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In this lecture we study how to choose a loss function in supervised machine learning in a principled way.

1 Announcement

Practical session 1 is due February 7, 2020 (today).

2 Maximum Likelihood

Maximum likelihood is a statistical estimation method which can be applied as follows in machine learning:

(i) define a probabilistic model of the data which depends on some parameters (i.e. not fully specified),

(ii) learn/estimate the parameters of the model with the maximum likelihood principle,

(iii) use this fully specified model for prediction, generation, or any other task.

2.1 Definition

Let µ be a reference measure on Z (such as the counting measure on N or the Lebesgue measure on R).
Later, for supervised machine learning problems, we will take Z = X× Y or Z = Y.

Definition 1 (Parametric model of distributions) Let Θ ⊂ Rp be a set of parameters. A probabilistic
model P is a family of probability distributions on Z which are absolutely continuous with respect to µ and
indexed by Θ. We write P = {pθdµ ; θ ∈ Θ}.

Examples: binomial, multinomial, univariate or multivariate Gaussian... The notion of exponential families
provides a convenient general framework (not studied here).
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Definition 2 (Likelihood) For a data z ∈ Z, the likelihood is the function L : θ 7→ pθ(z). Given an
i.i.d. training set (zi)

n
i=1 ∈ Zn, its likelihood is

L(θ) := Πn
i=1pθ(zi).

Principle of maximum likelihood : choose the parameters that maximize the likelihood of the training data.

• popularized by Ronald Fisher in the early XXth century,

• shown later to have nice properties (smallest variance over unbiaised estimators),

• maximizing the likelihood L is equivalent to minimizing − logL because − log is strictly decreasing.
We thus need to solve

min
θ∈Θ
− logL(θ) = min

θ∈Θ
−

n∑
i=1

log(pθ(zi)).

2.2 Formulation as a risk minimization

ERM with the log-loss We are in the setting of density estimation: given training data, we want to
identify the distribution from which it was sampled.

• Consider the log-loss: `(z, θ) = − log(pθ(z)).

• The corresponding risk is (for random data Z)

R(θ) = −E
[

log(pθ(Z))
]
.

• The empirical risk is by definition

R̂(θ) = − 1

n

n∑
i=1

log(pθ(zi)) = − 1

n
logL(θ).

With this loss, empirical risk minimization coincides with maximum likelihood estimation.

Kullback-Leibler divergence Under the assumption that Z ∼ pθ0dµ for some θ0 ∈ Θ, we have

R(θ)− R(θ0) = −E
[

log(pθ(Z))
]

+ E
[

log(pθ0(Z))
]

= E
[

log
(pθ0(Z)

pθ(Z)

)]
=: KL(pθ0 , pθ)

where KL(pθ, pθ′) is the Kullback-Leibler divergence between pθ and pθ′ , also called the entropy of pθ
relative to pθ′ . This quantity appears in many fundamental results in probability and statistics. For
θ, θ′ ∈ Θ, it is defined as

KL(pθ, pθ′) =

∫
Z

log
( pθ(z)
pθ′(z)

)
pθ(z)dµ(z).

(or +∞ if pθdµ is not absolutely continuous with respect to pθ′dµ).
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Lemma 1 For any θ, θ′ ∈ Θ, it holds KL(pθ, pθ′) ≥ 0 and KL(pθ, pθ′) = 0 if and only if pθ = pθ′.

Proof Consider the function φ(s) = s log(s) − s + 1 which is strictly convex and satisfies φ(1) = 0. It
holds∫
Z

φ(pθ(z)/pθ′(z))pθ′(z)dµ(z) =

∫
Z

log
( pθ(z)
pθ′(z)

)
pθ(z)dµ(z)−

∫
Z

pθ(z)dµ(z) +

∫
Z

pθ′(z)dµ(z) = KL(pθ, pθ′).

