
Learning theory from first principles

Lecture 8: Neural networks

Francis Bach

November 13, 2020

Class summary

- Single hidden layer neural networks
- Estimation error
- Approximation properties and universality

1 Introduction

In this course, the main focus has been on methods to learn from n observations (xi, yi), i = 1, . . . , n, with
xi ∈ X (input space) and yi ∈ Y (output/label space).

As presented in Lecture 3, a large class of methods relies on minimizing a regularized empirical risk with
respect to a function f : X → R where the following cost function is minimized:

1

n

n
∑

i=1

ℓ(yi, f(xi)) + Ω(f),

where ℓ : Y× R → R is a loss function, and Ω(f) is a regularization term. Typical examples were:

• Regression: Y = R and ℓ(yi, f(xi)) =
1
2 (yi − f(xi))

2.

• Classification: Y = {−1, 1} and ℓ(yi, f(xi)) = Φ(yif(xi))) where Φ is convex, e.g., Φ(u) = max{1−
u, 0} (hinge loss leading to the support vector machine) or Φ(u) = log(1 + exp(−u)) (leading to
logistic regression).

The class of functions we have considered so far were:

• Linear functions in some explicit features: given a feature map ϕ : X → R
d, we consider

f(x) = θ⊤ϕ(x), with parameters θ ∈ R
d, as analyzed in Lecture 2 (for least-squares) and Lecture 3.

Pros: simple to implement, convex optimization (gradient descent). Complexity in O(nd).
Cons: only applies to linear functions on explicit (and fixed feature spaces).

1



• Linear functions in some implicit features through kernel methods: the feature map can
have arbitrarily large dimension, that is, ϕ(x) ∈ H where H is a Hilbert space, accessed through a
kernel k(x, x′) = 〈ϕ(x), ϕ(x′)〉H, as presented in Lecture 7.

Pros: non-linear flexible predictions, simple to implement, convex optimization.
Cons: complexity in O(n2).

The goal of this lecture is to explore another class of functions for non-linear predictions, namely neural
networks, that come with additional benefits (such as more adaptivity), but comes with some potential
drawbacks, such as a harder optimization problem.

2 Single hidden layer neural network

f(x) =
m∑

j=1

ηjσ(w
⊤

j x+ bj)x

w, b

η

We consider X = R
d and the set of functions that can be written as

f(x) =
m
∑

j=1

ηjσ(w
⊤
j x+ bj), (1)

where wj ∈ R, bj ∈ R and ηj ∈ R, j = 1, . . . ,m, and σ is an activation function, typically from one of the
following examples (see plot below):

• sigmoid σ(u) = 1
1+e−u ,

• step σ(u) = 1u>0,

• rectified linear unit (ReLU) σ(u) = (u)+ = max{u, 0},

• hyperbolic tangent σ(u) = tanh(u) = eu−e−u

eu+e−u .

2



-4 -2 0 2 4
-2

-1

0

1

2

sigmoid

step

ReLU

tanh

The function f is defined as the linear combination of m functions x 7→ σ(w⊤
j x+bj), which are the “hidden

neurons”.

△! The constant terms bj are sometimes referred to as ”biases”, which is unfortunate in a statistical
context.

△! Do not get confused by the name “neural network” and its biological inspiration. This inspiration
is not a proper justification of its behavior on machine learning problems.

△! Following standard practice, we are not adding a non-linearity for the last layer; note that if we
were to use an additional sigmoid activation and using the cross-entropy loss for binary classi-
fication, we would exactly be using the logistic loss on the output without extra activation function.

2.1 Optimization

In order to find parameters θ = {(ηj), (wj), (bj)} ∈ R
m(d+2), the following optimization problem has to be

solved:

min
θ∈Rm(d+2)

1

n

n
∑

i=1

ℓ
(

yi,
m
∑

j=1

ηjσ(w
⊤
j xi + bj)

)

.

△! Note that in the true objective is to perform well on unseen data, and the optimization problem is just
a mean to an end. See Lecture 3 and 4.

This is a non-convex problem where the gradient descent algorithms from Lecture 4 can be applied without
guarantees (see Lecture 9 for recent results on providing some qualitative global convergence guarantees
when m is large). Sometimes regularization is added on the parameters.

While stochastic gradient descent remains an algorithm of choice, several tricks have been observed to lead
to better stability and performance: specific step-size decay schedules, momentum, batch-normalization,

3



etc. But overall, the objective function is non-convex, and it remains difficult to understand why gradient-
based methods perform well in practice (some elements in Lecture 9).

