp

n∑

i=1

ℓ(yi, w
⊤Φ(xi)) +

λ

2
‖w‖2

2

• Representer theorem (Kimeldorf and Wahba, 1971): solution must

be of the form w =
∑n

i=1 αiΦ(xi)

– Equivalent to solving: min
α∈Rn

n∑

i=1

ℓ(yi, (Kα)i) +
λ

2
α⊤Kα

– Kernel matrix Kij = k(xi, xj) = Φ(xi)
⊤Φ(xj)



Multiple kernel learning (MKL)

(Lanckriet et al., 2004b; Bach et al., 2004a)

• Sparse methods are linear!

• Sparsity with non-linearities

– replace f(x) =
∑p

j=1 w⊤
j xj with x ∈ R

p and wj ∈ R

– by f(x) =
∑p

j=1 w⊤
j Φj(x) with x ∈ X , Φj(x) ∈ Fj an wj ∈ Fj

• Replace the ℓ1-norm
∑p

j=1 |wj| by “block” ℓ1-norm
∑p

j=1 ‖wj‖2

• Remarks

– Hilbert space extension of the group Lasso (Yuan and Lin, 2006)

– Alternative sparsity-inducing norms (Ravikumar et al., 2008)



Multiple kernel learning (MKL)

(Lanckriet et al., 2004b; Bach et al., 2004a)

• Multiple feature maps / kernels on x ∈ X :

– p “feature maps” Φj : X 7→ Fj, j = 1, . . . , p.

– Minimization with respect to w1 ∈ F1, . . . , wp ∈ Fp

– Predictor: f(x) = w1
⊤Φ1(x) + · · · + wp

⊤Φp(x)

x

Φ1(x)⊤ w1

ր ... ... ց
−→ Φj(x)⊤ wj −→
ց ... ... ր

Φp(x)⊤ wp

w⊤
1 Φ1(x) + · · · + w⊤

p Φp(x)

– Generalized additive models (Hastie and Tibshirani, 1990)



Regularization for multiple features

x

Φ1(x)⊤ w1

ր ... ... ց
−→ Φj(x)⊤ wj −→
ց ... ... ր

Φp(x)⊤ wp

w⊤
1 Φ1(x) + · · · + w⊤

p Φp(x)

• Regularization by
∑p

j=1 ‖wj‖2
2 is equivalent to using K =

∑p
j=1 Kj

– Summing kernels is equivalent to concatenating feature spaces



Regularization for multiple features

x

Φ1(x)⊤ w1

ր ... ... ց
−→ Φj(x)⊤ wj −→
ց ... ... ր

Φp(x)⊤ wp

w⊤
1 Φ1(x) + · · · + w⊤

p Φp(x)

• Regularization by
∑p

j=1 ‖wj‖2
2 is equivalent to using K =

∑p
j=1 Kj

• Regularization by
∑p

j=1 ‖wj‖2 imposes sparsity at the group level

• Main questions when regularizing by block ℓ1-norm:

1. Algorithms

2. Analysis of sparsity inducing properties (Ravikumar et al., 2008;

Bach, 2008b)

3. Does it correspond to a specific combination of kernels?



General kernel learning

• Proposition (Lanckriet et al, 2004, Bach et al., 2005, Micchelli and

Pontil, 2005):

G(K) = min
w∈F

∑n
i=1 ℓ(yi, w

⊤Φ(xi)) + λ
2‖w‖2

2

= max
α∈Rn

−
∑n

i=1 ℓ∗i (λαi) − λ
2α⊤Kα

is a convex function of the kernel matrix K

• Theoretical learning bounds (Lanckriet et al., 2004, Srebro and Ben-

David, 2006)

– Less assumptions than sparsity-based bounds, but slower rates



Equivalence with kernel learning (Bach et al., 2004a)

• Block ℓ1-norm problem:

n∑

i=1

ℓ(yi, w
⊤
1 Φ1(xi) + · · · + w⊤

p Φp(xi)) +
λ

2
(‖w1‖2 + · · · + ‖wp‖2)

