
Machine learning - Master ICFP 2019-2020

High-dimensional data and variable selection

Francis Bach

February 28, 2020

These notes are heavily based on notes from Alessandro Rudi and Pierre Gaillard.

1 Introduction

In statistics or machine learning, we often want to explain some output Y ∈ Y from input X ∈ X ⊂ Rd by
observing a data set Dn = {(Xi, Yi)}1≤i≤n of i.i.d. observations. In previous lessons, we saw methods such
as ordinary least squares regression, K-nearest neighbors, probabilist models or kernel regression. Today,
we would like to deal with high-dimensional input spaces, i.e., large d (possibly d� n). We will have two
motivations in mind:

• prediction, accuracy : when d � n, classical models fail. Is it possible to have strong theoretical
guarantees on the risk (i.e., generalization error)?

• model interpretability : by removing irrelevant features Xi (i.e., by setting the corresponding coeffi-
cients estimates to zero), the model will easier to understand.

Good references on this topic are [1] and [2].

Why high-dimensional data? The volume of available data is growing exponentially fast nowadays.
According to IBM three years ago, 1018 bytes of data were created every day in the world and 90% of data
is less than two years old. Many modern data record simultaneously thousands up to millions of features
on each objects or individuals. In many applications, data is high-dimensional such as with DNA, images,
video, text, cookies (data about consumer preferences) or in astrophysics.

The curse of dimensionality

• High-dimensional spaces are vast and data points are isolated in their immensity.

• The accumulation of small errors in many different directions can produce a large global error.

1

• An event that is an accumulation of rare events may be not rare in high-dimensional spaces.

Example 1.1 In high-dimensional spaces, no point in your data set will be close from a new input you
want to predict. Assume that your input space is X = [0, 1]d. The number of points needed to cover the space
at a radius ε in L2 norm is of order 1/εd which increases exponentially with the dimension. Therefore, in
high dimension, it is unlikely to have a point in you data set that will be close to any new input.

Example 1.2 In high-dimensional spaces classical distances are often meaningless: all the points tends to
be at similar distance from one another. Consider the following example to convince ourselves. Assume
that X,X ′ follow uniform distribution on [0, 1]d. Then, the expected distance in square L2-norm between
X and X ′ is

E
[
‖X −X ′‖2

]
=

d∑
i=1

E
[
(Xi −X ′i)2

]
= dE

[
(X1 −X ′1)2

]
= d

∫ 1

0

∫ 1

0
(x− x′)2dxdx′ = d

6
.

Therefore, the average distance between the points increases with the dimension. Furthermore, the standard
deviation of this square distance is

√
Var
(
‖X −X ′‖2

)
=

√√√√ d∑
i=1

Var
(
(Xi−X ′i)2

)
=
√
pVar

(
(X1 −X ′1)2

)
=

√
7d

6
√

5
' 0.2

√
d .

Thus, if we plot the distribution of the square distance, we get something like:

95% of the points are at distance 0.4
√
d

p/6

Distance between points in [0, 1]d

D
en

si
ty

Therefore, relatively to their
distance, all points seem to be
at similar distance from one an-
other. The notion of nearest
point distance vanishes. As a
consequence, K-Nearest Neigh-
bors gets poor performance in
large dimension.

Example 1.3 Let us consider another example in high-dimensional linear regression. We consider the
ordinary least square estimator (OLS) for the linear model

β̂ ∈ argmin
β∈Rd

∥∥Y −Xβ∥∥2 where Yi = x>i β
∗ + εi, X = (x1, . . . , xn)> ∈ Rn×p and εi

i.i.d.∼ N(0, σ2) .

If rg(X) = d (which imposes d ≤ n) then β̂ = (X>X)−1X>Y and as we saw in previous lecture the
estimator satisfies

E
[
‖β̂ − β∗‖2

]
= Tr

(
(X>X)−1

)
σ2 .

In particular, in the very gentle case of an orthogonal design, we get E
[
‖β̂ − β∗‖2

]
= dσ2 . Therefore,

the variance of the estimator increases linearly with the dimension and the later gets unstable for high-
dimensional data. Furthermore, OLS only works for d � n because otherwise the matrix X>X is not

2

invertible and using pseudo-inverse would lead to highly unstable estimator and over-fitting. One needs to
regularize.

