Statistical machine learning
and convex optimization

Francis Bach

INRIA - Ecole Normale Supérieure, Paris, France

informatics , mathematics

ZLA—

]E:]bgrts;
ECOLENORMALE
SUPERIEURE

Machine Learning Summer School - Madrid, 2018

Slides available: www.di.ens.fr/~fbach/fbach_mlss_2018. pdf



“Big data " revolution?
A new scientific context

e Data everywhere: size does not (always) matter
e Science and industry
e Size and variety

e Learning from examples

— n observations in dimension d
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Visual object recognition
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Bioinformatics

e Protein: Crucial elements of cell life
e Massive data: 2 millions for humans

e Complex data




Context
Machine learning for “big data”

e Large-scale machine learning: large d, large n

— d : dimension of each observation (or number of features)
— n : number of observations

e Examples: computer vision, bioinformatics, advertising
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Context
Machine learning for “big data”

e Large-scale machine learning: large d, large n

— d : dimension of each observation (or number of features)
— n : number of observations

e Examples: computer vision, bioinformatics, advertising
¢ Ideal running-time complexity: O(dn)

e Going back to simple methods

— Stochastic gradient methods (Robbins and Monro, 1951b)
— Mixing statistics and optimization
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Scaling to large problems
“Retour aux sources’

e 1950’s: Computers not powerful enough

IBM “1620", 1959
CPU frequency: 50 KHz
Price > 100 000 dollars

e 2010’s: Data too massive
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e Stochastic gradient methods (Robbins and Monro, 1951a)

— Going back to simple methods
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Outline - |
1. Introduction
e Large-scale machine learning and optimization

e Classes of functions (convex, smooth, etc.)
e Traditional statistical analysis (regardless of optimization)

2. Classical methods for convex optimization

e Smooth optimization (gradient descent, Newton method)
e Non-smooth optimization (subgradient descent)
e Proximal methods

3. Non-smooth stochastic approximation

e Stochastic (sub)gradient and averaging
e Non-asymptotic results and lower bounds
e Strongly convex vs. non-strongly convex
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Outline - 11

4. Classical stochastic approximation (not covered)

e Asymptotic analysis

e Robbins-Monro algorithm and Polyak-Rupert averaging
5. Smooth stochastic approximation algorithms

e Non-asymptotic analysis for smooth functions

e Least-squares regression without decaying step-sizes
6. Finite data sets (partially covered)

e Gradient methods with exponential convergence rates

e (Dual) stochastic coordinate descent
e Frank-Wolfe

7. Non-convex problems ( “open” / not covered)

16



Supervised machine learning

e Data: n observations (z;,y;) € X x YV, i=1,...,n, i.i.d.

e Prediction as a linear function 8'®(x) of features ®(x) € R?

— NB: non-linear problems (on the board)
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Supervised machine learning

e Data: n observations (z;,y;) € X x Y, i=1,...,n, i.i.d.
e Prediction as a linear function 8'®(x) of features ®(x) € R?

e (regularized) empirical risk minimization: find f solution of

RS
min E;E(yi,HTCI)(:Bi)) +  pf2(0)

0 cRd

convex data fitting term + regularizer
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Usual losses

e Regression: y € R, prediction §j = 0'®(x)
— quadratic loss %(y — @)2 — %(y _ QT(I)(:C))2
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Usual losses

o Regression: y € R, prediction §j = 0' ®(x)
— quadratic loss %(y — @)2 — %(y _ HT(I)(QC))2

e Classification : y ¢ {—1,1}, prediction § = sign(f' ®(x))

— loss of the form 4(y 0" ®(x))
— “True” 0-1 loss: £(y0' ®(x)) = L 0T (2)<0
— Usual convex losses:

5

— 0-1

4 — hinge
square
logistic

3




Main motivating examples

e Support vector machine (hinge loss): non-smooth

(Y,0"®(X)) =max{l - Y0 ' &(X),0}
e Logistic regression: smooth
Y, 0" ®(X)) =log(1 + exp(~Y 8 ®(X)))
e Least-squares regression

(Y0 d(X)) = %(Y —9'P(X))?

e Structured output regression

— See Tsochantaridis et al. (2005); Lacoste-Julien et al. (2013)
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Usual regularizers

e Main goal: avoid overfitting

e (squared) Euclidean norm: ||0||5 = Z;.l:l 16,2

— Numerically well-behaved
— Representer theorem and kernel methods : 6 = > | a;®(x;)

— See, e.g., Scholkopf and Smola (2001); Shawe-Taylor and
Cristianini (2004) and references therein
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Usual regularizers

e Main goal: avoid overfitting

e (squared) Euclidean norm: ||0||5 = Z;.l:l 16,2

— Numerically well-behaved
— Representer theorem and kernel methods : 6 = > |«

P(x;)

— See, e.g., Scholkopf and Smola (2001); Shawe-Taylor and

Cristianini (2004) and references therein

e Sparsity-inducing norms

. d

— Main example: £1-norm [|0]]y = > _;_, |6}

— Perform model selection as well as regularization

— Non-smooth optimization and structured sparsity

— See, e.g., Bach et al. (2012b,a) and references therein
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Supervised machine learning

e Data: n observations (z;,y;) € X x Y, i=1,...,n, i.i.d.
e Prediction as a linear function 8'®(x) of features ®(x) € R?

e (regularized) empirical risk minimization: find f solution of

RS
min E;E(yi,HTCI)(:Bi)) +  pf2(0)

0 cRd

convex data fitting term + regularizer
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Supervised machine learning

e Data: n observations (z;,y;) €e X x YV, i=1,...,n, i.i.d.
e Prediction as a linear function 8'®(z) of features ®(x) € R?

e (regularized) empirical risk minimization: find f solution of

min %Zﬁ(yi,HTCI)(xi)) +  uf2(0)

0 cRd

convex data fitting term + regularizer
e Empirical risk: f(0) = 23 Uy, 0" ®(x;)) training cost
o Expected risk: f(0) = E, ,l(y,0' ®(z)) testing cost

e Two fundamental questions: (1) computing 6 and (2) analyzing 4
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Supervised machine learning

e Data: n observations (z;,y;) €e X x YV, i=1,...,n, i.i.d.
e Prediction as a linear function 8'®(z) of features ®(x) € R?

e (regularized) empirical risk minimization: find f solution of

0 cRd

1 n
in =Y (y;,0' ®(x Q(6
min 2070+ u0)
convex data fitting term + regularizer
e Empirical risk: f(0) = 23 Uy, 0" ®(x;)) training cost
o Expected risk: f(0) = E, ,l(y,0' ®(z)) testing cost

e Two fundamental questions: (1) computing 6 and (2) analyzing 4
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Supervised machine learning

e Data: n observations (z;,y;) €e X x YV, i=1,...,n, i.i.d.
e Prediction as a linear function 8'®(z) of features ®(x) € R?

e (regularized) empirical risk minimization: find f solution of

1 n
in — Y ¢(y;,0' ®(x;)) such that Q(0) < D
e 2 (e B(w) such that (0

convex data fitting term + constraint
e Empirical risk: f(0) = 23 Uy, 0" ®(x;)) training cost
o Expected risk: f(0) = E, ,l(y,0' ®(z)) testing cost

e Two fundamental questions: (1) computing 6 and (2) analyzing 4

— May be tackled simultaneously
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General assumptions

Data: n observations (x;,y;) € X x YV, 1= 1,...,n, ii.d.
Bounded features ®(z) € R%: ||®(x)|2s < R

Empirical risk: f(0) = 23 0(y;, 0" ®(x;))  training cost
Expected risk: f(0) = E¢, ,10(y,0' ®(z)) testing cost

Loss for a single observation: f;(0) = ¢(y;, 9T(I>(£U7;))
= Vi, f(0) =Ef;(0)

A

Properties of f;, f, f

— Convex on R4
— Additional regularity assumptions: Lipschitz-continuity,
smoothness and strong convexity

28



e Global definitions

A

Convexity

29



Convexity

e Global definitions (full domain)