2

• Proposition: Block ℓ1-norm regularization is equivalent to

minimizing with respect to η the optimal value G(
∑p

j=1 ηjKj)

• (sparse) weights η obtained from optimality conditions

• dual parameters α optimal for K =
∑p

j=1 ηjKj,

• Single optimization problem for learning both η and α



Proof of equivalence

min
w1,...,wp

n∑

i=1

ℓ
(
yi,

p
∑

j=1

w⊤
j Φj(xi)

)
+ λ

(
p

∑

j=1

‖wj‖2

)2

= min
w1,...,wp

min
P

j ηj=1

n∑

i=1

ℓ
(
yi,

p
∑

j=1

w⊤
j Φj(xi)

)
+ λ

p
∑

j=1

‖wj‖2
2/ηj

= min
P

j ηj=1
min

w̃1,...,w̃p

n∑

i=1

ℓ
(
yi,

p
∑

j=1

η
1/2
j w̃⊤

j Φj(xi)
)

+ λ

p
∑

j=1

‖w̃j‖2
2 with w̃j = wjη

−1/2
j

= min
P

j ηj=1
min

w̃

n∑

i=1

ℓ
(
yi, w̃

⊤Ψη(xi)
)

+ λ‖w̃‖2
2 with Ψη(x) = (η

1/2
1 Φ1(x), . . . , η1/2

p Φp(x))

• We have: Ψη(x)⊤Ψη(x
′) =

∑p
j=1 ηjkj(x, x′) with

∑p
j=1 ηj = 1 (and η > 0)



Algorithms for the group Lasso / MKL

• Group Lasso

– Block coordinate descent (Yuan and Lin, 2006)

– Active set method (Roth and Fischer, 2008; Obozinski et al., 2009)

– Nesterov’s accelerated method (Liu et al., 2009)

• MKL

– Dual ascent, e.g., sequential minimal optimization (Bach et al.,

2004a)

– η-trick + cutting-planes (Sonnenburg et al., 2006)

– η-trick + projected gradient descent (Rakotomamonjy et al., 2008)

– Active set (Bach, 2008c)



Applications of multiple kernel learning

• Selection of hyperparameters for kernel methods

• Fusion from heterogeneous data sources (Lanckriet et al., 2004a)

• Two strategies for kernel combinations:

– Uniform combination ⇔ ℓ2-norm

– Sparse combination ⇔ ℓ1-norm

– MKL always leads to more interpretable models

– MKL does not always lead to better predictive performance

∗ In particular, with few well-designed kernels

∗ Be careful with normalization of kernels (Bach et al., 2004b)



Applications of multiple kernel learning

• Selection of hyperparameters for kernel methods

• Fusion from heterogeneous data sources (Lanckriet et al., 2004a)

• Two strategies for kernel combinations:

– Uniform combination ⇔ ℓ2-norm

– Sparse combination ⇔ ℓ1-norm

– MKL always leads to more interpretable models

– MKL does not always lead to better predictive performance

∗ In particular, with few well-designed kernels

∗ Be careful with normalization of kernels (Bach et al., 2004b)

• Sparse methods: new possibilities and new features

• See NIPS 2009 workshop “Understanding MKL methods”
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Lasso - Two main recent theoretical results

1. Support recovery condition

2. Exponentially many irrelevant variables: under appropriate

assumptions, consistency is possible as long as

log p = O(n)



Lasso - Two main recent theoretical results
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2. Exponentially many irrelevant variables: under appropriate

assumptions, consistency is possible as long as

log p = O(n)

• Question: is it possible to build a sparse algorithm that can learn

from more than 1080 features?



Lasso - Two main recent theoretical results

1. Support recovery condition

2. Exponentially many irrelevant variables: under appropriate

assumptions, consistency is possible as long as

log p = O(n)

• Question: is it possible to build a sparse algorithm that can learn

from more than 1080 features?

– Some type of recursivity/factorization is needed!



