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Abstract

We consider the least-square linear regression
problem with regularization by the ℓ1-norm,
a problem usually referred to as the Lasso. In
this paper, we present a detailed asymptotic
analysis of model consistency of the Lasso.
For various decays of the regularization pa-
rameter, we compute asymptotic equivalents
of the probability of correct model selection
(i.e., variable selection). For a specific rate
decay, we show that the Lasso selects all the
variables that should enter the model with
probability tending to one exponentially fast,
while it selects all other variables with strictly
positive probability. We show that this prop-
erty implies that if we run the Lasso for
several bootstrapped replications of a given
sample, then intersecting the supports of the
Lasso bootstrap estimates leads to consistent
model selection. This novel variable selec-
tion algorithm, referred to as the Bolasso, is
compared favorably to other linear regression
methods on synthetic data and datasets from
the UCI machine learning repository.

1. Introduction

Regularization by the ℓ1-norm has attracted a lot of
interest in recent years in machine learning, statistics
and signal processing. In the context of least-square
linear regression, the problem is usually referred to as
the Lasso (Tibshirani, 1994). Much of the early effort
has been dedicated to algorithms to solve the opti-
mization problem efficiently. In particular, the Lars
algorithm of Efron et al. (2004) allows to find the en-
tire regularization path (i.e., the set of solutions for all
values of the regularization parameters) at the cost of

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

a single matrix inversion.

Moreover, a well-known justification of the regulariza-
tion by the ℓ1-norm is that it leads to sparse solu-
tions, i.e., loading vectors with many zeros, and thus
performs model selection. Recent works (Zhao & Yu,
2006; Yuan & Lin, 2007; Zou, 2006; Wainwright, 2006)
have looked precisely at the model consistency of the
Lasso, i.e., if we know that the data were generated
from a sparse loading vector, does the Lasso actually
recover it when the number of observed data points
grows? In the case of a fixed number of covariates, the
Lasso does recover the sparsity pattern if and only if a
certain simple condition on the generating covariance
matrices is verified (Yuan & Lin, 2007). In particular,
in low correlation settings, the Lasso is indeed consis-
tent. However, in presence of strong correlations, the
Lasso cannot be consistent, shedding light on poten-
tial problems of such procedures for variable selection.
Adaptive versions where data-dependent weights are
added to the ℓ1-norm then allow to keep the consis-
tency in all situations (Zou, 2006).

In this paper, we first derive a detailed asymptotic
analysis of sparsity pattern selection of the Lasso
estimation procedure, that extends previous analy-
sis (Zhao & Yu, 2006; Yuan & Lin, 2007; Zou, 2006),
by focusing on a specific decay of the regularization
parameter. We show that when the decay is propor-
tional to n−1/2, where n is the number of observations,
then the Lasso will select all the variables that should
enter the model (the relevant variables) with proba-
bility tending to one exponentially fast with n, while
it selects all other variables (the irrelevant variables)
with strictly positive probability. If several datasets
generated from the same distribution were available,
then the latter property would suggest to consider the
intersection of the supports of the Lasso estimates for
each dataset: all relevant variables would always be se-
lected for all datasets, while irrelevant variables would
enter the models randomly, and intersecting the sup-
ports from sufficiently many different datasets would
simply eliminate them. However, in practice, only one
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dataset is given; but resampling methods such as the
bootstrap are exactly dedicated to mimic the availabil-
ity of several datasets by resampling from the same
unique dataset (Efron & Tibshirani, 1998). In this
paper, we show that when using the bootstrap and in-
tersecting the supports, we actually get a consistent
model estimate, without the consistency condition re-
quired by the regular Lasso. We refer to this new
procedure as the Bolasso (bootstrap-enhanced least
absolute shrinkage operator). Finally, our Bolasso
framework could be seen as a voting scheme applied
to the supports of the bootstrap Lasso estimates; how-
ever, our procedure may rather be considered as a con-
sensus combination scheme, as we keep the (largest)
subset of variables on which all regressors agree in
terms of variable selection, which is in our case prov-
ably consistent and also allows to get rid of a potential
additional hyperparameter.

The paper is organized as follows: in Section 2, we
present the asymptotic analysis of model selection for
the Lasso; in Section 3, we describe the Bolasso algo-
rithm as well as its proof of model consistency, while
in Section 4, we illustrate our results on synthetic
data, where the true sparse generating model is known,
and data from the UCI machine learning repository.
Sketches of proofs can be found in Appendix A.

