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To learn more about the topic of this lecture, please look at the following documents:

• http://cbio.ensmp.fr/~jvert/svn/kernelcourse/slides/master/master.pdf

• http://www.gatsby.ucl.ac.uk/~gretton/coursefiles/lecture4_introToRKHS.pdf

• http://www.di.ens.fr/~fbach/rasma_fbach.pdf

In this course, we often focused on prediction methods which are linear, that is, the input data are vectors
(i.e., x ∈ R

d) and the prediction function is linear: f(x) = w⊤x for w ∈ R
d. In this situation, given data

(xi, yi), i = 1, . . . , n, the vector w is obtained by minimizing

1

n

n∑

i=1

ℓ(yi, w
⊤xi) + λΩ(w).

Classical examples are logistic regression or least-squares regression.

These methods look at first sight of limited practical significance, because:

• Input data may not be vectors.

• Relevant prediction functions may not be linear.

The goal of kernel methods is to go beyond theses limitations while keeping the good aspects. The
underlying principle is to replace x by any function ϕ(x) ∈ R

d, explicitly ou implicitly, and consider linear
predictions in Φ(x), i.e., f(x) = w⊤ϕ(x). We call ϕ(x) the “feature” associated to x.

Example. Polynomial regression of degree r, by considering x ∈ R
d and

ϕ(x) =
(
xα1

1 · · · xαd

d

)
∑d

i=1
αi=r

.

In this situation, p =
(d+r−1

r

)
(number of k-combinations with repetitions from a set with cardinality d),

can be too big for an explicit representation to be feasible.
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WARNING. The type of kernel is different from the ones in lecture 2. The ones here are “positive
definite”; the ones from lecture 2 are “non-negative”. See more details in https://francisbach.com/

cursed-kernels/

1 Representer theorem

Theorem 1 (Representer theorem, 1971).
Let ϕ : X → R

d. Let (x1, . . . , xn) ∈ X
n, and assume Ψ : Rn+1 → R strictly increasing with respect to the

last variable, then the minimum of Ψ(w⊤ϕ(x1), ..., w
⊤ϕ(xn), w

⊤w) is attained for w =
∑n

i=1 αiΦ(xi) with
α ∈ R

n.

Proof Let w ∈ R
d, and FD = {∑αiΦ(xi)/α ∈ R

n}. Let wD ∈ FD and w⊥ ∈ F
⊥
D such that w = wD +w⊥,

then ∀i, w⊤ϕ(xi) = w⊤
Dϕ(xi) + w⊤

⊥ϕ(xi) with w⊤
⊥ϕ(xi) = 0.

From Pythagoreas theorem, we get: w⊤w = w⊤
Dw

2
D + w⊤

⊥w⊥. Therefore we have:

Ψ(w⊤ϕ(x1), ..., w
⊤ϕ(xn), w

⊤w) =Ψ(w⊤
Dϕ(x1), ..., w

⊤
Dϕ(xn), w

⊤
DwD + w⊤

⊥w⊥)

≥Ψ(w⊤
Dϕ(x1), ..., w

⊤
Dϕ(xn), w

⊤
DwD).

Thus
inf

w∈Rd
Ψ(w⊤ϕ(x1), ..., w

⊤ϕ(xn), w
⊤w) = inf

w∈FD

Ψ(w⊤ϕ(x1), ..., w
⊤ϕ(xn), w

⊤w).

Corollary 1 For λ > 0, minw∈Rd
1
n

∑
ℓ(yi, w

⊤ϕ(xi)) +
λ
2w

⊤w is attained at w =
∑n

i=1 αiϕ(xi).

• It is important to note that there is no assumption on ℓ (no convexity).

• This result is extendable to Hilbert spaces (RKHS).

• We have: ∀j ∈ {1, . . . , n}, w⊤ϕ(xj) =
∑n

i=1 αik(xi, xj) = (Kα)j where K is the kernel matrix and
w⊤w = α⊤Kα. We can then write:

min
w∈Rd

1

n

∑
ℓ(yi, w

⊤ϕ(xi)) +
λ

2
w⊤w = min

α∈Rn

1

n

∑
ℓ(yi, (Kα)i) +

λ

2
α⊤Kα.

For a test point, we have f(x) =
∑n

i=1 αik(x, xi).

The kernel trick allows to:

• replace R
d by R

n; this is interesting when d is very large.

• separate the representation problem (design a kernel on a set X) and algorithms and analysis (which
only use the kernel matrix K).
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2 Kernels

• Definition: k is a positive definite kernel if and only if all kernel matrices are positive semi-definite.

Theorem 2 (Aronszajn, 1950)
k is a positive definite kernel if and only if there exists a Hilbert space F, and Φ : X → F such that
∀x, y, k(x, y) = 〈Φ(x),Φ(y)〉.

• F is called the “feature space”, and ϕ the “feature map”.

• Simple properties (to be done as exercises): the sum and product of kernels are kernels. What are
their associated feature space and feature map?

• Linear kernel: k(x, y) = x⊤y

• Polynomial kernel: the kernel k(x, y) = (x⊤y)r can be expanded as:

k(x, y) = (
d∑

i=1

xiyi)
r =

∑

α1+...+αp=r

(
r

α1, ..., αp

)
(x1y1)

α1 ...(xpyp)
αp

︸ ︷︷ ︸
(x

α1

1
...x

αp
p )(y

α1

1
...y

αp
p )

We have: Φ(x) = {
(

r
α1,...,αp

) 1

2xα1

1 ...x
αp
p }. Exercise: how can we go beyond homogeneous polynomials?

• Translation-invariant kernels on [0, 1]. k(x, y) = q(x − y) where q is 1-periodic. k is a positive
definite kernel if and only if the Fourier series of q is non-negative (using the complex representation),
i.e.,

k(x, y) = ν0 +
∑

m>1

2νm cos 2πmx cos 2πmy + 2νm sin 2πmx sin 2πmy

with ν > 0.

