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Abstract but might also be a texture (grass, rocks), or other “stuff”

(a building, a forest) §]. Strong supervision with hand-
Bottom-up, fully unsupervised segmentation remains alabelled data is typically not available in this setting. De
daunting challenge for computer vision. In the cosegmen- other hand, the presence of common object classes in mul-
tation context, on the other hand, the availability of mul- tiple images provides a weak form of supervision that can
tiple images assumed to contain instances of the same obbe exploited by discriminative algorithms. Cosegmentatio
ject classes provides a weak form of supervision that canmethods capable of handling large numbers of images and
be exploited by discriminative approaches. Unfortunately classes could play a key role in the development of effec-
most existing algorithms are limited to a very small num- tive automated object discovery technigues and part-based
ber of images and/or object classes (typically two of each). approaches to object detection for example. Unfortunately
This paper proposes a novel energy-minimization approachmost existing algorithms have only been demonstrated in
to cosegmentation that can handle multiple classes and arather restricted settings, involving only a pair of images
signi cantly larger number of images. The proposed cost a time [3, 4], and/or only twoforegroundand background
function combines spectral- and discriminative-clusigri ~ classes{, 6, 7].
terms, and it admits a probabilistic interpretation. It ip-0 Kim et al. [3] have recently proposed the rst method
timized using an ef cient EM method, initialized using a (to the best of our knowledge) explicitly aimed at handling
convex quadratic approximation of the energy. Compara- multiple object classes and images. They maximize the
tive experiments show that the proposed approach matchesverall temperature of image sites associated with a heat
or improves the state of the art on several standard datasets diffusion process and the position of sources correspandin
to the different object classes. They use a greedy procedure
guaranteed to achieve a local minimum within a xed factor
of the global optimum thanks to submodularity properties
1. Introduction of the diffusion process (seé&][for details). We present in
this paper an effective energy-based alternative that com-
The objective of image segmentation is to divide a pic- bines a spectral-clustering terra] [with a discriminative
ture intoK 2 regions that are deemed meaningful ac- one [], and can be optimized using an ef cient expectation-
cording to some objective criterion, homogeneity in some minimization (EM) algorithm. Our energy function is not
feature space or separability in some other one for example convex and, like §], we can only hope to nd a local min-
Segmentation in the absence of any supervisory informationimum. Fortunately, a satisfactory initialization can be ob
remains a daunting challenge. On the other hand, when sutained by constructing a convex quadratic relaxation ¢jose
pervisory information is available, in the form of labelled related to the cost function proposed in the two-class case
training data (full images or, in interactive settings, #ama by Joulin et al. J].
groups of pixels), accurate segmentations can be achieved The proposed approach has been implemented and tested
(e.g., [1]). The aim ofcosegmentatiomethods is to simulta-  on several datasets including video sequences. It easily ha
neously divide a set of images assumed to contain instanceges multiple object classes and inputimages, and compares
of K different object classes into regions corresponding to fayoraply to B] and a simple multi-class extension &f jn
these classes. Note that in this context, an “object” may re-5 comparative evaluation on two standard benchmarks. Fur-
fer to what is usually called a “thing” (a car, a cow, etc.) thermore, unlike the methods proposed by Kim et@lahd
3WILLOW project-team, Laboratoire d'Informatique de I'EcoleoN J(-)u“n etal 'I‘]’- ours admlts_ a prObE-lbIIIStI(? Interpretation,
male Su;’arieurrt)e, NS /INRIA UMR 8548, q with the potential to be easily combined with other compo-
4SIERRA project-team, Laboratoire d'Informatique de I'Ecdler- nents of an end-to-end recognition system. To summarize,
male Sugrieure, ENS/INRIA/CNRS UMR 8548. the main contributions of this paper are:




a simple and exible energy-based formulation of true
multi-class image cosegmentation that admits a prob-
abilistic interpretation;

a convex quadratic approximation of our energy
which generalizes the cost function 6f fo the multi-
class setting and affords a satisfactory initialization to
the EM process; and

an ef cient algorithm that handles large numbers of
input images and matches or improves the state of the
art on two standard datasets.

