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Supervised learning and regularization

Minimize with respect to functiorf 2 F :

X
| (yis f (%)) + Sk k?
I:Elrror on data + Regularization
Loss & function space ? Norm ?
Two Issues:
{ Loss

{ Function space / norm



Usual losses [SS01, STCO04]

Regression y 2 R, predictiony = f (x),
{ quadratic cost'(y;f (x)) = 5(y f(x))?
Classication :y2f 1;1g predictiony = sign(f (x))

{ loss of the form (y;f (x)) = (yf (X))
{ \True" cost: "(yf (X)) =1 yt (x)<0
{ Usualconvexcosts:
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Regularizations

Main goal: control the \capacity" of the learning problem

Two main lines of work

1. UseHilbertian (RKHS) nhorms
{ Non parametric supervised learning and kernel methods
{ Well developped theory [SS01, STC04, Wah90]
2. Use\sparsity inducing" norms P
{ main example: ;-norm kwk; = = I, jw]
{ Perform model selection as well as regularization
{ Often used heuristically

Goal of the course: Understand how and when to use sparsity-
Inducing norms



Why “;-norms lead to sparsity?

. . . .1 .
Example 1: quadratic problem in 1D, |.emzlg §X2 Xy + JX]
X
Piecewise quadratic function with a kink at zero
{ Derivative atO+: g, = yandO : g = y

A A

.

{ x=0 is the solutioni g > 0andg 6 O(i.e.,Jyj6 )
{ x> Oisthesolutioni g 6 O(l.e.,y> )) X =y
{ x6 Oisthe solutioni g 6 O(l.e.,y 6 )) X =y+

Solution| x = sign(y)(jyj )+ | = soft thresholding




Why “;-norms lead to sparsity?

Example 2: isotropic quadratic problem

min 17 X2 X Xiyi + kxki; = min 1x>x x“v+  kxk
x2Rp2i:1 | - i 1_szIOZ y 1

solution: x; =sign(y;)(Jyi] )+

decoupledsoft thresholding



Why “;-norms lead to sparsity?

Example 3: general quadratic problem

{ coupledsoft thresolding

Geometric interpretation

{ NB : Penalizing is \equivalent" to constraining




Course Outline

1. “1-norm regularization

Review of nonsmooth optimization problems and algorithms

Algorithms for the Lasso (generic or dedicated)
Examples

2. Extensions

Group Lasso and multiple kernel learning (MKL) + case study
Sparse methods for matrices

Sparse PCA

3. Theory - Consistency of pattern selection

Low and high dimensional setting
Links with compressed sensing



“1-norm regularization

vectory 2 RP and matrixX 2 R" P

Minimize with respect tdoadings/weightsw 2 RP:

X

(Y wTx) kwkg
i=1
Error on data + Regularization

Including a constant tern?

Assumptions on loss:

{ convex anddi erentiable in the second variable
{ NB: with the square loss) Dbasis pursuit (signal processing)
[CDSO01], Lasso (statistics/machine learning) [Tib96]



A review of honsmooth convex
analysis and optimization

Analysis:optimality conditions

Optimization: algorithms
{ First order methods
{ Second order methods

Books: Boyd & VandenBerghe [BV03], Bonnans et al.[BGLSO03],
Nocedal & Wright [NWO06], Borwein & Lewis [BLOO]



Optimality conditions for "'-norm regularization

Convex di erentiable problem$ zero gradient!
P
{ Example:‘Z-IEﬁguIarization, e.ming L T(YiswT i) + W~ W

{ Gradient = [, "Yyi;w”x;)x; + w where "qy;;w” x;) is the
partial derivati\@ of the loss w.r.t the second variable
{ If square loss, ., “(yi;w”x;) = 2ky Xwk3 and gradient =
X7(y Xw)+ w
) normal equationg w=(X>X + | ) IX>Y

“1-norm is non di erentiable!

{ How to compute the gradient of the absolute value?

WARNING - gradient methods on non smooth problems! - WARNING

) Directional derivatives - subgradient



Directional derivatives

Directional derivativan the direction at w:

Jw+ ") J(w)

rJ(w; )= Ilm o

Main idea: In non smooth situations, may need to look at all
directions and not simplyp independent ones!

A

>

Proposition: J is dierentiable atw, if 7!'r J(w; ) Is then
linear, andr J(w; )= r J(w)”



Subgradient

Generalization of gradients for non smooth functions

De nition: g is asubgradientof J at w Iif and only If

8t2 R JM)>IW)+ g (t w)
(.e., slope of lower bounding a ne function)

Proposition: J dierentiable at w if and only If exactly one
subgradient (the gradient)

Proposition: (proper) convex functions always have subgradients



Optimality conditions
Subdi erential @ Jw) = (convex) set of subgradients o} at w

From directional derivatives to subdi erential

g2 @Jw),8 2RP; g 61 J(w)

From subdi erential to directional derivatives

>

r J(w; )= max
( ) gZ@J(W)g

Optimality conditions:

{ Proposition : w is optimal if and only if for all 2 RP,
rJ(w;) >0
{ Proposition : w is optimalif and only if 02 @Jw)



Subgradient and directional derivatives for ;-norm
regularization

P
We have withJ(w) = L, “(Vi;w”x;)+ kwk;