Notations For a vector v ∈ R
p, we let de-

note ‖v‖2 = (v⊤v)1/2 the ℓ2-norm, ‖v‖∞ =
maxi∈{1,...,p} |vi| the ℓ∞-norm and ‖v‖1 =

∑p
i=1 |vi|

the ℓ1-norm. For a ∈ R, sign(a) denotes the sign of a,
defined as sign(a) = 1 if a > 0, −1 if a < 0, and 0 if
a = 0. For a vector v ∈ R

p, sign(v) ∈ R
p denotes the

the vector of signs of elements of v.

Moreover, given a vector v ∈ R
p and a subset I of

{1, . . . , p}, vI denotes the vector in R
Card(I) of ele-

ments of v indexed by I. Similarly, for a matrix
A ∈ R

p×p, AI,J denotes the submatrix of A composed
of elements of A whose rows are in I and columns are
in J .

2. Asymptotic Analysis of Model

Selection for the Lasso

In this section, we describe existing and new asymp-
totic results regarding the model selection capabilities
of the Lasso.

2.1. Assumptions

We consider the problem of predicting a response Y ∈
R from covariates X = (X1, . . . , Xp)

⊤ ∈ R
p. The only

assumptions that we make on the joint distribution
PXY of (X, Y ) are the following:

(A1) The cumulant generating functions E exp(s‖X‖2
2)

and E exp(sY 2) are finite for some s > 0.

(A2) The joint matrix of second order moments Q =
EXX⊤ ∈ R

p×p is invertible.

(A3) E(Y |X) = X⊤w and var(Y |X) = σ2 a.s. for some
w ∈ R

p and σ ∈ R
∗
+.

We let denote J = {j,wj 6= 0} the sparsity pat-
tern of w, s = sign(w) the sign pattern of w, and
ε = Y − X⊤w the additive noise.1 Note that our as-
sumption regarding cumulant generating functions is
satisfied when X and ε have compact support, and
also, when the densities of X and ε have light tails.

We consider independent and identically distributed
(i.i.d.) data (xi, yi) ∈ R

p × R, i = 1, . . . , n, sampled
from PXY ; the data are given in the form of matrices
Y ∈ R

n and X ∈ R
n×p.

Note that the i.i.d. assumption, together with (A1-3),
are the simplest assumptions for studying the asymp-
totic behavior of the Lasso; and it is of course of in-
terest to allow more general assumptions, in particular
growing number of variables p, more general random
variables, etc. (see, e.g., Meinshausen and Yu (2006)),
which are outside the scope of this paper.

2.2. Lasso Estimation

We consider the square loss function 1
2n

∑n
i=1(yi −

w⊤xi)
2 = 1

2n‖Y − Xw‖2
2 and the regularization by

the ℓ1-norm defined as ‖w‖1 =
∑p

i=1 |wi|. That is, we
look at the following Lasso optimization problem (Tib-
shirani, 1994):

min
w∈Rp

1
2n‖Y − Xw‖2

2 + µn‖w‖1, (1)

where µn > 0 is the regularization parameter. We
denote ŵ any global minimum of Eq. (1)—it may not
be unique in general, but will with probability tending
to one exponentially fast under assumption (A1).

2.3. Model Consistency - General Results

In this section, we detail the asymptotic behavior of
the Lasso estimate ŵ, both in terms of the difference
in norm with the population value w (i.e., regular
consistency) and of the sign pattern sign(ŵ), for all
asymptotic behaviors of the regularization parameter
µn. Note that information about the sign pattern in-
cludes information about the support, i.e., the indices
i for which ŵi is different from zero; moreover, when
ŵ is consistent, consistency of the sign pattern is in
fact equivalent to the consistency of the support.

1Throughout this paper, we use boldface fonts for pop-
ulation quantities.
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We now consider five mutually exclusive possible situ-
ations which explain various portions of the regulariza-
tion path (we assume (A1-3)); many of these results
appear elsewhere (Yuan & Lin, 2007; Zhao & Yu, 2006;
Fu & Knight, 2000; Zou, 2006; Bach, 2007) but some
of the finer results presented below are new (see Sec-
tion 2.4).