By Jensen’s inequality

KL(pθ, pθ′) =

∫
φ(pθ/pθ′)pθ′dµ ≥ φ

(∫
pθdµ

)
= φ(1) = 0.

where this inequality is strict unless pθ/pθ′ = 1 (pθ′dµ−almost everywhere), i.e. pθ′ = pθ.

As a direct application of this lemma, we have:

Proposition 1 If Z ∼ pθ0dµ, then the Bayes risk is R∗ = R(θ0) and the excess risk is

R(θ)− R∗ = KL(pθ0 , pθ).

• The proof of the lemma works for any φ that is strictly convex and satisfies φ(1) = 0. The resulting
quantity is called a φ-divergence,

• KL is not a distance as it is not symmetric and does not satisfy a triangular inequality. It is however
often helpful to think of it as a “squared distance” over the space of distributions P.

3 Examples of maximum likelihood estimators

Maximum likelihood can be applied to the supervised learning setting, by letting Z = X× Y:

R(θ) = −E
[

log(pθ(X,Y ))
]

R̂(θ) = − 1

n

n∑
i=1

log(pθ(xi, yi)).

It is also possible to by-pass the need to define a model for the distribution of X and only model the
conditional distribution Y |X. This gives the conditional log-likelihood risks:

R(θ) = −E
[

log(pθ(Y |X))
]

R̂(θ) = − 1

n

n∑
i=1

log(pθ(yi|xi)).

3.1 Conditional models for linear regression

Linear model with Gaussian noise Consider the following conditional model, with parameters θ =
(w, σ) ∈ Rd × R+

Y = X>w + Z
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Figure 1: Classical losses used in regression tasks

where Z ∼ N(0, σ2). The likelihood of a training set (xi, yi)
n
i=1 is

L(θ) =

n∏
i=1

1√
2πσ2

exp
(
− (yi − x>i w)2/(2σ2)

)
.

Thus

R̂(θ) = − 1

n
logL(θ) =

1

2
log(2π) + log σ +

1

2nσ2

n∑
i=1

(yi − x>i w)2.

Thus the maximum likelihood estimator for w coincides with the ordinary least squares estimator.

Exercise: what is the maximum likelihood of σ2? Solution: σ2 = 1
n

∑n
i=1(Yi − x>i ŵ)2 (note that this

estimator is biased towards 0).

Linear model with Laplace noise Consider the following conditional model, with parameters θ =
(w, b) ∈ Rd × R+

Y = X>w + Z

where Z ∼ Laplace(0, b). The likelihood of a training set (xi, yi)
n
i=1 is

L(θ) =
n∏
i=1

1

2b
exp

(
− |yi − x>i w|/b

)
.

Thus

R̂(θ) = − 1

n
logL(θ) = log(2b) +

1

bn

n∑
i=1

|yi − x>i w|.

The maximum likelihood estimator here is called the least absolute error estimator. It coincides with the
empirical risk minimization for linear models and the `1-loss `(y, z) = |y−z|. It is called a robust regression
method because it gives less importance to outliers.

Summing up We thus see that the maximum likelihood principle can serve as a motivation for choosing
a loss. See Figure 1 for an illustration. Other commonly used losses “interpolate” between `1 and `2: they
are locally quadratic around 0 and have the asymptotic growth of the `1-loss (such as the Huber loss).
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3.2 Conditional model for linear classification: the logistic loss

Linear log-odds model Let X ∈ Rd, Y ∈ {0, 1} and assume that for a given observation X = x, the
output Y |X = x follows a Bernoulli law with parameter η(x) (i.e. η(x) = P (Y = 1|X = x)). We make the
linear logit model assumption: for some w ∈ Rd , it holds ∀x ∈ X,

log
( η(x)

1− η(x)

)
= x>w

where w is again a weight vector (as for linear regression we still can add an offset/intercept in practice).
Inverting this function, we get

η(x) = (1− η(x))ex
>w ⇔ η(x)(1 + ex

>w) = ex
>w ⇔ η(x) =

1

1 + e−x>w

Let’s define the sigmoid function σ : R→ [0, 1] as

σ(z) =
1

1 + e−z
.

which satisfies η(x) = σ(x>w). Then the conditional distribution is given by

P (Y = y|X = x) = σ(x>w)yσ(−x>w)1−y.