See https://playground.tensorflow.org/ for a nice interactive illustration.

2.2 Estimation error

In order to study the estimation error, we will consider that the parameters of the network are constrained,
that is, Ω(θ) 6 D for a certain norm Ω that we will define below. We can then compute the Rademacher
complexity of the class of function F we just defined, using tools from Lecture 3.

We consider an ℓ1-bound ‖η‖1 6 Dη , as this will be our main tool for approximation theory in later
sections.

We have, by definition, and taking expectation with respect to the data (xi, yi), i = 1, . . . , n (which is
assumed i.i.d.) and the independent Rademacher random variables εi ∈ {−1, 1}:

Rn(F) = E

[

sup
θ∈Rm(d+2)

1

n

n
∑

i=1

εiℓ(yi, fθ(xi))
]

.

Assuming the loss is almost surely Gℓ-Lipschitz-continuous with respect to the second variable, using
Proposition 3 from Lecture 3 that allows to get rid of the loss, we get the bound:

Rn(F) 6 Gℓ E

[

sup
θ∈Rm(d+2)

1

n

n
∑

i=1

εifθ(xi)
]

= Gℓ E

[

sup
θ∈Rm(d+2)

1

n

n
∑

i=1

m
∑

j=1

ηjεiσ(w
⊤
j xi + bj)

]

.

Using the ℓ1-constraint on η and using sup‖η‖16Dη
z⊤η = ‖z‖∞, we can directly maximize with respect

to η, leading to (note that another ℓp constraint on η would be harder to deal with):

Rn(F) 6 Gℓ E

[

sup
(w,b)∈Rm(d+1)

sup
s∈{−1,1}

sup
j∈{1,...,m}

Dηs
1

n

n
∑

i=1

εiσ(w
⊤
j xi + bj)

]

.

Assuming the activation function σ is Gσ-Lipschitz continuous, we get, again using Proposition 3 from
Lecture 3:

Rn(F) 6 GℓDηGσ E

[

sup
(w,b)∈Rm(d+1)

sup
j∈{1,...,m}

sup
s∈{−1,1}

s
{

w⊤
j

( 1

n

n
∑

i=1

εixi

)

+ bj

( 1

n

n
∑

i=1

εi

)}]

.

If we assume that we bound Θ(wj , bj) 6 Dw,b, for each j ∈ {1, . . . ,m}, we get, with the usual definition of

the dual norm Θ∗(u, v) = supΘ(w,b)61

(

w
b

)⊤(u
v

)

:

Rn(F) 6 GℓDηGσDw,b E

[

Θ∗
( 1

n

n
∑

i=1

εixi,
1

n

n
∑

i=1

εi

)]

.

4



Using Θ(w, b) = max{‖w‖2, |b|/
√

E‖x‖22}, we get, using Jensen’s inequality:

E

[

Θ∗
( 1

n

n
∑

i=1

εixi,
1

n

n
∑

i=1

εi

)]

= E

[∥

∥

∥

1

n

n
∑

i=1

εixi

∥

∥

∥

2

]

+
√

E‖x‖22 E
[∣

∣

1

n

n
∑

i=1

εi
∣

∣

]

6

√

√

√

√E

[
∥

∥

∥

1

n

n
∑

i=1

εixi

∥

∥

∥

2

2

]

+
√

E‖x‖22

√

√

√

√E
[∣

∣

1

n

n
∑

i=1

εi
∣

∣

2]

= 2

√

E‖x‖22
n

.

Thus, we get the following proposition, with a bound proportional to 1/
√
n with no explicit dependence

in the number of parameters.

Proposition 1 Let F be the class of functions (y, x) 7→ ℓ(y, f(x)) where f is a neural network defined in
Eq. (1), with the constraint that ‖η‖1 6 Dη, max{‖wj‖2, |bj |/

√

E‖x‖22} 6 Dw,b for all j ∈ {1, . . . ,m}. If
the loss function is Gℓ-Lipschitz-continuous and the activation function σ is Gσ-Lipschitz-continuous, the
Rademacher complexity is upperbounded as

Rn(F) 6 2GℓGσDw,bDη

√

E‖x‖22√
n

.

The proposition above allows to bound the estimation error for neural networks, as the maximal deviation
between expected risk and empirical risk over all potential networks with bounded parameters, is bounded
in expectation by twice the Rademacher complexity above.

For the ReLU activation function, where Gσ = 1, this will be combined with a study of the approximation
properties in Section 3.

△! The number of parameters is irrelevant!!!!!!
What counts is the overall norm of the weights.

△! Check homogeneity.