Hierarchical kernel learning (Bach, 2008c)

• Many kernels can be decomposed as a sum of many “small” kernels

indexed by a certain set V : k(x, x′) =
∑

v∈V

kv(x, x′)

• Example with x = (x1, . . . , xq) ∈ R
q (⇒ non linear variable selection)

– Gaussian/ANOVA kernels: p = #(V ) = 2q

q
∏

j=1

(

1 + e−α(xj−x′
j)

2
)

=
∑

J⊂{1,...,q}

∏

j∈J

e−α(xj−x′
j)

2

=
∑

J⊂{1,...,q}
e−α‖xJ−x′

J‖
2
2

– NB: decomposition is related to Cosso (Lin and Zhang, 2006)

• Goal: learning sparse combination
∑

v∈V ηvkv(x, x′)

• Universally consistent non-linear variable selection requires all subsets



Restricting the set of active kernels

• With flat structure

– Consider block ℓ1-norm:
∑

v∈V dv‖wv‖2

– cannot avoid being linear in p = #(V ) = 2q

• Using the structure of the small kernels

1. for computational reasons

2. to allow more irrelevant variables



Restricting the set of active kernels

• V is endowed with a directed acyclic graph (DAG) structure:

select a kernel only after all of its ancestors have been selected

• Gaussian kernels: V = power set of {1, . . . , q} with inclusion DAG

– Select a subset only after all its subsets have been selected
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DAG-adapted norm (Zhao & Yu, 2008)

• Graph-based structured regularization

– D(v) is the set of descendants of v ∈ V :

∑

v∈V

dv‖wD(v)‖2 =
∑

v∈V

dv




∑

t∈D(v)

‖wt‖2
2





1/2

• Main property: If v is selected, so are all its ancestors
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DAG-adapted norm (Zhao & Yu, 2008)

• Graph-based structured regularization

– D(v) is the set of descendants of v ∈ V :

∑

v∈V

dv‖wD(v)‖2 =
∑

v∈V

dv




∑

t∈D(v)

‖wt‖2
2





1/2

• Main property: If v is selected, so are all its ancestors

• Hierarchical kernel learning (Bach, 2008c) :

– polynomial-time algorithm for this norm

– necessary/sufficient conditions for consistent kernel selection

– Scaling between p, q, n for consistency

– Applications to variable selection or other kernels



Scaling between p, n

and other graph-related quantities
n = number of observations

p = number of vertices in the DAG

deg(V ) = maximum out degree in the DAG

num(V ) = number of connected components in the DAG

• Proposition (Bach, 2009a): Assume consistency condition satisfied,

Gaussian noise and data generated from a sparse function, then the

support is recovered with high-probability as soon as:

log deg(V ) + log num(V ) = O(n)



Scaling between p, n

and other graph-related quantities
n = number of observations

p = number of vertices in the DAG

deg(V ) = maximum out degree in the DAG

num(V ) = number of connected components in the DAG

• Proposition (Bach, 2009a): Assume consistency condition satisfied,

Gaussian noise and data generated from a sparse function, then the

support is recovered with high-probability as soon as:

log deg(V ) + log num(V ) = O(n)

• Unstructured case: num(V ) = p ⇒ log p = O(n)

• Power set of q elements: deg(V ) = q ⇒ log q = log log p = O(n)



Mean-square errors (regression)

dataset n p k #(V ) L2 greedy MKL HKL
abalone 4177 10 pol4 ≈107 44.2±1.3 43.9±1.4 44.5±1.1 43.3±1.0
abalone 4177 10 rbf ≈1010 43.0±0.9 45.0±1.7 43.7±1.0 43.0±1.1
boston 506 13 pol4 ≈109 17.1±3.6 24.7±10.8 22.2±2.2 18.1±3.8
boston 506 13 rbf ≈1012 16.4±4.0 32.4±8.2 20.7±2.1 17.1±4.7