— Not assuming differentiability:

\V/(gl, (92, Q € [O, 1], g(()étgl —+ (1 — &)(92) < Oég((91) —+ (1 — Oé)g((gg)

30



Convexity

e Global definitions (full domain)

— Assuming differentiability:

V01,02, ¢(01) = g(62) + ¢'(62) " (81 — 65)

e Extensions to all functions with subgradients / subdifferential

31



Convexity

e Global definitions (full domain)

A

e Local definitions

— Twice differentiable functions
— V0, ¢"(0) = 0 (positive semi-definite Hessians)
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Convexity

e Global definitions (full domain)

A

e Local definitions

— Twice differentiable functions
— V0, ¢"(0) = 0 (positive semi-definite Hessians)

e Why convexity?
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Why convexity?

e Local minimum = global minimum

— Optimality condition (smooth): ¢’(#) =0

e Convex duality

— See Boyd and Vandenberghe (2003)

e Recognizing convex problems

— See Boyd and Vandenberghe (2003)
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Why convexity?

e Local minimum = global minimum

— Optimality condition (smooth): ¢’(#) =0
— Most algorithms do not need convexity for their definitions
— Local convexity around a local optimum

e Convex duality

— See Boyd and Vandenberghe (2003)

e Recognizing convex problems

— See Boyd and Vandenberghe (2003)
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Lipschitz continuity

e Bounded gradients of ¢ (< Lipschitz-continuity): the function
g if convex, differentiable and has (sub)gradients uniformly bounded
by B on the ball of center 0 and radius D:

V9 € RY 0] < D = [lg'(0)]]2 < B

v9,6" € R [10]]2, 16"]l2 < D = |g(0) — g(6")] < B|0 — &[]

e Machine learning

= with g(0) = 3372, £(yi, 0" ()
— G-Lipschitz loss and R-bounded data: B = GR (see board)
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Smoothness and strong convexity

e A function g : R — R is L-smooth if and only if it is differentiable

and its gradient is L-Lipschitz-continuous

V01,02 € RY, [|g'(601) — ¢'(02)]]2 < L||61 — 62]|2

o If g is twice differentiable: V0 € R?, ¢ (0) < L - Id

A

smooth

A
NON—SMOOt|

e

i
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Smoothness and strong convexity

e A function g : R — R is L-smooth if and only if it is differentiable
and its gradient is L-Lipschitz-continuous

V01,02 € R, ||g'(01) — ¢’ (02)]|2 < L||61 — 62]]2

o If g is twice differentiable: V0 € R?, ¢ (0) < L - Id

e Machine learning (see board)

— with g( ) =4 Z@ 1 (y’LvHT(I)( )
— Hessian ~ covariance matrix = >
ded

— Lj,ss-smooth loss and R-boun

(@)@ (w) !
data: L = LlossR2
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Smoothness and strong convexity

e A function g : R — R is p-strongly convex if and only if

V01,02 € RY, g(61) = g(62) + ¢'(02) ' (61 — 02) + £]|61 — 02|13

o If g is twice differentiable: V0 € R?, ¢ (0) = - 1d

A

convex

/

A
strongly

convex

/

~__/ -
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Smoothness and strong convexity

e A function g : R — R is p-strongly convex if and only if

V01,02 € RY, g(61) = g(62) + ¢'(02) ' (61 — 02) + £]|61 — 02|13

o If g is twice differentiable: V0 € R?, ¢ (0) = - 1d

©

(large pu/L) (small u/L)
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Smoothness and strong convexity

e A function g : R — R is p-strongly convex if and only if

Vb1, 0, € RY, g(61) = g(02) + g'(62) ' (61 — 02) + 51|61 — 6213
o If g is twice differentiable: V0 € R?, ¢ (0) = - 1d

e Machine learning

— Hessian ~ covariance matrix %Z?:l (I)(xi)q)(xi)—r
— Data with invertible covariance matrix (low correlation/dimension)

41



Smoothness and strong convexity

e A function g : R — R is p-strongly convex if and only if

Vb1, 0, € RY, g(61) = g(02) + g'(62) ' (61 — 02) + 51|61 — 6213
o If g is twice differentiable: V0 € R?, ¢ (0) = - 1d

e Machine learning

— Hessian ~ covariance matrix %Z?:l (I)(xi)q)(xi)—r
— Data with invertible covariance matrix (low correlation/dimension)

e Adding regularization by £||6|°

— creates additional bias unless p is small
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Summary of smoothness/convexity assumptions

e Bounded gradients of g (Lipschitz-continuity): the function g if
convex, differentiable and has (sub)gradients uniformly bounded by
B on the ball of center 0 and radius D:

V9 € RY (|02 < D = |lg'(0)[l < B

e Smoothness of g: the function g is convex, differentiable with
L-Lipschitz-continuous gradient ¢’ (e.g., bounded Hessians):

vo e RY, ¢”(6) < L-1d

e Strong convexity of ¢g: The function g is strongly convex with
respect to the norm || - ||, with convexity constant u > 0:

v e RY, ¢”(8) = p-1d

43



Analysis of empirical risk minimization

e Approximation and estimation errors: © = {§ ¢ R¢ Q(0) < D}

F(6) = min £(6) = | £6) ~ in 7O)] + | i £6) ~ min, 10

0 R4 0€O 0€© 0 cRd
Estimation error Approximation error

— NB: may replace miI}l f(0) by best (non-linear) predictions
HER
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Analysis of empirical risk minimization

e Approximation and estimation errors: © = {0 ¢ R¢ Q(0) < D}

F6) = min £6) = | £6) ~ in 7O)] + | i £6) ~ min, 10

AT 6cO 6cO 6 cRd
Estimation error Approximation error

1. Uniform deviation bounds, with | § € arg min £(6)
c

f(O)—min £(0) = [f(O)—FO)]+[f(O)—F(0.)0)]+[f(0)e) — F((8:)0)]

0co
<sup f(0) — f(6) + 0 + sup f(8)— f(6)
0eco 0cO
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Analysis of empirical risk minimization

e Approximation and estimation errors: © = {# ¢ R¢ Q(0) < D}

F(6) = min £(6) = | £6) ~ in 7O)] + | i £6) ~ min, 70

HcRd USC) S 6 cRd
Estimation error Approximation error

1. Uniform deviation bounds, with | § € arg min 7(6)
c

f(6) —min f(8) < sup f(6) — f(6) +sup f(6) — f(6)

0cO 0cO 0O

— Typically slow rate 0(1/\/5)

2. More refined concentration results with faster rates O(1/n)
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Analysis of empirical risk minimization

e Approximation and estimation errors: © = {# ¢ R¢ Q(0) < D}

F(6) = min £(6) = | £6) ~ in 7O)] + | i £6) ~ min, 70

HcRd USC) S 6 cRd
Estimation error Approximation error

1. Uniform deviation bounds, with | § € arg min 7(6)
c

f(0) —min f(0) < 2-sup|f(0) — f(0)]

0cO 0cO
— Typically slow rate O(1/v/n)

2. More refined concentration results with faster rates O(1/n)

47



Slow rate for supervised learning

e Assumptions (f is the expected risk, fthe empirical risk)

— Q(6) = ||0||2 (Euclidean norm)

— “Linear” predictors: 6(x) = 0'®(x), with ||®(z)|2 < R as.

— G-Lipschitz loss: f and f are GR-Lipschitz on © = {||0]|» < D}
— No assumptions regarding convexity

48



Slow rate for supervised learning

e Assumptions (f is the expected risk, fthe empirical risk)

— Q(0) = ||0]|2 (Euclidean norm)

— “Linear” predictors: §(x) = ' ®(x), with ||®(x)]2 < R a.s.

