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Abstract

For supervised and unsupervised learning, positive defk@tnels allow to use
large and potentially infinite dimensional feature spaciéls &scomputational cost
that only depends on the number of observations. This isllysd@ne through
the penalization of predictor functions by Euclidean otiditian norms. In this
paper, we explore penalizing by sparsity-inducing nornthsas the/*-norm or
the block/*-norm. We assume that the kernel decomposes into a large sum o
individual basis kernels which can be embedded in a diremtgdlic graph; we
show that it is then possible to perform kernel selectiooulgh a hierarchical
multiple kernel learning framework, in polynomial time imetnumber of selected
kernels. This framework is naturally applied to non lineariable selection; our
extensive simulations on synthetic datasets and datasetstfie UCI repository
show that efficiently exploring the large feature spaceuglosparsity-inducing
norms leads to state-of-the-art predictive performance.

1 Introduction

In the last two decades, kernel methods have been a prol@aretical and algorithmic machine

learning framework. By using appropriate regularizatigrHilbertian norms, representer theorems
enable to consider large and potentially infinite-dimenaldeature spaces while working within an

implicit feature space no larger than the number of obsemat This has led to numerous works on
kernel design adapted to specific data types and generieldeased algorithms for many learning

tasks (see, e.g., [1, 2]).

Regularization by sparsity-inducing norms, such agtheorm has also attracted a lot of interest in
recent years. While early work has focused on efficient @lgmis to solve the convex optimization
problems, recent research has looked at the model selgrbperties and predictive performance of
such methods, in the linear case [3] or within the multipleke¢learning framework (see, e.g., [4]).

In this paper, we aim to bridge the gap between these twodihesearch by trying to usé-norms
inside the feature space. Indeed, feature spaces are large andpwet ¢lxe estimated predictor
function to require only a small number of features, whicksactly the situation wher€ -norms
have proven advantageous. This leads to two natural qusdhat we try to answer in this paper: (1)
Is it feasible to perform optimization in this very large figge space with cost which is polynomial
in the size of the input space? (2) Does it lead to better ptigdiperformance and feature selection?

More precisely, we consider a positive definite kernel thatle expressed as a large sum of positive
definitebasisorlocal kernels This exactly corresponds to the situation where a largeifegpace is
the concatenation of smaller feature spaces, and we aimdeldotion among these many kernels,
which may be done through multiple kernel learning. One mdjfiiculty however is that the
number of these smaller kernels is usually exponential mdimension of the input space and
applying multiple kernel learning directly in this deconsjg@mn would be intractable.



In order to peform selection efficiently, we make the extrsuagption that these small kernels can
be embedded in directed acyclic grap{DAG). Following [5], we consider in Section 2 a spe-
cific combination off2-norms that is adapted to the DAG, and will restrict the atiteal sparsity
patterns; in our specific kernel framework, we are able totheeDAG to design an optimization
algorithm which has polynomial complexity in the number elested kernels (Section 3). In simu-
lations (Section 5), we focus datirected grids where our framework allows to perform non-linear
variable selection. We provide extensive experimentadlatibn of our novel regularization frame-
work; in particular, we compare it to the regul&rregularization and shows that it is always com-
petitive and often leads to better performance, both orhgjittexamples, and standard regression
and classification datasets from the UCI repository.

Finally, we extend in Section 4 some of the known consisteesylts of the Lasso and multiple ker-
nel learning [3, 4], and give a partial answer to the modelat@n capabilities of our regularization
framework by giving necessary and sufficient conditionsrfamdel consistency. In particular, we
show that our framework is adapted to estimating consistenty thehull of the relevant variables.

Hence, by restricting the statistical power of our methoel gain computational efficiency.

2 Hierarchical multiple kernel learning (HKL)

We consider the problem of predicting a random varidble ) C R from a random variabl& €
X, whereX and) may be quite general spaces. We assume that we aresgivieth. observations
(xi,y;) € X x Y, i = 1,...,n. We define theempirical risk of a function f from X’ to R as
LS l(yi, f(x;)), wherel : Y x R — R* is aloss function We only assume thatis convex
with respect to the second parameter (but not necessaffigyetitiable). Typical examples of loss
functions are the square loss for regression, 4(g.,j) = %(y — )2 fory € R, and the logistic loss
U(y,9) = log(1+e¥9) or the hinge losé(y, §) = max{0, 1 — yg} for binary classification, where
y € {—1, 1}, leading respectively to logistic regression and suppectar machines [1, 2].

