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Supervised learning and regularization

� Data: x i 2 X , yi 2 Y , i = 1 ; : : : ; n

� Minimize with respect to functionf 2 F :

nX

i =1

`(yi ; f (x i )) +
�
2

kf k2

Error on data + Regularization

Loss & function space ? Norm ?

� Two issues:

{ Loss
{ Function space / norm



Usual losses [SS01, STC04]

� Regression: y 2 R, prediction ŷ = f (x),

{ quadratic cost`(y; f (x)) = 1
2(y � f (x))2

� Classi�cation : y 2 f� 1; 1g prediction ŷ = sign(f (x))

{ loss of the form`(y; f (x)) = `(yf (x))
{ \True" cost: `(yf (x)) = 1 yf (x )< 0

{ Usualconvexcosts:
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Regularizations

� Main goal: control the \capacity" of the learning problem

� Two main lines of work

1. UseHilbertian (RKHS) norms
{ Non parametric supervised learning and kernel methods
{ Well developped theory [SS01, STC04, Wah90]

2. Use\sparsity inducing" norms
{ main example:̀ 1-norm kwk1 =

P p
i =1 jwi j

{ Perform model selection as well as regularization
{ Often used heuristically

� Goal of the course: Understand how and when to use sparsity-
inducing norms



Why `1-norms lead to sparsity?

� Example 1: quadratic problem in 1D, i.e.min
x 2 R

1
2
x2 � xy + � jxj

� Piecewise quadratic function with a kink at zero

{ Derivative at0+ : g+ = � � y and 0� : g� = � � � y

{ x = 0 is the solution i� g+ > 0 and g� 6 0 (i.e., jyj 6 � )
{ x > 0 is the solution i� g+ 6 0 (i.e., y > � ) ) x � = y � �
{ x 6 0 is the solution i� g� 6 0 (i.e., y 6 � � ) ) x � = y + �

� Solution x � = sign( y)( jyj � � )+ = soft thresholding



Why `1-norms lead to sparsity?

� Example 2: isotropic quadratic problem

� min
x 2 Rp

1
2

pX

i =1

x2
i �

pX

i =1

x i yi + � kxk1 = min
x 2 Rp

1
2
x> x � x> y + � kxk1

� solution: x �
i = sign( yi )( jyi j � � )+

� decoupledsoft thresholding



Why `1-norms lead to sparsity?

� Example 3: general quadratic problem

{ coupledsoft thresolding

� Geometric interpretation

{ NB : Penalizing is \equivalent" to constraining



Course Outline

1. `1-norm regularization

� Review of nonsmooth optimization problems and algorithms
� Algorithms for the Lasso (generic or dedicated)
� Examples

2. Extensions

� Group Lasso and multiple kernel learning (MKL) + case study
� Sparse methods for matrices
� Sparse PCA

3. Theory - Consistency of pattern selection

� Low and high dimensional setting
� Links with compressed sensing



`1-norm regularization

� Data: covariatesx i 2 Rp, responsesyi 2 Y , i = 1 ; : : : ; n, given in
vector y 2 Rp and matrixX 2 Rn � p

� Minimize with respect toloadings/weightsw 2 Rp:

nX

i =1

`(yi ; w> x i ) + � kwk1

Error on data + Regularization

� Including a constant termb?

� Assumptions on loss:

{ convex and di�erentiable in the second variable
{ NB: with the square loss) basis pursuit (signal processing)

[CDS01], Lasso (statistics/machine learning) [Tib96]



A review of nonsmooth convex
analysis and optimization

� Analysis:optimality conditions

� Optimization: algorithms

{ First order methods
{ Second order methods

� Books: Boyd & VandenBerghe [BV03], Bonnans et al.[BGLS03],
Nocedal & Wright [NW06], Borwein & Lewis [BL00]



Optimality conditions for `1-norm regularization

� Convex di�erentiable problems) zero gradient!

{ Example:`2-regularization, i.e.,minw
P n

i =1 `(yi ; w> x i ) + �
2w> w

{ Gradient =
P n

i =1 `0(yi ; w> x i )x i + �w where `0(yi ; w> x i ) is the
partial derivative of the loss w.r.t the second variable

{ If square loss,
P n

i =1 `(yi ; w> x i ) = 1
2ky � Xw k2

2 and gradient =
� X > (y � Xw ) + �w
) normal equations) w = ( X > X + �I ) � 1X > Y

� `1-norm is non di�erentiable!

{ How to compute the gradient of the absolute value?

� WARNING - gradient methods on non smooth problems! - WARNING

) Directional derivatives - subgradient



Directional derivatives

� Directional derivativein the direction� at w:

r J (w; �) = lim
" ! 0+

J (w + " �) � J (w)
"

� Main idea: in non smooth situations, may need to look at all
directions� and not simplyp independent ones!

� Proposition : J is di�erentiable at w, if � 7! r J (w; �) is then
linear, andr J (w; �) = r J (w)> �



Subgradient

� Generalization of gradients for non smooth functions

� De�nition: g is a subgradientof J at w if and only if

8t 2 Rp; J (t) > J (w) + g> (t � w)
(i.e., slope of lower bounding a�ne function)

� Proposition : J di�erentiable at w if and only if exactly one
subgradient (the gradient)

� Proposition : (proper) convex functions always have subgradients



Optimality conditions

� Subdi�erential @J(w) = (convex) set of subgradients ofJ at w

� From directional derivatives to subdi�erential

g 2 @J(w) , 8 � 2 Rp; g> � 6 r J (w; �)

� From subdi�erential to directional derivatives

r J (w; �) = max
g2 @J(w)

g> �

� Optimality conditions:

{ Proposition : w is optimal if and only if for all � 2 Rp,
r J (w; �) > 0

{ Proposition : w is optimal if and only if 0 2 @J(w)