When the norm of weights is not explicitly penalized or contained, we will see in Lecture 9 some re-
cent results showing how optimization algorithms add an implicit regularization that leads to provable
generalization in over-parameterized neural networks (that is, networks with many hidden units).

• Exercise (�): Provide the bound for Ω(w, b) = max{‖w‖1, |b|/ sup ‖x‖∞}, where sup ‖x‖∞ denotes
the supremum of ‖x‖∞ over all x in the support of its distribution.

3 Approximation properties of single-hidden layer neural networks

As seen above, the estimation error grows as ‖η‖1√
n
, and is independent of the number m of neurons. Two

important questions will be tackled in this section:

5



• What is the associated approximation error so that we can derive generalization bounds?

• What will be the number of neurons required to reach such a behavior?

For this, we need to understand the space of functions that neural networks span, and how they relate to
smoothness properties of the function.

3.1 Link with kernel methods

• A one-hidden layer neural network corresponds to a linear classifier with feature vector of dimensionm

ϕ(x)j =
1√
m
σ(w⊤

j x+ bj)

parameterized by all weights wj , bj, with kernel

k̂(x, x′) =
1

m

m
∑

j=1

σ(w⊤
j x+ bj)σ(w

⊤
j x

′ + bj).

This corresponds to penalizing the output weights ηj , j ∈ {1, . . . ,m}, by m
∑m

j=1 η
2
j , and keeping

the input weights (wj , bj) fixed, for j = 1, . . . ,m.

• With random independent and identically distributed weights wj ∈ R
d and bj ∈ R, when m tends to

infinity (a set-up often referred to as the “over-parameterized” set-up), by the law of large numbers,
we get

k̂(x, x′) → k(x, x′) = E

[

σ(w⊤x+ b)σ(w⊤x′ + b)
]

.

Therefore, infinite width networks where input weights are random and only output weights are
learned are in fact kernel methods in disguise [1, 2].

• This kernel can be computed in closed form for simple activations and distributions of weights [3, 4],
and thus the same regularization properties may be achieved with algorithms from Lecture 6 (which
are based on convex optimization, and thus come with guarantees). Note that a common strategy for
kernels defined as expectations is to use the a random feature approximation k̂(x, x′), that is, here,
use explicitly the neural network representation.

△! The kernel approximation corresponds to input weights wj , bj sampled randomly and held
fixed. Only the output weights ηj are optimized.

Exercise: for
( w
b/R

)

uniform on the sphere, and for the ReLU activation, compute the associated

kernel as a function of the cosine between the vectors
(x
R

)

and
(x′

R

)

.

6



Integral representations of functions in the RKHS. When using a slightly different normalization
and writing instead f(x) = 1

m

∑m
i=1 η̃jσ(w

⊤
j x + bj), with η̃j = mηj , the penalty becomes 1

m

∑m
j=1 η̃

2
j ,

expressions of the form

1

m

m
∑

j=1

η̃jF (wj , bj)

can be seen as the integral
∫

Rd+1

F (w, b)η(w, b)dτ(w, b)

where η̃j = η(wj , bj), and dτ(w, b) is the probability measure on R
d+1 generating the weights (wj , bj).

Thus, when m tends to infinify, we can represent the function f as

f(x) =

∫

Rd+1

η(w, b)σ(w⊤x+ b)dτ(w, b),

where η : Rd+1 → R is chosen as to minimize

∫

Rd+1

|η(w, b)|2dτ(w, b).

We assume the support of dτ is compact (bounded and closed). Then the minimum achievable norm is
exactly the squared RKHS norm of f , which we denote as γ2(f)

2. We denote by H2 this RKHS, that is,
the set of functions f such that γ2(f) is finite. See [4, Section 2.3] for more details.

△! Because Dirac measures are not squared integrable, the function x 7→ σ(w⊤x + b), that is, a
single neuron, is typically not in the RKHS, which is typically composed of smooth functions. See
examples below.

3.2 From L2-norms to L1-norms

Another function space can be defined, where

f(x) =

∫

Rd+1

η(w, b)σ(w⊤x+ b)dτ(w, b),

where η is chosen as to minimize
∫

Rd+1

|η(w, b)|dτ(w, b),

and dτ(w, b) is a probability measure on R
d+1. The only difference with the squared RKHS norm above

is that we consider the L1-norm instead of the squared L2-norm of η (with respect to the probability
measure dτ). The minimum achievable norm is a specific norm of f , which we denote as γ1(f).