2.1 Graph-structured positive definite kernels

We assume that we are giverpasitive definite kernet : X x X — R, and that this kernel can

be expressed as the sum, over an indeX/5etf basis kernel&,, v € V, i.e, for allz, 2’ € X,
k(z,2") =3, cv ku(z,2"). Foreachy € V, we denote byF, and®, the feature space and feature
map ofk,, i.e., forallz, 2’ € X, ky(x,2’) = (®,(x), P,(2")). Throughout the paper, we denote
by ||| the Hilbertian norm of: and by(u, v) the associated dot product, where the precise space is
omitted and can always be inferred from the context.

Our sum assumption corresponds to a situation where theréeatap®(x) and feature spac&
for k is the concatenatiorof the feature map#, (z) for each kernek,, i.e, 7 = [] ., F, and
®(x) = (P, (x))vev. Thus, looking for a certai¥ € F and a predictor functiorfi(x) = (3, ®(z))
is equivalent to looking jointly fof3, € F,, forallv € V., andf(z) = > . (Bv, ®u(2))

As mentioned earlier, we make the assumption that th¥ sein be embedded intalirected acyclic
graph Directed acyclic graphs (DAGs) allow to naturally define tiotions ofparents children,
descendantandancestors Given a nodev € V, we denote byA(w) C V the set of its ancestors,
and byD(w) C V, the set of its descendants. We use the convention thatasya descendant
and an ancestor of itself, i.ey € A(w) andw € D(w). Moreover, forlV C V, we let denote
sources(W) the set ofsourcesof the graphG restricted tolV (i.e., nodes in¥ with no parents
belonging tol). Given a subset of nodé®” C V, we can define thiull of W as the union of all
ancestors ofv € W, i.e.,hull(W) = U,y A(w). Given a set?’, we define the set axtreme
pointsof W as the smallest subsEtC W such thahull(7") = hull(1¥) (note that it is always well
defined, a$); v, pun(r)—nan(w) 1)- See Figure 1 for examples of these notions.

The goal of this paper is to perform kernel selection amoegtirnelst,, v € V. We essentially
use the graph to limit the search to specific subsets.dflamely, instead of considering all possible
subsets of active (relevant) vertices, we are only intetest estimating correctly the hull of these
relevant vertices; in Section 2.2, we design a specific ggdarglucing norms adapted to hulls.

In this paper, we primarily focus on kernels that can be esgeéd as “products of sums”, and on the
associateg-dimensional directed grids, while noting that our framekie applicable to many other
kernels. Namely, we assume that the input spéidactorizes intg componentst’ = X x - - - x &),
and that we are givep sequences of length + 1 of kernelsk;;(xz;,z}), i € {1,...,p}, j €



Figure 1: Example of graph and associated notions. (Lefiniple of a 2D-grid. (Middle) Example
of sparsity patternx in light blue) and the complement of its hul-(in light red). (Right) Dark
blue points ) are extreme points of the set of all active points (blyedark red points-¢) are the
sources of the set of all red points);

{0,..,q}, such thak(e, ') = X0, TT%, hig (i) = Ty (Z;ﬂ.:o ks, (xi,x’i)). We
thus have a sum @+ 1)? kernels, that can be computed efficiently as a produgsoims. A natural
DAG onV = []?_,{0,...,q} is defined by connecting eadt, ..., j,) to (j1i+1,72,.--,7p),
ooy (415 -y Jp—1,Jp+1). As shown in Section 2.2, this DAG will correspond to the ¢oaist

of selecting a given product of kernels only after all themwdlucts are selected. Those DAGs
are especially suited to nonlinear variable selectionairigular with the polynomial and Gaussian
kernels. In this context, products of kernels corresporigteractions between certain variables, and
our DAG implies that we select an interaction only after albsnteractions were already selected.
Polynomial kernels We considerY; = R, k;;(z;, 2}) = (;1) (z;21)7; the full kernel is then equal
to k(z,2") = [T7_; 27— (9) (zix})? = [T}—, (1 + z;a})?. Note that this is not exactly the usual
polynomial kernel (whose feature space is the space of vaukite polynomials ofotal degree less
thang), since our kernel considers polynomialsadximaldegree;.

