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Machine learning
Scientific context

• Proliferation of digital data

– Personal data
– Industry
– Scientific: from bioinformatics to humanities

• Need for automated processing of massive data, and beyond

• Series of “hypes”

Big data → Data science → Machine Learning
→ Deep Learning → Artificial Intelligence → Large Language Models

• Positioning of learning theory?



Parametric supervised machine learning

• Data: n observations (xi, yi) ∈ X× Y, i = 1, . . . , n

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ Rd

• Linear predictions

– h(x, θ) = θ⊤Φ(x) =
d

∑

i=1

θiΦ(x)i

• E.g., advertising: n > 109

– Φ(x) ∈ {0, 1}d, d > 109

– Navigation history + ad



Parametric supervised machine learning

• Data: n observations (xi, yi) ∈ X× Y, i = 1, . . . , n

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ Rd

x1 x2 x3 x4 x5 x6

y1 = 1 y2 = 1 y3 = 1 y4 = −1 y5 = −1 y6 = −1

– Neural networks (n, d > 108): h(x, θ) = θ⊤r σ(θ
⊤
r−1σ(· · · θ⊤2 σ(θ⊤1 x))

x y

θ1
θ3

θ2



Parametric supervised machine learning

• Data: n observations (xi, yi) ∈ X× Y, i = 1, . . . , n

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ Rd

• (regularized) empirical risk minimization:

min
θ∈Rd

1

n

n
∑

i=1

{

ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)

data fitting term + regularizer



Parametric supervised machine learning

• Data: n observations (xi, yi) ∈ X× Y, i = 1, . . . , n

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ Rd

• (regularized) empirical risk minimization:

min
θ∈Rd

1

n

n
∑

i=1

(

yi − h(xi, θ)
)2

+ λΩ(θ)

(least-squares regression)



Parametric supervised machine learning

• Data: n observations (xi, yi) ∈ X× Y, i = 1, . . . , n

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ Rd

• (regularized) empirical risk minimization:

min
θ∈Rd

1

n

n
∑

i=1

log
(

1 + exp(−yih(xi, θ)
)

+ λΩ(θ)

(logistic regression)



Parametric supervised machine learning

• Data: n observations (xi, yi) ∈ X× Y, i = 1, . . . , n, independent, same distribution

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ Rd

• (regularized) empirical risk minimization:

min
θ∈Rd

1

n

n
∑

i=1

{

ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)

data fitting term + regularizer

• Actual goal: minimize test error Ep(x,y)ℓ(y, h(x, θ))

– Statistics and optimization



Convex optimization problems

min
θ∈Rd

1

n

n
∑

i=1

{

ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)
}

• Conditions: Convex loss (e.g., square) and “linear” predictions h(x, θ) = θ⊤Φ(x)

• Consequences

– Efficient algorithms (typically gradient-based)
– Quantitative runtime and prediction performance guarantees

• Golden years of convexity in machine learning (1995 to 2020)

– Support vector machines and kernel methods
– Sparsity / low-rank models with first-order methods (Lasso, etc.)
– Optimal transport
– Stochastic methods for large-scale learning and online learning
– etc.



Deterministic and stochastic methods

• Minimize g(θ) =
1

n

n
∑

i=1

fi(θ) with fi(θ) = ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)

• Gradient descent: θt = θt−1 − γ∇g(θt−1) = θt−1 −
γ

n

n
∑

i=1

∇fi(θt−1) (Cauchy, 1847)

• Stochastic gradient descent: θt = θt−1 − γ∇fi(t)(θt−1) (Robbins and Monro, 1951)
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Stochastic gradient with exponential convergence

• Variance reduction

– SAG (Le Roux, Schmidt, and Bach, 2012)
– SVRG (Johnson and Zhang, 2013; Zhang, Mahdavi, and Jin, 2013)
– SAGA (Defazio, Bach, and Lacoste-Julien, 2014)

θt = θt−1 − γ
[

∇fi(t)(θt−1)+
1

n

n
∑

i=1

yt−1
i − yt−1

i(t)

]



Stochastic gradient with exponential convergence

• Variance reduction

– SAG (Le Roux, Schmidt, and Bach, 2012)
– SVRG (Johnson and Zhang, 2013; Zhang, Mahdavi, and Jin, 2013)
– SAGA (Defazio, Bach, and Lacoste-Julien, 2014)