— G-Lipschitz loss: f and f are GR-Lipschitz on © = {||0]|]» < D}
— No assumptions regarding convexity

e \With probability greater than 1 — 90

A Yo+ GRD 2
sup | £(6) ~ £(0)] < ==~ [zﬂ/zlogg]

e Expectated estimation error: E|sup £(6) - £0)]] < 40y + 4GRD

HcO VN

e Using Rademacher averages (see, e.g., Boucheron et al., 2005)

e Lipschitz functions = slow rate

49



Motivation from mean estimation

| ) — 15 : 1\ N2
e Estimator 0 = = > " | 2; = argminger5-) ,_,(0 — 2;)° =

— 0, = Ez = argminger sE(0 — 2)* = f(6)
— From before (estimation error): f(8) — f(6,) = O(1//n)

f(0)

50



Motivation from mean estimation

. 1 . 1 n . . 1 n
o Estimator = > " | 2; = argmingers-) ,_1(0 —

— 0, = Ez = arg mingcr %E(@ —

z)% =

f(0)

— From before (estimation error): f(8) — f(6,) = O(1/\/n)

e Direct computation:

- f(0) = 3E(0 — 2)* =

— 1
2

e More refined/direct bound:

f0) - f(Ez) =

E[f(0) — f(E2)] =

(0 — Ez)? + L var(z)

1 «
5 — Ez)’
n 2
1_ /1 1
§E (5 ZZ@ — Ez) = %Var(z)

e Bound only at § + strong convexity (instead of uniform bound)
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Fast rate for supervised learning

e Assumptions (f is the expected risk, fthe empirical risk)

— Same as before (bounded features, Lipschitz loss)
— Regularized risks: f#(0) = f(0)+%|6]/5 and f#(0) = f(0)+5]0]|3
— Convexity

52



Fast rate for supervised learning

e Assumptions (f is the expected risk, fthe empirical risk)

— Same as before (bounded features, Lipschitz loss)
— Regularized risks: f#(0) = f(0)+%|6]/5 and f#(0) = f(0)+5]0]|3
— Convexity

e For any a > 0, with probability greater than 1 — 4, for all § € R¢,
) 8G?R?(32 + log +
F(0) — min pr(y) < 2L 085)
neRd un
e Results from Sridharan, Srebro, and Shalev-Shwartz (2008)

— see also Boucheron and Massart (2011) and references therein

e Strongly convex functions = fast rate

— Warning: 1 should decrease with n to reduce approximation error
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Outline - |
1. Introduction
e Large-scale machine learning and optimization

e Classes of functions (convex, smooth, etc.)
e Traditional statistical analysis (regardless of optimization)

2. Classical methods for convex optimization

e Smooth optimization (gradient descent, Newton method)
e Non-smooth optimization (subgradient descent)
e Proximal methods

3. Non-smooth stochastic approximation

e Stochastic (sub)gradient and averaging
e Non-asymptotic results and lower bounds
e Strongly convex vs. non-strongly convex
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Outline - 11

4. Classical stochastic approximation (not covered)

e Asymptotic analysis

e Robbins-Monro algorithm and Polyak-Rupert averaging
5. Smooth stochastic approximation algorithms

e Non-asymptotic analysis for smooth functions

e Least-squares regression without decaying step-sizes
6. Finite data sets (partially covered)

e Gradient methods with exponential convergence rates

e (Dual) stochastic coordinate descent
e Frank-Wolfe

7. Non-convex problems ( “open” / not covered)
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Complexity results in convex optimization

e Assumption: g convex on R?

e Classical generic algorithms

— Gradient descent and accelerated gradient descent
— Newton method
— Subgradient method (and ellipsoid algorithm)

56



Complexity results in convex optimization
e Assumption: g convex on R?

e Classical generic algorithms

— Gradient descent and accelerated gradient descent
— Newton method
— Subgradient method (and ellipsoid algorithm)

e Key additional properties of ¢

— Lipschitz continuity, smoothness or strong convexity

e Key insight from Bottou and Bousquet (2008)

— In machine learning, no need to optimize below estimation error

e Key references: Nesterov (2004), Bubeck (2015)
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Several criteria for characterizing convergence

e Objective function values

g(f) — inf g(n)

neRd

— Usually weaker condition

e lterates

. 2
inf HH — 77”
nEarg min g

— Typically used for strongly-convex problems
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Several criteria for characterizing convergence

e Objective function values

g(f) — inf g(n)

neRd

— Usually weaker condition

o |terates
, 2
inf |0 —n|
nearg min g
— Typically used for strongly-convex problems

e NB 1: relationships between the two types in several situations

e NB 2: similarity with prediction vs. estimation in statistics

59



(smooth) gradient descent

e Assumptions

— g convex with L-Lipschitz-continuous gradient (e.g., L-smooth)

e Algorithm:
1

O0r =011 — Zg/(‘gt—l)
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(smooth) gradient descent - strong convexity

e Assumptions
— g convex with L-Lipschitz-continuous gradient (e.g., L-smooth)

— g u-strongly convex

e Algorithm:
1

O0r =011 — Zg/((gt—l)

e Bound:

9(0:) — g(0+) < (1 — /L) [g(6o) — g(04)]

e Three-line proof

e Line search, steepest descent or constant step-size
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(smooth) gradient descent - slow rate

e Assumptions

— g convex with L-Lipschitz-continuous gradient (e.g., L-smooth)
— Minimum attained at 6.

e Algorithm: .
O0r =011 — Zg/(‘gt—l)
e Bound: 2L 6 — 6.
g9(0:) — g(0s) < L

t+4
e Four-line proof

e Adaptivity of gradient descent to problem difficulty

e Not best possible convergence rates after O(d) iterations
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Gradient descent - Proof for quadratic functions

e Quadratic convex function: g(0) = %HTHH —c'0

— 1 and L are smallest largest eigenvalues of H
— Global optimum 6, = H~ ¢ (or H'c) such that Hf, = ¢

63



Gradient descent - Proof for quadratic functions

e Quadratic convex function: g(0) = %HTHH —c'0

— 1 and L are smallest largest eigenvalues of H
— Global optimum 6, = H~ ¢ (or H'c) such that Hf, = ¢

e Gradient descent with v = 1/L:

1 1
0p = 0i1 — Z(Het—l — C) = 01 — Z(Het—l — Hé’*)

b~ 0. = (I~ H)(ry —0.) = (I TH)'(6, —0.)
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Gradient descent - Proof for quadratic functions

e Quadratic convex function: g(0) = %HTHH —c'0

— 1 and L are smallest largest eigenvalues of H
— Global optimum 6, = H~ ¢ (or H'c) such that Hf, = ¢

e Gradient descent with v = 1/L:

1 1
0p = 0i1 — Z(Het—l — C) = 01 — Z(Het—l — Hé’*)

1 1
0 — 0. = (I—~H)(O_1—0.) = (I — —H)(8y —0.)
L L
e Strong convexity ;. > 0: eigenvalues of (I — +H)!in [0, (1 — £)']

— Convergence of iterates: ||0; — 0,]|* < (1 — p/L)*"||0y — 0,]|*
— Function values: ¢(6;) — ¢g(6,) < (1 — p/L)*|g(60) — g(6.)]
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Gradient descent - Proof for quadratic functions

e Quadratic convex function: g(0) = %HTHH —c'0

— 1 and L are smallest largest eigenvalues of H
— Global optimum 6, = H~ ¢ (or H'c) such that Hf, = ¢

e Gradient descent with v = 1/L:

1 1
0p = 0i1 — Z(Het—l — C) = 01 — Z(Het—l — Hé’*)

1 1
0, —0, = (I—=H)0;_1—0,)=UT—~=H)"0y—0,)
L L
e Convexity 1 = 0: eigenvalues of (I — +H)" in [0, 1]

— No convergence of iterates: ||0; — 0.]|* < ||0g — 0.]|?
— Function values: g(6;) —g(0«) < max,¢jo, 1 v(l—v/L)?"||0p— 0]
9(0r) — g(0x) < %[0 — 6,2
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Accelerated gradient methods (Nesterov, 1983)

e Assumptions

— g convex with L-Lipschitz-cont. gradient , min. attained at 6,

e Algorithm: 1
0 = M1 — Zg'(m—ﬁ
t—1
= 0, +—(0, —0,_
Mt t t—|—2( ' t—1)
e Bound: ZLHHO L 9*H2

g(et) o 9(9*) < (t i 1)2

e Ten-line proof (see, e.g., Schmidt, Le Roux, and Bach, 2011)
e Not improvable

e Extension to strongly-convex functions
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Accelerated gradient methods - strong convexity

e Assumptions

— g convex with L-Lipschitz-cont. gradient , min. attained at 6,
— g u-strongly convex

e Algorithm: .