Gaussian kernels We also conside®; = R, and the Gaussian-RBF kernet@==)* The
following decomposition is the eigendecomposition of tlom icentered covariance operator for a
normal distribution with variance/4a (see, e.g., [6]):

etle)? = 50 A [ 5+ fy (Vaea)[e & (@D Hy (e,
wherec? = a? + 2ab, A = a + b + ¢, and Hy, is the k-th Hermite polynomial. By appropriately
truncating the sum, i.e, by considering that the firdiasis kernels are obtained from the figst
single Hermite polynomials, and tHe + 1)-th kernel is summing over all other kernels, we ob-
tain a decomposition of a uni-dimensional Gaussian kemtelg + 1 componentsq of them are
one-dimensional, the last one is infinite-dimensional,dart be computed by differencing). The
decomposition ends up being close to a polynomial kernetfofite degree, modulated by an ex-
ponential [2]. One may also use adaptivedecomposition using kernel PCA (see, e.g., [2, 1]),
which is equivalent to using the eigenvectors of the emalitovariance operator associated with
the data (and not the population one associated with thesizaudistribution with same variance).
In simulations, we tried both with no significant differesce

ANOVA kernels Wheng = 1, the directed grid is isomorphic to the power set (i.e., tee s
of subsets) with the inclusion DAG. In this setting, we cacaiapose the ANOVA kernel [2] as

yeepy oy 0 L JCl,...,

framework will select the relevant subsets for the Gaudsianels.

Kernels or features? In this paper, we emphasize tkernel viewi.e., we are given a kernel (and
thus a feature space) and we explore it ugihgorms. Alternatively, we could use tf@ature view
i.e., we have a large structured set of features that we tsglect from; however, the techniques
developed in this paper assume that (a) each feature mighfib#e-dimensional and (b) that we
can sum all the local kernels efficiently (see in particulactidn 3.2). Following the kernel view
thus seems slightly more natural.

2.2 Graph-based structured regularization

Given 3 € [],cy Fo, the natural Hilbertian nori3|| is defined throughs||? = > .y [18u]*.
Penalizing with this norm is efficient because summing alhkésk, is assumed feasible in polyno-
mial time and we can bring to bear the usual kernel machirewyever, it does not lead to sparse
solutions, where mang, will be exactly equal to zero.



As said earlier, we are only interested in the hull of thecteld elementg, € F,, v € V; the hull

of a setl is characterized by the set of such thaD(v) C I¢, i.e., such that all descendantswof
are in the complement: hull(I) = {v € V,D(v) C I¢}¢. Thus, if we try to estimataull(I), we
need to determine which € V" are such thab(v) C I°. In our context, we are hence looking at
selecting vertices € V for which 3p(,y = (Bw)wen(v) = 0.

We thus consider the following structured blogk-norm defined asy, ., dol|fpw)l =
Pvev (X wenw) 13w]1?)/2, where(d,),cy are positive weights. Penalizing by such a norm
will indeed impose that some of the vectots,) € [],,cp,) Fw are exactly zero. We thus con-
sider the following minimization probletn

mingery,., 7 2 iy (i Coey (Bo (@) + 3 (Zyev doll o) 1)
Our Hilbertian norm is a Hilbert space instantiation of thierarchical norms recently introduced
by [5] and also considered by [7] in the MKL setting. If all B@rt spaces are finite dimensional, our
particular choice of norms corresponds to @h-tiorm of #2-norms”. While with uni-dimensional
groups/kernels, the/-norm of />°-norms” allows an efficient path algorithm for the squareslos
and when the DAG is a tree [5], this is not possible anymorl gibups of size larger than one, or
when the DAG is a not a tree. In Section 3, we propose a novelittign to solve the associated
optimization problem in time polynomial in the number ofesgted groups/kernels, for all group
sizes, DAGs and losses. Moreover, in Section 4, we show umkieh conditions a solution to the
problem in Eq. (1) consistently estimates the hull of thesipapattern.

Finally, note that in certain settings (finite dimensiond@bkrt spaces and distributions with abso-
lutely continuous densities), these norms have the effesstlecting a given kernelinly after all of
its ancestorg5]. This is another explanation why hulls end up being gelécsince to include a
given vertex in the models, the entire set of ancestors nteste selected.