Subgradient and directional derivatives for `1-norm
regularization

� We have withJ (w) =
P n

i =1 `(yi ; w> x i ) + � kwk1

r J (w; �) =
nX

i =1

`0(yi ; w> x i )x i + �
X

j; w j 6=0

sign(wj )> � j + �
X

j; w j =0

j� j j

� g is a subgradient atw if and only if for all j ,

sign(wj ) 6= 0 ) gj =
nX

i =1

`0(yi ; w> x i )X ij + � sign(wj )

sign(wj ) = 0 ) j gj �
nX

i =1

`0(yi ; w> x i )X ij j 6 �



Optimality conditions for `1-norm regularization

� General loss: 0 is a subgradient atw if and only if for all j ,

sign(wj ) 6= 0 ) 0 =
nX

i =1

`0(yi ; w> x i )X ij + � sign(wj )

sign(wj ) = 0 ) j
nX

i =1

`0(yi ; w> x i )X ij j 6 �

� Square loss: 0 is a subgradient atw if and only if for all j ,

sign(wj ) 6= 0 ) X (:; j )> (y � Xw ) + � sign(wj )

sign(wj ) = 0 ) j X (:; j )> (y � Xw )j 6 �



First order methods for convex optimization on Rp

� Simple case:di�erentiable objective

{ Gradient descent:wt +1 = wt � � t r J (wt )
� with line search: search for a decent (not necessarily best)� t

� diminishing step size: e.g.,� t = ( t + t0) � 1

� Linear convergence time:O(� log(1=")) iterations
{ Coordinate descent: similar properties

� Hard case:non di�erentiable objective

{ Subgradient descent:wt +1 = wt � � t gt , with gt 2 @J(wt )
� with exact line search: not always convergent (show counter

example)
� diminishing step size: convergent

{ Coordinate descent: not always convergent (show counterexample)



Counter-example
Coordinate descent for nonsmooth objectives
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Counter-example
Steepest descent for nonsmooth objectives

� q(x1; x2) =
�

� 5(9x2
1 + 16x2

2)1=2 if x1 > jx2j
� (9x1 + 16jx2j)1=2 if x1 6 jx2j

� Steepest descent starting from anyx such that x1 > jx2j >
(9=16)2jx1j
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Second order methods

� Di�erentiable case

{ Newton: wt +1 = wt � � t H
� 1
t gt

� Traditional: � t = 1 , but non globally convergent
� globally convergent with line search for� t (see Boyd, 2003)
� O(log log(1=")) (slower) iterations

{ Quasi-newton methods (see Bonnans et al., 2003)

� Non di�erentiable case (interior point methods)

{ Smoothing of problem + second order methods
� See example later and (Boyd, 2003)
� TheoreticallyO(

p
p) Newton steps, usuallyO(1) Newton steps



First order or second order methods for machine
learning?

� objecive de�ned as average (i.e., up ton� 1=2): no need to optimize
up to 10� 16!

{ Second-order: slower but worryless
{ First-order: faster but care must be taken regarding convergence

� Rule of thumb

{ Small scale) second order
{ Large scale) �rst order
{ Unless dedicated algorithm using structure (like for the Lasso)

� See Bottou & Bousquet (2008) [BB08] for further details



Algorithms for `1-norms:
Gaussian hare vs. Laplacian tortoise



Cheap (and not dirty) algorithms for all losses

� Coordinate descent [WL08]

{ Globaly convergent here under reasonable assumptions!
{ very fast updates

� Subgradient descent

� Smoothing the absolute value + �rst/second order methods

{ Replacejwi j by (w2
i + "2

i )1=2

{ Use gradient descent or Newton with diminishing"

� More dedicated algorithms to get the best of both worlds: fast and
precise



Special case of square loss

� Quadratic programming formulation: minimize

1
2
ky� Xw k2+ �

pX

j =1

(w+
j + w�

j ) such thatw = w+ � w� ; w+ > 0; w� > 0

{ generic toolboxes ) very slow

� Main property: if the sign patterns 2 f� 1; 0; 1gp of the solution is
known, the solution can be obtained in closed form

{ Lasso equivalent to minimizing12ky � X J wJ k2 + �s >
J wJ w.r.t. wJ

whereJ = f j; s j 6= 0g.
{ Closed form solutionwJ = ( X >

J X J ) � 1(X >
J Y + �s J )

� \Simply" need to check thatsign(wJ ) = sJ and optimality for J c



Optimality conditions for the Lasso

� 0 is a subgradient atw if and only if for all j ,

{ Active variable condition

sign(wj ) 6= 0 ) X (:; j )> (y � Xw ) + � sign(wj )

NB: allows to computewJ

{ Inactive variable condition

sign(wj ) = 0 ) j X (:; j )> (y � Xw )j 6 �



Algorithm 2: feature search (Lee et al., 2006,
[LBRN07])

� Looking for the correct sign patterns 2 f� 1; 0; 1gp

� Initialization: start with w = 0 , s = 0 , J = f j; s j = 0g

� Step 1: selecti = arg max j
�
�P n

i =1 `0(yi ; w> x i )X ji
�
� and addj to the

active setJ with proper sign

� Step 2: �nd optimal vectorwnew of 1
2ky � X J wJ k2 + �s >

J wJ

{ Perform (discrete) line search betweenw and wnew

{ Update sign ofw

� Step 3: check opt. condition for active variable, if no go to step 2

� Step 4: check opt. condition for inactive variable, if no go to step 1



Algorithm 3: Lars/Lasso for the square loss [EHJT04]

� Goal: Get all solutions for all possible values of the regularization
parameter�

� Same idea as before: if the setJ of active variables is known,

w�
J (� ) = ( X >

J X J ) � 1(X >
J Y + �s J )

valid, as long as,

{ sign condition:sign(w�
J (� )) = sJ

{ subgradient condition:kX >
J c(X J w�

J (� ) � y)k1 6 �
{ This de�nes an interval on� : the path is thus piecewise a�ne!

� Simply need to �nd break points and directions



Algorithm 3: Lars/Lasso for the square loss
� Builds a sequence of disjoint setsI 0, I + , I � , solutions w and

parameters � that record the break points of the path and
corresponding active sets/solutions

� Initialization: � 0 = 1 , I 0 = f 1; : : : ; pg, I + = I � = ? , w = 0

� While � k > 0, �nd minimum � such that

(A) sign(wk + ( � � � k )(X >
J X J ) � 1sJ ) = sJ

(B ) kX >
J c(X J wk + ( � � � k )X J (X >

J X J ) � 1sJ )k1 6 �

� If (A) is blocking, remove corresponding index fromI + or I �

� If (B ) is blocking, add corresponding index into active setI + or I �

� Update corresponding� k+1 and recomputewk+1 , k  k + 1



Lasso in action

� Piecewise linear paths

� When is it supposed to work?