X 3 X | _ X
r J(w; )= (Yi; W™ X)X+ sign(w;)” j+ ] ]
=1 J; w60 J; w;=0

g is a subgradient atv if and only if for allj,

X
sign(w;) 60 ) g = Ay w” xi)Xi + sign(w;)
=1
. . X-] \O > .
sign(wj)=0 )] g (Yi; W™ X)X ] 6
=1



Optimality conditions for ;-norm regularization

General lossO is a subgradient atv if and only if for allj,

X
sign(w;) 60) 0= “Hyi;w”x)Xj + sign(w;)
=1
. : X <0 > -
sign(w;) =0 ) ] (Yi; W™ Xi)Xjj]6
=1

Square loss0 is a subgradient atv if and only if for allj,
sign(w;) 60 ) X(;j) (y Xw)+ signw;)

signw;) =0 )j X(5j)"(y Xw)j6



First order methods for convex optimization on RP

Simple casedi erentiable objective

{ Gradient descentwi+; = W, i J (W)
with line search: search for a decent (not necessarily besgt)
diminishing step size: e.g.,; = (t+ tg) *!
Linear convergence timeD( log(1=")) iterations

{ Coordinate descent: similar properties

Hard case:non di erentiable objective

{ Subgradient descentw;+; = W; {0, with gt 2 @Jwy)
with exact line search: not always convergent (show counter
example)
diminishing step size: convergent

{ Coordinate descent: not always convergent (show countangxe)



Counter-example
Coordinate descent for nonsmooth objectives

A




Counter-example
Steepest descent for nonsmooth objectives

5(9x% + 16x3)¥2 if x1 > jXyj

WX = (o, + 16jx)) 2 if x4 6 jxa

Steepest descent starting from any such that x; > jxp >
(9=16)"jx4]

§ <
== )
= 2

/
5 e



Second order methods

Di erentiable case

{ Newton: wis1 = Wy H, ‘o
Traditional: =1, but non globally convergent
globally convergent with line search for (see Boyd, 2003)
O(loglog(1=")) (slower) iterations

{ Quasi-newton methods (see Bonnans et al., 2003)

Non di erentiable case (interior point methods)

{ Smoothing of problem + second order methods
See example Iater and (Boyd, 2003)
TheoretlcaIIyO( pP) Newton steps, usuall{p(1) Newton steps



First order or second order methods for machine
learning?

objecive de ned as average (i.e., up t 72): no need to optimize
up to 10 11

{ Second-order: slower but worryless
{ First-order: faster but care must be taken regarding cormgesce
Rule of thumb

{ Small scaley second order

{ Large scalg rst order
{ Unless dedicated algorithm using structure (like for theska)

See Bottou & Bousquet (2008) [BBO08] for further details



Algorithms for “i-norms:
Gaussian hare vs. Laplacian tortoise




Cheap (and not dirty) algorithms for all losses

Coordinate descent [WL08]

{ Globaly convergent here under reasonable assumptions!
{ very fast updates

Subgradient descent

Smoothing the absolute value + rst/second order methods
{ Replacegjwij by (w2 + "?)*=2
{ Use gradient descent or Newton with diminishifig

More dedicated algorithms to get the best of both worlds: tfasnd
precise



Special case of square loss

Quadratic programming formulation: minimize

1 XP
éky Xw k?+ (w"+w; ) such thatw = w* w ;w" >0;w >0
j=1

{ generic toolboxes ) very slow

Main property: if the sign patterrs 2 f 1;0; 1g° of the solution is
known, the solution can be obtained in closed form

{ Lasso equivalent to minimizinéky Xiwik?+ s TW3 W.r.t. w;
whered = f|;s; 6 0g.
{ Closed form solutiow; = (X7 X3) Y(X7Y + s3)

\Simply" need to check thatsign(w;) = s; and optimality forJ*©



Optimality conditions for the Lasso

O Is a subgradient atv if and only If for allj,

{ Active variable condition

sign(wj) 60 ) X (i) (y Xw)+ sign(w;)
NB: allows to computew;
{ Inactive variable condition

signwj) =0 )j X(5j)"(y Xw)j6



Algorithm 2: feature search (Lee et al., 2006,
[LBRNO7])

Looking for the correct sign patters 2 f 1, 0; 1g°

Initialization: start withw=0,s=0,J = f];s; =0g

P
Step 1: select = arg max; inzl Ayi;w” xi)X;i  and addj to the

active setJ with proper sign

Step 2: nd optimal vectorwpe,, Of %ky X wik?+ s T W,

{ Perform (discrete) line search betweenand wyey
{ Update sign ofw

Step 3: check opt. condition for active variable, if no go teg 2

Step 4: check opt. condition for inactive variable, if no go $tep 1



Algorithm 3: Lars/Lasso for the square loss [EHJTO04]

Goal: Get all solutions for all possible values of the regeddion
parameter

Same idea as before: If the s@tof active variables is known,
wy( )= (X7X5) HXTY + s3)

valid, as long as,

{ sign condition:sign(w;( )) = s,
{ subgradient conditionkX Jc(X;w;( ) Yy)k; 6
{ This de nes an interval on : the path is thus piecewise a ne!

Simply need to nd break points and directions



Algorithm 3: Lars/Lasso for the square loss

Builds a sequence of disjoint setsy, I+, | , solutionsw and
parameters that record the break points of the path and

corresponding active sets/solutions
Initialization: =1 ,1g=11;:::;pQg, |+ = =?2,w=0
While ¢ > 0, nd minimum such that
(A) sign(wy + ( O(XTX3) 'sy) = s
(B) KX Te(X 3wy + ( OX (X3 X3) 'sy)ky 6

If (A) Is blocking, remove corresponding index from or |
If (B) is blocking, add corresponding index into active $etor |

Update correspondingyx+1 and recomputewg+1, kK k+1



Lasso In action

Piecewise linear paths

When is it supposed to work?