3 Optimization problem

In this section, we give optimality conditions for the preims in Eq. (1), as well as optimization
algorithms with polynomial time complexity in the numbers#lected kernels. In simulations we
consider total numbers of kernels larger thad®, and thus such efficient algorithms are essential
to the success of hierarchical multiple kernel learning (K

3.1 Reformulation in terms of multiple kernel learning

Following [8, 9], we can simply derive an equivalent forntida of Eq. (1). Using Cauchy-Schwarz
inequality, we have that for alj € RV such thaty > 0 and}_ ., din, <1,

Bow II? _
(ZUEV d'U”ﬁD(’U)”)2 < ZUEV Hqu(iv)H = ZwEV(ZUEA(w) My 1)”571}”21

with equality if and only ifn, = d;'||Bow)||(,ey dollBow )t We associate to the vector
n € RY, the vectol € RV suchthavw € V, (! = D veA(w) n, *. We use the natural convention

that if n, is equal to zero, thet,, is equal to zero for all descendanitof v. We let denotdd the
set of allowed; and Z the set of all associatefl The setH andZ are in bijection, and we can
interchangeably usg € H or the corresponding(n) € Z. Note thatZ is in general not convek
(unless the DAG is a tree, see [10]), and i€ Z, then(,, < (, forall w € D(v), i.e., weights of
descendant kernels are smaller, which is consistent witliktlown fact that kernels should always
be selected after all their ancestors.

The problem in Eq. (1) is thus equivalent to
min - min &35 (i Y ey (B Po(@0)) + 5 Xuer Gu(m) I Bull. @)

neH BGHvEV]:u
Using the change of variablé, = 8,¢, /? and®(z) = (¢o/*®,(z))vev, this implies that given
the optimaln (and associated), 3 corresponds to the solution of the regular supervised iegrn
problem with kernel matrixs’ = ZwEV Cw Ky, whereK,, is n x n the kernel matrix associated

We consider the square of the norm, which does not changegéarization properties, but allow simple
links with multiple kernel learning.

2Although Z is not convex, we can still maximize positive linear comttimas overZ, which is the only
needed operation (see [10] for details).



with kernelk,,. Moreover, the solution is thefi, = (, Y .-, ®i®(2z;), wherea € R™ are the
dual parameters associated with the single kernel leaprioiglem.

Thus, the solution is entirely determined byc R™ andn € RY (and its corresponding € RY).
More precisely, we have (see proof in [10]):

Proposition 1 The pair (a,7) is optimal for Eq. (1), withvw, B, = Cuw iy a;Pu (), if and
only if (a) givenn, « is optimal for the single kernel learning problem with kdrneatrix KX =

Ywev Cw(n)Kw, and(b) givena, n € H maximizes”,, ¢y (3w ) o Kpa

Moreover, the total duality gap can be upperbounded as theo$the two separate duality gaps for
the two optimization problems, which will be useful in Secti3.2 (see [10] for more details). Note
that in the case of “flat” regular multiple kernel learninghave the DAG has no edges, we obtain
back usual optimality conditions [8, 9].

Following a common practice for convex sparsity problenid,[ve will try to solve a small problem
where we assume we know the setaguch that|3p (.|| is equal to zero (Section 3.3). We then
“simply” need to check that variables in that set may indeedkfft out of the solution. In the next
section, we show that this can be done in polynomial timepaigin the number of kernels to consider
leaving out is exponential (Section 3.2).

3.2 Conditions for global optimality of reduced problem

We let denote/ the complement of the set of norms which are set to zero. We ¢basider the
optimal solutions of the reduced problem (an), namely,

ming, crp 7, = iy LWis Ype s (Bos Po(0)) + 5 (Xpev deﬁD(v)ﬂJ”)Q : 3
with optimal primal variables3;, dual variablesy and optimal pair(n;,¢;). We now consider
necessary conditions and sufficient conditions for thistsmh (augmented with zeros for non active
variables, i.e., variables ifi®) to be optimal with respect to the full problem in Eq. (1). Wendte
byd = >, csdullBpwns|l the optimal value of the norm for the reduced problem.

Proposition 2 (V;) Ifthe reduced solution is optimal for the full problem in Et)) and all kernels
in the extreme points of are active, then we hav@ax; cqources(J<) a'Kia/d? < 62

Proposition 3 (Sy,:)  If max;csources(s¢) 2wen(s) @ Kuw/ (X eaw)npe dv)? < 67 + /X,
then the total duality gap is less than

The proof is fairly technical and can be found in [10]; thisult constitutes the main technical
contribution of the paper: it essentially allows to solveeaylarge optimization problem over
exponentially many dimensions in polynomial time.