1. If µn tends to infinity, then ŵ = 0 with probability
tending to one.

2. If µn tends to a finite strictly positive constant
µ0, then ŵ converges in probability to the unique
global minimum of 1

2 (w−w)⊤Q(w−w)+µ0‖w‖1.
Thus, the estimate ŵ never converges in probabil-
ity to w, while the sign pattern tends to the one of
the previous global minimum, which may or may
not be the same as the one of w.2

3. If µn tends to zero slower than n−1/2, then ŵ con-
verges in probability to w (regular consistency)
and the sign pattern converges to the sign pattern
of the global minimum of 1

2v⊤Qv+v⊤
J

sign(wJ)+
‖vJc‖1. This sign pattern is equal to the popu-
lation sign vector s = sign(w) if and only if the
following consistency condition is satisfied:

‖QJcJQ
−1
JJ

sign(wJ)‖∞ 6 1. (2)

Thus, if Eq. (2) is satisfied, the probability of cor-
rect sign estimation is tending to one, and to zero
otherwise (Yuan & Lin, 2007).

4. If µn = µ0n
−1/2 for µ0 ∈ (0,∞), then the sign

pattern of ŵ agrees on J with the one of w with
probability tending to one, while for all sign pat-
terns consistent on J with the one of w, the prob-
ability of obtaining this pattern is tending to a
limit in (0, 1) (in particular strictly positive); that
is, all patterns consistent on J are possible with
positive probability. See Section 2.4 for more de-
tails.

5. If µn tends to zero faster than n−1/2, then ŵ is
consistent (i.e., converges in probability to w) but
the support of ŵ is equal to {1, . . . , p} with prob-
ability tending to one (the signs of variables in Jc

may be negative or positive). That is, the ℓ1-norm
has no sparsifying effect.

Among the five previous regimes, the only ones with
consistent estimates (in norm) and a sparsity-inducing
effect are µn tending to zero and µnn1/2 tending to

2Here and in the third regime, we do not take into ac-
count the pathological cases where the sign pattern of the
limit in unstable, i.e., the limit is exactly at a hinge point
of the regularization path.

a limit µ0 ∈ (0,∞] (i.e., potentially infinite). When
µ0 = +∞, then we can only hope for model consis-
tent estimates if the consistency condition in Eq. (2) is
satisfied. This somewhat disappointing result for the
Lasso has led to various improvements on the Lasso
to ensure model consistency even when Eq. (2) is not
satisfied (Yuan & Lin, 2007; Zou, 2006). Those are
based on adaptive weights based on the non regular-
ized least-square estimate. We propose in Section 3 an
alternative way which is based on resampling.

In this paper, we now consider the specific case where
µn = µ0n

−1/2 for µ0 ∈ (0,∞), where we derive new
asymptotic results. Indeed, in this situation, we get
the correct signs of the relevant variables (those in J)
with probability tending to one, but we also get all pos-
sible sign patterns consistent with this, i.e., all other
variables (those not in J) may be non zero with asymp-
totically strictly positive probability. However, if we
were to repeat the Lasso estimation for many datasets
obtained from the same distribution, we would obtain
for each µ0, a set of active variables, all of which in-
clude J with probability tending to one, but poten-
tially containing all other subsets. By intersecting
those, we would get exactly J.

However, this requires multiple copies of the samples,
which are not usually available. Instead, we consider
bootstrapped samples which exactly mimic the behav-
ior of having multiple copies. See Section 3 for more
details.

2.4. Model Consistency with Exact Root-n
Regularization Decay

In this section we present detailed new results regard-
ing the pattern consistency for µn tending to zero ex-
actly at rate n−1/2 (see proofs in Appendix A):

Proposition 1 Assume (A1-3) and µn = µ0n
−1/2,

µ0 > 0. Then for any sign pattern s ∈ {−1, 0, 1}p

such that sJ = sign(wJ), P(sign(ŵ) = s) tends to a
limit ρ(s, µ0) ∈ (0, 1), and we have:

P(sign(ŵ) = s) − ρ(s, µ0) = O(n−1/2 log n).

Proposition 2 Assume (A1-3) and µn = µ0n
−1/2,

µ0 > 0. Then, for any pattern s ∈ {−1, 0, 1}p such
that sJ 6= sign(wJ), there exist a constant A(µ0) > 0
such that

log P(sign(ŵ) = s) 6 −nA(µ0) + O(n−1/2).

The last two propositions state that we get all relevant
variables with probability tending to one exponentially
fast, while we get exactly get all other patterns with
probability tending to a limit strictly between zero
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and one. Note that the results that we give in this
paper are valid for finite n, i.e., we could derive ac-
tual bounds on probability of sign pattern selections
with known constants that explictly depend on w, Q
and PXY .