{ Show simulations with random Gaussians, regularizatiorapseter

estimated by cross-validation
{ sparsity Is expected or not



weights

Lasso In action

0.5
regularization parameter |

1

1.5



Comparing Lasso and other strategies for linear
regression and subset selection

Compared methods to reach the least-square solution [HTJFO1

{ Ridge regressionmin,, zky =~ Xwk3 + skwk3

{ Lasso miny, 3ky Xwk3+ kwk;
{ Forward greedy
Initialization with empty set

Sequentially add the variable that best reduces the squass |

Each method builds a path of solutions from 0O s



Lasso In action

1 1
0.9}| —— greedy 0.97 | ——greedy
0.8} 0.8l
0.7 0.7
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(left: sparsity is expected, right. sparsity is not expet}e



“Inorm regularization and sparsity
Summary

Nonsmooth optimization

{ subgradient, directional derivatives
{ descent methods might not always work
{ rst/second order methods

Algorithms

{ Cheap algorithms for all losses
{ Dedicated path algorithm for the square loss



Course Outline

1. “1-norm regularization

Review of nonsmooth optimization problems and algorithms

Algorithms for the Lasso (generic or dedicated)
Examples

2. Extensions

Group Lasso and multiple kernel learning (MKL) + case study
Sparse methods for matrices

Sparse PCA

3. Theory - Consistency of pattern selection

Low and high dimensional setting
Links with compressed sensing



Kernel methods for machine learning

De nition : given a set of objects<, a positive de nite kernelis
a symmetric functionk(x;x9 such that for all nite sequences of
pointsx; 2 X and ; 2 R,

ij jk(xi;xj)>o
(1.e., the matrix (K(xi; X;)) Is symmetric positive semi-de nite)

Aronszajn theorem [Aro50]. k is a positive de nite kernel if and
only if there exists a Hilbert spacé and a mapping : X 7! F
such that

8(x;xY9 2 X 2 k(x;x9 = h( x);: ( xYin
X =\ input spacé, F =\ feature spacé =\ feature mapg

Functional view:reproducing kernel Hilbert spaces



Regularization and representer theorem

P
Minimize with respect tof : frrgan i":l (yis 7 (O xp)) + skf k?

No assumptions on cost or n

Representer theorem [KW71]. Optimum is reached for weights of
the form P P |
t= a0 1 (x)= o jkGX)

2 R" dual parametersK 2 R" " kernel matrix
Kii = ( xi)” ( x;) = k(Xi; %)

P
Equivalent problemj min ,rn _; “(Vi;(K )i)+ 5 “K




Kernel trick and modularity

Kernel trick any algorithm for nite-dimensional vectors that only
uses pairwise dot-products can be applied in the featurecsepa

{ Replacing dot-products by kernel functions
{ Implicit use of (very) large feature spaces
{ Linear to non-linear learning methods



Kernel trick and modularity

Kernel trick any algorithm for nite-dimensional vectors that only
uses pairwise dot-products can be applied in the featurecsepa

{ Replacing dot-products by kernel functions
{ Implicit use of (very) large feature spaces
{ Linear to non-linear learning methods

Modularity of kernel methods

1. Work on new algorithms and theoretical analysis
2. Work on new kernels for speci c data types



Representer theorem and convex duality

The parameters 2 R" may also be interpreted as Lagrange
multipliers

Assumption: cost function igonvex' ;(u;) = “(Vi; u;)

Primal problem: frgan in:1 i(FT(xp)) + ke k?

"iui)
LS regression %(yi 02
Logistic -
regression log(1 +exp( yiui))

SVM (1 vyiui)+




Representer theorem and convex duality

Proof
. . P ,
Primal problem: 1:rgan -1 i(fF7 (%)) + skfk
Dene (v = mz% viui ' i(uj) as the Fenchel conjugate of;
Ui

Introduce constraintu; = f~ ( xj) and associated Lagrange
multipliers ;

X X
LagrangianL ( ;f ) = “i(up) Ekf k? + (Ui 7 (%))

=1 i=1
Maximize with respect tay; ) term of the form  ( i)

P
Maximize with respecttd ) f = . ( x;)



Representer theorem and convex duality

Assumption: cost function igonvex' ;(u;) = “(vi; u;)

I_J
Primal problem:| min in:1 i(FT(xp)) + ke k?

f 2F
| problem: P g
Dual problem: n;% =1 il i) 5 K
where (vi) =maxy2rVili ' i(U;) Is the Fenchel conjugate of;

Strong duality

Relationship between prinln_,al and dual variables (at optimum
f = in:1 i ( Xi)



\Classical" kernel learning (2-norm regularization)

Primal problem mingz ' i(F” ( X))+ 5jif jj?
P
Dual problem max ,gn (1) 5 7K
Optimality conditions f = i (X))

Assumptions on loss;:

{ " i(u) convex
{ i(v) Fenchel conjugate df;(u), i.e., (V) = max 2r(vu "' i(u))

i(up) (V)

s ui)? SV2+ vy

LS regression

Logjistic (1+ vyi)log(1+ vyi)
regression vyilog( vyi)

SVM (1 vyiui)- Wi 1 w20

log(1 +exp( Yyiui))




Kernel learning with convex optimization

Kernel methods work...
...with the good kernel!