2. Proposed model

Cosegmentation can be thought of as a multi-label pixel
classi cation task. It is modeled in this paper as the min-
imization over the pixel labels of an energy function that

2.1. Spectral clustering

In cosegmentation algorithms, visual and spatial consis-
tency is usually enforced using binary terms based on total
variation ] or the Laplacian of similarity matrice$] 8].
While the former work well in interactive segmentation
tasks [L1], they do not admit the interpretation in terms of
graphical spectral clustering of the lattét.[ Since our ap-
proach is closely related to a graphical model, we follow Shi
and Malik [7], and use a similarity matri¥V' to represent
the local interactions between pixels of the same image
This matrix is based on feature positignsand color vec-
torsc, , which leads to high similarity for nearby pixels with
similar colors. Concretely, for any pain; m) of pixels in
i, W/, is given by:
pmks  cken  cmk®)

Wrimm =exp(  pkpn

combines local appearance and spatial consistency terms

(as in spectral clustering]) with class-level discriminative
ones (as in discriminative clustering, [L(]) and an entropy
regularizer aimed at balancing the size of the output region

Image representation. We assume that we are given a set
| of images, and that each images sangpled on a (coarse)
grid N; of N; pixels. We denote b} = ,,, N; the total
number of pixels. We associate with each pimats color

Cn, its positionp, within the corresponding image, and an
additional featurex, 2 X, that may be a SIFT vector or
color histogram for example. The rst two of these features

are used to encode the local spatial layout and appearance of
each image, and the third one is used to discriminate among

different object classes in different images.

Let us denote bK the number of object classes. As is
common in the cosegmentation settigjs assumed in the
following to be xed and known a priori. We denote lyy
theN K matrix such that:

1 ifthe n™ pixel is in thek™ class

Yok =5 otherwise

Given the set of images, our goal is thus to ng without
any other prior information.

As noted above, the idea of cosegmentation is to di-
vide each image int& visually and spatially consistent
regions while maximizing class separability across images
The rst problem leads to unsupervised spectral-clustgrin
methods such asormalized cut$9] with little or no shar-
ing of information between different images. The second
one leads to multi-class discriminative clustering method
with information shared among images. Following Joulin
et al. 5], we propose to combine the two approaches. How-
ever, generalizing their two-class (foreground/backgdju
model to the multi-class setting leads to a completely dif-
ferent approach to discriminative clustering. Our overall
energy function is the sum of spectral- and discriminative-
clustering terms, plus a regularizer enforcing class4isée
ance. We now detail these three terms.

if kon pmki 2 and O otherwise. We x , = 0:001
and . = 0:05since it has been reported that these values
work well in practice p]. We denote byw theN N
block-diagonal matrix obtained by putting the bloakd 2

RN Ni onits diagonal,andby = Iy D WD 172
theLaplacianmatrix, wherd y is theN -dimensional iden-
tity matrix andD the diagonal matrix composed of the row
sums ofW [9]. Following [5, 9], we thus include the fol-
lowing quadratic term into our objective function:

X X

X

Es (Y) Yrk Ymk Lam 3 (1)

i2l nym 2N k=1

where is a free parameter. This term encouragesde-
pendentsegmentation of the images into different groups,
based solely on local features.

2.2. Discriminative clustering

The goal of discriminative clustering is to nd the pixel
labelsy that minimize the value of a regularized discrimina-
tive cost function [ ]. More precisely, given some labejs
and some feature map: X 7! RY, a multi-class discrim-
inative classi er nds the optimal parametefs 2 RK ¢
andb2 RK that minimize