0 = nt—l_zg/(nt—l)

g+ VL g
1+ \/u/

e Bound: g(0:) — f(0.) < L||o — 0.]]*(1 — \/p/L)*

— Ten-line proof (see, e.g., Schmidt, Le Roux, and Bach, 2011)
— Not improvable
— Relationship with conjugate gradient for quadratic functions

Tt
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Optimization for sparsity-inducing norms
(see Bach, Jenatton, Mairal, and Obozinski, 2012b)

e Gradient descent as a proximal method (differentiable functions)

L
— 0411 = arg min f(0;) + (0 — 9t)TVf(9t)+§H@ — 6415

E]Rd

— Oiy1 =0 — Vf(et)
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Optimization for sparsity-inducing norms
(see Bach, Jenatton, Mairal, and Obozinski, 2012b)

e Gradient descent as a proximal method (differentiable functions)

. L
— 0411 = arg min f(0;) + (0 — 9t)TVf(9t)+§H@ — 6413

0 cRd

— Oi41 =0 — %Vf(et)

e Problems of the form: | min f(0) + u2(6)
6 cRY

: L
= fr1 = arg min f(0r) + (6 — Ht)TVf(ﬁt)+uﬂ(9)+§H@ — 0|3
— Q(0) = ||0||1 = Thresholded gradient descent

e Similar convergence rates than smooth optimization

— Acceleration methods (Nesterov, 2007; Beck and Teboulle, 2009)

70



Soft-thresholding for the /;-norm

e Example: quadratic problem in 1D, i.e.

1 2
n—x° —xy + A
2{161]{1 5L — Ty ||
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e Example: quadratic problem in 1D, i.e. | min 5.:132 — xy + A|z|

Soft-thresholding for the /;-norm

1
reR

e Piecewise quadratic function with a kink at zero

— Derivative at 0+: g = A —yand 0—: g_ = -\ —y

A

>

A

/.

— o = 0 is the solution iff gy > 0 and g_ <0 (i.e., |y| < A)
— x > 0 is the solution iff g <0 (e, y = A) = 2F =y — A
— x < 0isthesolutioniff g <0 (e, y<=A) =" =y+ A

e Solution

x* = sign(y)(ly| — M)+

= soft thresholding

72



e Example: quadratic problem in 1D, i.e.

e Piecewise quadratic function with a kink at zero

e Solution

Soft-thresholding for the /;-norm

z* = sign(y)(ly| — M)+

1

min —x
rER 2

2

— xy + A|z|

= soft thresholding
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Projected gradient descent

e Problems of the form: | min f(6)
e

. L
= Ot41 = argmin f(0:) + (0 — 9t)TVf(9t)+§H@ — 05
2
- 9t—|—1 — arg mm HH — Ht — —Vf(é’t)) ‘2

— Projected gradlent descent

e Similar convergence rates than smooth optimization

— Acceleration methods (Nesterov, 2007; Beck and Teboulle, 2009)
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Newton method

e Given 6;_1, minimize second-order Taylor expansion
- 1
g9(0) = 9(9t—1)+9’(9t—1)T(9—9t—1)+§(9—9t—1)T9"(9t—1)T(9—9t—1)

e Expensive lteration: 0; = 0;,_1 — ¢"(0;_1) " 1¢'(6;—1)

— Running-time complexity: O(d?®) in general

75



Newton method

e Given 6;_1, minimize second-order Taylor expansion
- 1
g9(0) = 9(9t—1)+9’(9t—1)T(9—9t—1)+§(9—9t—1)T9"(9t—1)T(9—9t—1)

e Expensive lteration: 0; = 0;,_1 — ¢"(0;_1) " 1¢'(6;—1)

— Running-time complexity: O(d?®) in general

e Quadratic convergence: If ||0;_1 — 6,]| small enough, for some
constant C', we have

(C16 = 04]) = (C|Oz—1 — 0.])°

— See Boyd and Vandenberghe (2003)

76



Summary: minimizing smooth convex functions

e Assumption: g convex

e Gradient descent: 0, = 60; 1 — v;g'(0;_1)

— O(1/t) convergence rate for smooth convex functions
— O(e /1) convergence rate for strongly smooth convex functions

— Optimal rates O(1/t?) and O(e "tV H/E)

e Newton method: Ht = ‘915—1 — f”(gt—l)_lf/(gt—l)

t
— O(e™ %) convergence rate
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Summary: minimizing smooth convex functions

e Assumption: g convex

e Gradient descent: 0, = 60; 1 — v;g'(0;_1)

— O(1/t) convergence rate for smooth convex functions
— O(e /1) convergence rate for strongly smooth convex functions

— Optimal rates O(1/t?) and O(e "tV H/E)

e Newton method: Ht = ‘915—1 — f”((gt_l)_lf/(gt_l)

t
— O(e™ %) convergence rate

e From smooth to non-smooth

— Subgradient method (and ellipsoid)
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Counter-example (Bertsekas, 1999)
Steepest descent for nonsmooth objectives

[ —5(90% +1602)/2 if 6; > |65
* 9(01,02) = { (90, + 16]02)) /2 if 6, < |69

e Steepest descent starting from any 6 such that 6; > |03 >
(9/16)7]64]
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Subgradient method/ “descent” (Shor et al., 1985)

e Assumptions

— g convex and B-Lipschitz-continuous on {||f]|> < D}

2D
Algorithm: 6, =11, 0,1 — ——¢'(0,_
¢ Alg t D(tl Bﬂg(tl))

— IIp : orthogonal projection onto {||8||2 < D}

>

y

Constraints
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Subgradient method/ “descent” (Shor et al., 1985)

e Assumptions

— g convex and B-Lipschitz-continuous on {||f]|> < D}

2D
Algorithm: 6, =11, 0,1 — ——¢'(0,_
¢ Alg t D(tl Bﬂg(tl))

— IIp : orthogonal projection onto {||8||2 < D}
e Bound:

t—1
1 2DB
- 0. ) — q(h,) < ==
o(§20) o0 <7

e Three-line proof

e Best possible convergence rate after O(d) iterations (Bubeck, 2015)
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Subgradient method/ “descent” - proof - |

® lteration: 0, = Ip(0;—1 — v:¢'(0:_1)) with v, = BQ—\D/%

® Assumption: ||¢’(0)]|2 < B and ||0]|2 <
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Subgradient method/ “descent” - proof - |

® lteration: 0, = Ip(0;—1 — v:¢'(0:_1)) with v, = BQ—\D/E

® Assumption: ||¢’(0)]|2 < B and ||0]|2 <

10, — 0.3 < ||0i—1 — 04 — 719" (0:_1)]||5 by contractivity of projections
01— 0.3 + 22 1lg (Be—1)II5 — 27e(0s—1 — 6.) " g (8;-1)
i1 — 0.]|2 + B*y2 — 2v,(0,_1 — 0.) " ¢'(0:_1) because ||¢'(6:—1)|2 < B
Or—1 — 0.5+ B*v7 — 27 [g(6:—1) — g(0.)] (property of subgradients)

ZANV/AN

® |eading to

B2
g6 1) —g(6,) < =

2

1
+ 2—%[||9t—1 — 0.5 — 16+ — 6.]13]
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Subgradient method/ “descent” - proof - Il