pumadyn-32fh 8192 32 pol4 ≈1022 57.3±0.7 56.4±0.8 56.4±0.7 56.4±0.8
pumadyn-32fh 8192 32 rbf ≈1031 57.7±0.6 72.2±22.5 56.5±0.8 55.7±0.7
pumadyn-32fm 8192 32 pol4 ≈1022 6.9±0.1 6.4±1.6 7.0±0.1 3.1±0.0
pumadyn-32fm 8192 32 rbf ≈1031 5.0±0.1 46.2±51.6 7.1±0.1 3.4±0.0
pumadyn-32nh 8192 32 pol4 ≈1022 84.2±1.3 73.3±25.4 83.6±1.3 36.7±0.4
pumadyn-32nh 8192 32 rbf ≈1031 56.5±1.1 81.3±25.0 83.7±1.3 35.5±0.5
pumadyn-32nm 8192 32 pol4 ≈1022 60.1±1.9 69.9±32.8 77.5±0.9 5.5±0.1
pumadyn-32nm 8192 32 rbf ≈1031 15.7±0.4 67.3±42.4 77.6±0.9 7.2±0.1



Extensions to other kernels

• Extension to graph kernels, string kernels, pyramid match kernels

ABBABAAAA AAB

BBBAABAA

BA

BAB BBA BBBBAA

• Exploring large feature spaces with structured sparsity-inducing norms

– Opposite view than traditional kernel methods

– Interpretable models

• Other structures than hierarchies or DAGs



Grouped variables

• Supervised learning with known groups:

– The ℓ1-ℓ2 norm

∑

G∈G

‖wG‖2 =
∑

G∈G

( ∑

j∈G

w2
j

)1/2
, with G a partition of {1, . . . , p}

– The ℓ1-ℓ2 norm sets to zero non-overlapping groups of variables

(as opposed to single variables for the ℓ1 norm)



Grouped variables

• Supervised learning with known groups:

– The ℓ1-ℓ2 norm

∑

G∈G

‖wG‖2 =
∑

G∈G

( ∑

j∈G

w2
j

)1/2
, with G a partition of {1, . . . , p}

– The ℓ1-ℓ2 norm sets to zero non-overlapping groups of variables

(as opposed to single variables for the ℓ1 norm).

• However, the ℓ1-ℓ2 norm encodes fixed/static prior information,

requires to know in advance how to group the variables

• What happens if the set of groups G is not a partition anymore?



Structured Sparsity (Jenatton et al., 2009a)

• When penalizing by the ℓ1-ℓ2 norm

∑

G∈G

‖wG‖2 =
∑

G∈G

( ∑

j∈G

w2
j

)1/2

– The ℓ1 norm induces sparsity at the group level:

∗ Some wG’s are set to zero

– Inside the groups, the ℓ2 norm does not promote sparsity

• Intuitively, the zero pattern of w is given by

{j ∈ {1, . . . , p}; wj = 0} =
⋃

G∈G′
G for some G′ ⊆ G.

• This intuition is actually true and can be formalized



Examples of set of groups G (1/3)

• Selection of contiguous patterns on a sequence, p = 6

– G is the set of blue groups

– Any union of blue groups set to zero leads to the selection of a

contiguous pattern



Examples of set of groups G (2/3)

• Selection of rectangles on a 2-D grids, p = 25

– G is the set of blue/green groups (with their complements, not

displayed)

– Any union of blue/green groups set to zero leads to the selection

of a rectangle



Examples of set of groups G (3/3)

• Selection of diamond-shaped patterns on a 2-D grids, p = 25

– It is possible to extent such settings to 3-D space, or more complex

topologies

– See applications later (sparse PCA)



Relationship bewteen G and Zero Patterns

(Jenatton, Audibert, and Bach, 2009a)

• G → Zero patterns:

– by generating the union-closure of G

• Zero patterns → G:

– Design groups G from any union-closed set of zero patterns

– Design groups G from any intersection-closed set of non-zero

patterns



Overview of other work on structured sparsity

• Specific hierarchical structure (Zhao et al., 2009; Bach, 2008c)

• Union-closed (as opposed to intersection-closed) family of nonzero

patterns (Jacob et al., 2009; Baraniuk et al., 2008)

• Nonconvex penalties based on information-theoretic criteria with

greedy optimization (Huang et al., 2009)
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Learning on matrices - Collaborative Filtering (CF)

• Given nX “movies” x ∈ X and nY “customers” y ∈ Y,

• predict the “rating” z(x,y) ∈ Z of customer y for movie x

• Training data: large nX ×nY incomplete matrix Z that describes the

known ratings of some customers for some movies

• Goal: complete the matrix.