• Number of individual gradient computations to reach error ε
(strongly-convex objectives with condition number κ)

Gradient descent
∣

∣

∣
nκ × log 1

ε

Stochastic gradient descent
∣

∣

∣
κ × 1

ε

Variance reduction
∣

∣

∣
(n+ κ) × log 1

ε

– “Breaking” two lower bounds with extra assumptions



Stochastic gradient with exponential convergence

• Acceleration (Nesterov, 1983, 2004)

– Shalev-Shwartz and Zhang (2014); Nitanda (2014); Lan (2015); Lin et al. (2015)
– Optimal convergence rate: from (n+ κ) · log 1

ε to (n+
√
nκ) · log 1

ε gradient calls

• Extension to online learning / single-pass SGD

– Nguyen et al. (2017); Fang et al. (2018); Cutkosky and Orabona (2019)
– Guarantees beyond convex problems

• Extensions to problems with finite sum structures

– Min-max saddle-point problems and variational inequalities
(Balamurugan and Bach, 2016; Alacaoglu and Malitsky, 2022)

• Extensions to distributed optimization (e.g., Hendrikx, Bach, and Massoulié, 2019)



Stochastic gradient with exponential convergence
From theory to practice and vice-versa

time

lo
g(
ex
ce
ss

co
st
)

deterministic

stochastic

new

• Empirical performance “matches” theoretical guarantees

• Theoretical analysis suggests practical improvements

– Non-uniform sampling, acceleration
– Matching upper and lower bounds What about deep learning?



Theoretical analysis of deep learning

• Multi-layer neural network h(x, θ) = θ⊤r σ(θ
⊤
r−1σ(· · · θ⊤2 σ(θ⊤1 x))

x y

θ1
θ3

θ2

– NB: already a simplification (see Resnets, transformers, Mamba, etc.)

• Main difficulties

1. Non-convex optimization problems
2. Generalization guarantees in the overparameterized regime



Loss landscape for deep learning (Li et al., 2018)

• What can go wrong?

– Local minima
– Stationary points
– Plateaux
– Bad initialization
– etc...



Optimization algorithms for deep learning

min
θ∈Rd

g(θ) =
1

n

n
∑

i=1

fi(θ) with fi(θ) = ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)

• Stochastic gradient descent (Robbins and Monro, 1951): θt = θt−1 − γ∇fi(t)(θt−1)

– Mini-batches, momentum: θt = θt−1 − γ∇fi(t)(θt−1) + δ(θt−1 − θt−2)
– Global guarantees in the convex case, local guarantees otherwise

(see, e.g., Bottou et al., 2018)

• Adam (Kingma and Ba, 2014)

– Rescaled updates with a reconditioning effect
– Global guarantees in the convex case, local guarantees otherwise

(Reddi et al., 2018; Défossez et al., 2020)



Optimization algorithms for deep learning

min
θ∈Rd

g(θ) =
1

n

n
∑

i=1

fi(θ) with fi(θ) = ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)

• Stochastic gradient descent (Robbins and Monro, 1951): θt = θt−1 − γ∇fi(t)(θt−1)

– Mini-batches, momentum: θt = θt−1 − γ∇fi(t)(θt−1) + δ(θt−1 − θt−2)
– Global guarantees in the convex case, local guarantees otherwise

(see, e.g., Bottou et al., 2018)

• Adam (Kingma and Ba, 2014)

– Rescaled updates with a reconditioning effect
– Global guarantees in the convex case, local guarantees otherwise

(Reddi et al., 2018; Défossez et al., 2020)

• Why does it work so well for overparameterized deep models?