{ Show simulations with random Gaussians, regularization parameter
estimated by cross-validation

{ sparsity is expected or not



Lasso in action
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Comparing Lasso and other strategies for linear
regression and subset selection

� Compared methods to reach the least-square solution [HTF01]

{ Ridge regression: minw
1
2ky � Xw k2

2 + �
2kwk2

2

{ Lasso: minw
1
2ky � Xw k2

2 + � kwk1

{ Forward greedy:
� Initialization with empty set
� Sequentially add the variable that best reduces the square loss

� Each method builds a path of solutions from 0 towOLS



Lasso in action
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`1-norm regularization and sparsity
Summary

� Nonsmooth optimization

{ subgradient, directional derivatives
{ descent methods might not always work
{ �rst/second order methods

� Algorithms

{ Cheap algorithms for all losses
{ Dedicated path algorithm for the square loss



Course Outline

1. `1-norm regularization

� Review of nonsmooth optimization problems and algorithms
� Algorithms for the Lasso (generic or dedicated)
� Examples

2. Extensions

� Group Lasso and multiple kernel learning (MKL) + case study
� Sparse methods for matrices
� Sparse PCA

3. Theory - Consistency of pattern selection

� Low and high dimensional setting
� Links with compressed sensing



Kernel methods for machine learning

� De�nition : given a set of objectsX , a positive de�nite kernelis
a symmetric functionk(x; x 0) such that for all �nite sequences of
points x i 2 X and � i 2 R,

P
i;j � i � j k(x i ; x j ) > 0

(i.e., the matrix (k(x i ; x j )) is symmetric positive semi-de�nite)

� Aronszajn theorem [Aro50]: k is a positive de�nite kernel if and
only if there exists a Hilbert spaceF and a mapping� : X 7! F
such that

8(x; x 0) 2 X 2; k(x; x 0) = h�( x); �( x0)i H

� X = \ input space", F = \ feature space", � = \ feature map"

� Functional view:reproducing kernel Hilbert spaces



Regularization and representer theorem

� Data: x i 2 Rd, yi 2 Y , i = 1 ; : : : ; n, kernelk (with RKHS F )

� Minimize with respect tof : min
f 2F

P n
i =1 `(yi ; f > �( x i )) + �

2kf k2

� No assumptions on cost̀ or n

� Representer theorem [KW71]: Optimum is reached for weights of
the form

f =
P n

j =1 � j �( x j ) =
P n

j =1 � j k(�; x j )

� � 2 Rn dual parameters, K 2 Rn � n kernel matrix:
K ij = �( x i )> �( x j ) = k(x i ; x j )

� Equivalent problem: min � 2 Rn
P n

i =1 `(yi ; (K� ) i ) + �
2 � > K�



Kernel trick and modularity

� Kernel trick: any algorithm for �nite-dimensional vectors that only
uses pairwise dot-products can be applied in the feature space.

{ Replacing dot-products by kernel functions
{ Implicit use of (very) large feature spaces
{ Linear to non-linear learning methods



Kernel trick and modularity

� Kernel trick: any algorithm for �nite-dimensional vectors that only
uses pairwise dot-products can be applied in the feature space.

{ Replacing dot-products by kernel functions
{ Implicit use of (very) large feature spaces
{ Linear to non-linear learning methods

� Modularity of kernel methods

1. Work on new algorithms and theoretical analysis
2. Work on new kernels for speci�c data types



Representer theorem and convex duality

� The parameters� 2 Rn may also be interpreted as Lagrange
multipliers

� Assumption: cost function isconvex' i (ui ) = `(yi ; ui )

� Primal problem: min
f 2F

P n
i =1 ' i (f > �( x i )) + �

2kf k2

' i (ui )
LS regression 1

2(yi � ui )2

Logistic
regression

log(1 + exp( � yi ui ))

SVM (1 � yi ui )+



Representer theorem and convex duality
Proof

� Primal problem: min
f 2F

P n
i =1 ' i (f > �( x i )) + �

2kf k2

� De�ne  i (vi ) = max
u i 2 R

vi ui � ' i (ui ) as the Fenchel conjugate of' i

� Introduce constraint ui = f > �( x i ) and associated Lagrange
multipliers � i

� LagrangianL (�; f ) =
nX

i =1

' i (ui ) +
�
2

kf k2 + �
nX

i =1

� i (ui � f > �( x i ))

� Maximize with respect toui ) term of the form�  i (� �� i )

� Maximize with respect tof ) f =
P n

i =1 � i �( x i )



Representer theorem and convex duality

� Assumption: cost function isconvex' i (ui ) = `(yi ; ui )

� Primal problem: min
f 2F

P n
i =1 ' i (f > �( x i )) + �

2kf k2

� Dual problem: max
� 2 Rn

�
P n

i =1  i (� �� i ) � �
2 � > K�

where i (vi ) = max u i 2 R vi ui � ' i (ui ) is the Fenchel conjugate of' i

� Strong duality

� Relationship between primal and dual variables (at optimum):
f =

P n
i =1 � i �( x i )



\Classical" kernel learning (2-norm regularization)

Primal problem minf 2F
� P

i ' i (f > �( x i )) + �
2 jj f jj2

�

Dual problem max� 2 Rn
�
�

P
i  i (�� i ) � �

2 � > K�
�

Optimality conditions f = �
P n

i =1 � i �( x i )

� Assumptions on loss' i :

{ ' i (u) convex
{  i (v) Fenchel conjugate of' i (u), i.e.,  i (v) = max u2 R(vu� ' i (u))

' i (ui )  i (v)
LS regression 1

2(yi � ui )2 1
2v2 + vyi

Logistic
regression

log(1 + exp( � yi ui ))
(1+ vyi ) log(1+ vyi )

� vyi log(� vyi )

SVM (1 � yi ui )+ � vyi � 1� vy i 2 [0;1]



Kernel learning with convex optimization

� Kernel methods work...
...with the good kernel!

) Why not learn the kernel directly from data?