Learning on matrices - Multi-task learning

• k prediction tasks on same covariates x ∈ R
p

– k weight vectors wj ∈ R
p

– Joint matrix of predictors W = (w1, . . . , wk) ∈ R
p×k

• Many applications

– “transfer learning”

– Multi-category classification (one task per class) (Amit et al., 2007)

• Share parameters between various tasks

– similar to fixed effect/random effect models (Raudenbush and Bryk,

2002)

– joint variable or feature selection (Obozinski et al., 2009; Pontil

et al., 2007)



Learning on matrices - Image denoising

• Simultaneously denoise all patches of a given image

• Example from Mairal, Bach, Ponce, Sapiro, and Zisserman (2009c)



Two types of sparsity for matrices M ∈ R
n×p

I - Directly on the elements of M

• Many zero elements: Mij = 0

M

• Many zero rows (or columns): (Mi1, . . . ,Mip) = 0

M



Two types of sparsity for matrices M ∈ R
n×p

II - Through a factorization of M = UV ⊤

• M = UV ⊤, U ∈ R
n×m and V ∈ R

n×m

• Low rank: m small

=

T

U
V

M

• Sparse decomposition: U sparse

U= VM
T



Structured matrix factorizations - Many instances

• M = UV ⊤, U ∈ R
n×m and V ∈ R

p×m

• Structure on U and/or V

– Low-rank: U and V have few columns

– Dictionary learning / sparse PCA: U or V has many zeros

– Clustering (k-means): U ∈ {0, 1}n×m, U1 = 1

– Pointwise positivity: non negative matrix factorization (NMF)

– Specific patterns of zeros

– etc.

• Many applications

– e.g., source separation (Févotte et al., 2009), exploratory data

analysis



Multi-task learning

• Joint matrix of predictors W = (w1, . . . , wk) ∈ R
p×k

• Joint variable selection (Obozinski et al., 2009)

– Penalize by the sum of the norms of rows of W (group Lasso)

– Select variables which are predictive for all tasks



Multi-task learning

• Joint matrix of predictors W = (w1, . . . , wk) ∈ R
p×k

• Joint variable selection (Obozinski et al., 2009)

– Penalize by the sum of the norms of rows of W (group Lasso)

– Select variables which are predictive for all tasks

• Joint feature selection (Pontil et al., 2007)

– Penalize by the trace-norm (see later)

– Construct linear features common to all tasks

• Theory: allows number of observations which is sublinear in the

number of tasks (Obozinski et al., 2008; Lounici et al., 2009)

• Practice: more interpretable models, slightly improved performance



Low-rank matrix factorizations

Trace norm

• Given a matrix M ∈ R
n×p

– Rank of M is the minimum size m of all factorizations of M into

M = UV ⊤, U ∈ R
n×m and V ∈ R

p×m

– Singular value decomposition: M = U Diag(s)V ⊤ where U and V

have orthonormal columns and s ∈ R
m
+ are singular values

• Rank of M equal to the number of non-zero singular values



Low-rank matrix factorizations

Trace norm

• Given a matrix M ∈ R
n×p

– Rank of M is the minimum size m of all factorizations of M into

M = UV ⊤, U ∈ R
n×m and V ∈ R

p×m

– Singular value decomposition: M = U Diag(s)V ⊤ where U and V

have orthonormal columns and s ∈ R
m
+ are singular values

• Rank of M equal to the number of non-zero singular values

• Trace-norm (a.k.a. nuclear norm) = sum of singular values

• Convex function, leads to a semi-definite program (Fazel et al., 2001)

• First used for collaborative filtering (Srebro et al., 2005)



Results for the trace norm

• Rank recovery condition (Bach, 2008d)

– The Hessian of the loss around the asymptotic solution should be

close to diagonal

• Sufficient condition for exact rank minimization (Recht et al., 2009)