The (infinite-dimensional) feature vector is composed of ν
1/2
0 , and of

√
2νm cos 2πmx and

√
2νm sin 2πmx,

for m > 1.

If f(x) can be written f(x) = Φ(x)⊤w, then

‖w‖2 =
( ∫ 1

0
f(x)

)2
+

∑

m>1

2

νm

( ∫ 1

0
f(x) cos 2πmx

)2
+

2

νm

( ∫ 1

0
f(x) sin 2πmx

)2
.

For νm = 1
m2s , m > 1, this norm is equal to

‖w‖2 =
( ∫ 1

0
f(x)

)2
+

1

(2π)2s

∫ 2

0
|f (s)(x)|2dx

and the kernel has an analytical expression k(x, y) = ν0 + (−1)s−1 (2π)2s

(2s)! B2s({x − y}), where B2s is
Bernoulli’s polynomial.

• Translation-invariant kernels on R
d: X = R

d, k(x, y) = q(x− y) with q : Rd → R.
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Theorem 3 (Böchner): k is positive definite ⇔ q is the Fourier transform of a non-negative Borel
measure ⇐ q ∈ L1 and its Fourier transform is non-negative.

Proof (partial) Let x1, ...xn ∈ R
d, let α1, .., αn ∈ R,

∑
αsαjk(xs, xj) =

∑
αsαjq(xs − xj)

=
∑

αsαj

∫
exp−iω⊤(xs−xj) dµ(ω)

=

∫
(
∑

αsαj exp
−iω⊤xs exp−iω⊤xj )dµ(ω)

=

∫
|
∑

αs exp
−iω⊤xs |2dµ(ω) ≥ 0.

Consruction of the norm. Intuitive (non-rigorous) reasoning: if q is in L1, then q̂(ω) exists and,
with dµ(ω) = q̂(ω)dω, we have an explicit representation of

k(x, y) =

∫ 〈√
q̂(ω) exp−iω⊤x,

√
q̂(ω) exp−iω⊤x〉dω =

∫ 〈
ϕω(x), ϕω(y)〉dω = 〈ϕ(x), ϕ(y)〉.

If we consider f(x) =
∫
ϕω(x)wωdω, then wω = f̂(ω)/

√
q̂(ω), and the squared norm of w is equal to

∫ |f̂(w)|2

q̂(w) dw, where f̂ denotes the Fourier transform of f .

Examples: Exponential kernel exp(−α|x− y|) and Gaussian kernel exp(−α|x− y|2).

• Many applications of the kernel trick!

– Exercise: show that on X = R
+, k(x, y) = min(x, y) and k(x, y) = xy

x+y are positive definite
kernels.

• Non vectorial data (sequences, graphes, images).

– Exercise: for X the set of all subsets of a given set V , show that k(A,B) = |A∩B|
|A∪B| is a positive

definite kernel.

– Examples of kernels on sequences

3 Ridge regression (mostly as an exercise)

We consider the optimization problem:

min
w∈Rd

1

2n
‖y − Φw‖22 +

λ

2
‖w‖22.

We can solve it in two ways (done as an execise):
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1. Direct : minw∈Rd
1
2n‖y − Φw‖22 + λ

2‖w‖22
2. With representer theorem : minα∈Rn

1
2n ||y −Kα||22 + λ

2α
⊤Kα

1. Using the representer theorem:

gradient with respect to α : 1
nK(Kα−y)+λKα = 0⇔ (K2+nλK)α = Ky ⇔ K((K+nλI)α−y) = 0.

IfKis non invertible, the solution is not unique : α = (K+nλI)−1y+Ker(K). However the prediction
is unique : Kα = K(K + nλI)−1y.

2. Direct method: minimizing with respect to w

gradient w.r.t. w : 1
nΦ

⊤(Φw − y)
This leads to w = ( 1nΦ

⊤Φ+ λI)−1 1
nΦ

⊤y ⇔ Φf = Φ( 1nΦ
⊤Φ+ λI)−1 1

nΦ
⊤y.

With K = ΦΦ⊤, we get :
kernel︷ ︸︸ ︷

ΦΦ⊤(ΦΦ⊤
︸ ︷︷ ︸
n×n

+nλI)−1y =

direc︷ ︸︸ ︷
Φ(Φ⊤Φ︸ ︷︷ ︸

d×d

+nλI)−1Φ⊤y

This is simply:

Lemma 1 (matrix inversion lemma) ∀A matrix, (AA⊤ + I)−1A = A(A⊤A+ I)−1

There is thus an “equivalence” betweeen this lemma and the representer theorem.

4 Complexity of linear algebra computations

If K ∈ R
n×n and L ∈ R

n×n are two matrices

• computing KL has complexity O(n3)

• computing K−1has complexity O(n3)

• computing Ky has complexity O(n2)

• Solving K−1y has complexity O(n3)

• Decomposing K in eigenvalues / eigenvectors O(n3)

• Largest eigenvector: O(n2)

Low-rank approximation

• Eigenvector basis (complexity O(n2r))

• Orthogonal projection on first r columns: O(nr2)
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5 Using distances in feature space (exercise)

Given sets of negative examples xi, i ∈ I− and positive examples xi, i ∈ I+, we consider the average µ− of
negative points and the average µ+ of positive points in the feature space.

(1) For a testing point x, compute ‖Φ(x)− µ+‖2 and ‖Φ(x)− µ−‖2.
(2) We classify x as positive if ‖Φ(x) − µ+‖2 > ‖Φ(x) − µ−‖2. Relate the classification rule to existing
classifiers. We can consider that |I+| = |I−|.
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