3. Bolasso: Bootstrapped Lasso

Given the n i.i.d. observations (xi, yi) ∈ R
d × R,

i = 1, . . . , n, given by matrices X ∈ R
n×p and Y ∈ R

n,
we consider m bootstrap replications of the n data
points (Efron & Tibshirani, 1998); that is, for k =
1, . . . , m, we consider a ghost sample (xk

i , yk
i ) ∈ R

d×R,

i = 1, . . . , n, given by matrices X
k

∈ R
n×p and

Y
k
∈ R

n. The n pairs (xk
i , yk

i ), i = 1, . . . , n, are sam-
pled uniformly at random with replacement from the n
original pairs in (X, Y ). The sampling of the nm pairs
of observations is independent. In other words, we de-
fined the distribution of the ghost sample (X

∗
, Y

∗
) by

sampling n points with replacement from (X, Y ), and,
given (X, Y ), the m ghost samples are independently

sampled i.i.d. from the distribution of (X
∗
, Y

∗
).

The asymptotic analysis from Section 2 suggests to
estimate the supports Jk = {j, ŵk

j 6= 0} of the Lasso

estimates ŵk for the bootstrap samples, k = 1, . . . , m,
and to intersect them to define the Bolasso model esti-
mate of the support: J =

⋂m
k=1 Jk. Once J is selected,

we estimate w by the unregularized least-square fit re-
stricted to variables in J . The detailed algorithm is
given in Algorithm 1. The algorithm has only one
extra parameter (the number of bootstrap samples
m). Following Proposition 3, log(m) should be cho-
sen growing with n asymptotically slower than n. In
simulations, we always use m = 128 (except in Fig-
ure 3, where we exactly study the influence of m).

Algorithm 1 Bolasso

Input: data (X, Y ) ∈ R
n×(p+1)

number of bootstrap replicates m
regularization parameter µ

for k = 1 to m do
Generate bootstrap samples (X

k
, Y

k
) ∈ R

n×(p+1)

Compute Lasso estimate ŵk from (X
k
, Y

k
)

Compute support Jk = {j, ŵk
j 6= 0}

end for
Compute J =

⋂m
k=1 Jk

Compute ŵJ from (XJ , Y )

Note that in practice, the Bolasso estimate can be com-
puted simultaneously for a large number of regulariza-
tion parameters because of the efficiency of the Lars
algorithm (which we use in simulations), that allows
to find the entire regularization path for the Lasso at

the (empirical) cost of a single matrix inversion (Efron
et al., 2004). Thus computational complexity of the
Bolasso is O(m(p3 + p2n)).

The following proposition (proved in Appendix A)
shows that the previous algorithm leads to consistent
model selection.

Proposition 3 Assume (A1-3) and µn = µ0n
−1/2,

µ0 > 0. Then the probability that the Bolasso does not
exactly select the correct model, i.e., for all m > 0,
P(J 6= J) has the following upper bound:

P(J 6= J) 6 mA1e
−A2n + A3

log n
n1/2

+ A4
log m

m ,

where A1, A2, A3, A4 are strictly positive constants.

Therefore, if log(m) tends to infinity slower than n
when n tends to infinity, the Bolasso asymptotically se-
lects with overwhelming probability the correct active
variable, and by regular consistency of the restricted
least-square estimate, the correct sign pattern as well.
Note that the previous bound is true whether the con-
dition in Eq. (2) is satisfied or not, but could be im-
proved on if we suppose that Eq. (2) is satisfied. See
Section 4.1 for a detailed comparison with the Lasso
on synthetic examples.

4. Simulations

In this section, we illustrate the consistency results ob-
tained in this paper with a few simple simulations on
synthetic examples similar to the ones used by Bach
(2007) and some medium scale datasets from the UCI
machine learning repository (Asuncion & Newman,
2007).

4.1. Synthetic examples

For a given dimension p, we sampled X ∈ R
p from

a normal distribution with zero mean and covariance
matrix generated as follows: (a) sample a p×p matrix
G with independent standard normal distributions, (b)
form Q = GG⊤, (c) scale Q to unit diagonal. We then
selected the first Card(J) = r variables and sampled
non zero loading vectors as follows: (a) sample each
loading from independent standard normal distribu-
tions, (b) rescale those to unit magnitude, (c) rescale
those by a scaling which is uniform at random be-
tween 1

3 and 1 (to ensure minj∈J |wj | > 1/3). Finally,
we chose a constant noise level σ equal to 0.1 times
(E(w⊤X)2)1/2, and the additive noise ε is normally
distributed with zero mean and variance σ2. Note that
the joint distribution on (X, Y ) thus defined satisfies
with probability one (with respect to the sampling of
the covariance matrix) assumptions (A1-3).