• High-dimensional inference for noisy matrix completion (Srebro et al.,

2005; Candès and Plan, 2009a)

– May recover entire matrix from slightly more entries than the

minimum of the two dimensions

• Efficient algorithms:
– First-order methods based on the singular value decomposition (see,

e.g., Mazumder et al., 2009)

– Low-rank formulations (Rennie and Srebro, 2005; Abernethy et al.,

2009)



Spectral regularizations

• Extensions to any functions of singular values

• Extensions to bilinear forms (Abernethy et al., 2009)

(x,y) 7→ Φ(x)⊤BΨ(y)

on features Φ(x) ∈ R
fX and Ψ(y) ∈ R

fY , and B ∈ R
fX×fY

• Collaborative filtering with attributes

• Representer theorem: the solution must be of the form

B =

nX∑

i=1

nY∑

j=1

αijΨ(xi)Φ(yj)
⊤

• Only norms invariant by orthogonal transforms (Argyriou et al., 2009)



Sparse principal component analysis

• Given data matrix X = (x⊤
1 , . . . , x⊤

n )⊤ ∈ R
n×p, principal component

analysis (PCA) may be seen from two perspectives:

– Analysis view: find the projection v ∈ R
p of maximum variance

(with deflation to obtain more components)

– Synthesis view: find the basis v1, . . . , vk such that all xi have low

reconstruction error when decomposed on this basis

• For regular PCA, the two views are equivalent

• Sparse extensions

– Interpretability

– High-dimensional inference

– Two views are differents



Sparse principal component analysis

Analysis view

• DSPCA (d’Aspremont et al., 2007), with A = 1
nX⊤X ∈ R

p×p

– max
‖v‖2=1,‖v‖06k

v⊤Av relaxed into max
‖v‖2=1,‖v‖16k1/2

v⊤Av

– using M = vv⊤, itself relaxed into max
M<0,tr M=1,1⊤|M |16k

trAM



Sparse principal component analysis

Analysis view

• DSPCA (d’Aspremont et al., 2007), with A = 1
nX⊤X ∈ R

p×p

– max
‖v‖2=1,‖v‖06k

v⊤Av relaxed into max
‖v‖2=1,‖v‖16k1/2

v⊤Av

– using M = vv⊤, itself relaxed into max
M<0,tr M=1,1⊤|M |16k

trAM

• Requires deflation for multiple components (Mackey, 2009)

• More refined convex relaxation (d’Aspremont et al., 2008)

• Non convex analysis (Moghaddam et al., 2006b)

• Applications beyond interpretable principal components

– used as sufficient conditions for high-dimensional inference



Sparse principal component analysis

Synthesis view

• Find v1, . . . , vm ∈ R
p sparse so that

n∑

i=1

min
u∈Rm

∥
∥
∥
∥
xi −

m∑

j=1

ujvj

∥
∥
∥
∥

2

2

is small

• Equivalent to look for U ∈ R
n×m and V ∈ R

p×m such that V is

sparse and ‖X − UV ⊤‖2
F is small



Sparse principal component analysis

Synthesis view

• Find v1, . . . , vm ∈ R
p sparse so that

n∑

i=1

min
u∈Rm

∥
∥
∥
∥
xi −

m∑

j=1

ujvj

∥
∥
∥
∥

2

2

is small

• Equivalent to look for U ∈ R
n×m and V ∈ R

p×m such that V is

sparse and ‖X − UV ⊤‖2
F is small

• Sparse formulation (Witten et al., 2009; Bach et al., 2008)

– Penalize columns vi of V by the ℓ1-norm for sparsity

– Penalize columns ui of U by the ℓ2-norm to avoid trivial solutions

min
U,V

‖X − UV ⊤‖2
F + λ

m∑

i=1

{
‖ui‖2

2 + ‖vi‖2
1

}



Structured matrix factorizations

min
U,V

‖X − UV ⊤‖2
F + λ

m∑

i=1

{
‖ui‖2 + ‖vi‖2

}

• Penalizing by ‖ui‖2 + ‖vi‖2 equivalent to constraining ‖ui‖ 6 1 and

penalizing by ‖vi‖ (Bach et al., 2008)

• Optimization by alternating minimization (non-convex)

• ui decomposition coefficients (or “code”), vi dictionary elements

• Sparse PCA = sparse dictionary (ℓ1-norm on ui)

• Dictionary learning = sparse decompositions (ℓ1-norm on vi )

– Olshausen and Field (1997); Elad and Aharon (2006); Raina et al.