)  Why not learn the kernel directly from data?



Kernel learning with convex optimization

Kernel methods work...
...with the good kernel!

)  Why not learn the kernel directly from data?

Proposition [LCG' 04, BLJO4]:

n

G(K) = min iy "i(f” (xi)+ zkfk?
— P n >
= max iy i ) 7z 7K

IS a convexfunction of the Gram matrixK

Theoretical learningbounds[BLJ04]



MKL framework

Minimize with respect to the kernel matrik

Pn
G(K') = max =1 i( i) “K

2 RN 2

Optimization domain:

{ K positive semi-de nite in general
{ The set of kernel matrices is a corie conic representation

P

{ Trace constraintsitr K = = 1L jtrK; =1

Optimization:

{ In most cases, representation in terms SDP, QCQPor SOCP
{ Optimization by generic toolbox is costly [BLJO4]



MKL - \reinterpretation” [BLJO4]

P
Framework limited toK = = L, ;Kj, >0

Summing kernels is equivalent to concatenating featurecgsa

{ m \feature maps" ; : X 7'F;,] =1;:::;m.
{ Minimization with respect tof 2 F 0 'fm 2 F
{ Predictor: f(x)= f;7 1(X)+ +fm” m(X)
1(x)” 4
% ; ; &
X | i(x)> f; v 7 a(x)+ + 12 m(X)
& ; ; %
m(X)” fn

{ Which regularization?



Regularization for multiple kernels

Summing kernels is equivalent to concatenating featurecgsa

{ Predictor: f(x)= f17 1(X)+ + ™ m(X)

L P m 5 . . . P m
Regularization by ;_; kfjk=is equivalent to usin&k = ;_; K;



Regularization for multiple kernels

Summing kernels is equivalent to concatenating featurecgsa

{ Predictor: f (x)=f17 (X)+ +fn” mX)
Regularization by ;_; kfjk=is equivalent to usin&k = ;_; K;

P
Reqgularization by jm:1 kf; k should impose sparsity at the group
level

Main questions when regularizing by block “'-norm:

1. Equivalence with previous formulations
2. Algorithms
3. Analysis of sparsity inducing properties



MKL - duality [BLJO4]

Primal problem:

P
Ui i)+ R m()+ s (kfk+ + kfnk)?

Proposition : Dual problem (i1sing second order cones
P n

ma Tl 0 M K
. Py
KKT conditions: f; = ; L, i j(X)

P
with 2R"and >0, L, ;=1

{ Is the dual solutionpfor the clasical kernel learning prablevith
kernel matrixK ( )= L, K;
{ corresponds to the minimum d&(K ( ))



Algorithms for MKL

(very) costly optimization with SDP, QCQP ou SOCP

{ n> 1,000 10,000 m > 100not possible
{ \loose" required precisior) rst order methods

Dual coordinate ascent (SMO) with smoothing [BLJO4]
Optimization of G(K ) by cutting planes [SRSSO06]

Optimization of G(K) with steepest descent with smoothing
[RBCGO8]

Regularization path [BTJO04]



SMO for MKL [BLJ04]

. P
Dual function = it ) 3

to regular SVM) why not try SMO?

minj ot 1-m g~ Kj IS similar



SMO for MKL

P
Dual function ~ ., i( i) 3
to regular SVM) why not try SMO?

minj o 1-m g~ Kj is similar

{ Non di erentiability!



SMO for MKL

. P . L
Dual function 1 i( i) zminjgpem g Ko is similar

to regular SVM) why not try SMO?

{ Non di erentiability!
{ Solution: smoothing of the dual function by adding a squarsam

In the primal problem (Moreau-Yosida regularization)

0 1,

X X0 X
min  'i( f] j(xi))+§@ kf KA + " Kkfk?

=1 j=1 j=1 j=1

SMO for MKL: simply descent on the dual function

Matlab/C code available online (Obozinsky, 2006)



Could we use previous implementations of SVM?

Computing one value and one subgradient of

P
G():mza%(n i ) 3 TK()

requires to solve a classical problem (e.g., SVM)

Optimization of directly

{ Cutting planes [SRSS06]
{ Gradient descent [RBCGO08]



Direct optimization of G( ) [RBCGO08]
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MKL with regularization paths [BTJ04]

Regularized problen

Loiwr (i) wy m(Xi) + S (kwik+ 4 kWi, k)?

In practice, solution required for \many" parameters

Can we get all solutions at the cost of one?