1 X
Eu(y;Ah)= = “(YniA (Xn)+ b+ ——KAKE; (2)
N o1 2K
where® : Rk RK 7! R is a loss functiony, is the
n-th column ofy™, andkAkg is the Frobenius norm ok.
A discriminative-clustering method minimizes the respons
of the classi er over the set of labels, i.e, it solves:
min
A2RK d:p2RK

min

li Eu(y;A;b):
i Y1k =1n

y2f 0;1gM

Different choices for the loss functionlead to different
algorithms. In the two-class case, Joulin et &].Jse the
square loss, which has the advantage of leading to a convex



problem that can be solved ef ciently, but is not adapted to
the multi-class setting (this is related to theasking prob-
lem, see Section 4.2 in Hastie et al7]). In this paper we
use instead the soft-max loss function de ned as:

o exp(ay (Xn)+ b)
1<, exp@ (xa)+ b)

“(Yn;A;b) = Ynk 109

k=1

wherea{ is thek-th row of A, andb the k-th entry ofb.
This loss is well adapted to the multi-class setting, and it

where one knows th#t object classes occur in the images,
but not which ones of th& do occur in a given image.
Indeed, our entropy term encourages (but does not force)
every class to occur in every image. Our framework is easily
extended taveakly supervised segmentatiarhere tags are
attached to each image specifying the seK; of object
classes appearing in it: This simply requires replacing the
sum over indicek varying from1 to K in Eg. ) by a
sum over indicek in K;. For any pixeln in imagei, this
naturally encourageg to be zero for ank nor inK;.

encourages a soft assignement of the pixels to the different 4 probabilistic interpretation

classes]”].

Mapping approximation. Using a kernelized version of
the soft-max cost function instead of a linear one is attrac-
tive since features that may not be linearly separabl€ in
might easily be separated RY [13]. However, explic-
itly introducing the kernel matrix with entries n =
(Xn)T (xm) in either the primal or dual formulation of
the minimization ofEy requires the evaluation @(N ?)
kernel values at each step of the optimizatiar]] which
may be prohibitively expansive. In the case wherés
known but is not, acommon trick is to construct an incom-
plete Cholesky decompositionj] of —that is, calculate
amatrix 2 RV 9suchthat T , then directly use
Eqg. ), where (x,) has been replaced by, , where [ is
then-th row of
This is the method used in this paper for ef ciency. Since
our features are histograms, we use thekernel de ned by
X (Xnd de)2

nm = EXp
Xnd + Xmd

d=1

where , > 0 (in the experiments, we usg = 0:1). With
a slight abuse of notation, we stillus€x,) = , todenote
the approximated mapping in the rest of this presentation.

2.3. Cluster size balancing

A classical problem with spectral- and discriminative-

Combining the three terms de ned by Eg4)+(3) we
nally obtain the following optimization problem:

min min  Ey(y;Asb) + Eg(y) H(y): (4)
y2f 0;1gN K ; A2RY X,
ylk =1y b2 RK

Let us show that the labelscan be seen as latent vari-
ables in a directed graphical modeld]. First, for each
pixel n, we introduce a variabl¢, in f0;1g" indicat-
ing to which imagen belongs, as well as a variahig in

formation e.g., some information about its true label or its
relation with other pixels. The resulting directed grajlic
model k! y! z t)de nesthelabel as alatent vari-
able of the observable informatiangivenx. Given some
pixel n, this model induces an “explain away” phenomenon:
the labely, and the variablé¢, compete to explain the ob-
servable informatioz,,. This model can be seen as an ex-
tension of topic models 1]7, 18] where the labely repre-
senttopicswhich explain thedocumentz given thewords

X, independently of thgroup of documents from which

z has been taken. More precisely, we suppose a bilinear
model:

P(Zm =1jty =1y =1) = ynkGirlTﬁtni;
P :
where ,“T']:l Gk = 1, and we show in the supplemen-

clustering methods is that assigning the same labels to alltary material that the problem de ned by Ed) (s equiva-

the pixels leads to perfect separation. A common solu-

lent to the mean- eld variational approximation of the fol-

tion is to add constraints on the number of elements perlowing (regularized) negative conditional log-likelinbof

class [L0, 15]. Despite good results, this solution introduces

extra parameters and is hard to interpret. Another solution(t,

Y = (y1;::5;9n) given X = (Xg;::ii;Xy) and T
;i1 ty) for our model:

is to encourage the proportion of points per class and per

image to be close to uniform. An appropriate penalty term
for achieving this is the entropy of the proportions of psint
per image and per class:

X X 1 X 1 X
H(Y): N Ynk |Og N Ynk (3)

i2l k=1 n2N j n2N

As shown later, there is a natural interpretation that alow
us to set the parameter in front of this term to 1.