Derivation of the maximum likelihood Given an i.i.d. training set, its empirical risk R̂(w) =
− 1
n logL(w) is

R̂(w) = − 1

n

n∑
i=1

{
yi log σ(x>i w)− (1− yi)σ(−x>i w)

}
=

1

n

∑
i|yi=1

log(1 + e−x
>
i w) +

1

n

∑
i|yi=0

log(1 + ex
>
i w)

=
1

n

n∑
i=1

log(1 + e−ỹix
>
i w)

where ỹi = 1 if yi = 1 and ỹi = −1 if yi = 0. It follows that maximum likelihood under this model is
equivalent to empirical risk minimization for the logistic loss `(ỹ, z) = log(1 + e−ỹz) over the class of linear
models.

Exercice: what is the maximum likelihood estimator for the model where we assume P (X|Y = 1) ∼
N(µ1, Id) and P (X|Y = 0) ∼ N(µ0, Id)?

4 Convex surrogate losses for classification

We consider a classification task where Y = {−1, 1}. We depart from the “model based” approach of
the previous section and only assume that the training data are i.i.d. samples from a random variable
(X,Y ) ∼ P .
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Figure 2: Classical losses used in classification tasks

• The relevant loss is the 0-1-loss `(y, z) = 1y 6=z and, for a prediction function f : X → Y the risk
R(f) = E[`(Y, sign(f(X)))] = P (sign(f(X)) 6= Y ) is the quantity that we truly want to minimize.

• However, the empirical risk R̂(f) corresponds to minimizing the number of misclassifications, which is
typically a difficult combinatorial optimization problem. We will see in the next lecture that we have
efficient algorithms to minimize empirical risks if the loss is convex (i.e. always above its tangents).

• We thus consider convex surrogate losses. Denoting `(y, z) = φ(yz), commonly used examples include
(see Figure 2 for illustrations):

– the hinge loss φhinge(u) = (1−u)+ (the corresponding `2-regularized empirical risk minimization
is called a “support vector machine”),

– the logistic loss φlogistic(u) = log(1 + exp(−u)),

– the square loss φsquare(u) = (1− u)2,

– the exponential loss φexp(u) = exp(−u).

• Let us denote by Rφ and R̂φ the associated (empirical or population) risk. The true risks with the

0-1-loss are denoted R and R̂. We minimize R̂φ while the true goal is to minimize R. What is the
statistical cost of this computational convenience?

First, we can observe that `(y, f(x)) ≤ cφ(yf(x)) implies that R(f) ≤ cRφ(f). So a small Rφ(f) gives a
small R(f). But this is a rather weak assurance if, for example, inff Rφ(f) > 0. For which choices of φ can
we translate a control on Rφ − R∗φ into a control on R− R∗?

4.1 Classification calibration

For x ∈ X, we define η(x) = P (Y = 1|X = x). Then Rφ(f) = E[φ(Y f(X))] = E[E[φ(Y f(X))|X]], and

E
[
φ(Y f(X))|X = x

]
= P (Y = 1|X = x)φ(f(x)) + P (Y = −1|X = x)φ(−f(x))

= η(x)φ(f(x)) + (1− η(x))φ(−f(x)).
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Define the conditional expectation and its optimal value:

Cη(α) := ηφ(α) + (1− η)φ(−α), H(η) := inf
α∈R

Cη(α).

We have by then

Rφ(f)− R∗φ = E
[
Cη(X)(f(X))

]
− E

[
H(η(X))

]
.