BQ%
2

: 1
e Starting from  ¢(6;_1) — g(8.) < + g[uet_l — 0,13 — ||6:
t

e Constant step-size v, =7

— 03]

t t t
1
> [9(6u-1) g 27” > g5 [1ums = 0.1 = 16— .13
u=1 u=1 u=1
By 1 2 %y 2
<t +2,yH90 9*\\2<t—+;D
e Optimized step-size v; = B\/ depends on “horizon” t
— Leads to bound of 2D B/t
t—1 t—1
1 1 2DB
Using convexity: - 0. —g(0,) < - 0r)—g(0,) < ———
o Usig comvesty: (£ 300 ) 010 < 300 —g(0) <
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Subgradient method/ “descent” - proof - Il
B*y,
2

_ 1
e Starting from  g(0;_1) — g(0,) < + g[Hth — 0,15 — [|0; — 9*||§]
¢

® Decreasing step-size

t t B2’Y t 1
S [o0u ) g0 < 3T Y g[neu_l — 0.3~ 110 — 0. ]3]
u=1 u=1 u

u=1
2%J+1 2Yu, 271 24
¢ t—1
B? ” 1 4D?
<SPS
u=1 2 u=1 2Vut1 27 2n
¢
B2y, 4D? 2D
= LS BDB\/_ with
25t T BV

85



Subgradient descent for machine learning

e Assumptions (f is the expected risk, fthe empirical risk)

— “Linear” predictors: §(x) = 0' ®(x), with ||®(x)]2 < R a.s.
= J(0) = 3 220 Ly, () "6)

A

— G-Lipschitz loss: f and f are GR-Lipschitz on © = {||0||2 < D}

e Statistics: with probability greater than 1 — 9

A G
ggg\fw)—f(em%[ﬂ 2log§]

e Optimization: after ¢ iterations of subgradient method

A R GRD
f( )—gggf(??)<7

e t = n iterations, with total running-time complexity of O(n?d)
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Subgradient descent - strong convexity

e Assumptions

— g convex and B-Lipschitz-continuous on {||f8||> < D}
— g u-strongly convex

2
Algorithm: 6, =1Ip| 0,1 — "(0_
[ goritnim t D( t—1 /,L(t—|_1)g( t 1))

e Bound:

2« 2 B2
g(t(t +1) ; ke’“) —9) < T

=1

e Three-line proof

e Best possible convergence rate after O(d) iterations (Bubeck, 2015)
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Subgradient method - strong convexity - proof - |

® [teration: 0, = IIp(0:—1 — 119’ (0t—1)) with v = ,u(t2—|—1)

® Assumption: ||¢’(0)|2 < B and ||#]|2 < D and pu-strong convexity of f

10; — 0.]5 < ||0i—1 — 0+ — veg'(6:—1)||3 by contractivity of projections
< 0i—1 = 0.3 + By — 27¢(0:—1 — 0.) " g'(0:—1) because [|g'(0:—1)[2 <
< N10i—1 = 0.3 + B*¢ — 27 [9(0i-1) — 9(9*)+gH9t—1 — 04]3]

(property of subgradients and strong convexity)

® leading to

B2’}/t 1-1
0, 1) — g0, < —|— — 0,_ —9*2 v, 9*2
g(0i—1) — g(04) 5 +2[% M]H t—1 152 — 2%” ¢t — 04[5
B? pot—1 p(t+1)
M(t—|—1)+2[ ]H t—1 ||2 A H t ||2
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Subgradient method - strong convexity - proof - |l

B? L

t—1
,u(t—l—l)+2[

p(t+1)
4

® From ¢g(0:—1) — g(0.) < Net 1 — 0 ||2 16 — 9*“3

u

Zu[g(%_ﬂ—g(&)}ézu( J:L iz w(w=1)]|0u—1=0u[]3 — u(u + 1)|0u—0.]|3]

B*t 1
< 74‘1[0—75@"‘1)”‘%_9*”%} S

B2t
]

9 t 2B2
® Using convexity: g(t(t n 1) Z u9u1> — 9((9*) < F 1]
u=1

e NB: with step-size v,, = 1/(nu), extra logarithmic factor
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Summary: minimizing convex functions

e Gradient descent: 0, = 0; 1 — v ¢ (6:_1)

— O(1/+/t) convergence rate for non-smooth convex functions
— O(1/t) convergence rate for smooth convex functions
— O(e™ ") convergence rate for strongly smooth convex functions

e Newton method: 9t = Ht—l — g”(@t_l)_lg’(é’t_l)

t
— O(e™ %) convergence rate
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Summary of rates of convergence

e Problem parameters

— D diameter of the domain
— B Lipschitz-constant

— L smoothness constant

— 1 strong convexity constant

convex strongly convex
nonsmooth | deterministic: BD/+\/t deterministic: B?/(tu)
smooth deterministic: LD?/t? deterministic: exp(—t+/u/L)
quadratic | deterministic: LD?/t? deterministic: exp(—t+/u/L)
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Summary: minimizing convex functions

e Gradient descent: 0, = 0; 1 — v ¢ (6:_1)
— O(1/+/t) convergence rate for non-smooth convex functions
— O(1/t) convergence rate for smooth convex functions
— O(e™ ") convergence rate for strongly smooth convex functions

e Newton method: 9t = Ht—l — g”(@t_l)_lg’(é’t_l)

t
— O(e™ %) convergence rate

e Key insights from Bottou and Bousquet (2008)

1. In machine learning, no need to optimize below statistical error
2. In machine learning, cost functions are averages
3. Testing errors are more important than training errors

= Stochastic approximation
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Outline - |
1. Introduction
e Large-scale machine learning and optimization

e Classes of functions (convex, smooth, etc.)
e Traditional statistical analysis (regardless of optimization)

2. Classical methods for convex optimization

e Smooth optimization (gradient descent, Newton method)
e Non-smooth optimization (subgradient descent)
e Proximal methods

3. Non-smooth stochastic approximation

e Stochastic (sub)gradient and averaging
e Non-asymptotic results and lower bounds
e Strongly convex vs. non-strongly convex
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Outline - 11

4. Classical stochastic approximation (not covered)

e Asymptotic analysis

e Robbins-Monro algorithm and Polyak-Rupert averaging
5. Smooth stochastic approximation algorithms

e Non-asymptotic analysis for smooth functions

e Least-squares regression without decaying step-sizes
6. Finite data sets (partially covered)

e Gradient methods with exponential convergence rates

e (Dual) stochastic coordinate descent
e Frank-Wolfe

7. Non-convex problems ( “open” / not covered)
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Stochastic approximation

e Goal: Minimizing a function f defined on R?

— given only unbiased estimates f)(6,) of its gradients f'(6,) at
certain points 6,, € R¢
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Stochastic approximation

e Goal: Minimizing a function f defined on R?

— given only unbiased estimates f)(6,) of its gradients f'(6,) at
certain points 6,, € R¢

e Machine learning - statistics

— loss for a single pair of observations: | f,,(0) = ((y,,0 "' ®(z,))
— f(0) =Ef,(0) = EL(y,,0 " ®(x,)) = generalization error

— Expected gradient: f'(8) =Ef}(0) = E{{'(yn,0' ®(z,)) ®(xn)}
— Non-asymptotic results

e Number of iterations = number of observations

96



Stochastic approximation

e Goal: Minimizing a function f defined on R?

— given only unbiased estimates f)(6,) of its gradients f'(6,) at
certain points 6,, € R¢

e Stochastic approximation

— (much) broader applicability beyond convex optimization
Hn — ‘9n—1 — /Vnhn(en—l) with E[hn(gn—l)wn—l] — h(en—l)

— Beyond convex problems, i.i.d assumption, finite dimension, etc.