{ Rank one kernels (usual; norm): path is piecewise ane for
some losse¥y Exact methods [EHJTO04, HRTZ05, BHHOG6]

{ Rank> 1: path is only estpiecewise smooth
) predictor-corrector method$BTJ04]



Log-barrier regularization

Dual problem:
P

max - i( i) suchthat 8j; “K; 6 dj2
Regularized dual problem:
P P 5 N
max i i) i log(d Kj )

Properties:

{ Unconstrained concave maximization

{ function of

{ Is unique solution of the stationary equatida(; )=0
{ () dierentiable function, easy to follow



Predictor-corrector method

Follow solution ofF(; )=0

Predictor steps

{ First order approximation using- = @F gl

Corrector steps

{ Newton's method to converge back to solution




Link with interior point methods

Regularized dual problem:

P P , s
max TG L i log(d Kj )

Interior point methods:

{ xed, followed from large to small

Regularization path:

{ xedsmall, followed from large to small

Computational complexity: Total complexit®(mn*)

{ NB: sparsity in not used



Applications

Bioinformatics [LBC 04]

{ Protein function prediction

{ Heterogeneous data sources
Amino acid sequences
Protein-protein interactions
Genetic interactions
Gene expression measurements

Image annotation [HBO7]



A case study In kernel methods

Goal: show how to use kernel methods (kernel design + kernel
learning) on a \real problem"



Kernel trick and modularity

Kernel trick any algorithm for nite-dimensional vectors that only
uses pairwise dot-products can be applied in the featurecsepa

{ Replacing dot-products by kernel functions
{ Implicit use of (very) large feature spaces
{ Linear to non-linear learning methods



Kernel trick and modularity

Kernel trick any algorithm for nite-dimensional vectors that only
uses pairwise dot-products can be applied in the featurecsepa

{ Replacing dot-products by kernel functions
{ Implicit use of (very) large feature spaces
{ Linear to non-linear learning methods

Modularity of kernel methods

1. Work on new algorithms and theoretical analysis
2. Work on new kernels for speci c data types



Image annotation and kernel design

Corell4: 1400 natural imageswith 14 classes




Segmentation

Goal: extract objects of interest

Many methods available, ....

{ ... but, rarely nd the object of interest entirely

Segmentation graphs

{ Allows to work on \more reliable" over-segmentation
{ Going to alarge square grid (millions of pixeldp a small graph
(dozens or hundreds of regions)



Segmentation with the watershed transform

image gradient watershed

287 segments 64 segments 10 segments




Segmentation with the watershed transform

image gradient watershed

287 segments 64 segments 10 segments



Image as a segmentation graph

Labelled undirected Graph

{ Vertices connected segmented regions
{ Edges between spatially neighboring regions
{ Labels region pixels



Image as a segmentation graph

Labelled undirected Graph

{ Vertices connected segmented regions
{ Edges between spatially neighboring regions
{ Labels region pixels

Di culties

{ Extremely high-dimensional labels
{ Planar undirected graph
{ Inexact matching

Graph kernels [GFWO03] provide an elegant and e cient solution



Kernels between structured objects
Strings, graphs, etc... [STCO04]

Numerous applications (text, bio-informatics)
From probabilistic models on objects (e.g., Saunders et28103)

Enumeration of subparts (Haussler, 1998, Watkins, 1998)

{ E cient for strings
{ Possibility of gaps, partial matches, very e cient algohims
(Leslie et al, 2002, Lodhi et al, 2002, etc... )

Most approaches fails for general graplfeven for undirected trees!)

{ NP-Hardness results (Gartner et al, 2003)
{ Need alternative set of subparts



Paths and walks

Given a graplG,

{ A pathis a sequence dlistinct neighboring vertices
{ A walkis a sequence of neighboring vertices

Apparently similar notions










Walk kernel (Kashima, 2004, Borgwardt, 2005)

W & (resp. W]}) denotes the set of walks of lengthin G (resp. H)
Givenbasis kernebn labelsk(™; ™9

p-th order walk kernel «
kb (G;H) = K(a(ri); n(si)):




Dynamic programming for the walk kernel

Dynamic programming irO(pdgdyngny)
kiy, (G;H;r;s) = sum restricted to walks starting ar ands

recursion betweemp 1-th walk andp-th walk kernel

X
kb (G;H;r;s)= k(e(r); h(s)) kb, H(G;H;r%sY:
r°2 Ng(r)
s’2 N H(S)

_— e — — = T



Dynamic programming for the walk kernel

Dynamic programming irO(pdgdyngny)
kiy, (G;H;r;s) = sum restricted to walks starting ar and s

recursion betweemp 1-th walk andp-th walk kernel

X

k{y (GiH;1;8)=K(a(r); "H(s)) kb, H(G;H;r%sY
r°2 Ng(r)
s°2 N H(S)

X .
Kernel obtained a%}y (G;H) = k¥ (G;H;r;s)

r2V g;s2V y



Performance on Corell4
(Harchaoui & Bach, 2007)

Performance comparison on Corell4

012t
Histogram kernelsKl) 011} _
Walk kernels W) - O
5 0.09 . -
Tree-walk kernels TW ) 9 0.08f _E_ T
1 -
_ 0.07} !
Weighted tree-walks - :
(WTW ) 0.06} -
0.05} o
MKL (M) H W W WTW M

Kernels



MKL
Summary

Block “1-norm extends regulart-norm
One kernel per block

Application:

{ Data fusion
{ Hyperparameter selection
{ Non linear variable selection



Course Outline
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Group Lasso and multiple kernel learning (MKL) + case study
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Sparse PCA

3. Theory - Consistency of pattern selection

Low and high dimensional setting
Links with compressed sensing



Learning on matrices

Example 1: matrix completion

{ Given a matrixM 2 R" P and a subset of observed entries,
estimate all entries

{ Many applications: graph learning, collaborative ItegnBHK98,
HCM™ 00, SMHO7]

Example 2. multi-task learning [OTJO7, PAEQO7]

{ Common features fom learning problemg m di erent weights,
e, W =(wyg;:::;wpn)2RP T
{ Numerous applications

Example 3: image denoising [EA06, MSEOQS]

{ Simultaneously denoise all patches of a given image



Three natural types of sparsity for matrices M 2 R" P

1. A lot of zero elements

does not use the matrix structure!