The previous examples seem to show that the curse of dimensionality is unavoidable and we are doomed
to poor estimators in large dimension. Hopefully, in many cases, data has an intrinsic low complexity
(sparsity, low dimensional structure,. . .). This is the case of the data (for instance with images) or of the
machine learning methods which is used (for instance Kernel regression).

What can we do with high-dimensional data? There are three classes of methods to deal with large
dimensional input spaces:

• Model selection: we identify a subset of s� d predictors that we believe to be related to the response.
We then fit a model (for instance OLS) on the s variables only.

• Regularization: Ridge, Lasso,. . .

• Dimension reduction: the objective is to find a low-dimensional representation of the data. If we
consider linear transformation, we may project the d predictors into a s-dimensional space with
s� d. This is achieved by computing s different linear combination or projections of the variables.
Then these projections are used as new features to fit a simple model for instance by least squares.
Examples of such methods are PCA, PLS, etc. (see last lecture).

2 Model selection

The high level idea is to compare different statistical models corresponding to different possible hidden
structure and select the best. This is theoretically very powerful, however the computational complexity
is often prohibitive. Here, we will consider the example of the sparse linear model

Y = Xβ∗ + ε , Y = (y1, . . . , yn) ∈ Rn, X ∈ Rn×d, ε ∼ N(0, σ2In) . (1)

We consider d� n but we assume that β∗ has only s < d non-zero coordinates.

If we knew in advance the non-zero coordinates of β∗ say m∗ ⊂ {1, . . . , d}, we could consider the simpler
linear regression problem yi =

∑
j∈m∗ β∗jXi,j + εi and use the estimator

β̂m ∈ argmin
β ∈ Rd, βj = 0∀j /∈ m

∥∥Y −Xβ∥∥2. (2)

More generally, this would work if we know that β belongs to some vector space of dimension s < d. We
then get a risk which is scaling with s instead of d and the estimator has good statistical properties.

If we do not know m∗ in advance, assuming the algorithmic complexity is not a problem, we can

1. consider a collection M of possible models m ⊂ {1, . . . , d};

2. compute β̂m for each m ∈M as defined in (2);

3

3. estimate β∗ by the best estimator among the collection β̂m.

A natural candidate for the best model is the minimizer of the empirical risk:

β̂m̂ with m̂ ∈ argmin
m∈M

{∥∥Y −Xβ̂m∥∥2}
The issue is that larger models m ⊃ m′ will always get smaller empirical risk because minimizing over a
bigger space always leads to a smaller objective function. One needs to penalize models according to their
complexity and choose the penalized estimator

β̂m̂ with m̂ ∈ argmin
m∈M

{∥∥Y −Xβ̂m∥∥2 + pen(m)
}

(3)

There are several well known penalization criteria.

The Akaike Information Criterion (AIC). It defines the penalization

pen(m) = 2|m|σ2 .

The AIC criterion is motivated by the following lemma.

Lemma 1 In least square linear regression with Gaussian model (see (1)), ‖Y − X̂βm‖2 + (2|m| −n)σ2 is
an unbiased estimator of the risk R(β̂m) := E

[
‖Xβ∗ −Xβ̂m‖2

]
.

Proof We show that in least square regression the risk equals

R(β̂m) := E
[
‖Xβ∗ −Xβ̂m‖2

]
= E

[
‖Y −Xβ̂m‖2

]
+ (2|m| − n)σ2 .