— Typically asymptotic results (see next lecture)
— See, e.g., Kushner and Yin (2003); Benveniste et al. (2012)
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Relationship to online learning

e Stochastic approximation

— Minimize f(0) = E_¢(0, z) = generalization error of
— Using the gradients of single i.i.d. observations
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Relationship to online learning

e Stochastic approximation

— Minimize f(0) = E_¢(0, z) = generalization error of
— Using the gradients of single i.i.d. observations

e Batch learning

— Finite set of observations: z1,..., 2,

— Empirical risk: f(8) =137, £(8, ;)

T n
— Estimator & = Minimizer of f(#) over a certain class ©
— Generalization bound using uniform concentration results
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Relationship to online learning

e Stochastic approximation
— Minimize f(0) = E ¢(0, z) = generalization error of
— Using the gradients of single i.i.d. observations

e Batch learning

— Finite set of observations: z1,..., 2,

— Empirical risk: f(9) =L = . 000, z;)
— Estimator 0 = M|n|m|zer of f() over a certain class ©

— Generalization bound using uniform concentration results

e Online learning

— Update 0,, after each new (potentially adversarial) observation zy,
— Cumulative loss: =>"7_, 0(0r_1, z)
— Online to batch through averaging (Cesa-Bianchi et al., 2004)
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Convex stochastic approximation

e Key properties of f and/or f,

— Smoothness: f B-Lipschitz continuous, f’ L-Lipschitz continuous
— Strong convexity: f u-strongly convex
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Convex stochastic approximation

e Key properties of f and/or f,

— Smoothness: f B-Lipschitz continuous, f’ L-Lipschitz continuous
— Strong convexity: f u-strongly convex

e Key algorithm: Stochastic gradient descent (a.k.a. Robbins-Monro)

Hn — Hn—l — /anf;b(en—l)

— Polyak-Ruppert averaging: 6,, = Zk 0 0

—

— Which learning rate sequence ~,,? Classical setting: | v,, = Cn
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Convex stochastic approximation

e Key properties of f and/or f,

— Smoothness: f B-Lipschitz continuous, f’ L-Lipschitz continuous
— Strong convexity: f u-strongly convex

e Key algorithm: Stochastic gradient descent (a.k.a. Robbins-Monro)

Hn — Hn—l — /anf;b(en—l)

— Polyak-Ruppert averaging: 6,, = Zk 0 0,

— Which learning rate sequence ~,,? Classical setting: | v, = Cn™ ¢

e Desirable practical behavior

— Applicable (at least) to classical supervised learning problems
— Robustness to (potentially unknown) constants (L,B,u)
— Adaptivity to difficulty of the problem (e.g., strong convexity)
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Stochastic subgradient “descent” /method

e Assumptions

— fn convex and B-Lipschitz-continuous on {[|0]|2 < D}

— (f,) i.i.d. functions such that Ef,, = f
— 0, global optimum of f on C = {||0||2 < D}

_ 2D
e Algorithm: 6, =1Ip (Hn_1 — B—\/ﬁ ;L(Hn—l)>
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Stochastic subgradient “descent” /method

e Assumptions

— fn convex and B-Lipschitz-continuous on {||#]|2 < D}

— (fn) i.i.d. functions such that Ef,, = f
— 6, global optimum of f on C = {||f||2 < D}

_ 2D
e Algorithm: 6, =1Ip (Hn_1 — B—\/ﬁ ;L(en—l)>

e Bound:

122 2DB
Ef(ﬁgek) — f(0s) < NG

e “Same” three-line proof as in the deterministic case

e Minimax rate (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

e Running-time complexity: O(dn) after n iterations
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Stochastic subgradient method - proof - |

® lteration: 0, =1p(0,_1 — Vuf) (0n_1)) with ~, = 255

® f, : information up to time n

® ||f(0)]2 < B and ||f||]2 < D, unbiased gradients/functions E( f,,|F,,_1) = f

0,1 — 0, — fynf’( n—1)||5 by contractivity of projections
071 — 0 ||2 YV = 29 (0n-1 = 0+) " f(0n—1) because || f;,(05-1)|l2

E[[16r — 04131 F01] < 10n-1 — 04113 + B*v — 29 (0n-1 = 0:) " f'(0n—1)
< 162 = 0.1 + B0} [f( ) — £(6.)] (subgradient prope
E[l6n — 0.3 < H@n 1 — 0. H2 Yo = 290 [Ef (0n—1) — £(6.)]
: By, 1 2 2
o leading to Ef(6,—1) — f(8.) < =1+ [E[6,1 — 6.]13 — E[6, — 0.]]3]

2 29n
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Stochastic subgradient method - proof - |l

B?~ 1
i El6,,_1 — 0.|2 — E||6,, — 0.5
2+ 5 [Elfs 0,13 ~ El6, — 0.]3]

/N

e Starting from Ef(6,,—1) — f(6«)

n n B2 " n 1
> [ESOu) = F0) < D05+ D0 5[0t — 0.3 — B0 — 0. ]
u=1 u

u=1 u=1
zn: By  AD® 9D B+/n with 2D
S < n with ~,, =
LT Ty, " Byn

n—1
1 2DB
® Using convexity: [Ef (E E Hk) — f(e*) < \/ﬁ
k=0
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Stochastic subgradient descent - strong convexity - |

e Assumptions

— f, convex and B-Lipschitz-continuous

— (fn) i.i.d. functions such that Ef,, = f
— f p-strongly convex on {||0||- < D}

— 0, global optimum of f over {||0|2 < D}

2
p(n +1)

e Algorithm: 6,, = 1Ip (Hn_l — fé(%-l))

e Bound:

( (n+1) Zk@’“ 1>_ ) < u(ile)

e “Same” proof than deterministic case (Lacoste-Julien et al., 2012)

e Minimax rate (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)
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Stochastic subgradient - strong convexity - proof - |

® lteration: 0, = IIp(0p—1 — Ynf,,(0:—1)) with 7y, = —u(n2+1)

® Assumption: ||f/(0)|l2 < B and ||| < D and p-strong convexity of f

10, — 0.3 < ||0n_1 — 0s —vnf (8,—1)||5 by contractivity of projections
< NOn—1 = 0.3 + By — 29 (0n—1 — 0.) " £,(0:—1) because || f;,(6¢—1)]l2
[
E([Fn-1) < [l0n-1— 0.3+ = 29 [f (Bn1) = F(0)+5 11601 = 03]

(property of subgradients and strong convexity)

® |eading to

B?~ 1.1
Ef(0,-1) — f(0,) < B o= — ][0t — 0.5 — 0., — 0.||3
F0at) = £6) < 25 5[ = 6nms = 6ul — 560 — 0.1
B? pwen—1 pu(n+ 1)
e+ T B — 0.5 = E 6, — 6.
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Stochastic subgradient - strong convexity - proof - |l

n+1)

0,6, 3

® FromEf(0,_1)—f(0.) < ik +H[n;1

u(

S ulEf(Ou) - F0)] <3 iz (= DE|0ur — 0.3 — u(u + DE]0

— e+ 1) —
2 2
< ﬂ+1[o—n(n+1)zﬁzuen—e*ug} B
7 4
Us v Ef{- Z 0 L) < 257
° : ub,—1 | —
sing convexity 1 g 1

e NB: with step-size v,, = 1/(nu), extra logarithmic factor (see later)
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Stochastic subgradient descent - strong convexity - ||

e Assumptions

— f,, convex and B-Lipschitz-continuous

— (fn) i.i.d. functions such that Ef,, = f

— 0. global optimum of g = f + £ - ||3

— No compactness assumption - no projections

e Algorithm:

2 B 2 ,
,LL(TL + 1)gn(0n—1) — Hn—l_lu(n T 1) [fn(en_l)—hu@n_l]

‘9n — en—l_

2 - 2B?
Bound: E kOr_1 ) — g(0,) <

e Minimax convergence rate
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Beyond convergence in expectation

2DB
/n

— Obtained with simple conditioning arguments

n—1
1
e Typical result: Ef (E Zﬁk) — f(0«) <
k=0

e High-probability bounds

— Markov inequality: P(f(% Z;; Hk) — f(04)

WV
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Beyond convergence in expectation

2DB
/n

— Obtained with simple conditioning arguments

n—1
1
e Typical result: Ef (E Zﬁk) — f(0«) <
k=0

e High-probability bounds
2DB

~ Markov inequality: P(f(1 3425 0k ) = f(0.) > =) < N
— Deviation inequality (Nemirovski et al., 2009; Nesterov and Vial,
2008)