Weakly supervised segmentationCosegmentation can be
seen as a “very weakly” supervised form of segmentation,

X
min = o i Xn: tn) + —kAK3:
azRd KoRe. N g p(Yn j Xn; tn) 2K 2
G2RN Ki =

GT1y=1;G 0

The introduction of the variable makes our model suit-
able for a a semi-supervised setting whemgould encode
“must-link” and “must-not-link” constraints between pix-
els. This may prove particularly useful when superpixels
are used, since it is equivalent to adding “must-link” con-
straints between pixels belonging to the same superpixel (i
this caseM is the total number of superpixels).



3. Optimization

We now present a non-convex relaxation of our combi-

3.2. Quadratic relaxation

Cosegmentation is caracterized by the lack of prior infor-

natorial problem, which leads to an optimization scheme mation on the classes present in the images. A reasonable

based on an expectation-maximization (EM) procedure,

which can be initialized by ef ciently solving a convex op-
timization problem closely related t6]f

3.1. EM algorithm

We use a continuous relaxation of our combinatorial
problem, replacing the set of possilylealues by the con-
vexsety = fy 2 [0;1]N X jylk =1ng. In this setting,
Vnk €an be interpreted as the probability for th¢h point to
be in thek-th class. Our cost function is a difference of con-
vex functions, which can be optimized by eitlufference-
of-conveXDC) programming ] 9] or a block-coordinate de-

initial guess for our model parameters is thus to assume a
uniform distributiony? of the classes over each pixeland

to predict a pixel's class using a linear model whose param-
eters are independent of the corresponding feature value,
which is easily shown to be equivalent to

~(y0- :X(
(Yn:0)
k=1

1 .
K log(K):

We thus propose to approximate our cost function by its
second-order Taylor expansion arowfd(see the supple-
mentary material for the calculation):

scent procedure. We choose the latter, and since our energy

is closely related to a probabilistic model, dub it an EM pro-
cedure with a slight abuse of notation.

M-step. For some given value gf, minimizingEy (y; A; b)

in terms of(A; b) is a (convex) softmax regression problem
which can be solved ef ciently by a quasi-Newton method
such as L-BFGSA0].

E-step. For givenA andb, the cost function of Eq.4] is
convex iny 2 Y, and can thus be minimized with a simple
projected gradient descent method ¥n This rst-order

optimization method is slower than the second-order one

used in the M-step, and it is the bottleneck of our algorithm,
leading us to use superpixels for improved ef ciency.

Superpixels. We oversegment every imagénto S; super-
pixels. For a given image, this is equivalent to forcing
every pixeln in N; in a superpixek to have the same label
Vn = VYs. Denoting byjsj the number of pixels contained
in a superpixek, each term of our cost function depending
directly ony is reduced to:

=

P .
Eu(y) NP s2sPs(A s+ sib);
Es (Y) 7 2 s;tzngSkYtk st

where Ep(y) is the part ofEy (y;#\; b) gepending ory,

()= 26 (Xn),and & =, o Lln. The

entropy has the form:

H(y) = = Jslysk log —  jsjysk
i2l k=1 s2S s2S;

Since the problem de ned by Eg4)is not jointly con-

)= 5O ety Sty 1) ¢ (8)

where In ,and istheN N block diago-
nal matrix where there is a block equal itbllNi 1Li for
each image. Note that the projection matrix, centers
the data for each image independently. Finally, the matrix

C in Eq. ) is equal to:

C= n (I (N|K+TN) lT)N;

1
N
where the projection matrixy = | NilN 1], centers the
dataacross all imagesNote thatC is closely related to the
solution of the ridge regression (or Tikhonov regulariaaji
ofy over [5].