Let us first give some useful notation an equalities. For each m ⊂ {1, . . . , d}, we define the sub-vector
space Sm := {Xβ ∈ Rn : β ∈ Rd, βj = 0 ∀j /∈ m} and ΠSm ∈ Rn×n the orthogonal projection matrix on

Sm. Then, by definition of β̂m, we have Xβ̂m = ΠSmY and we recall that Y = Xβ∗ + ε. Furthermore, we
will also use that:

E
[
‖ΠSmε‖2

]
= E

[
ε>Π>SmΠSmε

]
= E

[
ε>ΠSmε

]
= E

[
Tr(ε>ΠSmε)

]
= E

[
Tr(ΠSmεε

>)
]

= σ2Tr(ΠSm) = |m|σ2 . (4)

Similarly, E
[
‖(I −ΠSm)ε‖2

]
= (n− |m|)σ2. From the decomposition Y −Xβ̂m = (I −ΠSm)(Xβ∗ + ε), we

have

E
[
‖Y −Xβ̂m‖2

]
= E

[
‖(I −ΠSm)Xβ∗‖2 +(((((((((

2ε>(I −ΠSm)Xβ∗ + ‖(I −ΠSm)ε‖2
]

= ‖(I −ΠSm)Xβ∗‖2 + (n− |m|)σ2 .
= ‖(I −ΠSm)Xβ∗‖2 + E

[
‖ΠSmε‖2

]
+ (n− 2|m|)σ2

= E
[
‖(I −ΠSm)Xβ∗ −ΠSmε‖2

]
+ (n− 2|m|)σ2 ← Pythagore’s theorem

= E
[
‖Xβ∗ −ΠSm(Xβ∗ + ε)‖2

]
+ (n− 2|m|)σ2

= E
[
‖Xβ∗ −Xβ̂m‖2

]
+ (n− 2|m|)σ2 .

4

Prior-based penalization. Another popular penalization is to assign a prior weight πm for each m ∈M,
choose a regularization parameter K > 1 and select

pen(m) = Kσ2
(√
|m|+

√
2 log(1/πm)

)2
. (5)

Theorem 1 (Thm. 2.2, [1]) Under the model 1, there exists some constant CK > 1 depending only on
K such that the penalized estimator β̂m̂ defined in (3) with penalty (5) satisfies

R(β̂m̂) := E
[
‖Xβ∗ −Xβ̂m̂‖2

]
≤ CK min

m∈M

{
E
[
‖Xβ∗ −Xβ̂m‖2

]
+ σ2 log

1

πm
+ σ2

}
.

A possible choice motivated by minimum description length (see lecture on PAC-Learning with infinite
number of models) for the prior is log(1/πm) ≈ 2|m| log d, i.e., the number of bits needed to encode
m ⊂ {1, . . . , d}. Remark that this choice of prior leads up to the log d to a similar criterion that for
AIC. Yet, it is worth pointing out that the previous theorem is valid for general models m ∈M (it is not
restricted to the estimators (2)) and priors πm. Other priors can promote different types of assumptions
such as group sparsity.

Computational issues. The estimator (3) has very nice statistical properties even when p � n.
However we need to compute β̂m for all models m ∈ M. This is often prohibitive. We can understand it
by rewriting it as an optimization problem of the form

β̂m̂ ∈ argmin
β∈Rd

{
‖Y −Xβ‖2 + λ‖β‖0

}
, (6)

which is non-convex because of the ‖ · ‖0. The estimator of AIC corresponds to the choice λ = 2σ2.
In some cases, such as orthogonal design, we can approximate efficiently the solution or find an efficient
implementation. However, this is not true in general. A approximate implementation which is sometimes
used to solve (3) is the forward-backward algorithm. It consists in alternatively trying to add or remove
variables in the model one by one. It quickly converges in practice, but there is no theoretical guarantees.

3 The Lasso

The high-level idea of the Lasso is to transform the non-convex optimization problem (6) into a convex
problem. This is done by replacing the `0-norm ‖β‖0 =

∑d
j=1 1βj 6=0 with the `1-norm ‖β‖1 =

∑d
j=1 |β|j

which is convex. We define the LASSO estimator

β̂λ ∈ argmin
β∈Rd

{ 1

2
‖Y −Xβ‖2 + λ‖β‖1

}
. (LASSO)

The solution β̂λ may not be unique but the prediction Xβ̂λ is.

5

3.1 Geometric insight

By convex duality, the Lasso is also the solution of

β̂λ ∈ argmin
β∈Rd:‖β‖1≤Rλ

{
‖Y −Xβ‖2

}
,

for some radius Rλ > 0. The non-smoothness of the `1-norm puts some coefficients to zero. In Figure 1,
we can see that because of the corners of the `1-ball, the solution β̂λ gets zero coefficients which is not the
case when regularizing with the `2-norm (on the right).