Gradient descent for a single hidden layer

• Predictor: h(x) = 1
mθ⊤2 σ(θ

⊤
1 x) =

1
m

∑m
j=1 θ2(j) · σ

[

θ1(·, j)⊤x
]

– Family: h =
1

m

m
∑

j=1

Ψ(wj) with Ψ(wj)(x) = θ2(j) · σ
[

θ1(·, j)⊤x
]

• Goal: minimize R(h) = Ep(x,y)ℓ(y, h(x)), with R convex

h(x; θ)x

θ1

θ2



Gradient descent for a single hidden layer

• Predictor: h(x) = 1
mθ⊤2 σ(θ

⊤
1 x) =

1
m

∑m
j=1 θ2(j) · σ

[

θ1(·, j)⊤x
]

– Family: h =
1

m

m
∑

j=1

Ψ(wj) with Ψ(wj)(x) = θ2(j) · σ
[

θ1(·, j)⊤x
]

• Goal: minimize R(h) = Ep(x,y)ℓ(y, h(x)), with R convex

• Main insight

– h =
1

m

m
∑

j=1

Ψ(wj) =

∫

W

Ψ(w)dµ(w) with dµ(w) =
1

m

m
∑

j=1

δwj

w1w2w3w4 w5 w6 w1

µ(w)



Gradient descent for a single hidden layer

• Predictor: h(x) = 1
mθ⊤2 σ(θ

⊤
1 x) =

1
m

∑m
j=1 θ2(j) · σ

[

θ1(·, j)⊤x
]

– Family: h =
1

m

m
∑

j=1

Ψ(wj) with Ψ(wj)(x) = θ2(j) · σ
[

θ1(·, j)⊤x
]

• Goal: minimize R(h) = Ep(x,y)ℓ(y, h(x)), with R convex

• Main insight

– h =
1

m

m
∑

j=1

Ψ(wj) =

∫

W

Ψ(w)dµ(w) with dµ(w) =
1

m

m
∑

j=1

δwj

– Overparameterized models with m large ≈ measure µ with densities
– Barron (1993); Kurkova and Sanguineti (2001); Bengio et al. (2006); Rosset et al.

(2007); Bach (2017)



Optimization on measures

• Minimize with respect to measure µ: R
(

∫

W

Ψ(w)dµ(w)
)

– Convex optimization problem on measures
– Frank-Wolfe techniques for incremental learning
– Non-tractable (Bach, 2017), not what is used in practice

• Represent µ by a finite set of “particles” µ = 1
m

∑m
j=1 δwj

– Backpropagation = gradient descent on W = (w1, . . . , wm)

• Three questions:

– Algorithm limit when number of particles m gets large
– Global convergence to a global minimizer
– Prediction performance



Many particle limit and global convergence
(Chizat and Bach, 2018)

• General framework: minimize F (µ) = R
(

∫

W

Ψ(w)dµ(w)
)

– Algorithm: minimizing Fm(w1, . . . , wm) = R
( 1

m

m
∑

j=1

Ψ(wj)
)

– Gradient flow Ẇ = −m∇Fm(W ), with W = (w1, . . . , wm)
– Idealization of (stochastic) gradient descent

1. Single pass SGD on the unobserved expected risk
2. Multiple pass SGD or full GD on the empirical risk



Many particle limit and global convergence
(Chizat and Bach, 2018)

• General framework: minimize F (µ) = R
(

∫

W

Ψ(w)dµ(w)
)

– Algorithm: minimizing Fm(w1, . . . , wm) = R
( 1

m

m
∑

j=1

Ψ(wj)
)

– Gradient flow Ẇ = −m∇Fm(W ), with W = (w1, . . . , wm)
– Idealization of (stochastic) gradient descent

• Limit when m tends to infinity

– Wasserstein gradient flow (Nitanda and Suzuki, 2017; Chizat and Bach, 2018; Mei,
Montanari, and Nguyen, 2018; Sirignano and Spiliopoulos, 2018)



Many particle limit and global convergence (Chizat and Bach, 2018)

• (informal) theorem: when the number of hidden neurons tends to infinity, the gradient
flow converges to the global optimum

– One-hidden-layer neural networks and beyond
– “Mean-field” limit common in statistical physics (Mei et al., 2018)
– Two key ingredients: homogeneity and initialization, on top of convexity of the loss

• Homogeneity (see, e.g., Haeffele and Vidal, 2017; Bach et al., 2008)

– Rectified linear units: σ(u) = max{u, 0}

• Sufficiently diverse initial neuron weights

– Needs to cover the entire sphere of directions

• Blessing of overparameterization, but only qualititative



Simple simulations in two dimensions

• ReLU units with d = 2 (optimal predictor has 5 neurons)