Kernel learning with convex optimization

� Kernel methods work...
...with the good kernel!

) Why not learn the kernel directly from data?

� Proposition [LCG+ 04, BLJ04]:

G(K ) = min
f 2F

P n
i =1 ' i (f > �( x i )) + �

2kf k2

= max
� 2 Rn

�
P n

i =1  i (�� i ) � �
2 � > K�

is a convexfunction of theGram matrixK

� Theoretical learningbounds[BLJ04]



MKL framework

� Minimize with respect to the kernel matrixK

G(K ) = max
� 2 Rn

�
P n

i =1  i (�� i ) � �
2 � > K�

� Optimization domain:

{ K positive semi-de�nite in general
{ The set of kernel matrices is a cone! conic representation

K (� ) =
P m

j =1 � j K j ; � > 0

{ Trace constraints:tr K =
P m

j =1 � j tr K j = 1

� Optimization:

{ In most cases, representation in terms ofSDP, QCQPor SOCP
{ Optimization by generic toolbox is costly [BLJ04]



MKL - \reinterpretation" [BLJ04]

� Framework limited toK =
P m

j =1 � j K j , � > 0

� Summing kernels is equivalent to concatenating feature spaces

{ m \feature maps" � j : X 7! F j , j = 1 ; : : : ; m.
{ Minimization with respect tof 1 2 F 1; : : : ; f m 2 F m

{ Predictor: f (x) = f 1
> � 1(x) + � � � + f m

> � m (x)

x

� 1(x)> f 1

% ... ... &
�! � j (x)> f j �!
& ... ... %

� m (x)> f m

f >
1 � 1(x) + � � � + f >

m � m (x)

{ Which regularization?



Regularization for multiple kernels

� Summing kernels is equivalent to concatenating feature spaces

{ m \feature maps" � j : X 7! F j , j = 1 ; : : : ; m.
{ Minimization with respect tof 1 2 F 1; : : : ; f m 2 F m

{ Predictor: f (x) = f 1
> � 1(x) + � � � + f m

> � m (x)

� Regularization by
P m

j =1 kf j k2 is equivalent to usingK =
P m

j =1 K j



Regularization for multiple kernels

� Summing kernels is equivalent to concatenating feature spaces

{ m \feature maps" � j : X 7! F j , j = 1 ; : : : ; m.
{ Minimization with respect tof 1 2 F 1; : : : ; f m 2 F m

{ Predictor: f (x) = f 1
> � 1(x) + � � � + f m

> � m (x)

� Regularization by
P m

j =1 kf j k2 is equivalent to usingK =
P m

j =1 K j

� Regularization by
P m

j =1 kf j k should impose sparsity at the group
level

� Main questions when regularizing by block `1-norm:

1. Equivalence with previous formulations
2. Algorithms
3. Analysis of sparsity inducing properties



MKL - duality [BLJ04]

� Primal problem:

P n
i =1 ' i (f >

1 � 1(x i ) + � � � + f >
m � m (x i )) + �

2 (kf 1k + � � � + kf m k)2

� Proposition : Dual problem (using second order cones)

max
� 2 Rn

�
P n

i =1  i (� �� i ) � �
2 min j 2f 1;:::;m g � > K j �

KKT conditions: f j = � j
P n

i =1 � i � j (x i )
with � 2 Rn and � > 0,

P m
j =1 � j = 1

{ � is the dual solution for the clasical kernel learning problem with
kernel matrixK (� ) =

P m
j =1 � j K j

{ � corresponds to the minimum ofG(K (� ))



Algorithms for MKL

� (very) costly optimization with SDP, QCQP ou SOCP

{ n > 1; 000� 10; 000, m > 100 not possible
{ \loose" required precision) �rst order methods

� Dual coordinate ascent (SMO) with smoothing [BLJ04]

� Optimization of G(K ) by cutting planes [SRSS06]

� Optimization of G(K ) with steepest descent with smoothing
[RBCG08]

� Regularization path [BTJ04]



SMO for MKL [BLJ04]

� Dual function�
P n

i =1  i (� �� i ) � �
2 min j 2f 1;:::;m g � > K j � is similar

to regular SVM) why not try SMO?



SMO for MKL

� Dual function�
P n

i =1  i (� �� i ) � �
2 min j 2f 1;:::;m g � > K j � is similar

to regular SVM) why not try SMO?

{ Non di�erentiability!



SMO for MKL

� Dual function�
P n

i =1  i (� �� i ) � �
2 min j 2f 1;:::;m g � > K j � is similar

to regular SVM) why not try SMO?

{ Non di�erentiability!
{ Solution: smoothing of the dual function by adding a squarednorm

in the primal problem (Moreau-Yosida regularization)

min
f

nX

i =1

' i (
mX

j =1

f >
j � j (x i )) +

�
2

0

@
mX

j =1

kf j k

1

A

2

+ "
mX

j =1

kf j k2

� SMO for MKL: simply descent on the dual function

� Matlab/C code available online (Obozinsky, 2006)



Could we use previous implementations of SVM?

� Computing one value and one subgradient of

G(� ) = max
� 2 Rn

�
P n

i =1  i (�� i ) � �
2 � > K (� )�

requires to solve a classical problem (e.g., SVM)

� Optimization of � directly

{ Cutting planes [SRSS06]
{ Gradient descent [RBCG08]



Direct optimization of G(� ) [RBCG08]
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MKL with regularization paths [BTJ04]

� Regularized problen

P n
i =1 � i (w>

1 � 1(x i ) + � � � + w>
m � m (x i )) +

�
2

(kw1k + � � � + kwm k)2

� In practice, solution required for \many" parameters�

� Can we get all solutions at the cost of one?