The necessary conditigiV;) does not cause any computational problems. However, tffieisnt
condition(S,) requires to sum over all descendants of the active kernélghws impossible in
practice (as shown in Section 5, we consitleof cardinal often greater thar93®). Here, we need
to bring to bear the specific structure of the kerheln the context of directed grids we consider
in this paper, ifd, can also be decomposed as a product, hen , (,,)p ) dv is also factorized,
and we can compute the sum overalt D(¢) in linear time inp. Moreover we can cache the sums
P wen() Kw/ (X ueaw)nn( dv)” inorder to save running time.

3.3 Dual optimization for reduced or small problems

When kernelsk,, v € V have low-dimensional feature spaces, we may use a primal rep
resentation and solve the problem in Eq. (1) using genertanigation toolboxes adapted to
conic constraints (see, e.g., [12]). However, in order tosesexisting optimized supervised
learning code and use high-dimensional kernels, it is pable to use a dual optimization.
Namely, we use the same technique as [8]: we consideK far Z, the functionB(¢) =

mingery, 7, LS Wi, Y ey (Bos Po(@)))+ 5 D wev CotlBwl|?, which is the optimal value
of the single kernel learning problem with kernel mafyix ., ., K.,. Solving Eq. (2) is equivalent
to minimizing B({(n)) with respectta) € H.

If aridge (i.e., positive diagonal) is added to the kernetrinas, the functiorB is differentiable [8].
Moreover, the functiom — ((n) is differentiable onR*.)"". Thus, the functiom — B[(((1 —



e)n + rp7d=?)] , whered—? is the vector with element; 2, is differentiable ife > 0. We can then

use the same projected gradient descent strategy as [8himiné it. The overall complexity of
the algorithm is then proportional ©0(|V |n?)—to form the kernel matrices—plus the complexity
of solving a single kernel learning problem—typically beemO(n?) andO(n?). Note that this
algorithm is only used for small reduced subproblems forcwii has small cardinality.

3.4 Kernel search algorithm

We are now ready to present the detailed algorithm whichnelgtehe feature search algorithm
of [11]. Note that the kernel matrices are never all needgui@tty, i.e., we only need them (a)
explicitly to solve the small problems (but we need only a é#those) and (b) implicitly to compute
the sufficient conditioriS s . ), which requires to sum over all kernels, as shown in Sectign 3

e Input: kernel matriced(, € R"*", v € V, maximal gag, maximal# of kernels()
e Algorithm

1. Initialization: set/ = sources(V),
compute(«, 1) solutions of Eq. (3), obtained using Section 3.3
2. while(N;) and(S; ) are not satisfied angt(V) < Q
— If (V) is not satisfied, add violating variablessources(J¢) to .J
else, add violating variables iurces(J¢) of (S, .) to J
— Recomputéq, n) optimal solutions of Eqg. (3)
e Output: J, o, m

The previous algorithm will stop either when the duality gapess thare or when the maximal
number of kernelg) has been reached. In practice, when the weighiascrease with the depth of

v in the DAG (which we use in simulations), the small dualitpggenerally occurs before we reach
a problem larger tha@. Note that some of the iterations only increase the sizeeattive sets to
check the sufficient condition for optimality; forgettingase does not change the solution, only the
fact that we may actually know that we havesanptimal solution.

In order to obtain a polynomial complexity, the maximal dlggree of the DAG (i.e., the maximal
number of children of any given node) should be polynomialvali. Indeed, for the directeg-
grid (with maximum out-degree equal 19, the total running time complexity is a function of the
number of observations, and the numbeR of selected kernels; with proper caching, we obtain the
following complexity, assuming@(n?) for the single kernel learning problem, which is consemeti
O(n®R+n?Rp? +n?R?p), which decomposes into solvir®( R) single kernel learning problems,
cachingO(Rp) kernels, and computin@(R?p) quadratic forms for the sufficient conditions.

4 Consistency conditions

As said earlier, the sparsity pattern of the solution of Hy.Will be equal to its hull, and thus we
can only hope to obtain consistency of the hull of the patteirich we consider in this section. For
simplicity, we consider the case of finite dimensional Hittspaces (i.e F, = R/*) and the square
loss. We also hold fixed the vertex setiofi.e., we assume that the total number of features is fixed,
and we letn tend to infinity and\ = \,, decrease with.