2. A small rank

M =UV” whereU2 R" MandV 2 R" ™ m small
Trace norm

VT




Three natural types of sparsity for matrices M 2 R" P

1. A lot of zero elements

does not use the matrix structure!

2. A small rank

M =UV”> whereU2 R" MandV 2 R" ™ m small
Trace norm

3. A decomposition into sparse (but large) matrix redundant
dictionaries

M =UV” whereU 2 R" MandV 2 R"™ ™, U sparse
Dictionary learning



Trace norm [SRJ05, FHBO1, Bac08c]

Singular value decompositioivl 2 R" P can always be decomposed
into M = UDiag(s)V~, whereU 2 R" M andV 2 R"™ ™ have
orthonormal columns and is a positive vector (of singular values)

0 norm of singular values = rank
1 norm of singular values = trace norm

Similar properties than the-norm

{ Convexity
{ Solutions of penalized problem have low rank
{ Algorithms



Dictionary learning [EA06, MSEQ0S8]

GivenX 2 R" P j.e., n vectors InRP, nd

{ m set ofdecomposition coecients U =2 R" ™
{ such thatU is splgrseand small reconstruction erron.e.,
kX UVZkZ = kX(i;:) U(; )V K3 is small

NB: Opposite view: not sparse in term of ranks, sparse Iin terof
decomposition coe cients

Minimize with respect toJ andV, such thatkV (:;1)k, =1,
1 > 1,2 X\l
ékX UV~ kg + KU(I; J)kq
i=1

{ non convex, alternate minimization



Dictionary learning - Applications [MSEQS]

Applications in image denoising



Dictionary learning - Applications - Inpainting



Sparse PCA [DGJLO7, ZHTOG]

Consider = XX 2 RP P covariance matrix

Goal: nd a unit norm vectorx with maximum variancex” X and
minimum cardinality

Combinatorial optimization problem;(rrl](ax X~ X+ kxkg
xko=1

First relaxation: kxk, = 1 ) k xkq 6 kxkg ™~
Rewriting usingX = xx”: kxko =1, trX =1, 1”jXj1 = kxk?

max tr X + 17jXj1
X <0; tr X=1; rank( X )=1



Sparse PCA [DGJLO7, ZHTOG]

Sparse PCA problem equivalent to

max tr X + 17jXj1
X<0; tr X=1; rank( X )=1

Convex relaxationdropping the rank constraintank(X) =1

max trX + 17jXj1
X<0;tr X =1

Semide nite program [BV03]
De ation to get multiple components

\dual problem" to dictionary learning



Sparse PCA [DGJLO7, ZHTOG]

Non-convex formulation

min k(I IXKE + Kk Ky

> = |

Dual to sparse dictionary learning



Sparse ?77



Summary

Notion of sparsity quite general

Interesting links with convexity

{ Convex relaxation

Sparsifying the world

{ All linear methods can be kernelized
{ All linear methods can be sparsi ed
Sparse PCA
Sparse LDA
Sparse ....
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Theory

Sparsity-inducing norms often used heuristically

When does it converge to the correct pattern?

{ Yes If certain conditions on the problem are satised (low

correlation)
{ what if not?

Links with compressed sensing



Model consistency of the Lasso

Sparsity-inducing norms often used heuristically

I.I.d. andwy Is sparse, do we get back the correct pattern of zeros?

Intuitive answer: yesf and ony if some consistency condition on
the generating covariance matrices is satis ed [ZY06, YI.&ZbuO06,
Wali06]



Asymptotic analysis - Low dimensional setting

Asymptotic set up

{ data generated from linear mod& = X~ w +
{ W any minimizer of the Lasso problem
{ number of observationa tends to in nity

Three types of consistency

{ regular consistencykw wk, tends to zero in probability

{ pattern consistency the sparsity patternd' = fj; W; 6 0g tends
toJ = fJ; w; 6 0g in probability

{ sign consistencythe sign vectors = sign(Ww) tends tos = sign(w)
In probability

NB: with our assumptions, pattern and sign consistencie® ar
equivalent once we have regular consistency



Assumptions for analysis

Simplest assumptions ( xeg, largen):

1. Sparse linear modelY = X~w + " | " independent fromX , and
W sparse.

2. Finite cumulant generating functions E exp(akX k3) and
E exp(a"?) nite for some a > 0 (e.g., Gaussian noise)

3. Invertible matrix of second order momen® = E(XX ) 2 RP P,



Asymptotic analysis - simple cases
Minwzre 2:KY  Xwk3+  nkwky

If , tends to in nity

{ W tends to zero with probability tending to one
{ J tends to? in probability



Asymptotic analysis - simple cases
Minwzre =Ky  Xwk3s+  nkwkg

If , tends to in nity
{ W tends to zero with probability tending to one
{ J tends to? in probability

If ,tendsto 2 (0;1)

{ W converges to the minimum o%(w w)>Q(w w)+ okwk;
{ The sparsity and sign patterns may or may not be consistent
{ Possible to have sign consistency without regular consisye



Asymptotic analysis - simple cases
Minwzre 2:KY  Xwk3+  nkwky

If , tends to in nity
{ W tends to zero with probability tending to one
{ J tends to? in probability

If ,tendsto 2 (0;1)