In Figure 1, we sampled two distributions PXY with
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Figure 1. Lasso: log-odd ratios of the probabilities of se-
lection of each variable (white = large probabilities, black
= small probabilities) vs. regularization parameter. Con-
sistency condition in Eq. (2) satisfied (left) and not satisfied
(right).
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Figure 2. Bolasso: log-odd ratios of the probabilities of se-
lection of each variable (white = large probabilities, black
= small probabilities) vs. regularization parameter. Con-
sistency condition in Eq. (2) satisfied (left) and not satisfied
(right).

p = 16 and r = 8 relevant variables, one for which
the consistency condition in Eq. (2) is satisfied (left),
one for which it was not satisfied (right). For a fixed
number of sample n = 1000, we generated 256 replica-
tions and computed the empirical frequencies of select-
ing any given variable for the Lasso as the regulariza-
tion parameter µ varies. Those plots show the various
asymptotic regimes of the Lasso detailed in Section 2.
In particular, on the right plot, although no µ leads
to perfect selection (i.e., exactly variables with indices
less than r = 8 are selected), there is a range where all
relevant variables are always selected, while all others
are selected with probability within (0, 1).

In Figure 2, we plot the results under the same con-
ditions for the Bolasso (with a fixed number of boot-
strap replications m = 128). We can see that in the
Lasso-consistent case (left), the Bolasso widens the
consistency region, while in the Lasso-inconsistent case
(right), the Bolasso “creates” a consistency region.

In Figure 3, we selected the same two distributions and
compared the probability of exactly selecting the cor-
rect support pattern, for the Lasso, and for the Bolasso
with varying numbers of bootstrap replications (those
probabilities are computed by averaging over 256 ex-
periments with the same distribution). In Figure 3, we
can see that in the Lasso-inconsistent case (right), the
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Figure 3. Bolasso (red, dashed) and Lasso (black, plain):
probability of correct sign estimation vs. regularization
parameter. Consistency condition in Eq. (2) satisfied (left)
and not satisfied (right). The number of bootstrap repli-
cations m is in {2, 4, 8, 16, 32, 64, 128, 256}.

Bolasso indeed allows to fix the unability of the Lasso
to find the correct pattern. Moreover, increasing m
looks always beneficial; note that although it seems to
contradict the asymptotic analysis in Section 3 (which
imposes an upper bound for consistency), this is due
to the fact that not selecting (at least) the relevant
variables has very low probability and is not observed
with only 256 replications.

Finally, in Figure 4, we compare various variable se-
lection procedures for linear regression, to the Bolasso,
with two distributions where p = 64, r = 8 and varying
n. For all the methods we consider, there is a natural
way to select exactly r variables with no free parame-
ters (for the Bolasso, we select the most stable pattern
with r elements, i.e., the pattern which corresponds to
most values of µ). We can see that the Bolasso out-
performs all other variable selection methods, even in
settings where the number of samples becomes of the
order of the number of variables, which requires addi-
tional theoretical analysis, subject of ongoing research.
Note in particular that we compare with bagging of
least-square regression (Breiman, 1996a) followed by
a thresholding of the loading vector, which is another
simple way of using bootstrap samples: the Bolasso
provides a more efficient way to use the extra infor-
mation, not for usual stabilization purposes (Breiman,
1996b), but directly for model selection. Note finally,
that the bagging of Lasso estimates requires an addi-
tional parameter and is thus not tested.

4.2. UCI datasets

The previous simulations have shown that the Bolasso
is succesful at performing model selection in synthetic
examples. We now apply it to several linear regression
problems and compare it to alternative methods for
linear regression, namely, ridge regression, Lasso, bag-
ging of Lasso estimates (Breiman, 1996a), and a soft
version of the Bolasso (referred to as Bolasso-S), where
instead of intersecting the supports for each bootstrap
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Figure 4. Comparison of several variable selection meth-
ods: Lasso (black circles), Bolasso (green crosses), forward
greedy (magenta diamonds), thresholded LS estimate (red
stars), adaptive Lasso (blue pluses). Consistency condi-
tion in Eq. (2) satisfied (left) and not satisfied (right). The
averaged (over 32 replications) variable selection error is
computed as the square distance between sparsity pattern
indicator vectors.

replications, we select those which are present in at
least 90% of the bootstrap replications. In Table 1,
we consider data randomly generated as in Section 4.1
(with p = 32, r = 8, n = 64), where the true model
is known to be composed of a sparse loading vector,
while in Table 2, we consider regression datasets from
the UCI machine learning repository. For all of those,
we perform 10 replications of 10-fold cross validation
and for all methods (which all have one free regular-
ization parameter), we select the best regularization
parameter on the 100 folds and plot the mean square
prediction error and its standard deviation.