IP’(f (i:zé Hk) — f(0.) 2 2\1/)%9(2 + 4t)) < 2exp(—t7)

e See also Bach (2013) for logistic regression
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Beyond stochastic gradient method

e Adding a proximal step
— Goal: min f(0)+Q0)=Ef,(0) + Q(0)

HER
— Replace recursion 6, = 0,,_1 — v f,(05) by

0, = min [0 — 1 + 7 fa(00)|[5 + CQUO)

0 cRd

— Xiao (2010); Hu et al. (2009)
— May be accelerated (Ghadimi and Lan, 2013)

e Related frameworks

— Regularized dual averaging (Nesterov, 2009; Xiao, 2010)
— Mirror descent (Nemirovski et al., 2009; Lan et al., 2012)
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Minimax rates (Agarwal et al., 2012)
e Model of computation (i.e., algorithms): first-order oracle
— Queries a function f by obtaining f(0x) and f'(6x) with zero-mean
bounded variance noise, for K =0,...,n — 1 and outputs 6,,
e Class of functions
— convex B-Lipschitz-continuous (w.r.t. fs-norm) on a compact
convex set C containing an {.-ball
e Performance measure

— for a given algorithm and function ¢,,(algo, ) = f(0,)—infgcc f(6)

— for a given algorithm: sup  ey(algo, f)
functions f
e Minimax performance: inf sup  en(algo, f)

algo functions f
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Minimax rates (Agarwal et al., 2012)

e Convex functions: domain C that contains an ¢..-ball of radius D

d
inf sup  e(algo, f) > cst X min {BD\/:, BD}
algo functions ¢ n

— Consequences for £o-ball of radius D: BD/+\/n
— Upper-bound through stochastic subgradient

e /-strongly-convex functions:

B? B? d
inf sup  en(algo, f) > cst x min{ : ,BD\/:, BD}
algo functions f pn pud n
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Summary of rates of convergence
e Problem parameters

— D diameter of the domain
— B Lipschitz-constant

— L smoothness constant

— 1 strong convexity constant

convex strongly convex

nonsmooth | deterministic: BD/+/t deterministic: B?/(tp)
stochastic: BD/+/n stochastic: B?/(nu)

smooth deterministic: LD?/t? deterministic: exp(—t+/u/L)

quadratic | deterministic: LD?/t? deterministic: exp(—t+/u/L)
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Outline - |

1. Introduction

e Large-scale machine learning and optimization
e Classes of functions (convex, smooth, etc.)
e Traditional statistical analysis (regardless of optimization)

2. Classical methods for convex optimization

e Smooth optimization (gradient descent, Newton method)
e Non-smooth optimization (subgradient descent)
e Proximal methods

3. Non-smooth stochastic approximation

e Stochastic (sub)gradient and averaging
e Non-asymptotic results and lower bounds
e Strongly convex vs. non-strongly convex
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Outline - 11

4. Classical stochastic approximation (not covered)

e Asymptotic analysis

e Robbins-Monro algorithm and Polyak-Rupert averaging
5. Smooth stochastic approximation algorithms

e Non-asymptotic analysis for smooth functions

e Least-squares regression without decaying step-sizes
6. Finite data sets (partially covered)

e Gradient methods with exponential convergence rates

e (Dual) stochastic coordinate descent
e Frank-Wolfe

7. Non-convex problems ( “open” / not covered)
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Convex stochastic approximation
Existing work

e Known global minimax rates of convergence for non-smooth
problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

— Strongly convex: O((un)™1)
Attained by averaged stochastic gradient descent with ,, oc (un) ™+
— Non-strongly convex: O(n~1/?)

Attained by averaged stochastic gradient descent with 7, oc n~%/?
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Convex stochastic approximation
Existing work

e Known global minimax rates of convergence for non-smooth
problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

— Strongly convex: O((un)™1)
Attained by averaged stochastic gradient descent with ,, o (un)~
— Non-strongly convex: O(n~1/2)
Attained by averaged stochastic gradient descent with v, < n™

1
1/2

e Many contributions in optimization and online learning: Bottou
and Le Cun (2005); Bottou and Bousquet (2008); Hazan et al.
(2007); Shalev-Shwartz and Srebro (2008); Shalev-Shwartz et al.
(2007, 2009); Xiao (2010); Duchi and Singer (2009); Nesterov and
Vial (2008); Nemirovski et al. (2009)
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Convex stochastic approximation
Existing work

e Known global minimax rates of convergence for non-smooth
problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

— Strongly convex: O((un)™1)
Attained by averaged stochastic gradient descent with ,, oc (un) ™+
— Non-strongly convex: O(n~1/2)

Attained by averaged stochastic gradient descent with 7, oc n~%/?

e Asymptotic analysis of averaging (Polyak and Juditsky, 1992;
Ruppert, 1988)

— All step sizes v, = Cn~% with a € (1/2,1) lead to O(n™1) for
smooth strongly convex problems
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Convex stochastic approximation
Existing work

e Known global minimax rates of convergence for non-smooth
problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

— Strongly convex: O((un)™1)
Attained by averaged stochastic gradient descent with ,, oc (un) ™+
— Non-strongly convex: O(n~1/?)

Attained by averaged stochastic gradient descent with 7, oc n~%/?

e Asymptotic analysis of averaging (Polyak and Juditsky, 1992;
Ruppert, 1988)

— All step sizes 7, = Cn~% with a € (1/2,1) lead to O(n™1) for
smooth strongly convex problems

e Non-asymptotic analysis for smooth problems?
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Algorithm

e lteration: | 6, =0, 1 — VoS (0r_1)

— Polyak-Ruppert averaging: 6,, = %ZZ;; 0.
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Summary of results (Bach and Moulines, 2011)

e Stochastic gradient descent with learning rate ~v,, = Cn™¢

e Strongly convex smooth objective functions

— Old: O(n~!'p=1) rate achieved without averaging for o = 1
— New: O(n~'u~1) rate achieved with averaging for o € [1/2, 1]
— Non-asymptotic analysis with explicit constants

— Forgetting of initial conditions

— Robustness to the choice of C
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Summary of results (Bach and Moulines, 2011)

e Stochastic gradient descent with learning rate v, = Cn™¢

e Strongly convex smooth objective functions

— Old: O(n~'p=1) rate achieved without averaging for o = 1
— New: O(n~tu™1) rate achieved with averaging for o € [1/2, 1]
— Non-asymptotic analysis with explicit constants

— Forgetting of initial conditions

— Robustness to the choice of C

e Convergence rates for E||0,, — 0,]|? and E||0,, — 0.

2
O " Vn

— no averaging: O( ) + O(e™H"1)||0g — 0|7

tr H(0,)™ 1

160 — 9*!!2)

—1 —2x —24+«
+u " O(n" " “+n )+O( i

— averaging:
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Robustness to wrong constants for v, = Cn™“

e f(8) =1|0|? with i.i.d. Gaussian noise (d = 1)

o Left: a=1/2
e Right: a =1

a=1/2

log[f(6 )~

log(n)

e See also http://leon.bottou.org/projects/sgd

—»—sgd - C=1/5
- % -ave — C=1/5
—0—sgd - C=1
-o-ave - C=1
—8—sgd - C=5

1 |-B-ave — C=5

log[f(6 )~

—»—sgd - C=1/5
-%-ave — C=1/5
—0—sgd - C=1
-é-ave - C=1
—8—sgd - C=5

| |-B-ave — C=5
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Summary of new results (Bach and Moulines, 2011)

e Stochastic gradient descent with learning rate ~v,, = Cn™¢

e Strongly convex smooth objective functions

— Old: O(n™1) rate achieved without averaging for o = 1
— New: O(n™1) rate achieved with averaging for o € [1/2, 1]
— Non-asymptotic analysis with explicit constants
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Summary of new results (Bach and Moulines, 2011)

e Stochastic gradient descent with learning rate v, = Cn™¢

e Strongly convex smooth objective functions

— Old: O(n™1) rate achieved without averaging for o = 1
— New: O(n~1) rate achieved with averaging for a € [1/2,1]
— Non-asymptotic analysis with explicit constants

e Non-strongly convex smooth objective functions

— Old:  O(n~1/?) rate achieved with averaging for o = 1/2
— New: O(max{n!'/273%/2 n=2/2 no=11) rate achieved without
averaging for o € [1/3, 1]

e Take-home message

— Use a = 1/2 with averaging to be adaptive to strong convexity
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Robustness to lack of strong convexity

o Left: f(0) = |0]* between —1 and 1

e Right: f(0) = |0|* between —1 and 1

e affine outside of [—1, 1], continuously differentiable.