{ W converges to the minimum of(w w)” Q(w w)+ okwk,
{ The sparsity and sign patterns may or may not be consistent
{ Possible to have sign consistency without regular consisye

If , tends to zero faster than n 172

{ W converges in probability tav
{ With probability tending to one, all variables are included



Asymptotic analysis - important case
Minwzre 2:KY  Xwk3+  nkwky

If ., tends to zero slower than n 172

{ W converges in probability tev
{ the sign pattern converges to the one of the minimum of

V7 QV + vj sign(wy) + kvyeky
{ The sign pattern is equal t@ (i.e., sign consistency) if and only if
kQJCJQJJlsign(WJ)k]_ 61

{ Consistency condition found by many authors: Yuan & Lin (Z00
Wainwright (2006), Zhao & Yu (2007), Zou (2006)



Proof ( , tends to zero slower than n ) - |

Writey = Xw + "

%ky Xwks = %kx (W w)+ "kS

1
n

(w w)” =X7X (w W)+%k"k§+§(w w)” X"

Write w = w + |, . Cost function (up to constants):

SN
Vv
|
X
Vv
X

n OXT"+ a(kw+ n ki K wky)

Nl k= NI
=\
v
|
X
v
X

n >X>"+ n nk JCk1+ nSign(WJ)>

S|k S|k



Proof ( , tends to zero slower than n ) - I

Write w = w + |, . Cost function (up to constants):

1 1 1

éﬁ > HX>X ﬁ " >X>||+ n(kW+ 0 kl kal)

1 1 1 .

=20 7 OXIX S XU ok kit nsign(wa)”

Asymptotics 1:2X > " = Op(n '72) negligible compared to, (TCL)
Asymptotics 2:%X > X \converges" toQ (covariance matrix)
is thus the minimum off > Q +  7sign(wy)+ k jckq

Check when the previous problem has solution such thgt =0



Proof ( , tends to zero slower than n ) - I

Write w = w + |

Asymptotics) minimum of3 ~Q +  Jsign(w;)+ k jckg
Check when the previous problem has solution such thgt =0
Solving for 3: ;= Q,;'sign(wy)

Subgradient:

{ on variables inJ: equal to zero
{ on variables inJ®: Qjc; j+ gsuchthatkgk; 6 1

Optimality conditions: kQ jc3Q ,;'sign(w;)k; 6 1



Asymptotic analysis
Minwzre 2:KY — Xwk3+  nkwky

If , tends to zero slower than n 172

{ W converges in probability tev
{ the sign pattern converges to the one of the minimum of

V7 Qv + vj sign(w ) + kvieky
{ The sign pattern is equal t@ (i.e., sign consistency) if and only if
kQ3c1Q 5 'sign(wi)ky 6 1

{ Consistency condition found by many authors: Yuan & Lin (Z00
Wainwright (2006), Zhao & Yu (2007), Zou (2006)
{ Disappointing?



Summary of asymptotic analysis

lim | +1 02 (0;1) 0 0 0
lim nt=2 +1 +1 +1 02(0:1) 0
regular Inconsistent | inconsistent | consistent | consistent | consistent
consistency
sign pattern| no variable| deterministiq deterministic ?? all variables
selected pattern pattern selected
(depending
on_ o)

If , tends to zero exactly at rate n 172 ?




Summary of asymptotic analysis

lim | +1 02 (0;1) 0 0 0
lim nt=2 +1 +1 +1 02(0:1) 0
regular Inconsistent | inconsistent | consistent | consistent | consistent
consistency
sign pattern | no variable| deterministicc deterministid all patterns| all variables
selected pattern pattern consistent | selected
(depending on J, with
on o) proba. > 0

If , tends to zero exactly at rate n 172 ?




Positive or negative result?

Rather negative: Lasso does not always work!

Making the Lasso consistent

{ Adaptive Lasso: r%/veight the 1P using ordinary least-square
estimate, i.e., replace _, jwij by P, Mggv—ysj
) provable consistency in all cases

{ Using the bootstrap) Bolasso [Bac08a]



Asymptotic analysis

If , tends to zero atrate n %2, ie., n**? ;! 42 (0;1)

{ W converges in probability tev
{ All (and only) patterns which are consistent wittv on J are
attained with positive probability



Asymptotic analysis

If , tends to zero at rate n 1%, ie., n**? ;! 42 (0;1)

{ W converges in probability tev

{ All (and only) patterns which are consistent wittv on J are
attained with positive probability

{ Proposition : for any patterns 2 f 1;0;1g° such thats; 6
sign(w;), there exist a constanA( ) > 0 such that

logP(sign(W) = s) 6 nA( o)+ O(n 2):

{ Proposition : for any sign patterns 2 f 1;0;1g° such that
s; = sign(wj), P(sign(W) = s) tends to a limit (s; o) 2 (0;1),
and we have:

P(sign(®) = s)  (s; o) = O(n *™logn):



- tends to zero at rate n 1

Summary of asymptotic behavior:

{ All relevant variables (i.e., the ones id) are selected with
probability tending to one exponentially fast
{ All other variables are selected with strictly positive pedility



- tends to zero at rate n 1

Summary of asymptotic behavior:

{ All relevant variables (i.e., the ones id) are selected with
probability tending to one exponentially fast
{ All other variables are selected with strictly positive pedility

If several datasets (with same distributions) are avaigbhtersecting
support sets would lead to the correct pattern with high pidlity