Note that when the generating model is actually sparse
(Table 1), the Bolasso outperforms all other models,
while in other cases (Table 2) the Bolasso is sometimes
too strict in intersecting models, i.e., the softened
version works better and is competitive with other
methods. Studying the effects of this softened scheme
(which is more similar to usual voting schemes), in par-
ticular in terms of the potential trade-off between good
model selection and low prediction error, and under
conditions where p is large, is the subject of ongoing
work.

5. Conclusion

We have presented a detailed analysis of variable se-
lection properties of a boostrapped version of the
Lasso. The model estimation procedure, referred to
as the Bolasso, is provably consistent under general
assumptions. This work brings to light that poor
variable selection results of the Lasso may be easily
enhanced thanks to a simple parameter-free resam-
pling procedure. Our contribution also suggests that
the use of bootstrap samples by L. Breiman in Bag-
ging/Arcing/Random Forests (Breiman, 1998) may
have been so far slightly overlooked and considered a

Table 1. Comparison of least-square estimation methods,
data generated as described in Section 4.1, with κ =
‖QJcJQ

−1

JJ
sJ‖∞ (cf. Eq. (2)). Performance is measured

through mean squared prediction error (multiplied by 100).

κ 0.93 1.20 1.42 1.28
Ridge 8.8 ± 4.5 4.9 ± 2.5 7.3 ± 3.9 8.1 ± 8.6
Lasso 7.6 ± 3.8 4.4 ± 2.3 4.7 ± 2.5 5.1 ± 6.5
Bolasso 5.4 ± 3.0 3.4 ± 2.4 3.4 ± 1.7 3.7 ± 10.2
Bagging 7.8 ± 4.7 4.6 ± 3.0 5.4 ± 4.1 5.8 ± 8.4
Bolasso-S 5.7 ± 3.8 3.0 ± 2.3 3.1 ± 2.8 3.2 ± 8.2

Table 2. Comparison of least-square estimation methods,
UCI regression datasets. Performance is measured through
mean squared prediction error (multiplied by 100).

Autompg Imports Machine Housing
Ridge 18.6±4.9 7.7±4.8 5.8±18.6 28.0±5.9
Lasso 18.6±4.9 7.8±5.2 5.8±19.8 28.0±5.7
Bolasso 18.1±4.7 20.7±9.8 4.6±21.4 26.9±2.5
Bagging 18.6±5.0 8.0±5.2 6.0±18.9 28.1±6.6
Bolasso-S 17.9±5.0 8.2±4.9 4.6±19.9 26.8±6.4

minor feature, while using boostrap samples may actu-
ally be a key computational feature in such algorithms
for good model selection performances, and eventually
good prediction performances on real datasets.

The current work could be extended in various ways:
first, we have focused on a fixed total number of vari-
ables, and allowing the numbers of variables to grow
is important in theory and in practice (Meinshausen
& Yu, 2006). Second, the same technique can be
applied to similar settings than least-square regres-
sion with the ℓ1-norm, namely regularization by block
ℓ1-norms (Bach, 2007) and other losses such as gen-
eral convex classification losses. Finally, theoretical
and practical connections could be made with other
work on resampling methods and boosting (Bühlmann,
2006).

A. Proof of Model Consistency Results

In this appendix, we give sketches of proofs for the
asymptotic results presented in Section 2 and Sec-
tion 3. The proofs rely on the well-known property of
the Lasso optimization problems, namely that if the
sign pattern of the solution is known, then we can get
the solution in closed form.

