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The advent of large-scale datasets and “big learning”
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From “The Promise and Perils of Benchmark Datasets and Challenges”, D. Forsyth, A.
Efros, F.-F. Li, A. Torralba and A. Zisserman, Talk at “Frontiers of Computer Vision”
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Large-scale supervised learning

Large-scale supervised learning

Let (x1,%1),.-, (Xn,yn) € R? x Y be i.i.d. labelled training data,
and Remp(+) the empirical risk for any W € RI*k,

’ Constrained formulation ‘

’ Penalized formulation ‘

minimize  Remp(W)

minimize  AQ(W) + Remp(W)
subject to Q(W) <p

Problem : minimize such objectives in the large-scale setting

# examples > 1, # features > 1, # classes > 1

Zaid Harchaoui (INRIA) Conditional gradient algorithms March 20th, 2013 3/39



Large-scale supervised learning

Large-scale supervised learning

Let (x1,%1),---, (Xn,yn) € R? x Y be i.i.d. labelled training data,
and Remp(+) the empirical risk for any W € RI¥k,

’ Constrained formulation \

’ Penalized formulation ‘

minimize  Remp(W)

minimize  AQ(W) + Remp(W)
subject to Q(W) <p

Problem : minimize such objectives in the large-scale setting

n>1, d>1, k>1
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Machine learning cuboid
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Motivating example :
multi-class classification with trace-norm penalty

Motivating the trace-norm penalty

m Embedding assumption : classes may embedded in a low-dimensional
subspace of the feature space

m Computational efficiency : training time and test time efficiency
require sparse matrix regularizers

Trace-norm
The trace-norm, aka nuclear norm, is defined as

min(d,k)

leW)lly = > (W)

p=1
where 01 (W), ..., Oin(a,k) (W) denote the singular values of W.
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Large-scale supervised learning

Multi-class classification with trace-norm regularization

Let (x1,%1)- -+, (Xn,¥n) € R? x Y be i.i.d. labelled training data,
and Remp(+) the empirical risk for any W € RI*k,

‘Constrained formulation‘ ’Penalized formulation‘

minimize  Remp(W) minimize A ||c(W)]|; + Remp(W)
subject to  |lo(W)||; < p

m Trace-norm reg. penalty (Amit et al., 2007 ; Argyriou et al., 2007)
m Enforces a low-rank structure of W' (sparsity of spectrum o(W))

m Convex problems
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R
About the different formulations

“Alleged” equivalence

For a particular set of examples, for any value p of the constraint in the
constrained formulation, there exists a value of A in the penalized
formulation so that the solutions of resp. the constrained formulation and
the penalized formulation coincide.

Statistical learning theory

m theoretical results on penalized estimators and constrained estimators
are of different nature — no rigorous comparison possible

m equivalence frequently called as the rescue depending on the
theoretical tools available to jump from one formulation to the other
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Summary

In practice
Recall that eventually hyperparameters will have to be tuned.

Choose the formulation in which you can easily incorporate prior knowledge

Constrained formulation | D‘/)I\}relgglge { ZLOSSZ Cle(W)l; < p}

WeRdxk

1
Penalized formulation ~ Minimize {n Z Loss; + A ||0(W)||1}
i=1

. . o e . t t
Constrained formulation Il Minimize ¢ A|lc(W)]|; : E Loss; — Rems
WeRdxk

2
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R ——
Learning with trace-norm penalty : a convex problem

Supervised learning with trace-norm regularization penalty

Let (x1,91),---, (Xn,¥n) € R? x Y be a set of i.i.d. labelled training data,
with ) = {0, 1}¥ for multi-class classification

R
hé\lfré%i%e - Z; Loss; + Alja(W)]],
1=

convex

’ Penalized formulation ‘

m Trace-norm reg. penalty (Amit et al., 2007 ; Argyriou et al., 2007)
m Enforces a low-rank structure of W (sparsity of spectrum o(W))
m Convex, but non-differentiable
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Possible approaches

Generic approaches

m “Blind" approach : subgradient, bundle method — slow convergence
rate

m Other approaches : alternating optimization, iteratively reweighted
least-squares, etc. — no finite-time convergence guarantees
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Learning with trace-norm penalty : convex but non-smooth

Supervised learning with trace-norm regularization penalty

Let (x1,91), -+, (Xn,yn) € RY x ) be a set of i.i.d. labelled training data,
with Y = {0, 1}* for multi-class classification

Minimize \|c(W)]|; + g Loss;
WeRdxk —_———
nonsmooth
smooth

where Loss; is e.g. the multinomial logistic loss of i-th example

Loss; =log | 1+ Z exp {weTxi — ngi}
e\{y:}
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Learning with trace-norm penalty : a convex problem

Supervised learning with trace-norm regularization penalty

Let (x1,91), -+, (Xn,yn) € R? x ) be a set of i.i.d. labelled training data,
with ) = {0, 1}¥ for multi-class classification

Minimize  Al|o(W)]|; + Z Loss;
WeRX

’ Penalized formulation ‘
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Composite minimization for penalized formulation