Datasetl J

Dataset 2 J

Dataset3  J3

Dataset4  Jj . ! —
Dataset5 kg 1 T

Intersection




Bootstrap

{ ghost samples (xf;y¥) 2 RP R, i = 1;:::;n, sampled
Independently and uniformly at randomwith replacement from
the n original pairs

Each bootstrap sample is composed mwfpotentially (and usually)
duplicated copies of the original data pairs

Standard way of mimicking availability of several datasgg 98]



Bolasso algorithm

m applications of the Lasso/Lars algorithm [EHJTO04]

{ Intersecting supports of variables
{ Final estimation ofw on the entire dataset

Bootstrap 1l J

Bootstrap 2 b 1

Bootstrap 3 J3

Bootstrap 4  Jy I ) —

Bootstrap s kg T —

Intersection




Bolasso - Consistency result

Proposition [Bac08a]: Assume,= on 72, with o> 0. Then, for
all m > 1, the probability that the Bolasso does not exactly select
the correct model has the following upper bound:

log(n) log(m)
A .
P(J 6 J)6 Aime "2" + Aj N + Ay P

whereAq; Ay, Az; A, are strictly positive constants.
Valid even if the Lasso consistency is not satis ed
In uence ofn, m

Could be improved?



Consistency of the Lasso/Bolasso - Toy example

Log-odd ratios of the probabilities of selection of eachiahfte vs.

g 5 g 5
LASSO 2 10 S 10
g g
> >
15 151
0 ) 10 15 0 ) 10 15
-log(m -log(m
3 3
= 5 TEJ 5
BOLASSO 2 10 2 10
g g
> >
15] | | 151 | |
0 ) 10 15 0 ) 10 15
-log(m -log('m
Consistency condition satis ed not satis ed



High-dimensional setting

P > n: important case with harder analysis (no invertible coaace
matrices)

If consistency condition Is satis ed, the Lasso Is indeedsistent as
long aslog(p) << n

A lot of on-going work [MYO08, WaiO6]



High-dimensional setting (Lounici, 2008) [LouO8]

Assumptions

{yi=w’x + ", " ii.d. normal with mean zero and variance
{ Q= X>X=n with unit diagonal and cross-terms less tha

{ Theorem : if kwky 6 s, and A > 872, then
|

ogp 2 -
P k& wk; 6 5A %} 61 pt A
. o _ _ | 1=2
Get the correct sparsity pattern ifin;, w g0 jw;j >C =3P

Can have a lot of irrelevant variables!



Links with compressed sensing [BarO7, CWO08]

Goal of compressed sensing: recover a sigmé&d RP from only n
measurementy = Xw 2 R"

Assumptions: the signal ik-sparsen << p
Algorithm: min,,2 gre kwk; such thaty = Xw

Su cient condition on X and (k; n; p) for perfect recovery:

{ Restricted isometry property (all submatrices f~ X must be

well-conditioned)
{ thatis, if kwkg = k, thenkwks(1 () 6 kXwky 6 kwky(1+ )

Such matrices are hard to come up with deterministicallyt bandom
ones are OK wittk = p,andn=p=f( )< 1
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Summary - interesting problems

Sparsity through non Euclidean norms

Alternative approaches to sparsity

{ greedy approaches - Bayesian approaches

Important (often non treated) question: when does sparsagtually
help?

Current research directions

{ Algorithms, algorithms, algorithms!

{ Design of good projections/measurement matrices for demag or
compressed sensing [See08]

{ Structured norm for structured situations (variables arsually not
created equal) hierarchical Lasso or MKL[ZRYO08, Bac08Db]



Lasso In action

1 1
0.9}| —— greedy 0.97 | ——greedy
0.8} 0.8l
0.7 0.7

o
o))
o
o))

test set error
o
ol

test set error
o
o1

o
~
o
~

o
w
o
[N

0.2 0.2
0.1¢ 0.1t
0 0 ‘
2 6 7

4 5
l0g,,(p)

(left: sparsity is expected, right. sparsity is not expet}e



Hierarchical multiple kernel learning (HKL) [Bac0O8D]

Lasso or group Lasso, with exponentially many variablegikés

Main application:

{ nonlinear variables selection with x 2 RP
Y Y

kv o (GY) = exp( Vi (X ¥i)?%) = exp( (Xi ¥i)?)
j=1 jvij=l
wherev 2 f O; 1g°
{ 2P kernels! (as many as subsetsfdf;:::;pQg)

Learning sparse combination nonlinear variable selection

Two guestions:

{ Optimization in polynomial time?
{ Consistency?



Hierarchical multiple kernel learning (HKL) [Bac0O8D]

The 2P kernels are not created equal!

Natural hierarchical structure (directed acyclic graph)

{ Goal: select a subset only after all of its subsets have betstted
{ Design a norm to achieve this behavior
0 11—

X X X ,
K descendants( v)k - @ K wk A

v2V v2V  w2descendants( v)

Feature search algorithm in polynomial time pmand the number of
selected kernels



Hierarchical multiple kernel learning (HKL) [Bac0O8D]
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Code

“l.penalization: Matlab and R code available from
www.dsp.ece.rice.edu/cs

Multiple kernel learning:
asl.insa-rouen.fr/enseignants/ ~arakotom/code/mklindex.html
www.stat.berkeley.edu/ ~gobo/SKMsmo.tar

Other interesting code
www.shogun-toolbox.org