A.1. Optimality Conditions

We let denote ε = Y −Xw ∈ R
n, Q = X

⊤
X/n ∈ R

p×p

and q = X
⊤

ε/n ∈ R
p. First, we can equivalently

rewrite Eq. (1) as:

min
w∈Rp

1
2 (w−w)⊤Q(w−w)−q⊤(w−w)+µn‖w‖1. (3)
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The optimality conditions for Eq. (3) can be written
in terms of the sign pattern s = s(w) = sign(w) and
the sparsity pattern J = J(w) = {j, wj 6= 0} (Yuan
& Lin, 2007):

‖(QJcJQ−1
JJQJJ − QJcJ)wJ + (QJcJQ−1

JJqJ − qJc)

+µnQJcJQ−1
JJsJ ‖∞ 6 µn, (4)

sign(Q−1
JJQJJwJ + Q−1

JJqJ − µnQ−1
JJsJ ) = sJ . (5)

In this paper, we focus on regularization parameters
µn of the form µn = µ0n

−1/2. The main idea behind
the results is to consider that (Q, q) are distributed ac-
cording to their limiting distributions, obtained from
the law of large numbers and the central limit theo-
rem, i.e., Q converges to Q a.s. and n1/2q is asymptot-
ically normally distributed with mean zero and covari-
ance matrix σ2Q. When assuming this, Propositions 1
and 2 are straightforward. The main effort is to make
sure that we can safely replace (Q, q) by their limit-
ing distributions. The following lemmas give sufficient
conditions for correct estimation of the signs of vari-
ables in J and for selecting a given pattern s (note that
all constants could be expressed in terms of Q and w,
details are omitted here):

Lemma 1 Assume (A2) and ‖Q−Q‖2 6 λmin(Q)/2.
Then sign(ŵJ) 6= sign(wJ) implies ‖Q−1/2q‖2 > C1 −
µnC2, where C1, C2 > 0.

Lemma 2 Assume (A2) and let s ∈ {−1, 0, 1}p such
that sJ = sign(wJ). Let J = {j, sj 6= 0} ⊃ J. Assume

‖Q− Q‖2 6 min {η1, λmin(Q)/2} , (6)

‖Q−1/2q‖2 6 min{η2, C1 − µnC4}, (7)

‖QJcJQ−1
JJqJ − qJc − µnQJcJQ−1

JJsJ‖∞ 6 µn

−C5η1µn − C6η1η2, (8)

∀i ∈ J\J, si

[

Q−1
JJ (qJ −µnsJ)

]

i
>µnC7η1+C8η1η2, (9)

with C4, C5, C6, C7, C8 are positive constants. Then
sign(ŵ) = sign(w).

Those two lemmas are interesting because they relate
optimality of certain sign patterns to quantities from
which we can derive concentration inequalities.

A.2. Concentration Inequalities

Throughout the proofs, we need to provide upper
bounds on the following quantities P(‖Q−1/2q‖2 > α)
and P(‖Q − Q‖2 > η). We obtain, following standard
arguments (Boucheron et al., 2004): if α < C9 and
η < C10 (where C9, C10 > 0 are constants),

P(‖Q−1/2q‖2 > α) 6 4p exp
(

− nα2

2pC9

)

.

P(‖Q − Q‖2 > η) 6 4p2 exp
(

− nη2

2p2C10

)

.

We also consider multivariate Berry-Esseen inequali-
ties (Bentkus, 2003); the probability P(n1/2q ∈ C) can
be estimated as P(t ∈ C) where t is normal with mean
zero and covariance matrix σ2Q. The error is then
uniformly (for all convex sets C) upperbounded by:

400p1/4n−1/2λmin(Q)−3/2
E|ε|3‖X‖3

2 = C11n
−1/2.

A.3. Proof of Proposition 1

By Lemma 2, for any given A, and n large enough, the
probability that the sign is different from s is upper-
bounded by

P

(

‖Q−1/2q‖2 > A(log n)1/2

n1/2

)

+ P

(

‖Q− Q‖2> A(log n)1/2

n1/2

)

+P {t /∈ C(s, µ0(1 − α))} + 2C11n
−1/2,

where C(s, β) is the set of t such that (a)
‖QJcJQ−1

JJ tJ − tJc − βQJcJQ−1
JJsJ‖∞ 6 β and (b) for

all i ∈ J\J, si

[

Q−1
JJ (tJ − βsJ)

]

i
> 0. Note that here

α = O((log n)n−1/2) tends to zero and that we have:
P {t /∈ C(s, µ0(1 − α))} 6 P {t /∈ C(s, µ0)} + O(α). All
terms (if A is large enough) are thus O((log n)n−1/2).

This shows that P(sign(ŵ) = sign(w)) > ρ(s, µ0) +
O((log n)n−1/2) where ρ(s, µ0) = P {t ∈ C(s, µ0)} ∈
(0, 1)–the probability is strictly between 0 and 1 be-
cause the set and its complement have non empty
interiors and the normal distribution has a positive
definite covariance matrix σ2Q. The other inequal-
ity can be proved similarly. Note that the constant in
O((log n)n−1/2) depends on µ0 but by carefully con-
sidering this dependence on µ0, we could make the
inequality uniform in µ0 as long as µ0 tends to zero or
infinity at most at a logarithmic speed (i.e., µn devi-
ates from n−1/2 by at most a logarithmic factor). Also,
it would be interesting to consider uniform bounds on
portions of the regularization path.