Strengths of composite minimization (aka proximal-gradient)

m Attractive algorithms when proximal operator is cheap, as e.g. for
vector ¢1-norm

m Accurate with medium-accuracy, finite-time accuracy guarantees
Weaknesses of composite minimization

m Inappropriate when proximal operator is expensive to compute

m Too sensitive to conditioning of design matrix (correlated features)

Situation with trace-norm

m proximal operator corresponds to singular value thresholding, requiring
an SVD running in O(krk(W)?) in time — impractical for large-scale
problems
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Alternative approach : conditional gradient
We want an algorithm with no SVD, i.e. without any projection or proximal

step. Let us get some inspiration from the constrained setting.
Problem

Minimize

1 n
— Loss; : W € p - convex hull ({M
inimiz {n ; ; P ( t}t>1)}

Gauge/atomic decomposition of trace-norm

N N
lo(W)]l, = inf {;a | AN, 6; > 0,M; € M with W = ;am}

M= {uv" [ueR", veR”, |jul,=|v|, =1}
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Conditional gradient descent

Algorithm
m Initialize : W =0
m lterate : Find M, € p - convex hull (M) , such that

M, = Argmax (M, =V Remp(Wy))
MyeM

TV
linearization oracle

Perform line-search between W; and M;

Wit = (1 - )W, + 6M,
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Conditional gradient descent :
example with trace-norm constraint

Algorithm (Jaggi & Sulovsky, 2010)

m Initialize : W =0
m lterate : Find M; € p - convex hull (M) such that

M; = Argmax (4sv; , —V Remp(Wy))
l

= Argmax u’ (=VRemp(W))v

[al2=[v]2=1

i.e. compute top pair of singular vectors of —V Remp(Wy).
Perform line-search between W; and M;

Wit = (1— 6)W, + M,
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R ——
Conditional gradient descent

Algorithm
m Initialize : W =0
m lterate : Find M; € p - convex hull (M) such that

M, = Argmax (M, =V Remp(Wy))
MyeM

VT
easy

Perform line-search between W; and M;

Wt+1 = (1 - 5)Wt + 5Mt
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Finite-time guarantee (Pshenichnyi, 1975; Dunn, 1979)

Assumptions

(A) [Smoothness| The empirical risk Remp(+) is convex continuously
differentiable on D = p - conv(M), with Lipschitz constant L w.r.t D

Let {W;} be a sequence generated by the conditional gradient algorithm.
Then

2L
F(Wt)—F* <

S t=1,2,...
“t+1
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Conditional gradient algorithm : review

Conditional gradient for constrained programming

m aka the Frank-Wolfe algorithm (1956, originally for quadratic
programming)

m convergence results in general Banach spaces in (Demyanov &
Rubinov, 1970)

m finite-time guarantees in (Pshenichnyi, 1975; Dunn, 1979)
m superseded by sequential quadratic programming in the early 80s, and
ended up in the "mathematical programming” attic

m rediscovered several times and revisited with new variants in machine
learning ;
lately, (Hazan, 2008 ; Jaggi & Sulovsky, 2010; Tewari et al., 2011;
Bach et al., 2012)

’See (Jaggi, 2013) for a nice review and sharp theoretical guarantees.
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Conditional gradient algorithms

Question

m is it possible to design a conditional-gradient-type algorithm for
penalized formulations ?
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Conditional gradient approach for penalized formulations

Let K C FE a closed convex cone, E a euclidean space,
and || - || a norm on E.

Problem

1 n
Minimize A[W[  +— z; Loss; (W)

’ Penalized formulation ‘

Sketch
m Augment the variable W by one dimension to handle the
regularization penalty

m Perform a sequence of iterations akin to the conditional gradient
iterations

m and so on...
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|
Turning the problem into a cone constrained problem

Problem
Introducing the variable Z := [W, r], we get

minimize F(Z)
subjectto Z e KT

where

1 n
F(Z) =+~ ) Lossi(W)
i=1

K*:={[W;r], We K, [W[| <r}.
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Linearization oracle

First-order information and linearization oracle
For any W, we can get

B Remp(W) the empirical risk
B VRemp(W) the gradient of the empirical risk

and for any g € E* we have access to a linearization oracle

Oracle(g) := Argmin (W, g) .

WeK;
where
K ={WEeK,|W|<1}.
Conditional gradient algorithms
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Linearization oracle

First-order information and linearization oracle
For any W, we can get

B Remp(W) the empirical risk
B VRemp(W) the derivative of the empirical risk
and any iteration ¢ we have access to a linearization oracle

Oracle(VRemp(Wy)) := Arg min (W, VRemp(Wy)) .
WeK;

where

Ki={WEeK,|W|<1}.
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R ——
Conditional gradient for penalized formulation

Algorithm

m Inputs : instrumental bound D™ on ||z*||, first-order oracle, and
minim. oracle

m lterate : Compute VRemp(Wy) at Z; = (Wy, 1)
Make a call to the linearization oracle

Oracle(VRemp(Wy)) := Argmin (W, VRemp(Wy)) .
WeK;

TV
linearization oracle

The instrumental bound D1 can be loose.
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R ——
Conditional gradient for penalized formulation

Algorithm

m Inputs : instrumental bound D™ on ||z*||, first-order oracle, and
minim. oracle

m lterate :
Compute VRemp(Wy) at Zy = (Wy, 1)

Get Z; = [Oracle(V Remp(W?4)), 1] from the linearization oracle.