(2007)



Dictionary learning for image denoising

x︸︷︷︸
measurements

= x︸︷︷︸
original image

+ ε︸︷︷︸
noise



Dictionary learning for image denoising

• Solving the denoising problem (Elad and Aharon, 2006)

– Extract all overlapping 8 × 8 patches xi ∈ R
64.

– Form the matrix X = [x1, . . . , xn]⊤ ∈ R
n×64

– Solve a matrix factorization problem:

min
U,V

||X − UV ⊤||2F =
n∑

i=1

||xi − V U(i, :)||22

where U is sparse, and V is the dictionary

– Each patch is decomposed into xi = V U(i, :)

– Average the reconstruction V U(i, :) of each patch xi to reconstruct

a full-sized image

• The number of patches n is large (= number of pixels)



Online optimization for dictionary learning

min
U∈Rn×m,V ∈C

n∑

i=1

||xi − V U(i, :)||22 + λ||U(i, :)||1

C △
= {V ∈ R

p×m s.t. ∀j = 1, . . . ,m, ||V (:, j)||2 6 1}.

• Classical optimization alternates between U and V

• Good results, but very slow!



Online optimization for dictionary learning

min
U∈Rn×m,V ∈C

n∑

i=1

||xi − V U(i, :)||22 + λ||U(i, :)||1

C △
= {V ∈ R

p×m s.t. ∀j = 1, . . . ,m, ||V (:, j)||2 6 1}.

• Classical optimization alternates between U and V .

• Good results, but very slow!

• Online learning (Mairal, Bach, Ponce, and Sapiro, 2009a) can

– handle potentially infinite datasets

– adapt to dynamic training sets



Denoising result

(Mairal, Bach, Ponce, Sapiro, and Zisserman, 2009c)



Denoising result

(Mairal, Bach, Ponce, Sapiro, and Zisserman, 2009c)



What does the dictionary V look like?



Inpainting a 12-Mpixel photograph



Inpainting a 12-Mpixel photograph



Inpainting a 12-Mpixel photograph



Inpainting a 12-Mpixel photograph



Alternative usages of dictionary learning

• Uses the “code” U as representation of observations for subsequent

processing (Raina et al., 2007; Yang et al., 2009)

• Adapt dictionary elements to specific tasks (Mairal et al., 2009b)

– Discriminative training for weakly supervised pixel classification (Mairal

et al., 2008)



Sparse Structured PCA

(Jenatton, Obozinski, and Bach, 2009b)

• Learning sparse and structured dictionary elements:

min
U,V

‖X − UV ⊤‖2
F + λ

m∑

i=1

{
‖ui‖2 + ‖vi‖2

}

• Structured norm on the dictionary elements

– grouped penalty with overlapping groups to select specific classes

of sparsity patterns

– use prior information for better reconstruction and/or added

robustness

• Efficient learning procedures through η-tricks (closed form updates)



Application to face databases (1/3)

raw data (unstructured) NMF

• NMF obtains partially local features



Application to face databases (2/3)

(unstructured) sparse PCA Structured sparse PCA

• Enforce selection of convex nonzero patterns ⇒ robustness to

occlusion



Application to face databases (2/3)

(unstructured) sparse PCA Structured sparse PCA

• Enforce selection of convex nonzero patterns ⇒ robustness to

occlusion



Application to face databases (3/3)

• Quantitative performance evaluation on classification task
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Topic models and matrix factorization

• Latent Dirichlet allocation (Blei et al., 2003)

– For a document, sample θ ∈ R
k from a Dirichlet(α)

– For the n-th word of the same document,

∗ sample a topic zn from a multinomial with parameter θ

∗ sample a word wn from a multinomial with parameter β(zn, :)