{ Rank one kernels (usual̀1 norm): path is piecewise a�ne for
some losses) Exact methods [EHJT04, HRTZ05, BHH06]

{ Rank> 1: path is only estpiecewise smooth
) predictor-corrector methods[BTJ04]



Log-barrier regularization

� Dual problem:

max� �
P

i  i (�� i ) such that 8j; � > K j � 6 d2
j

� Regularized dual problem:

max� �
P

i  i (�� i ) + �
P

j log(d2
j � � > K j � )

� Properties:

{ Unconstrained concave maximization
{ � function of �
{ � is unique solution of the stationary equationF (�; � ) = 0
{ � (� ) di�erentiable function, easy to follow



Predictor-corrector method

� Follow solution ofF (�; � ) = 0

� Predictor steps

{ First order approximation usingd�
d� = �

�
@F
@�

� � 1 @F
@�

� Corrector steps

{ Newton's method to converge back to solution

path



Link with interior point methods

� Regularized dual problem:

max� �
P

i  i (�� i ) + �
P

j log(d2
j � � > K j � )

� Interior point methods:

{ � �xed, � followed from large to small

� Regularization path:

{ � �xed small, � followed from large to small

� Computational complexity: Total complexityO(mn3)

{ NB: sparsity in� not used



Applications

� Bioinformatics [LBC+ 04]

{ Protein function prediction
{ Heterogeneous data sources

� Amino acid sequences
� Protein-protein interactions
� Genetic interactions
� Gene expression measurements

� Image annotation [HB07]



A case study in kernel methods

� Goal: show how to use kernel methods (kernel design + kernel
learning) on a \real problem"



Kernel trick and modularity

� Kernel trick: any algorithm for �nite-dimensional vectors that only
uses pairwise dot-products can be applied in the feature space.

{ Replacing dot-products by kernel functions
{ Implicit use of (very) large feature spaces
{ Linear to non-linear learning methods



Kernel trick and modularity

� Kernel trick: any algorithm for �nite-dimensional vectors that only
uses pairwise dot-products can be applied in the feature space.

{ Replacing dot-products by kernel functions
{ Implicit use of (very) large feature spaces
{ Linear to non-linear learning methods

� Modularity of kernel methods

1. Work on new algorithms and theoretical analysis
2. Work on new kernels for speci�c data types



Image annotation and kernel design

� Corel14 : 1400natural imageswith 14 classes



Segmentation

� Goal: extract objects of interest

� Many methods available, ....

{ ... but, rarely �nd the object of interest entirely

� Segmentation graphs

{ Allows to work on \more reliable" over-segmentation
{ Going to a large square grid (millions of pixels)to a small graph

(dozens or hundreds of regions)



Segmentation with the watershed transform

image gradient watershed

287 segments 64 segments 10 segments



Segmentation with the watershed transform

image gradient watershed

287 segments 64 segments 10 segments



Image as a segmentation graph

� Labelled undirected Graph

{ Vertices: connected segmented regions
{ Edges: between spatially neighboring regions
{ Labels: region pixels

)



Image as a segmentation graph

� Labelled undirected Graph

{ Vertices: connected segmented regions
{ Edges: between spatially neighboring regions
{ Labels: region pixels

� Di�culties

{ Extremely high-dimensional labels
{ Planar undirected graph
{ Inexact matching

� Graph kernels [GFW03] provide an elegant and e�cient solution



Kernels between structured objects
Strings, graphs, etc... [STC04]

� Numerous applications (text, bio-informatics)

� From probabilistic models on objects (e.g., Saunders et al,2003)

� Enumeration of subparts (Haussler, 1998, Watkins, 1998)

{ E�cient for strings
{ Possibility of gaps, partial matches, very e�cient algorithms

(Leslie et al, 2002, Lodhi et al, 2002, etc... )

� Most approaches fails for general graphs(even for undirected trees!)

{ NP-Hardness results (G•artner et al, 2003)
{ Need alternative set of subparts



Paths and walks

� Given a graphG,

{ A path is a sequence ofdistinct neighboring vertices
{ A walk is a sequence of neighboring vertices

� Apparently similar notions



Paths



Walks



Walk kernel (Kashima, 2004, Borgwardt, 2005)

� W p
G (resp. W p

H ) denotes the set of walks of lengthp in G (resp. H )

� Givenbasis kernelon labelsk(`; ` 0)

� p-th order walk kernel:

kp
W (G ; H ) =

X

(r 1; : : : ; rp) 2 W p
G

(s1; : : : ; sp) 2 W p
H

pY

i =1

k(`G (r i ); `H (si )) :

G

1

s3

2s

s1r2

3r
H

r



Dynamic programming for the walk kernel

� Dynamic programming inO(pdGdH nGnH )

� kp
W (G ; H ; r; s) = sum restricted to walks starting atr and s

� recursion betweenp � 1-th walk andp-th walk kernel

kp
W (G ; H ; r; s)= k(`G (r ); `H (s))

X

r 0 2 N G (r )
s0 2 N H (s)

kp� 1
W (G ; H ; r 0; s0):

G
s

r

H



Dynamic programming for the walk kernel

� Dynamic programming inO(pdGdH nGnH )

� kp
W (G ; H ; r; s) = sum restricted to walks starting atr and s

� recursion betweenp � 1-th walk andp-th walk kernel

kp
W (G ; H ; r; s)= k(`G (r ); `H (s))

X

r 0 2 N G (r )
s0 2 N H (s)

kp� 1
W (G ; H ; r 0; s0)

� Kernel obtained askp;�
T (G ; H ) =

X

r 2V G ;s2V H

kp;�
T (G ; H ; r; s)



Performance on Corel14
(Harchaoui & Bach, 2007)

� Histogram kernels (H)

� Walk kernels (W)

� Tree-walk kernels (TW )

� Weighted tree-walks
(wTW )

� MKL (M ) H W TW wTW M
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MKL
Summary

� Block `1-norm extends regular̀1-norm

� One kernel per block

� Application:

{ Data fusion
{ Hyperparameter selection
{ Non linear variable selection



Course Outline

1. `1-norm regularization

� Review of nonsmooth optimization problems and algorithms
� Algorithms for the Lasso (generic or dedicated)
� Examples

2. Extensions

� Group Lasso and multiple kernel learning (MKL) + case study
� Sparse methods for matrices
� Sparse PCA

3. Theory - Consistency of pattern selection

� Low and high dimensional setting
� Links with compressed sensing



Learning on matrices

� Example 1: matrix completion

{ Given a matrix M 2 Rn � p and a subset of observed entries,
estimate all entries

{ Many applications: graph learning, collaborative �ltering [BHK98,
HCM+ 00, SMH07]

� Example 2: multi-task learning [OTJ07, PAE07]

{ Common features form learning problems) m di�erent weights,
i.e., W = ( w1; : : : ; wm ) 2 Rp� m

{ Numerous applications

� Example 3: image denoising [EA06, MSE08]

{ Simultaneously denoise all patches of a given image



Three natural types of sparsity for matrices M 2 Rn� p

1. A lot of zero elements

� does not use the matrix structure!