Perform line-search to get

Ziy1 € argming {F(Z), Z € Conv{0, Zs, D" Z;}} .

The instrumental bound D™ can be Ioose.‘
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Line-search
For any p > 0, consider the linear form

(&,p) = Ap+ (VRemp(W), &) .

As p varies in 0 < p < DT, the set of minima of the linear form span the
segment

S = {p[OracleV Remp(W); 1], 0 < p < DT} .

S can easily be identified by calls resp. to the first-order oracle and the
linearization oracle.
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R ——
Conditional gradient for penalized formulation

Algorithm

m Inputs : instrumental bound D™ on ||z*||, first-order oracle, and
minim. oracle

m lterate :
Compute VRemp(Wy) at Zy = (W, 1)

Get Z; = [Oracle(V Remp(W?4)), 1] from the linearization oracle.
Perform line-search to get

Zij1 = w1 Ze + B Zy
(41, Bi41) = Argmin {F(aZ; + 8Z;), a+B<1,a>0,3>0}.
a’ﬁ

m Output : Wy can be retrieved from Zp = [Wp, rp|.
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Computational considerations

Memory-based extension (“restricted simplicial acceleration”)
Instead to the 2D line-search, we can perform at each iteration for some
M >0

Ziy1 € Argmin{F(Z), Z € C;} .
Z
where

c— Conv{0; D* Zy, ..., DT Z;}, t<M,
ETO Conv{0; Zy—pgats e Ziy DY Zy_ppia,s .., DYZY, t> M.

Computational considerations

m Line-search sub-problem can be solved with ellipsoid algorithm
m Maintaining the factorization of W along iterations is essential for
speed
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Finite-time guarantee

Assumptions

(A) [Smoothness] The empirical risk Remp(-) is convex continuously
differentiable with Lipschitz constant L.

(B) [Effective domain] There exists D < 1 such that [[W]| <r and
7 + Remp(W) < Remp(0) imply that < D

Let {Z;} be a sequence generated by the algorithm. Then

8LD?
F(Z) - F* < . t=2,3,...
t+1
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Finite-time guarantee

Finite-time guarantee
Let {Z;} be a sequence generated by the algorithm. Then

8LD?
<
~t+1

F(Z) — F* . t=2,3,...

Important remark

The O(1/t) convergence rate depends on D (unknown and not required by
the algorithm), but does not depend on D' ! (known and required by the
algorithm).
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Finite-time guarantee

Finite-time guarantee
Let {Z;} be a sequence generated by the algorithm. Then

8LD?
<

F(Z,) — F*
(1) = t+1

. t=2.3,...

‘Theoretical convergence rate is independent of Dt.
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Experimental results

Synthetic data benchmark

m Inspired by the benchmark of optimization algorithms for
sparsity-inducing vector penalties of (Bach et al., 2011)

m Varying scales, varying strength of penalty A, varying conditioning of
design matrix (low-correlation and high-correlation of features)

Real data benchmark

m ImageNet dataset
m Subset of classes “Vertebrate-craniate” subset, yielding k = 1,043

m State-of-the-art visual descriptors (Fisher vectors, Perronnin & Dance,
2007) d = 65,000
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Machine learning cuboid
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Experimental results

Computational considerations

parallelized and multi-threaded objective evaluation and gradient
evaluation

efficient matrix computations for high-dimensional features
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Experimental results

Matrix size Memory-less version || with memory M =5
kxd N; [ Tcpu Ni [ Tcpu
2000 x 2000 172.9 349.77 99.7 125.13

4000 x 4000 153.4 | 1.035 10° 88.23 | 0.575 10°
8000 x 8000 195.3 | 2.755 10° 120.45 | 1.284 103
16000 x 16000 || 230.2 | 6.585 10° 134.34 | 3.413 103
32000 x 32000 || 271.4 | 15.342 10 || 140.45 | 7.343 103

| 1043 x 65000 [[ 182.0 [ 2.101 10° [[ 110.34 | 0.925 10° ||

Table : memoryless version vs. version with memory M = 5; Nj; : total number
of method iterations; Ty, : CPU usage (sec) reported by MATLAB.
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Conclusion and perspectives

Large-scale learning

m conditional gradient algorithm for learning problems with
atomic-decomposition-norm regularization

m efficient and competitive algorithm for large-scale multi-class
classification

m scheme applies to all problems with atomic decomposition norm
regularizers (Harchaoui et al., 2011, Chandrasekaran et al., 2012) :
nuclear-norm, total-variation norm, overlapping-blocks sparse norm,
etc.

Extensions

m online/mini-batch extensions

m path-following extensions
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