A.4. Proof of Proposition 2

From Lemma 1, the probability of not selecting any of
the variables in J is upperbounded by P(‖Q−1/2q‖2 >
C1 − µnC2) + P(‖Q − Q‖2 > λmin(Q)/2), which is
straightforwardly upper bounded (using Section A.2)
by a term of the required form.

A.5. Proof of Proposition 3

In order to simplify the proof, we made the simpli-
fying assumption that the random variables X and ε
have compact supports. Extending the proofs to take
into account the looser condition that ‖X‖2 and ε2

have non uniformly infinite cumulant generating func-
tions (i.e., assumption (A1)) can be done with mi-
nor changes. The probability that

⋂m
k=1 Jk is different

from J is upper bounded by the sum of the following
probabilities:
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(a) Selecting at least variables in J: the proba-
bility that for the k-th replication, one index in J is
not selected, each of them which is upper bounded by
P(‖Q−1/2q∗‖2 > C1/2) + P(‖Q−Q∗‖2 > λmin(Q)/2),
where q∗ corresponds to the ghost sample; as com-
mon in theoretical analysis of the bootstrap, we re-
late q∗ to q as follows: P(‖Q−1/2q∗‖2 > C1/2) 6

P(‖Q−1/2(q∗ − q)‖2 > C1/4) + P(‖Q−1/2q‖2 > C1/4)
(and similarly for P(‖Q − Q∗‖2 > λmin(Q)/2)). Be-
cause we have assumed that X and ε have compact
supports, the bootstrapped variables have also com-
pact support and we can use concentration inequal-
ities (given the original variables X, and also after
expectation with respect to X). Thus the probabil-
ity for one bootstrap replication is upperbounded by
Be−Cn where B and C are strictly positive constants.
Thus the overall contribution of this part is less than
mBe−Cn.

(b) Selecting at most variables in J: the proba-
bility that for all replications, the set J is not exactly
selected (note that this is not tight at all since on top
of the relevant variables which are selected with over-
whelming probability, different additional variables
may be selected for different replications and cancel
out when intersecting).

Our goal is thus to bound E
{

P(J∗ 6= J|X)m
}

. By

previous lemmas, we have that P(J∗ 6= J|X) is

upper bounded by P

(

‖Q−1/2q∗‖2 > A(log n)1/2

n1/2
|X

)

+

P

(

‖Q− Q∗‖2 > A(log n)1/2

n1/2
|X

)

+P(t∗ /∈ C(µ0)|X) +

2C11n
−1/2 + O( log n

n1/2
), where now, given X, Y , t∗ is

normally distributed with mean n1/2q and covariance
matrix 1

n

∑n
i=1 ε2

i xix
⊤
i .

The first two terms and the last two ones are uni-
formly O( log n

n1/2
) (if A is large enough). We then have

to consider the remaining term. We have C(µ0) =
{t∗ ∈ R

p, ‖QJcJQ
−1
JJ

t∗
J
−t∗

Jc−µ0QJcJQ
−1
JJ

sJ‖∞ 6 µ0}.
By Hoeffding’s inequality, we can replace the covari-
ance matrix that depends on X and Y by σ2Q, at
cost O(n−1/2). We thus have to bound P(n1/2q + y /∈
C(µ0)|q) for y normally distributed and C(µ0) a fixed
compact set. Because the set is compact, there ex-
ist constants A, B > 0 such that, if ‖n1/2q‖2 6 α
for α large enough, then P(n1/2q + y /∈ C(µ0)|q) 6

1 − Ae−Bα2

. Thus, by truncation, we obtain a bound

of the form: E
{

P(J∗ 6= J|X)m
}

6 (1 − Ae−Bα2

+

F log n
n1/2

)m + Ce−Bα2

6 exp(−mAe−Bα2

+ mF log n
n1/2

) +

Ce−Bα2

, where we have used Hoeffding’s inequality
to upper bound P(‖n1/2q‖2 > α). By minimizing in

closed form with respect to e−Bα2

, i.e., with e−Bα2

=
F log n
An1/2

+ log(mA/C)
mA , we obtain the desired inequality.
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