β1

β2

β̂

β̂λ

β1

β2

β̂

β̂λ

Figure 1: β̂ denotes the minimizer of the empirical risk and the blue lines denote level lines of the empirical
risk. [left] Regularization with a `1-ball, [right] Regularization with a `2-ball.

3.2 What does the solution of the Lasso looks like?

To solve the problem of Lasso, if the objective function L : β 7→ ‖Y −Xβ‖2 +λ‖β‖1 was differentiable, one
would cancel the gradient. However, because of the `1-norm the later is not differentiable and one needs to
generalize the notion of gradient to convex functions which are not necessarily differentiable. This is done
with the following definition.

Definition 1 (Subdifferential) A subgradient of a convex function f : Rd → R at a point β0 ∈ Rd is a
vector z ∈ Rd such that for any β ∈ Rd the convex inequality holds

f(β)− f(β0) ≥ z>(β − β0) .

The set of all subgradients of f at β0 is denoted ∂f(β0) and is called the subdifferential of f at β0.

The subdifferential of the `1-norm is

∂‖β‖1 =
{
z ∈ [−1, 1]d s.t. for all 1 ≤ j ≤ d zj = sign(βj) if βj 6= 0

}
and the subdifferential of the objective function of the Lasso is

∂L(β) =
{
−X>(Y −Xβ) + λz : z ∈ ∂‖β‖1

}
.

6

Any solution of the Lasso should cancel the subdifferential. Therefore, if β̂λ is a solution of the Lasso, it
exists ẑ ∈ ∂‖β̂λ‖1 (i.e., ẑj = sign(β̂λ(j)) if β̂λ(j) 6= 0 and ẑj ∈ [−1, 1] otherwise) such that

−2X>(Y −Xβ) + λẑ = 0 ⇒ X>Xβ̂λ = X>Y − λẑ . (7)

Orthonormal design. If the gram matrix X>X is general, it is not possible to solve the later in
close form. To get some insights about the solution of the Lasso, let us assume the orthonormal setting
X>X = Ip. Then, from (7), we get for all j ∈ {1, . . . , d} such that β̂λ(j) 6= 0

β̂λ(j) = X>j Y − λ sign(β̂λ(j)) .

Therefore, X>j Y = β̂λ(j) + sign(β̂λ(j)) and β̂λ(j) have same sign and we obtain for all 1 ≤ j ≤ p

β̂λ(j) =

{
X>j Y − λ

2 sign(X>j Y) if |X>j Y | ≥ λ
0 if |X>j Y | ≤ λ

In the orthonormal setting, the Lasso performs thus a soft threshold of the coordinates of the OLS.

Statistical property of the Lasso estimator. For λ large enough λ ' σ
√

log d, under some additional
condition on the design (relaxed version of orthonormal design), it is possible to show that the Lasso does
not assign any weight to coefficients that are not in m∗. If λ is properly chosen, it recovers exactly the
coefficients of β∗ and its risk is controlled with high probability as

R(β̂λ) =
∥∥Xβ∗ −Xβ̂λ∥∥2 ≤ inf

β∈Rd\{0}

{
‖Xβ −Xβ∗‖2 + �Xλ

2‖β‖0
}
,

where λ2 ' σ2 log d and �X is the compatibility constant depending on the design X. It can be bad for
non-orthogonal design. We recover a similar result than the one obtained for model selection in Theorem 1
but with �X and with an efficient procedure. It can be shown that it is not possible to avoid �X for
efficient (polynomial time) procedures.

3.3 Computing the Lasso estimator

Since this is the solution of a convex optimization problem, the solution of the Lasso can be obtained
efficiently. There are three main algorithms used by the community.

Coordinate descent. (cf. practical session) the idea is to repeatedly minimize the objective function
L(β) with respect to each coordinate. It converges thanks to the convexity of L. As we saw in Equation (7),
the solution of the Lasso satisfies

X>Xβ̂λ = X>Y − λẑ

where ẑ ∈ ∂‖β‖1. We saw that the solution equals β̂λ(j) = Sλ(X>j Y) when X>X = Ip. This equation has
however no closed-form solution in general. The idea of coordinate descent is to solve this equation only
for one coordinate, fixing all the other coordinates.