Following [4], we make the following assumptions on the uhdeg joint distribution of (X, Y):
(a) the joint covariance matriX of (®(x,)),cv (defined with appropriate blocks of sife x f,,)
is invertible, (D)E(Y|X) = 3" -y (Bu,, Puw(z)) with W C V andvar(Y'|X) = o > 0 almost
surely. With these simple assumptions, we obtain (see [pndan]):

3 [ Zww B3 w Diag(do B |~ vew Bw II?

Proposition 4 (Sufficient condition) If ~ max weD(t)

tesources(We)
< 1, then@ and the hull ofW are consistently estimated whapn'/? — co and\,, — 0.

(X vea)np 4)?

Proposition 5 (Necessary condition)lf the 3 and the hull of W are consistently estimated for
some Sequencbl! thenmaXtES()urces(Wc) ||2wW2a}W Dlag(dﬂ/nﬁD(u) ||)7J€W/6W||2/d% < L

Note that the last two propositions are not consequencedseosimilar results for flat MKL [4],
because the groups that we consider are overlapping. Mergtwe last propositions show that we
indeed can estimate the correct hull of the sparsity paitéhe sufficient condition is satisfied. In
particular, if we can make the groups such that the betweeunpgcorrelation is as small as possible,
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Figure 2: Comparison on synthetic examples: mean squaredaer 40 replications (with halved
standard deviations). Left: non rotated data, right: emtatata. See text for details.

dataset n p k #() L2 greedy lassax MKL HKL
abalone 4177 10 pol4~107 [44.2:1.3 43.91.4 47.90.7 44.51.1 43.3t1.0
abalone 4177 10 rbf~10' |43.0:0.9 45.0:1.7 49.6:1.7 43.721.0 43.6:1.1
bank-32fh 8192 32 pol4~10%? [40.10.7 39.20.8 41.3-0.7 38.7:0.7 38.9t0.7
bank-32fh 8192 32 rbf ~10%! |39.0t0.7 39.20.7 66.16.9 38.4-0.7 38.4-0.7
bank-32fm 8192 32 pol4~10%* | 6.0:0.1 5.0:0.2 7.0+0.2 6.1#0.3 5.1H0.1
bank-32fm 8192 32 rbf ~10%! | 5.740.2 5.80.4 36.34.1 5.9:0.2 4.60.2
bank-32nh 8192 32 pol4~10%? [44.3t1.2 46.31.4 45.80.8 46.0:1.2 43.6t1.1
bank-32nh 8192 32 rbf~103! |44.3t1.2 49.4-1.6 93.0:2.8 46.1+1.1 43.5:1.0
bank-32nm 8192 32 pol4~10*2 |17.2£0.6 18.20.8 19.5-0.4 21.0:0.7 16.8:0.6
bank-32nm 8192 32 rbf~103! |16.9t0.6 21.0:0.6 62.3-2.5 20.9-0.7 16.4-0.6
boston 506 13 pol4~10Y |17.13.6 24.7410.8 29.32.3 22.22.2 18.13.8
boston 506 13 rbf ~10'? |16.4:4.0 32.4:8.2 29.4-1.6 20.22.1 17.14.7
pumadyn-32fh 8192 32 pol4+10%? |57.3:0.7 56.4-0.8 57.5:0.4 56.4:0.7 56.4:0.8
pumadyn-32fh 8192 32 rbf~103! |57.740.6 72.222.5 89.32.0 56.50.8 55.7:0.7
pumadyn-32fm 8192 32 pol4~10%? | 6.9t0.1 6.4t1.6 7.5:0.2 7.0:0.1 3.1+0.0
pumadyn-32fm 8192 32 rbf~10%' | 5.000.1 46.251.6 44.25.7 7.10.1 3.4+0.0
pumadyn-32nh 8192 32 pol4v10?% [84.2£1.3 73.3:25.4 84.80.5 83.6:1.3 36.7:0.4
pumadyn-32nh 8192 32 rbf~103! |56.5£1.1 81.3-25.0 98.%0.7 83.7:1.3 35.5t0.5
pumadyn-32nm 8192 32 pol4-10%? [60.1£1.9 69.932.8 78.%1.1 77.50.9 5.5+0.1
pumadyn-32nm 8192 32 rbf~103! |15.740.4 67.342.4 95.91.9 77.6:0.9 7.240.1

Table 1: Mean squared errors (multiplied by 100) on UCI regjian datasets, normalized so that the
total variance to explain is 100. See text for details.

we can ensure correct hull selection. Finally, it is worthimpthat if the ratiosl,, / max,e a () dv
tend to infinity slowly withn, then we always consistently estimate the depth of the hell,the
optimal interaction complexity. We are currently investigg extensions to the non parametric
case [4], in terms of pattern selection and universal ctersiy.