The rst two terms in Eq. %) add up to the cost function
of Joulin et al. f] (up to a multiplicative constant). The last
term is a non-convex quadratic penalization encouraging a
uniform distribution over classes on each image. We replace
it (during initialization only) by linear constraints thiatrce
the pixels in any clask to represent at most 90% of the
pixels in each imagée, and at least 10% of the pixels in all
other images:

X X X
O:9N; ;

j2in in2N;

Ynk Ynk 0:1(N Ni):

n2Ni

These constraints generalize those5htp the multi-class
case, and using them has the added bene t of allowing us
to use a slightly modi ed version of their publicly avail-
able software. However, the output of this code is the
N N matrixY = yy" and noty, thus a rounding step

vexin (A;b) andy, a reasonable initial guess is required. s necessery to initialize our algorithm. The standard ap-
In the next section, we propose a convex approximation of nrgach to this kind of problem is to use eithemeansor a
our cost function that can be used to compute such a guessggyssian mixture model (GMM) over the eigenvectors as-

Moreover we show that this approximation is closely re-
lated to the the cost function proposed by Joulin et3l. [
This allows us to use a modi ed version of their algorithm
to initialize ours.

sociated with the&K highest eigenvalues2]] for this pur-
pose.

Ihttp://www.di.ens.fr/ joulin/



images| class | Ours [ [5] [7]
30 Bike 43.3 29.9 423 428
30 Bird 477 29.9 33.2 -
30 Car 59.7 37.1 59.0 525
24 Cat 319 244 301 5.6
30 Chair 396 287 376 394
30 Cow 527 335 450 26.1
26 Dog 41.8 33.0 413 -
30 Face | 70.0 332 662 408 Figure 2. This gure shows how increasing the number of classes
30 Flower | 51.9 402 509 - leads to a better segmentation. Columns 2 to 3 respectively show
30 House | 51.0 322 505 66.4 results fork =2 andK =3 (best seen in color).
30 Plane 216 251 21.7 334
30 Sheep | 663 608 604 457 leading to the best performance (taking 0:1 works well
28 ?:22 2?'8 gf'g gg'g o in all our experiments in practice).
: : - : The images in iCoseg only have two labels, and MSRC
Average| 50.2 36.6 46.7 409 is not well suited to a multi-class evaluation because of its
Table 1. Binary classi cation results on MSRC. Best results in “Clutter” class that does not correspond to a well-de ned vi
bold. sual category. We have thus used the main “object” category

o o ) . for each MSRC image as foreground, and the rest of the pix-
Practical issues. Initializing our algorithm with the con-  e|s as background, and limited our quantitative evaluaton
vex approximation proposed in this section usually leads the binary case. Segmentation performance is measured by

to good results, but sometimes fails completely, due to thethe intersection-over-uniorscore that is standard in PAS-
masking problem mentioned earlier. Therefore, we also cp| challenges and de ned amax - GTi\ Rf

start our EM procedure with ve random intializations. We . . Wi eTiRE
compare the nal values of our cost function obtained from WhereGT; is the ground truth anR the region associated
these initializations, and pick the solution associatethwi  With thek-th class in the image

the onvest value as our result. An effective rounding proce- 4 5 MSRC two-class experiments

dure is also a key to good performance. Thus, we perform
both the k-means and GMM rounding procedures, run one  Qualitative results obtained on the MSRC-v2 database
M-step for each of the corresponding initializations, amdl r ~ with two classes are shown in Figuie Table1 gives a
the rest of the algorithm with the one yielding the lowest quantitative comparison witho[ 8, 7].° Note that the al-

value of the cost function. gorithm proposed in7] fails to converge on 5 out of 14
classes. Our algorithm achieves the best performace for 12
4. Implementation and results out of 14 object classes. We use SIFT for discriminative
i clustering here because of the high appearance variability
4.1. Experimental set-up of MSRC.
We use the watershed algorithZ] to nd superpix- This experiment calls for some additional comments:

els. The rest of our algorithm is coded in MATLAB. Since First, it is interesting to note that our method works best
a good initialization is crucial, we use a modi ed version for faces, despite the high background variability comgare
of [5] to initialize our method as explained in Sectigre.  t0 sheep or cow for example. Second, for classes with very
The complexity of our algorithm i®(NK ), and its running ~ high variability (e.g., cat, dog, or chair), the three ceseg
time (including[5]) typically varies from 30mn to one hour ~Mentation algorithms perform rather poorly, as e>_<pected.
for 30 images, depending on the number of superpixels (thisTh'rda it appears that the low per_formanc;e on the bike class
could be improved using a C implementation and exploiting IS caused by too-coarse superpixels. Finally, the poor per-
the fact that parts of our algorithm are easily parelleljzed ~ formance of our algorithm on the plane category is mostly
We present qualitative multi-class cosegmentation re- due to the fact that the background is (essentially) always
sults on various datasets in the rest of this section. Wethe same, and is composed of two kinds of “stuff’, i.e.,
also present quantitative comparisons with Kim et#?,[ ~ 9rass and sky, as shown in Figute Therefore, with only
Mukherjee et al. {] and Joulin et al. ] on two standard  tWo classes, our algorithm simply separates sky+plane from
benchmarks, MSRC-v2and iCosed. We use the publicly ~ 9rass, which motivates the need for multi-class cosegmen-
available versions off &] and set their free parameters so tation as demonstrated in the next section.
as to maximize their performance for the sake of fairness.
Likewise, we set the free parameteiof our algorithm by
trying = 10X for k 2 f 0;:::;4g, and keeping the value We present in this section our experiments with mul-
tiple object categories using the recently released iCoseg

4.3. Multi-class experiments

2http://www.cs.cmu.edu/gunhee/rsegsubmod.html
Shitp://research.microsoft.com/en-us/projects/Obje€Recognition/ 5There is no error bar since we test on the maximum number of images
4http://chenlab.ece.cornell.edu/projects/touch-cbseg per class.




dataset| images class K | Ours multiclass Joulinetals] Kimetal. [8] Joulinetal. f]
25 Baseball player| 5 | 62.2 53.5 51.1 24.9
5 Brownbear | 3 | 75.6 78.5 40.4 28.8
15 Elephant 4 | 655 51.2 43.5 23.8
11 Ferrari 4 | 65.2 63.2 60.5 48.8
33 Football player| 5 | 51.1 38.8 38.3 20.8
iCoseg 7 Kite Panda 2 | 57.8 58.0 66.2 58.0
17 Monk 21776 76.9 71.3 76.9
11 Panda 3 | 559 49.1 39.4 43.5
11 Skating 2 | 64.0 47.2 51.1 47.2
18 Stonehedge | 3 | 86.3 85.4 64.6 62.3
30 Plane 3 | 458 39.2 25.2 25.1
MSRC 30 Face 3] 705 56.4 33.2 66.2
Average 64.8 58.1 48.7 43.9

Table 2. Results on iCoseg and MSRC using more than two segments KHerdicates the number of segments used for our algorithm.

database, along with two MSRC classes. iCoseg providesone of the classes in most of our test cases, which may be
a setting closely related to video segmentation in the sensesuf cient to act as a Iter in an object discovery setting for
that, for a given class, the images are similar to key framesexample P3].
in a video, with similar lighting and background. As in the Of course, our method, like any other, makes mistakes,
case of the plane in Figug( rst two columns), this makes  sometimes giving completely wrong segmentations. Fig-
binary segmentation very dif cult (sometimes meaning)ess ure4 shows a few examples.
since multiple object classes may be merged into a single
one. As shown by Figuré (right), adding more classes |
helps.