5 neurons 10 neurons 100 neurons

Model: h(x, θ) =
1

m

m
∑

j=1

ηj max{w⊤
j x, 0}

(plotting |ηj|wj for each hidden neuron j)



Avoiding overfitting with overparameterization

• Common wisdom: “models do not generalize well with too
many parameters”

– aggregated magnitude of parameters (e.g., a norm) provides
a finer control

• Regularization effect of gradient methods

– “Implicit bias” towards minimum norm solutions (Gunasekar
et al., 2017; Soudry et al., 2018; Gunasekar et al., 2018; Ji
and Telgarsky, 2018; Chizat and Bach, 2020)

– No catastrophic, benign overfitting (Bartlett et al., 2020)
(MIT Press, 2024)



Towards quantitative convergence

• Convergence time t and number m of neurons required for global convergence

– Too hard (yet!) in general
– Complex dynamics, e.g., “saddle-to-saddle” (see, e.g., Jacot et al., 2021)
– Simplicity bias (Shah et al., 2020; Boursier and Flammarion, 2024)

• Need for simplified (yet relevant) models and architectures

– Quantitative (asymptotic or non-asymptotic) analysis
– Empirical validity beyond the model (synthetic or real data)
– From “understanding” to proposing improvements



Towards quantitative convergence

• Idea 1: Adding noise to the dynamics

Wk = Wk−1 − γ∇F (Wk−1)+
√

2γτ ·N(0, I)

– Mei et al. (2018); Chizat (2022); Nitanda et al. (2022)

– Allows for global quantitative convergence guarantees

– Slow convergence as a function of temperature τ



Towards quantitative convergence

• Idea 2: Change scaling

– Du et al. (2018, 2019); Allen-Zhu et al. (2019); etc.

– Equivalent to replacing h =
1

m

m
∑

j=1

Ψ(wj) by h =
α

m

m
∑

j=1

Ψ(wj) for α → +∞

– Allows for global linear convergence guarantees for deep architectures

• But...

– “Lazy” regime where neurons do not move (Chizat, Oyallon, and Bach, 2019)

– linear method equivalent to neural tangent kernel (Jacot et al., 2018)

– No feature learning, little real effect in deep learning (Bietti and Bach, 2021)



Towards quantitative convergence

• Idea 3: Simplify architectures

– Linear neural networks (e.g., Gidel et al., 2019; Marion and Chizat, 2024)

– Diagonal linear networks (Woodworth et al., 2020; Pesme et al., 2021)

– Precise and insightful guarantees, hard to extend to non-linear architectures

• Idea 4: Simplify data models

– Gaussian or uniform data in high dimension (Zdeborová and Krzakala, 2016; Ghorbani
et al., 2021, etc.)

– Multiple index models (Bietti, Bruna, and Pillaud-Vivien, 2023)

– Orthogonal inputs (Boursier, Pillaud-Vivien, and Flammarion, 2022)

– Weakly correlated inputs (Dana, Bach, and Pillaud-Vivien, 2025)



Weakly correlated inputs (Dana, Bach, and Pillaud-Vivien, 2025)

• One-hidden layer with square loss

– Fixed number m of hidden neurons and number n of observations
– Generic initialization

• Simplifying assumptions

– Empirical covariance matrix close to diagonal
– Random data with diagonal population covariance matrix and d ! n2

– No assumptions on labels (no data model)

• Main result: Global exponential convergence to interpolating network as soon as
m ! log(n) with characteristic time n

– Explicit behavior through local Polyak-Lojasiewicz argument
– Open problem: results for d ! n with additional assumptions



Optimization for ML: current research and open problems

• Optimal scaling of parameters initializations and normalizations

– Extension to deep networks (Yang and Hu, 2021; Chizat and Netrapalli, 2024)
– Analysis on simple non-linear models (Bietti et al., 2023; Glasgow et al., 2025)

• Analysis of modern architectures (Resnets, transformers, Mamba, etc.)

– Proof of convergence and proposition of improvements

• Getting quantitative with “scaling laws”

– How much data and compute and data are needed to achieve a given performance?
(Kaplan et al., 2020; Hoffmann et al., 2022; Paquette et al., 2024)

– Taking into account data heterogeneity (Kunstner and Bach, 2025)

• Open problem: Why two reasonably wide hidden layers suffice to robustly reach global
optimum?
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