2. A small rank

� M = UV> whereU 2 Rn � m and V 2 Rn � m , m small
� Trace norm

U=
V

M

T



Three natural types of sparsity for matrices M 2 Rn� p

1. A lot of zero elements

� does not use the matrix structure!

2. A small rank

� M = UV> whereU 2 Rn � m and V 2 Rn � m , m small
� Trace norm

3. A decomposition into sparse (but large) matrix) redundant
dictionaries

� M = UV> whereU 2 Rn � m and V 2 Rn � m , U sparse
� Dictionary learning



Trace norm [SRJ05, FHB01, Bac08c]

� Singular value decomposition:M 2 Rn � p can always be decomposed
into M = U Diag(s)V > , where U 2 Rn � m and V 2 Rn � m have
orthonormal columns ands is a positive vector (of singular values)

� `0 norm of singular values = rank

� `1 norm of singular values = trace norm

� Similar properties than thè1-norm

{ Convexity
{ Solutions of penalized problem have low rank
{ Algorithms



Dictionary learning [EA06, MSE08]

� GivenX 2 Rn � p, i.e., n vectors inRp, �nd

{ m dictionary elementsin Rp: V = ( v1; : : : ; vm ) 2 Rp� m

{ m set of decomposition coe�cients: U = 2 Rn � m

{ such thatU is sparseand small reconstruction error, i.e.,
kX � UV> k2

F =
P n

i =1 kX (i; :) � U(i; :)V > k2
2 is small

� NB: Opposite view: not sparse in term of ranks, sparse in terms of
decomposition coe�cients

� Minimize with respect toU and V , such thatkV (:; i )k2 = 1 ,

1
2
kX � UV> k2

F + �
NX

i =1

kU(i; :)k1

{ non convex, alternate minimization



Dictionary learning - Applications [MSE08]

� Applications in image denoising



Dictionary learning - Applications - Inpainting



Sparse PCA [DGJL07, ZHT06]

� Consider� = 1
n X > X 2 Rp� p covariance matrix

� Goal: �nd a unit norm vectorx with maximum variancex> � x and
minimum cardinality

� Combinatorial optimization problem:max
kx k2=1

x> � x + � kxk0

� First relaxation:kxk2 = 1 ) k xk1 6 kxk1=2
0

� Rewriting usingX = xx > : kxk2 = 1 , tr X = 1 , 1> jX j1 = kxk2
1

max
X < 0; tr X =1 ; rank( X )=1

tr X � + � 1> jX j1



Sparse PCA [DGJL07, ZHT06]

� Sparse PCA problem equivalent to

max
X < 0; tr X =1 ; rank( X )=1

tr X � + � 1> jX j1

� Convex relaxation: dropping the rank constraintrank(X ) = 1

max
X < 0;tr X =1

tr X � + � 1> jX j1

� Semide�nite program [BV03]

� De
ation to get multiple components

� \dual problem" to dictionary learning



Sparse PCA [DGJL07, ZHT06]

� Non-convex formulation

min
� > � = I

k(I � �� > )X k2
F + � k� k1

� Dual to sparse dictionary learning



Sparse ???

�



Summary

� Notion of sparsity quite general

� Interesting links with convexity

{ Convex relaxation

� Sparsifying the world

{ All linear methods can be kernelized
{ All linear methods can be sparsi�ed

� Sparse PCA
� Sparse LDA
� Sparse ....



Course Outline

1. `1-norm regularization

� Review of nonsmooth optimization problems and algorithms
� Algorithms for the Lasso (generic or dedicated)
� Examples

2. Extensions

� Group Lasso and multiple kernel learning (MKL) + case study
� Sparse methods for matrices
� Sparse PCA

3. Theory - Consistency of pattern selection

� Low and high dimensional setting
� Links with compressed sensing



Theory

� Sparsity-inducing norms often used heuristically

� When does it converge to the correct pattern?

{ Yes if certain conditions on the problem are satis�ed (low
correlation)

{ what if not?

� Links with compressed sensing



Model consistency of the Lasso

� Sparsity-inducing norms often used heuristically

� If the responsesy1; : : : ; yn are such thatyi = w>
0 x i + " i where" i are

i.i.d. and w0 is sparse, do we get back the correct pattern of zeros?

� Intuitive answer: yesif and ony if some consistency condition on
the generating covariance matrices is satis�ed [ZY06, YL07, Zou06,
Wai06]



Asymptotic analysis - Low dimensional setting

� Asymptotic set up

{ data generated from linear modelY = X > w + "
{ ŵ any minimizer of the Lasso problem
{ number of observationsn tends to in�nity

� Three types of consistency

{ regular consistency: kŵ � wk2 tends to zero in probability
{ pattern consistency: the sparsity patternĴ = f j; ŵj 6= 0g tends

to J = f j; w j 6= 0g in probability
{ sign consistency: the sign vector̂s = sign( ŵ) tends tos = sign( w)

in probability

� NB: with our assumptions, pattern and sign consistencies are
equivalent once we have regular consistency



Assumptions for analysis

� Simplest assumptions (�xedp, largen):

1. Sparse linear model: Y = X > w + " , " independent fromX , and
w sparse.

2. Finite cumulant generating functions E exp(akX k2
2) and

E exp(a"2) �nite for some a > 0 (e.g., Gaussian noise)
3. Invertible matrix of second order momentsQ = E(XX > ) 2 Rp� p.