The number of meaningful “objects” present in the im-
ages varies from one problem to the next, Endhust be set

in general. Quantitative results are given in Tahl&ince,
as argued earlier, MSRC and iCoseg are not well adapted
to benchmarking true multi-class cosegmentation, we re-
port the maximum of the intersection-over-union scores ob-
tained for the K classes against the “object” region in the
ground-truth data.

As before, we use SIFT features for the two MSRC
classes used in this experiment. Due to little change in
illumination, we use instead color histograms for iCoseg,
which are in general more appropriate than SIFT ones in
this setting® We compare our algorithm with both our mul-
ticlass implementation of Joulin et ab][and their original
implementation (withK = 2) using the same features as
ours. We also compare our method to Kim et &]. With
K between 2 and 5, and keep tKe value with the best
performance.

We obtain the best performance for 10 of the 12 classes,
including the MSRC plane category for which our two- §
class algortihm only obtained 21.6% in our previous exper- _. . . , :

. . . . Figure 6. Interactive segmentation results with color histogram
iment. Note that we do not claim that using multiple classes features

solves the binary cosegmentation problem. Indeed, we do ’

not know which one of the K classes corresponds to the 4.4. Extensions

“foreground” object. On the other hand, our experiments
suggest that this object is indeed rather well represented b

Figure 5. Weakly supervised segmentation results with known tags
and SIFT features.

e &

Let us close this section with a few proof-of-concept ex-
periments involving simple extensions of our framework.
8SIFT features lead to better performance in some of the cases (f Weakly supervised segmentationWe start with the case
example, the performance rises to 8b.for the brown bear class and to ’

75:9% for pandas), but for a fair comparison we keep the same features Where each image is tagged with the object classes it con-
for the entire dataset. tains. As explained in Sectio? this can be handled by a




simple modi cation of our entropy-based regularizer. Fig-
ure5 shows qualitative results obtained usB@gsheep and
plane images in the MSRC database, labelled with tags from
the setf sheep, plane, grass, skyThe performance is es-
sentially the same as when the two sets of images are seg-
mented separately, but the grass is now identi ed uniquely [5]
in the 60 images.

Interactive segmentation. The weakly supervised version
of our method is itself easily generalized to an interactive
setting, as in GrabCutl], where the user de nes a bound-
ing box around the object of interest. For us, this simply
amounts to picking a foreground or background label for [8]
each pixel inside the box, and a background label for all the
pixels outside. Figuré shows a few qualitative examples
obtained using this method. Again, these are just for proof [€]
of concept, and we do not claim to match the state of the art
obtained by specialized methods developed since the intro-
duction of [1]. [10]

(3]

(4]

(6]
(7]

Video segmentation. Our experiments with iCoseg sug-
gest that our method is particularly well suited to keyframe
from the same video shot, since these are likely to fea-
ture the same objects under similar illumination. This is
con rmed with our experiments with two short video clips
taken from the Hollywood-2 and Grundmann datasets [

]. We pick ve key frames from each video and coseg-
ment them using color features without any temporal infor-
mation such as frame ordering or optical ow. As shown [14]
by Figure7, reasonable segmentations are obtained. In par-
ticular, the main characters in each video are identi ed as [15]
separate segments.

[11]

[12]

[13]

[16]
5. Conclusion

We have presented a true multi-class framework for im- [17]
age cosegmentation, and shown that it compares favorably
with the state of the art. We have also presented preliminary[18]
extensions to related problems such as weakly supervised
or interactive cosegmentation, and the joint segmentation
of video key frames. Next on our agenda are incorporat- [1
ing motion information in the analysis of video clips and
using cosegmentation as a front end to an object recogni{20
tion/detection system.
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Figure 1. Results on binary classi cation. There are three set of imlagesw. The images are taken from MSRC and the features are
SIFT.

Figure 3. Results for the cosegmentation with multiple classes. There eesgkperiments by row with respectively. The images are taken
from iCoseg and the features are color histograms.

Figure 7. Results on two videos. The rst row represent the input imafe second one is the segmentation obtained with our algorithm.