The prediction with minimal conditional risk is f∗(x) = sign(2η(x) − 1). If the optimal conditional
expectation E[φ(Y f(X))|X = x] can be achieved with a value of α with the wrong sign, then minimizing
Rφ is not useful for classification. So define

H−(η) := inf {Cη(α) ; α(2η − 1) ≤ 0} .

Definition 3 We say that φ is classification-calibrated if, for all η 6= 1/2, H−(η) > H(η).

In words, a loss is classification-calibrated iff its conditional expectation is minimized for a classifier of the
same sign than the Bayes classifier.

Proposition 2 For φ convex, φ is classification-calibrated iff φ is differentiable at 0 and φ′(0) < 0. In
this case, it holds H−(η) = φ(0) for all η ∈ [0, 1] and H(1/2) = φ(0).

Proof We only prove the “if” part (the “only if” is left as an exercise, or see [1]). For all η ∈ [0, 1], the
function Cη is convex and satisfies C ′η(0) = (2η − 1)φ′(0). Since a convex function lies above its tangents,
if 2η − 1 > 0, this implies that Cη attains its minimum for α ∈ ]0,+∞] thus H−(η) > H(η). Similarly if
2η − 1 < 0, the minimizer is negative and H−(η) > H(η).

Also the fact that Cη(α) ≥ C ′η(0)α + Cη(0) implies that H−(η) = φ(0). Finally, since by convexity
φ(α)/2 + φ(−α)/2 ≥ φ(0), it holds H(1/2) = φ(0) (taking α = 0).

4.2 Bound on the true excess risk

Theorem 1 Consider a nonnegative, convex and classification-calibrated φ. For any prediction function
f : X→ R and probability distribution P on X× {−1, 1}, it holds

ψ(R(f)− R∗) ≤ Rφ(f)− R∗φ.

where ψ(θ) := H−((1 + θ)/2)−H((1 + θ)/2) = φ(0)−H((1 + θ)/2) .

• Under those assumptions, we have limθ→0 ψ(θ) = 0 because H is continuous and H(1/2) = φ(0).
This result implies that the true 0− 1 risk R(f) is controlled as soon as φ is convex, differentiable at
0 with φ′(0) < 0. This is satisfied by all losses in Figure 2.

• We have the following values (for θ ≥ 0) for the losses defined above:

– ψhinge(θ) = θ

– ψlogistic(θ) ≥ θ2/2
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– ψsquare(θ) = θ2

– ψexp(θ) = 1−
√

1− θ2 ∼0 θ
2/2

• This gives some criterion to choose a loss for classification. In contrast to the maximum likelihood
approach, it is not based on modeling but rather on performance guarantees. Note that the losses
should satisfy additionnal properties to allow control of the estimation and optimization error.

Proof Using results from Lecture 1, we have, with f∗(x) = sign(η(x)− 1/2),

R(f)− R∗ = E
[
1{sign(f(X)) 6=f∗(X)}|2η(X)− 1|

]
= E

[
1{f(X)(2η(X)−1)≤0}|2η(X)− 1|

]
.

Also, observe that H is concave (as an infimum of affine functions) and thus ψ is convex. Moreover, by
the definition of H and H−, ψ(θ) = ψ(−θ). It follows that

ψ (R(f)− R∗) ≤ E
[
ψ
(

1{... }|2η(X)− 1|
)]

(Jensen’s inequality)

= E
[
1{... }ψ(|2η(X)− 1|)

]
(since ψ(0) = 0)

= E
[
1{... }ψ(2η(X)− 1)

]
(since ψ(θ) = ψ(−θ))

= E
[
1{... }(H

−(η(X))−H(η(X)))
]

(by the definition of ψ)

= E
[
1{... }( inf

α ; α(2η(X)−1)≤0
Cη(X)(α)−H(η(X)))

]
(by the definition of H−)

≤ E
[
Cη(X)(f(X))−H(η(X))

]
= Rφ(f)− R∗φ.
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