Note that typically, the infimum over all η is not achieved, as, because we use L1-norms and the measures

dµ(w, b) = η(w, b)dτ(w, b) can span all measures dµ(w, b) with finite total variation

∫

Rd+1

|dµ(η, b)| =

7



∫

Rd+1

|η(w, b)|dτ(w, b), we can reformulate the integral representation of f as

f(x) =

∫

Rd+1

σ(w⊤x+ b)dµ(w, b),

with dµ a non-negative measure such that the total variation

∫

Rd+1

|dµ(η, b)| is minimized. The norm γ1

is often referred to as the variation norm (see [4] and references therein). We denote by H1 the set of
functions f such that γ1(f) is finite. We have the following properties:

• Because of Jensen’s inequality, we have γ1(f) 6 γ2(f), and thus H2 ⊂ H1, that is the space H1

contains many more functions.

• △! A single neuron is in H1 with γ1-norm less than one, as the mass of a Dirac is equal to one.

In this lecture, to describe more precisely the spaces of functions H1 and H2, we will consider measures
supported on the set

{

(w, b), ‖w‖2 = 1, |b| 6 R} for R such that almost surely ‖x‖2 6 R, and σ(u) =
max{u, 0} = (u)+ the ReLU activation function, which leads to a reasonably simple analysis.

• With the assumptions above, if f(x) =
∑m

j=1 ηj(w
⊤
j x+bj)+, for (wj , bj) ∈

{

(w, b), ‖w‖2 = 1, |b| 6 R}
for all j ∈ {1, . . . ,m}, then γ1(f) 6 ‖η‖1.

We will show in Section 3.5 how the norm γ1 controls the number of neurons needed to approximate a
function from H1, but we now study which functions have finite γ1-norm and how functions outside of H1

can be approximated by functions in H1.

3.3 Variation norm in one dimension

The ReLU activation function is specific and leads to simple approximation properties in the interval
[−R,R] for functions g : [−R,R] → R. We start by piecewise affine functions, which, given the shape of
the ReLU activation should be easy to approximate.

Piecewise affine functions. We first assume that g(0) = 0.

We consider a continuous piecewise affine function on [−R,R] with knots at each aj = j
mR for j ∈

[−m,m] ∩ Z, so that on [aj , aj+1], g is affine with slope vj , for j ∈ {−m,m+ 1}.

8



0 = a0 am = Ra1 aj aj+1 am−1

vj−1x+ ◦

vjx+ ◦

v0x+ ◦

if g(0) = 0, we can directly approximate on [0, R], by first starting to fit the function on [a0, a1] = [0, 1
m ],

as ĝ0(x) = v0(x − a0)+. For x > a0, this approximation has slope v0. In order to be correct on [a1, a2]
(while not modifying the function on [a0, a1], we consider ĝ1(x) = ĝ0(x) + (v1 − v0)(x− a1)+, which is now
exact on [a0, a2], we can pursue recursively by considering, for j ∈ {1, . . . ,m− 1}

ĝj(x) = ĝj−1(x) + (vj − vj−1)(x− aj)+,

which is equal to g(x) for x ∈ [a0, aj+1]. We can thus represent g(x) on [0, R] exactly with ĝm−1(x), which
itself is zero on [−R, 0]. We have by construction γ1(ĝm−1) 6 |v0|+

∑m−1
j=1 |vj − vj−1|. On the set [−R, 0],

we can obtain the same type of approximation with γ1-norm less than |v−1|+
∑m

j=2 |v−j − v−j+1|.
Therefore by summing these two approximation and by the triangular inequality, overall,

γ1(g) 6 |v0|+
m−1
∑

j=1

|vj − vj−1|+ |v−1|+
m
∑

j=2

|v−j − v−j+1|.

In order to consider functions g without the constraint g(0) = 0, we notice that the constant function has
norm γ(1) 6 1

R , by using, for x ∈ [−R,R], 2R = (x + R)+ + (−x + R)+, and apply the result above to
g(x)− g(0) (which is zero at zero), thus leading to

γ1(g) 6
|g(0)|
R

+ |v0|+
m−1
∑

j=1

|vj − vj−1|+ |v−1|+
m
∑

j=2

|v−j − v−j+1|

6
|g(0)|
R

+ |v0 + v−1|+
m−1
∑

j=−m+1

|vj − vj−1|, using |v0|+ |v−1| 6 |v0 + v−1|+ |v0 − v−1|.

We can then use that vj =
m
R (g( j+1

m R)− g( j
m )R) to get:

γ1(g) 6
|g(0)|
R

+
m

R
|g(R

m
)− g(−R

m
)|+ m

R

m−1
∑

j=−m+1

∣

∣g(
j + 1

m
R)− 2g(

j

m
R) + g(

j − 1

m
R)

∣

∣.

