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Summary

Discriminative approach to blind one-microphone separation
Reformulation as spectrogram segmentation
Learning from artificially mixed data

Machine learning algorithm for

— segmenting
— learning how to segment from training data



Blind one-microphone speech separation
e Two or more speakers si,...,S,, - one microphone z
e |deal acoustics x = s+ so+ -+ + s,
e Goal: recover s1,...,s,, from x
e Blind: without knowing the speakers in advance

e Two types of approaches

— Generative
+ Learn source model p(s) ... then “simply” an inference problem
x Model too simple : does not separate
x Model too complex : inference intractable

+ Works for non blind situations (Roweis, 2001, Lee et al., 2002)
— Discriminative: model of separation task, not of speakers



Spectrogram

e Spectrogram (a.k.a Gabor analysis, Windowed Fourier transforms)

— cut the signals in overlapping frames

— apply a window and compute the FFT
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Sparsity of speech signals - spectrogram

e Disjoint support of spectrograms observed by several researchers
(Cooke, 1994, Roweis, 2000, Yilmaz and Rickard, 2004)

e Sparsity of the spectrogram (all pixels taken together)
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Sparsity and superposition
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Building training set

Spectrogram of the mix “Optimal” segmentation
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e Empirical property: there exists a segmentation that leads to audibly
acceptable signals (e.g., take arg max(|.S1|, |S2]) )

e Work as possibly large training datasets
e Requires new way of segmenting images ...

e ... which can be learned from data



Summary of spectral clustering

Data: P elementsz, ¢ X, p=1,..., P

U
Step 1: build “affinity /similarity” matrix W & REXP

Y
Step 2: normalize the affinity matrix: W = D-1/2WD~1/2 where
D is diagonal with sums of rows of W
Y
Step 3: compute the R largest eigenvectors U(W) € REXE of W
Y

Step 4: considering U(W) as P points in R¥, cluster U using
weighted K-means

Y
Output: partition F



Learning problem

¢ Input:

— spectrograms of mixed signals

— “optimal” segmentations
e Output:

— features for each spectrogram

— Parameterized similarity matrix for spectral clustering
e Challenges:

— Requires complex features
— Large dimensionality of the spectrogram



Features for speech separation

e Classical cues from speech psychophysics

e Non-harmonic cues (similar to vision cues):
— Continuity
— Common fate cues
e Harmonic cues (requires different type of affinity matrices):

— Pitch and potentially timbre
— Requires multiple pitch estimation



Multiple pitch extraction

gy %;

A

w: pitch frequency

v: voicing decision

h: spectral envelope

c: constant unvoiced amplitude

o Additive model for
the magnitude of the
spectrogram

e Factorial HMM

e Smoothness prior on the
spectral envelope

e Discriminative training

e Determination of number of
speakers



Spectral graph partitioning

e P vertices of a weighted graph to partition into disjoint clusters
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o Affinity matrix W ¢ RE>F (W

oy 1S large when points p and p’ are
likely to be in the same cluster)

e Goal: find clusters with high intra-similarity and low inter-similarity



Normalized cuts

e Weight between two sets of vertices A and B, defined as:

e (multi-way) normalized cut for partition V= A;U---U AR (Shi and
Malik, 2000, Zha et al, 2001):
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e Goal: minimize normalized cut



Learning spectral clustering

e Learning from fully segmented images (Bach & Jordan, NIPS 2004)

e Single cost function J(W, F)

— Minimize with respect to the partition £/ = spectral clustering
— Minimize with respect to the matrix W =- learning similarities

e Uses the power method to approximate eigenvectors

e Requires parameterized affinity matrices



Very large similarity matrices

e Three different time scales = W = ayW7 + asWs + a3Ws

e Small

— Fine scale structure (continuity, harmonicity)

— very sparse approximation
e Medium

— Medium scale structure (common fate cues)

— band-diagonal approximation, potentially reduced rank
e Large

— Global structure (e.g., speaker identification)
— low-rank approximation (rank is independent of duration)



Parameterized affinity matrices

e Non pitch-related features f,, a=1,...,P.

Wap = exp(—|| fo — fol|”)

e Pitch related features

— feature f,, a=1,... P
— strength of pitch y,:

Wap = eXp(_‘g(yaa yb) T 53|B4Hfa — fb|’62)

where g(u,v) = (ue’s% + ves?) /(efs% 4 eP5Y) ranges from the
minimum of v and v for 85 = —o0 to their maximum for 85 = +o00.



Experiments
e Two datasets of speakers: one for testing, one for training

o Left: optimal segmentation - right: blind segmentation

Frequency
Frequency

e Testing time (linear in duration of signal): currently 30 minutes for
4 seconds of speech

e Speech samples on web site



Current work

Mixing conditions: allow some form of delay or echo
speaker vs. speaker = speaker vs. non stationary noise
Post processing of spectrogram segmentation

Time and memory requirements