7

Let 1 ≤ i ≤ n and fix coordinates βj ∈ R for j 6= i. Solving the i-th coordinate optimisation problem given
by

min
βi

L(β) = min
βi∈R

{
1

2

∥∥Y −Xβ∥∥2 + λ‖β‖1
}
,

we get that the i-th partial sub-derivative of L should cancel, which gives similarly to previously

X>i Xβ = X>i Y − λzi ,

where zi ∈ ∂|βi|. This can be rewritten as

X>i Xiβi +X>i X−iβ−i = X>i Y − λzi ,

where X−i ∈ Rn × (p − 1) is the input matrix without column i and β−i ∈ Rp−1 is the fixed parameter
vector without coordinate i.

Assume βi 6= 0, then zi = sign(βi) and

X>i Xiβi + λ sign(βi) = X>i (Y −X−iβ−i) ,

Since X>i Xi > 0, we have zi = sign
(
X>i (Y −X>i X−iβ−i)

)
which implies

βi =
Sλ
(
X>i (Y −X>i X−iβ−i)

)
X>i Xi

. (8)

where Sλ is the soft-threshold function:

Sλ(x) =

{
0 if |x| ≤ λ
x− λ sign(x) otherwise

.

The algorithm of coordinate descent consists in sequentially repeating the update (8) for i = 1, . . . , p, 1 . . . , p, . . .
minmizing the objective function with respect to each coordinate at a time.

Fista. (fast iterative shrinkage thresholding algorithmn) It uses the explicit formula in the orthogonal
design setting for computing recursively an approximation of the solution

Homotopy methods. The insight of the algorithm comes from equation (7): X>Xβ̂λ = X>Y − λ
2 ẑ.

We then consider the function λ 7→ β̂λ. For non-zero coefficients, ẑj = sign(β̂λ(j)) and is constant while

λ 7→ β̂λ(j) does not change sign. Therefore, the function λ 7→ β̂λ is piecewise linear in λ with a change
when for some coordinate β̂λ(j) changes sign. Homotopy methods compute the sequence {β̂λ1 , β̂λ2 , . . . } of

the Lasso estimator corresponding to the break points of the path λ 7→ β̂λ. At each break point, the model
mλ = {i ∈ {1, . . . , d} : β̂λ(i) 6= 0} is updated and we solve the linear equation

X>mλXmλ β̂λ(mλ) = X>mλY − λ sign(β̂λ(m)) ,

until the next break point. This algorithm is slower than the other two algorithms but it provides the full
regularization path λ 7→ β̂λ (see Figure 2).

8

Figure 2: Lasso regularization path computed with LARS

3.4 Final remarks and variants

Removing the bias of the Lasso. The Lasso estimator β̂λ is biased. Often one might want to remove
the bias for instance by first computing β̂λ to select to good model m̂λ and then solve the OLS or Ridge
on the model m̂λ only.

No penalization of the intercept. In practice, the intercept is often no penalized and the Lasso solves

β̂λ ∈ argmin
β∈Rd

{ n∑
i=1

(Yi − β0 − β>Xi)
2 + λ‖β‖1

}
.

Group Lasso. It is an extension when coordinates are sparse by groups. In other words, we have some
groups Gk ⊂ {1, . . . , d} and we assume that all coordinates βi for i ∈ Gk are either all zero or all non-zero.

Elastic net. It is a mix of `1 and `2 regularization

β̂ ∈ argmin
β∈Rd

{
‖Y −Xβ‖2 + λ1‖β‖1 + λ2‖β‖22

}
.

It also selects variables thanks to sharp corners and it is heavily used in practice.

Calibration of λ. It is a crucial point in practice. A common solution is to perform K-fold cross
validation. There are a few other techniques such as the slopes heuristic.

References

[1] Christophe Giraud. Introduction to high-dimensional statistics. Chapman and Hall/CRC, 2014.

9

[2] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning, volume 1.
Springer series in statistics New York, NY, USA:, 2001.

10