9



Twice continuously differentiable functions. We consider a twice differentiable function g on [−R,R],
it is then the limit of its piecewise interpolation.

−R = a
−m am = Ra

−m+1 aj aj+1 am−1

Thus, when m tends to infinity, m
R |g(Rm )− g(−R

m )| tends to 2|g′(0)| while
∣

∣g( j+1
m R)− 2g( j

mR) + |g( j−1
m R)

∣

∣

is asymptotically equivalent to

∣

∣g(
j

m
R) +

R

m
g′(

j

m
R) +

1

2

R2

m2
g′′(

j

m
R)− 2g(

j

m
R) + |g( j

m
R)− R

m
g′(

j

m
R) +

1

2

R2

m2
g′′(

j

m
R)

∣

∣ ∼ |R
2

m2
g′′(

j

m
R)|,

and thus we get:

γ1(g) 6 lim sup
m→+∞

|g(0)|
R

+ 2|g′(0)| + R

m

m−1
∑

j=−m+1

|g′′( j
m
R)|,

which thus leads to using approximations of integral by Riemannian sums:

γ1(g) 6
|g(0)|
R

+ 2|g′(0)| +
∫ R

−R
|g′′(x)|dx.

In order to allow an extension for non-continuously differentiable functions at 0, we can further use that

|g′(0)| 6 |g′(y)|+
∫ y

0
|g′′(x)|dx 6 |g′(y)|+

∫ R

0
|g′′(x)|dx for any y ∈ [0, R],

leading to |g′(0)| 6
1

R

∫ R

0
|g′(x)|dx+

∫ R

0
|g′′(x)|dx by integration,

and |g′(0)| 6
1

2R

∫ R

−R
|g′(x)|dx+

1

2

∫ R

−R
|g′′(x)|dx by symmetry.

Overall, we get the expression

γ1(g) 6 γ̃1(g) =
|g(0)|
R

+
1

R

∫ R

−R
|g′(x)|dx + 2

∫ R

−R
|g′′(x)|dx, (2)

which shows that if the number of neurons is allowed to grow then the ℓ1-norm of the weights remain
bounded by the quantity above to exactly represent the function g.

This can be extended to continuous functions which are only twice differentiable almost everywhere with
integrable first and second-order derivatives; thus H1 ⊂ H̃1 (which corresponds to the norm γ̃1 defined
above). Since this space is dense in L2 (see more general argument below in higher dimension), we obtain
that neural networks are universal approximators.

10



RKHS norm γ2 in one dimension (��). In one dimension, with w uniform on the unit sphere, that
is, w ∈ {−1, 1}, and with b uniform on [−R,R], we have the following kernel

k̂(x, x′) =
1

4R

∫ R

−R

(

(x− b)+(x
′ − b)+ + (−x− b)+(−x′ − b)+

)

db

Using the same reasoning as the end of Section 3.1, we can get an upper-bound on γ2(f) by decomposing
f as

f(x) =

∫ R

−R
η+(b)(x− b)+

db

4R
+

∫ R

−R
η−(b)(−x− b)+

db

4R
,

with γ2(f)
2 6

∫ R

−R
η+(b)

2 db

4R
+

∫ R

−R
η−(b)

2 db

4R
.

By using Taylor expansion with integral remainder, we get, for any twice differentiable function f on
[−R,R], such that f(0) = f ′(0) = 0,

f(x) =

∫ R

0
f ′′(b)(x − b)+db+

∫ R

0
f ′′(−b)(−x− b)+db.

Thus, for this function, γ2(f)
2 6 4R

∫ R

−R
f ′′(b)2db. We can now use

∫ R

−R

(x− b)+ − (−x− b)+
2R

db =

∫ R

−R

(x− b)+ − (b− x)+
2R

db =

∫ R

−R

x

2R
db = x

to get that that γ2(x 7→ x)2 6 4, and use
∫ R

−R

[

(x− b)+ + (−x− b)+
]

db =

∫ x

−R
(x− b)db+

∫ −x

−R
(−x− b)db =

(x−R)2

2
+

(x+R)2

2
= x2 +R2,

to get that γ2(x 7→ x2 +R2)2 6 16R2

Thus by considering f̃(x) = f(x)− f ′(0)x− f(0)
R2 (x2 +R2), we have:

γ2(f) 6

√

4R

∫ R

−R
f̃ ′′(b)2db+ 2|f ′(0)| + |f(0)|

R

=

√

4R

∫ R

−R
|f ′′(b)− 2f(0)/R2|2db+ 2|f ′(0)| + |f(0)|

R

6

√

4R

∫ R

−R
|f ′′(b)|2db+

√

4R

∫ R

−R
|2f(0)/R2|2db+ 2|f ′(0)| + |f(0)|

R

=

√

4R

∫ R

−R
|f ′′(b)|2db+ 4

√
2
|f(0)|
R

+ 2|f ′(0)| + |f(0)|
R

leading to the upper-bound

γ2(g)
2 6 γ̃2(g)

2 = 36
f(0)2

R2
+ 16f ′(0)2 + 16R

∫ R

−R
f ′′(x)2dx. (3)

11



The main different with γ̃1 is that the second-derivative is penalized by an L2-norm and not by and L1-
norm, and that this L2-norm can be infinite when the L1-norm is finite, the classical example being for
the hidden neuron functions (x− b)+.

△! The RKHS is combining infinitely many hidden neuron functions (x− b)+, none of them are inside the
RKKHS,

△! This smoothness penalty does not allow the ReLU to be part of the RKHS. However, this is still an
universal penalty.

3.4 Variation norm in arbitrary dimension

If we assume that f is continuous on the ball of center zero and radius R, then the Fourier transform
f̂(ω) =

∫

Rd f(x)e
−iω⊤xdx is defined everywhere, and we can write

f(x) =
1

(2π)d

∫

Rd

f̂(ω)eiω
⊤xdω.

In order to compute an upper-bound on γ1(f), it suffices to upper-bound for each ω ∈ R
d, γ1(x 7→ eiω

⊤x),
which is easy because we have the representation from Section 3.3 and Eq. (2): for u ∈ [−R,R],

eiu‖ω‖2 =

∫ R

−R
η+(b)(u − b)+db+

∫ R

−R
η−(b)(−u− b)+db,

with

∫ R

−R
|η+(b)|db+

∫ R

−R
|η−(b)|db 6

1

R
+2‖ω‖2 +4R‖ω‖22 (which is the norm defined in Eq. (2)). We can

thefore decompose

eiω
⊤x =

∫ R

−R
η+(b)(x

⊤(ω/‖ω‖2)− b)+db+

∫ R

−R
η−(b)(x

⊤(−ω/‖ω‖2)− b)+db,

with weights being in the correct constraint set (unit norm for w’s and |b| 6 R, leading to

γ1(x 7→ eiω
⊤x) 6 γ̃1(x 7→ eiω

⊤x) 6
1

R
+ 2‖ω‖2 + 4R‖ω‖22 =

1

R
(1 + 2R‖ω‖2)2.

Thus, we obtain

γ1(f) 6
1

(2π)d
1

R

∫

Rd

|f̂(ω)|(1 + 2R2‖ω‖22)dω.

Given a function f ,

∫

Rd

|f̂(ω)|dω is a measure of smoothness of f , and so γ1(f) being finite imposes that

f and all second-order derivatives of f have this form of smoothness. See [5] for more details and below
for a relationship with Sobolev spaces.

Precise rates of approximation (�). In this section, we will relate the space H1 to Sobolev spaces,
by considering s > d/2 (to make sure the integral below exists), and bounding using Cauchy-Schwarz

12



inequality:

γ1(f) 6
1

(2π)d
1

R

∫

Rd

|f̂(ω)|(1 + 2R2‖ω‖22)dω =
1

(2π)d
1

R

∫

Rd

|f̂(ω)|(1 + 2R2‖ω‖22)1+s/2 dω

(1 + 2R2‖ω‖22)s/2

6
1

(2π)d
1

R

√

∫

Rd

|f̂(ω)|2(1 + 2R2‖ω‖22)2+sdω

√

∫

Rd

dω

(1 + 2R2‖ω‖22)s
,

which is a constant times
√

∫

Rd |f̂(ω)|2(1 + 2R2‖ω‖22)2+sdω, which is exactly the Sobolev norm from Lecture

6, with s+ 2 derivatives (which is an RKHS).

Thus, all approximation properties from Lecture 6 apply. See Lecture 6 for precise rates. Note however,
that, using this reasoning, if we start from a Lipschitz-continuous function then to approximate it up to
L2-norm ε requires a γ1-norm exploding as ε−(s+1) > ε−(d/2+1) (as obtained at the end of Section 5.2 of
Lecture 6).