5 Simulations

Synthetic examples We generated regression data as follows: 1024 samples op € [22,27]
variables were generated from a random covariance matrikitee labely € R was sampled as a
random sparse fourth order polynomial of the input varialléth constant number of monomials).
We then compare the performance of our hierarchical meltiginel learning method (HKL) with
the polynomial kernel decomposition presented in Sectida @ther methods that use the same
kernel and/or decomposition: (a) the greedy strategy efcsielg basis kernels one after the other, a
procedure similar to [13], and (b) the regular polynomiaiied regularization with the full kernel
(i.e., the sum of all basis kernels). In Figure 2, we compagewo approaches on 40 replications in
the following two situations: original data (left) and rtad data (right), i.e., after the input variables
were transformed by a random rotation (in this situatioe, generating polynomial is not sparse
anymore). We can see that in situations where the underlyiaedictor function is sparse (left),
HKL outperforms the two other methods when the total numlbeadablesp increases, while in
the other situation where the best predictor is not spaigkt]rit performs only slightly better: i.e.,
in non sparse problemé.-norms do not really help, but do help a lot when sparsity jseexed.

UCl datasets Forregression datasets, we compare HKL with polynomiaieke4) and Gaussian-
RBF kernels (each dimension decomposed into 9 kernelsgtimtlowing approaches with the same



dataset n p k #(V) L2 greedy  HKL

mushrooms 1024 117 pol4v10%? | 0.4:0.4 0.1+0.1 0.11+0.2
mushrooms 1024 117 rbf&10''?2| 0.140.2 0.14+0.2 0.H0.2
ringnorm 1024 20 pol4~10' | 3.8£1.1 5.9:1.3 2.040.3
ringnorm 1024 20 rbf ~10'9 | 1.240.4 2.40.5 1.6:0.4
spambase 1024 57 pol4:10*° | 8.3t1.0 9.71.8 8.140.7
spambase 1024 57 rbfx~10°* | 9.4+1.3 10.6:1.7 8.4£1.0
twonorm 1024 20 pol4~10' | 2.9+0.5 4.40.5 3.2-0.6
twonorm 1024 20 rbf ~10'° | 2.840.6 5.140.7 3.2-0.6
magicO4 1024 10 pol4~10" [15.9£1.0 16.6:1.6 15.6£0.8
magic04 1024 10 rbf ~10'° [15.240.9 17.A1.3 15.6:0.9

Table 2: Error rates (multiplied by 100) on UCI binary cléissition datasets. See text for details.

kernel: regular Hilbertian regularization (L2), same gieapproach as earlier (greedy), regulariza-
tion by the/*-norm directly on the vectas, a strategy which is sometimes used in the context of
sparse kernel learning [14] but does not use the Hilbertrarctire of the kernel (lassae}, multiple
kernel learning with the kernels obtained by summing all kernels associated withgleivariable
(MKL). For all methods, the kernels were held fixed, while ible 1, we report the performance
for the best regularization parameters obtained by 10 marfohdf splits.

We can see from Table 1, that HKL outperforms other methadgarticular for the datasets bank-
32nm, bank-32nh, pumadyn-32nm, pumadyn-32nh, which aeesels dedicated to non linear re-
gression. Note also, that we efficiently explore DAGs withywlarge numbers of verticeg(1/).

For binary classification datasets, we compare HKL (witHalgéstic loss) to two other methods (L2,
greedy) in Table 2. For some datasets (e.g., spambase), Hikswetter, but for some others, in
particular when the generating problem is known to be normsgpg@ngnorm, twonorm), it performs
slightly worse than other approaches.

6 Conclusion

We have shown how to perform hierarchical multiple kernathéng (HKL) in polynomial time in

the number of selected kernels. This framework may be appdienany positive definite kernels
and we have focused on polynomial and Gaussian kernels osathlinear variable selection.
In particular, this paper shows that trying to udetype penalties may be advantageous inside the
feature space. We are currently investigating applicattorstring and graph kernels [2].
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