Asymptotic analysis - simple cases
minw2Rp

1
2nkY � Xw k2

2 + � nkwk1

� If � n tends to in�nity

{ ŵ tends to zero with probability tending to one
{ Ĵ tends to? in probability



Asymptotic analysis - simple cases
minw2Rp

1
2nky � Xw k2

2 + � nkwk1

� If � n tends to in�nity

{ ŵ tends to zero with probability tending to one
{ Ĵ tends to? in probability

� If � n tends to � 0 2 (0; 1 )

{ ŵ converges to the minimum of12(w � w)> Q(w � w) + � 0kwk1

{ The sparsity and sign patterns may or may not be consistent
{ Possible to have sign consistency without regular consistency



Asymptotic analysis - simple cases
minw2Rp

1
2nkY � Xw k2

2 + � nkwk1

� If � n tends to in�nity

{ ŵ tends to zero with probability tending to one
{ Ĵ tends to? in probability

� If � n tends to � 0 2 (0; 1 )

{ ŵ converges to the minimum of12(w � w)> Q(w � w) + � 0kwk1

{ The sparsity and sign patterns may or may not be consistent
{ Possible to have sign consistency without regular consistency

� If � n tends to zero faster than n� 1=2

{ ŵ converges in probability tow
{ With probability tending to one, all variables are included



Asymptotic analysis - important case
minw2Rp

1
2nkY � Xw k2

2 + � nkwk1

� If � n tends to zero slower than n� 1=2

{ ŵ converges in probability tow
{ the sign pattern converges to the one of the minimum of

1
2v> Qv + v>

J sign(w J) + kvJck1

{ The sign pattern is equal tos (i.e., sign consistency) if and only if

kQJcJQ � 1
JJ sign(w J)k1 6 1

{ Consistency condition found by many authors: Yuan & Lin (2007),
Wainwright (2006), Zhao & Yu (2007), Zou (2006)



Proof ( � n tends to zero slower than n� 1=2) - I

� Write y = X w + "

1
n

ky � Xw k2
2 =

1
n

kX (w � w) + "k2
2

= ( w � w)>
�

1
n

X > X
�

(w � w) +
1
n

k"k2
2 +

2
n

(w � w)> X > "

� Write w = w + � n � . Cost function (up to constants):

1
2
� 2

n � >
�

1
n

X > X
�

� �
1
n

� n � > X > " + � n (kw + � n � k1 � k wk1)

=
1
2
� 2

n � >
�

1
n

X > X
�

� �
1
n

� n � > X > " + � n
�
� n k� Jck1 + � n sign(w J)> � J

�



Proof ( � n tends to zero slower than n� 1=2) - II

� Write w = w + � n � . Cost function (up to constants):

1
2
� 2

n � >
�

1
n

X > X
�

� �
1
n

� n � > X > " + � n (kw + � n � k1 � k wk1)

=
1
2
� 2

n � >
�

1
n

X > X
�

� �
1
n

� n � > X > " + � n
�
� n k� Jck1 + � n sign(w J)> � J

�

� Asymptotics 1: 1
n X > " = Op(n� 1=2) negligible compared to� n (TCL)

� Asymptotics 2: 1
n X > X \converges" to Q (covariance matrix)

� � is thus the minimum of12� > Q� + � >
J sign(w J) + k� Jck1

� Check when the previous problem has solution such that� Jc = 0



Proof ( � n tends to zero slower than n� 1=2) - II

� Write w = w + � n � .

� Asymptotics) � minimum of 1
2� > Q� + � >

J sign(w J) + k� Jck1

� Check when the previous problem has solution such that� Jc = 0

� Solving for� J : � J = � Q � 1
JJ sign(w J)

� Subgradient:

{ on variables inJ: equal to zero
{ on variables inJc: QJcJ � J + g such thatkgk1 6 1

� Optimality conditions: kQJcJQ � 1
JJ sign(w J)k1 6 1



Asymptotic analysis
minw2Rp

1
2nkY � Xw k2

2 + � nkwk1

� If � n tends to zero slower than n� 1=2

{ ŵ converges in probability tow
{ the sign pattern converges to the one of the minimum of

1
2v> Qv + v>

J sign(w J) + kvJck1

{ The sign pattern is equal tos (i.e., sign consistency) if and only if

kQJcJQ � 1
JJ sign(w J)k1 6 1

{ Consistency condition found by many authors: Yuan & Lin (2007),
Wainwright (2006), Zhao & Yu (2007), Zou (2006)

{ Disappointing?



Summary of asymptotic analysis

lim � n + 1 � 0 2 (0; 1 ) 0 0 0
lim n1=2� n + 1 + 1 + 1 � 0 2 (0; 1 ) 0
regular
consistency

inconsistent inconsistent consistent consistent consistent

sign pattern no variable
selected

deterministic
pattern
(depending
on � 0)

deterministic
pattern

?? all variables
selected

� If � n tends to zero exactly at rate n� 1=2 ?



Summary of asymptotic analysis

lim � n + 1 � 0 2 (0; 1 ) 0 0 0
lim n1=2� n + 1 + 1 + 1 � 0 2 (0; 1 ) 0
regular
consistency

inconsistent inconsistent consistent consistent consistent

sign pattern no variable
selected

deterministic
pattern
(depending
on � 0)

deterministic
pattern

all patterns
consistent
on J, with
proba. > 0

all variables
selected

� If � n tends to zero exactly at rate n� 1=2 ?



Positive or negative result?

� Rather negative: Lasso does not always work!

� Making the Lasso consistent

{ Adaptive Lasso: reweight thè 1 using ordinary least-square
estimate, i.e., replace

P p
i =1 jwi j by

P p
i =1

jw i j
j ŵ OLS

i j

) provable consistency in all cases
{ Using the bootstrap) Bolasso [Bac08a]



Asymptotic analysis

� If � n tends to zero at rate n� 1=2, i.e., n1=2� n ! � 0 2 (0; 1 )

{ ŵ converges in probability tow
{ All (and only) patterns which are consistent withw on J are

attained with positive probability



Asymptotic analysis

� If � n tends to zero at rate n� 1=2, i.e., n1=2� n ! � 0 2 (0; 1 )

{ ŵ converges in probability tow
{ All (and only) patterns which are consistent withw on J are

attained with positive probability
{ Proposition : for any pattern s 2 f� 1; 0; 1gp such that sJ 6=

sign(w J), there exist a constantA(� 0) > 0 such that

logP(sign(ŵ) = s) 6 � nA(� 0) + O(n� 1=2):