Adaptivity to linear structures (�). if the target function f depends only a r-dimensional projection
of the data, that is, f is of the form f(x) = g(V ⊤x), where V ∈ R

d×r has all singular values less than 1,
and g : Rr → R, then if γ1(g) is finite, it can be written as

g(z) =

∫

Rr+1

(w⊤z + b)+dµ(w, b),

with dµ supported on {(w, b) ∈ R
r+1, ‖w‖2 = 1, |b| 6 R}, and γ1(g) =

∫

Rr+1

|dµ(w, b)|. We then have:

f(x) = g(W⊤x) =
∫

Rr+1

((V w)⊤x+ b)+dµ(w, b) =

∫

Rr+1

(
( V w

‖V w‖2
)⊤

x+ b)+‖V w‖2dµ(w, b),

leading to γ1(f) 6

∫

Rr+1

‖V w‖2|dµ(w, b)| 6
∫

Rr+1

|dµ(w, b)| = γ1(g). Thus the approximation properties

of g translate to g, and thus we pay only the price of these r dimensions and not of all d variables, without
the need to know V in advance. See [4] for more details.

△! Kernel methods do not have such adaptivity. In other words, using the ℓ2-norm instead of the
ℓ1-norm on the output weights, leads to worse performance.

3.5 From the variation norm to a finite number of neurons

Given a measure dµ on R
d, and a function g : Rd → R such that γ1(g) is finite, we would like to find a set

of m neurons (wj , bj) ∈ V ⊂ R
d+1 (which is the compact support of all measures that we consider), such

that the associated function defined through

f(x) =

m
∑

j=1

ηjσ(w
⊤
j x+ bj)

13



is close to g.

If the input weights are fixed, then the bound on γ1(g) translates to a bound ‖η‖1 6 γ1(g). The set of such
functions f is the convex hull of functions sjγ1(g)σ(w

⊤
j x + bj), for sj ∈ {−1, }. Thus, we are faced with

the problem of approximating an elements of a convex hull as an explicit linear combination of extreme
points, if possible with as few extreme points as possible.

In finite dimension, Carathéodory’s theorem tells that the number of such extreme points can be taken to
be equal to the dimension, to get an exact representation. In our case of infinite dimensions, we need an
approximate version of Carathéodory’s theorem. It turns out that we can create a the “fake” optimization
problem of minimizing ming∈H1

‖f−g‖2 such that γ1(f) 6 γ1(g), whose solution is f = g, with an algorithm
that constructs an approximate solution from extreme points. This will be achieved by the Frank-Wolfe
algorithm (a.k.a. conditional gradient algorithm). This algorithm is applicable more generally, for more
details, see [6, 7].

Frank-Wolfe algorithm. We thus make a detour by considering an algorithm defined in a Hilbert space
H, such that K is a bounded convex set, and J a convex smooth function from H to R, that is such that
there exists a gradient function J ′ : H → H such that for all elements f, g of H:

J(g) + 〈J ′(g), h − g〉H 6 J(f) 6 J(g) + 〈J ′(g), h − g〉H +
L

2
‖h− g‖2H.

The goal is to minimize J on the bounded convex set K, without a particular algorithm that only requires
to access the set K through a “linear minimization” oracle (i.e., through maximizing linear functions), as
opposed to the projection oracle that we required in Lecture 4.

We consider the following recursive algorithm, started from a vector f0 ∈ K:

f̄t ∈ argmin
f∈K

〈J ′(ft−1), f − ft−1〉H,

ft =
t− 1

t+ 1
ft−1 +

2

t+ 1
f̄t = ft−1 +

2

t+ 1
(f̄t − ft−1).

K

−J ′(ft−1)

ft−1

f̄t = argmin
f∈K

〈J ′(ft−1), f − ft−1〉

ft

Because f̄t is obtained by mininimizing a linear function on a bounded convex set, we can restrict the
minimizer f̄t to be extreme points of K, so that, ft is the convex combination of t such extreme points
f̄1, . . . , f̄t (note that the first point f0 disappears). We now show that

J(ft)− inf
f∈K

J(f) 6
2L

t+ 1
diamH(K)2.

14



Proof of convergence rate (�). This is simply obtained by using smoothness:

J(ft) 6 J(ft−1) + 〈J ′(ft−1), ft − ft−1〉H +
L

2
‖ft − ft−1‖2H

= J(ft−1) +
2

t+ 1
〈J ′(ft−1), f̄t − ft−1〉H +

4

(t+ 1)2
L

2
‖f̄t − ft−1‖2H

6 J(ft−1) +
2

t+ 1
min
f∈K

〈J ′(ft−1), f − ft−1〉H +
4

(t+ 1)2
L

2
diamH(K)2.