Topic models and matrix factorization

• Latent Dirichlet allocation (Blei et al., 2003)

– For a document, sample θ ∈ R
k from a Dirichlet(α)

– For the n-th word of the same document,

∗ sample a topic zn from a multinomial with parameter θ

∗ sample a word wn from a multinomial with parameter β(zn, :)

• Interpretation as multinomial PCA (Buntine and Perttu, 2003)

– Marginalizing over topic zn, given θ, each word wn is selected from

a multinomial with parameter
∑k

z=1 θkβ(z, :) = β⊤θ

– Row of β = dictionary elements, θ code for a document



Topic models and matrix factorization

• Two different views on the same problem

– Interesting parallels to be made

– Common problems to be solved

• Structure on dictionary/decomposition coefficients with adapted

priors, e.g., nested Chinese restaurant processes (Blei et al., 2004)

• Other priors and probabilistic formulations (Griffiths and Ghahramani,

2006; Salakhutdinov and Mnih, 2008; Archambeau and Bach, 2008)

• Identifiability and interpretation/evaluation of results

• Discriminative tasks (Blei and McAuliffe, 2008; Lacoste-Julien

et al., 2008; Mairal et al., 2009b)

• Optimization and local minima



Sparsifying linear methods

• Same pattern than with kernel methods

– High-dimensional inference rather than non-linearities

• Main difference: in general no unique way

• Sparse CCA (Sriperumbudur et al., 2009; Hardoon and Shawe-Taylor,

2008; Archambeau and Bach, 2008)

• Sparse LDA (Moghaddam et al., 2006a)

• Sparse ...



Sparse methods for matrices

Summary

• Structured matrix factorization has many applications

• Algorithmic issues

– Dealing with large datasets

– Dealing with structured sparsity

• Theoretical issues

– Identifiability of structures, dictionaries or codes

– Other approaches to sparsity and structure

• Non-convex optimization versus convex optimization

– Convexification through unbounded dictionary size (Bach et al.,

2008; Bradley and Bagnell, 2009) - few performance improvements



Sparse methods for machine learning

Outline

• Introduction - Overview

• Sparse linear estimation with the ℓ1-norm

– Convex optimization and algorithms

– Theoretical results

• Structured sparse methods on vectors

– Groups of features / Multiple kernel learning

– Extensions (hierarchical or overlapping groups)

• Sparse methods on matrices

– Multi-task learning

– Matrix factorization (low-rank, sparse PCA, dictionary learning)



Links with compressed sensing

(Baraniuk, 2007; Candès and Wakin, 2008)

• Goal of compressed sensing: recover a signal w ∈ R
p from only n

measurements y = Xw ∈ R
n

• Assumptions: the signal is k-sparse, n much smaller than p

• Algorithm: minw∈Rp ‖w‖1 such that y = Xw

• Sufficient condition on X and (k, n, p) for perfect recovery:

– Restricted isometry property (all small submatrices of X⊤X must

be well-conditioned)

– Such matrices are hard to come up with deterministically, but

random ones are OK with k log p = O(n)

• Random X for machine learning?



Why use sparse methods?

• Sparsity as a proxy to interpretability

– Structured sparsity

• Sparse methods are not limited to least-squares regression

• Faster training/testing

• Better predictive performance?

– Problems are sparse if you look at them the right way

– Problems are sparse if you make them sparse



Conclusion - Interesting questions/issues

• Implicit vs. explicit features

– Can we algorithmically achieve log p = O(n) with explicit

unstructured features?

• Norm design

– What type of behavior may be obtained with sparsity-inducing

norms?

• Overfitting convexity

– Do we actually need convexity for matrix factorization problems?



Hiring postdocs and PhD students

European Research Council project on

Sparse structured methods for machine learning

• PhD positions

• 1-year and 2-year postdoctoral positions

• Machine learning (theory and algorithms), computer vision, audio

processing, signal processing

• Located in downtown Paris (Ecole Normale Supérieure - INRIA)

• http://www.di.ens.fr/~fbach/sierra/
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