{ Proposition : for any sign patterns 2 f� 1; 0; 1gp such that
sJ = sign( w J), P(sign(ŵ) = s) tends to a limit � (s; � 0) 2 (0; 1),
and we have:

P(sign(ŵ) = s) � � (s; � 0) = O(n� 1=2 logn):



� n tends to zero at rate n� 1=2

� Summary of asymptotic behavior:

{ All relevant variables (i.e., the ones inJ) are selected with
probability tending to one exponentially fast

{ All other variables are selected with strictly positive probability



� n tends to zero at rate n� 1=2

� Summary of asymptotic behavior:

{ All relevant variables (i.e., the ones inJ) are selected with
probability tending to one exponentially fast

{ All other variables are selected with strictly positive probability

� If several datasets (with same distributions) are available, intersecting
support sets would lead to the correct pattern with high probability

Dataset 1

2

1J

Intersection

5

4

3

JDataset 5

J

JDataset 3

Dataset 4

Dataset 2 J



Bootstrap

� Givenn i.i.d. observations(x i ; yi ) 2 Rd � R, i = 1 ; : : : ; n

� m independentbootstrap replications:k = 1 ; : : : ; m,

{ ghost samples (xk
i ; yk

i ) 2 Rp � R, i = 1 ; : : : ; n, sampled
independently and uniformly at randomwith replacement from
the n original pairs

� Each bootstrap sample is composed ofn potentially (and usually)
duplicated copies of the original data pairs

� Standard way of mimicking availability of several datasets[ET98]



Bolasso algorithm

� m applications of the Lasso/Lars algorithm [EHJT04]

{ Intersecting supports of variables
{ Final estimation ofw on the entire dataset

J

2

1J

Bootstrap 4

Bootstrap 5

Bootstrap 2

Bootstrap 3

Bootstrap 1

Intersection

5

4

3

J

J

J



Bolasso - Consistency result

� Proposition [Bac08a]: Assume� n = � 0n� 1=2, with � 0 > 0. Then, for
all m > 1, the probability that the Bolasso does not exactly select
the correct model has the following upper bound:

P(J 6= J) 6 A1me� A 2n + A3
log(n)
n1=2

+ A4
log(m)

m
;

whereA1; A2; A3; A4 are strictly positive constants.

� Valid even if the Lasso consistency is not satis�ed

� In
uence of n, m

� Could be improved?



Consistency of the Lasso/Bolasso - Toy example

� Log-odd ratios of the probabilities of selection of each variable vs. �
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High-dimensional setting

� p > n: important case with harder analysis (no invertible covariance
matrices)

� If consistency condition is satis�ed, the Lasso is indeed consistent as
long aslog(p) << n

� A lot of on-going work [MY08, Wai06]



High-dimensional setting (Lounici, 2008) [Lou08]

� Assumptions

{ yi = w > x i + " i , " i.i.d. normal with mean zero and variance� 2

{ Q = X > X=n with unit diagonal and cross-terms less than114s
{ Theorem : if kwk0 6 s, and A > 81=2, then

P

 

kŵ � wk1 6 5A�
�

logp
n

� 1=2
!

6 1 � p1� A 2=8

� Get the correct sparsity pattern ifmin j; w j 6=0 jw j j > C�
�

log p
n

� 1=2

� Can have a lot of irrelevant variables!



Links with compressed sensing [Bar07, CW08]

� Goal of compressed sensing: recover a signalw 2 Rp from only n
measurementsy = Xw 2 Rn

� Assumptions: the signal isk-sparse,n << p

� Algorithm: minw2 Rp kwk1 such thaty = Xw

� Su�cient condition on X and (k; n; p) for perfect recovery:

{ Restricted isometry property (all submatrices ofX > X must be
well-conditioned)

{ that is, if kwk0 = k, then kwk2(1 � � k ) 6 kXw k2 6 kwk2(1 + � k )

� Such matrices are hard to come up with deterministically, but random
ones are OK withk = �p , and n=p = f (� ) < 1





Course Outline

1. `1-norm regularization

� Review of nonsmooth optimization problems and algorithms
� Algorithms for the Lasso (generic or dedicated)
� Examples

2. Extensions

� Group Lasso and multiple kernel learning (MKL) + case study
� Sparse methods for matrices
� Sparse PCA

3. Theory - Consistency of pattern selection

� Low and high dimensional setting
� Links with compressed sensing



Summary - interesting problems

� Sparsity through non Euclidean norms

� Alternative approaches to sparsity

{ greedy approaches - Bayesian approaches

� Important (often non treated) question: when does sparsityactually
help?

� Current research directions

{ Algorithms, algorithms, algorithms!
{ Design of good projections/measurement matrices for denoising or

compressed sensing [See08]
{ Structured norm for structured situations (variables are usually not

created equal)) hierarchical Lasso or MKL[ZRY08, Bac08b]



Lasso in action
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Hierarchical multiple kernel learning (HKL) [Bac08b]

� Lasso or group Lasso, with exponentially many variables/kernels

� Main application:

{ nonlinear variables selection with x 2 Rp

kv1;:::;v p(x; y) =
pY

j =1

exp(� vi � (x i � yi )2) =
Y

j; v j =1

exp(� � (x i � yi )2)

wherev 2 f 0; 1gp

{ 2p kernels! (as many as subsets off 1; : : : ; pg)

� Learning sparse combination, nonlinear variable selection

� Two questions:

{ Optimization in polynomial time?
{ Consistency?



Hierarchical multiple kernel learning (HKL) [Bac08b]

� The 2p kernels are not created equal!

� Natural hierarchical structure (directed acyclic graph)

{ Goal: select a subset only after all of its subsets have been selected
{ Design a norm to achieve this behavior

X

v2 V

k� descendants( v)k =
X

v2 V

0

@
X

w2 descendants( v)

k� wk2

1

A

1=2

� Feature search algorithm in polynomial time inp and the number of
selected kernels
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Code

� `1-penalization: Matlab and R code available from
www.dsp.ece.rice.edu/cs

� Multiple kernel learning:
asi.insa-rouen.fr/enseignants/ ~arakotom/code/mklindex.html
www.stat.berkeley.edu/ ~gobo/SKMsmo.tar

� Other interesting code
www.shogun-toolbox.org