By convexity of J , we have for all f ∈ K, J(f) > J(ft−1) + 〈J ′(ft−1), f − ft−1〉H, leading to inff∈K J(f) >
J(ft−1) + inff∈K〈J ′(ft−1), f − ft−1〉H. Thus, we get

J(ft)− inf
f∈K

J(f) 6
[

J(ft−1)− inf
f∈K

J(f)
] t− 1

t+ 1
+

4

(t+ 1)2
L

2
diamH(K)2, leading to

t(t+ 1)
[

J(ft)− inf
f∈K

J(f)
]

6 (t− 1)t
[

J(ft−1)− inf
f∈K

J(f)
]

+ 2LdiamH(K)2

6 2LtdiamH(K)2 by using a telescoping sum,

and thus J(ft)− inf
f∈K

J(f) 6
2L

t+ 1
diamH(K)2, as claimed earlier.

Application to approximate representations with a finite number of neurons. We can apply
this to H = L2(dµ) and J(f) = ‖f − g‖2L2(dµ)

, leading to L = 2, with K = {f ∈ L2(dµ), γ1(f) 6 γ1(g)} for

which the set of extreme points are exactly single neurons sσ(w⊤ ·+b) scaled by γ1(g), and with an extra
sign s ∈ {−1, 1}.
We thus obtain after t steps a representation of f with t neurons for which

‖f − g‖2L2(dµ)
6

4Lγ1(g)
2

t+ 1
sup

(w,b)∈K
‖σ(w⊤ ·+b)‖2L2(dµ)

.

Thus, it is sufficient to have t of order O(γ1(g)
2/ε2) to achieve ‖f −g‖L2(dµ) 6 ε. Therefore the norm γ1(g)

directly controls the approximability of the function g by a finite number of neurons, and tell us how many
neurons should be used for a given target function.

4 Extensions

The fully-connected single-hidden layer neural networks is far from what is being used in practice. Indeed,
state-of-the-art performance is typically achieved with the following extensions:

• Going deep with multiple layers: The most simple form of deep neural networks is a multilayer fully-
connected neural network. Ignoring the constant terms for simplicity, it is of the form f(x(0)) = y(L)

with input x(0) and output y(L) given:

y(k) = (W (k))⊤x(k−1)

x(k) = σ(y(k)),

15



where W (ℓ) is the matrix of weights for layer k.

For these models, obtaining simple and powerful theoretical results is still an active area of research.
See, e.g., [8, 9].

• Convolutional neural networks: In order to be able to tackle data of large size and to improve
preformances, it is important to leverage the prior knowledge about the structure of the typical
data to process. For instance, for signal, images or videos, it is important to take into account the
translation invariance (up to boundary issues) of the domain. This is done by constraining the linear
operators involved in the linear part of neural networks to respect some form of translation invariance,
and thus to use convolutions. See [10] for details.

Acknowledgements

These class notes have been adapted from the notes of many colleagues I have the pleasure to work with,
in particular Lénäıc Chizat, Pierre Gaillard, Alessandro Rudi and Simon Lacoste-Julien. Special thanks
to Lénäıc Chizat for his help for these notes.

References

[1] R. M. Neal. Bayesian Learning for Neural Networks. PhD thesis, University of Toronto, 1995.

[2] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances in
Neural Information Processing Systems, pages 1177–1184, 2008.

[3] Youngmin Cho and Lawrence K. Saul. Kernel methods for deep learning. In Advances in Neural
Information Processing Systems, 2009.

[4] Francis Bach. Breaking the curse of dimensionality with convex neural networks. The Journal of
Machine Learning Research, 18(1):629–681, 2017.

[5] Jason M. Klusowski and Andrew R. Barron. Approximation by combinations of relu and squared relu
ridge functions with ℓ1 and ℓ0 controls. IEEE Transactions on Information Theory, 64(12):7649–7656,
2018.

[6] Martin Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In International
Conference on Machine Learning, 2013.

[7] Francis Bach. Duality between subgradient and conditional gradient methods. SIAM Journal on
Optimization, 25(1):115–129, 2015.

[8] Jianfeng Lu, Zuowei Shen, Haizhao Yang, and Shijun Zhang. Deep network approximation for smooth
functions. Technical Report 2001.03040, arXiv, 2020.

[9] Chao Ma, Stephan Wojtowytsch, and Lei Wu. Towards a mathematical understanding of neural
network-based machine learning: what we know and what we don’t. Technical Report 2009.10713,
arXiv, 2020.

[10] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

16