loglf(8 )~

power 2

| | —*—sgd - 1/3

-x-gve — 1/3

| | ——sgd - 1/2

-o-ave - 1/2

| | —8—sgd - 2/3
\ |-B-ave — 2/3

sgd -1
ave - 1

loglf( )~

power 4

—»—sgd - 1/3
-%-ave - 1/3
——sgd - 1/2
-é-ave - 1/2
—8—sgd - 2/3

as | -B-ave - 2/3

sgd -1
ave - 1
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Convex stochastic approximation
Existing work

e Known global minimax rates of convergence for non-smooth
problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

— Strongly convex: O((un)™1)
Attained by averaged stochastic gradient descent with ,, oc (un)™*
— Non-strongly convex: O(n~1/?)

Attained by averaged stochastic gradient descent with 7, oc n~%/?

e Asymptotic analysis of averaging (Polyak and Juditsky, 1992;
Ruppert, 1988)

— All step sizes 7, = Cn~% with a € (1/2,1) lead to O(n™1) for
smooth strongly convex problems

e A single adaptive algorithm for smooth problems with
convergence rate O(1/n) in all situations?
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Least-mean-square algorithm

e Least-squares: f(0) = sE|(y, — (®(zy,),0))?| with § € R?

— SGD = least-mean-square algorithm (see, e.g., Macchi, 1995)
— usually studied without averaging and decreasing step-sizes
— with strong convexity assumption E|®(z,,) ® ®(x,)| = H = p-1d
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Least-mean-square algorithm

e Least-squares: f(0) = iE|(y, — (®(z,,),0))?] with § € R

— SGD = least-mean-square algorithm (see, e.g., Macchi, 1995)
— usually studied without averaging and decreasing step-sizes
— with strong convexity assumption E|®(z,,) @ ®(xy,)| = H = p-1d

e New analysis for averaging and constant step-size v = 1/(4R?)

— Assume ||®(x,)|| < R and |y, — (®(x),0s)| < o almost surely
— No assumption regarding lowest eigenvalues of H

7 4do%d  4R?||6p — 0.])?
— Main result: | Ef(0,-1) — f(6x) < °4, R0, |

n n

e Matches statistical lower bound (Tsybakov, 2003)

— Non-asymptotic robust version of Gyorfi and Walk (1996)
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Markov chain interpretation of constant step sizes

e LMS recursion for f,(0) = 3(yn — (®(xy),0))

an, — On—l — /7(<(I)(33n)7(9n—1> — yn)q)(xn)

2

e The sequence (6,,), is a homogeneous Markov chain

— convergence to a stationary distribution 7,
. .= def
— with expectation 0., = [ 67(d0)

134



Markov chain interpretation of constant step sizes

e LMS recursion for f,(0) = 3(yn — (®(xy),0))

an, — en—l — /7(<(I)(xn)70n—1> — yn)q)(xn)

2

e The sequence (6,,), is a homogeneous Markov chain
— convergence to a stationary distribution 7,

— with expectation 6, L [ 67, (d0)

e For least-squares, 0, = 0,

T S
_______ - - — —

/ / N %

_ - X
/ x—~"’“0(9 //
N

/ \)é\ * o 0%

/ ~X N/ T
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Markov chain interpretation of constant step sizes

e LMS recursion for f,(0) = %(yn — <(I’(33n)79>)2

an, — en—l — 7(<(I)(xn)7 0n—1> — yn)q)(xn)
e The sequence (6,,), is a homogeneous Markov chain

— convergence to a stationary distribution 7,

— with expectation 6, L [ 67, (d0)

e For least-squares, 0, = 0,
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Markov chain interpretation of constant step sizes

e LMS recursion for f,(0) = %(yn — <(I’(33n)79>)2

an, — On—l — 7(<(I)(33n)7 0n—1> — yn)q)(xn)
e The sequence (6,,), is a homogeneous Markov chain

— convergence to a stationary distribution 7,
. . = def
— with expectation 0, = [ . (d0)

e For least-squares, 0., = 0,

— 6,, does not converge to 0, but oscillates around it
— oscillations of order /v

e Ergodic theorem:

— Averaged iterates converge to 0., = 0, at rate O(1/n)
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Simulations - synthetic examples

e Gaussian distributions - d = 20

log, [f(6)-f(6,)]

_1 L
W \,//\Af\/‘\‘/'\\\lv\,va,k Wty
_2 | JIJ/\\“ ,Iv‘,l\\‘,vﬂl\n\\ﬂn;
e 2
—3! 1/2R2
——1/8R
-4t —— 1/32R? W
——1/2R°n*"?
—5| | \
0 2 | 4 6
0g,,(n)

synthetic square

\v J /v\’d\\‘\' ‘[’l\\nl ”I' \\r‘\'\ /\,'1'\'/4 ‘f /"v A /\\"'\\ \“{ b\'
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log, ,[f(8)—f(6,)]

log, ,[f(8)—f(6,)]

1}
0.5
0
-0.5
1| _
LS| e
~2(| —SAG
0 log L%n)
10
news square C;l test
0.2} :

-0.8¢

Simulations - benchmarks
e alpha (d = 500, n = 500 OOO), news (d = 1 300 000, n = 20 OOO)

alpha square C=1 test

— SAG

2 4
log, ,(n)

0.2}

-0.8;

alpha square C=opt test

| —CIrR?

—_ C/R2n1/2

| — SAG

4
log, ,(n)

news square C=opt test

— SAG

2 4
log, ,(n)
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Isn’t least-squares regression a “regression” ?
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Isn’t least-squares regression a “regression” ?

e Least-squares regression

— Simpler to analyze and understand
— Explicit relationship to bias/variance trade-offs

— See Défossez and Bach (2015); Dieuleveut et al. (2016)
e Many important loss functions are not quadratic

— Beyond least-squares with online Newton steps
— Complexity of O(d) per iteration with rate O(d/n)
— See Bach and Moulines (2013) for details
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Beyond least-squares - Markov chain interpretation

e Recursion 6,, =60,,_1 —~vf (6,_1) also defines a Markov chain

— Stationary distribution 7., such that | f/(6 7r7(d«9) =0
— When f’ is not linear, f'( [ 0m,(df)) # [ f'(0)m(d0) =0
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Beyond least-squares - Markov chain interpretation

e Recursion 6,, =60,,_1 —~vf (6,_1) also defines a Markov chain

— Stationary distribution 7., such that | f/(6 w,y(dﬁ) =0
— When f’ is not linear, f'( [ 0m,(df)) # [ f'(0)m(d0) =0

e 0, oscillates around the wrong value 0., # 0,
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Beyond least-squares - Markov chain interpretation

e Recursion 6,, =60,,_1 —~vf (6,_1) also defines a Markov chain
— Stationary distribution 7., such that | f/(6 7r7(d«9) =0
— When f’ is not linear, f'( [ 0m,(df)) # [ f'(0)m(d0) =0

e 0, oscillates around the wrong value 9_7 =+ 0,

— moreover, |0, — 0,] = Op(\/7)
— Linear convergence up to the noise level for strongly-convex

problems (Nedic and Bertsekas, 2000)

e Ergodic theorem

— averaged iterates converge to 0. # 0, at rate O(1/n)
— moreover, ||6. — 0, = O(y) (Bach, 2013)
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Simulations - synthetic examples

e Gaussian distributions - d = 20

log, [f(6)-f(6,)]

synthetic logistic — 1

4
log, ,(n)
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Restoring convergence through online Newton steps

e Known facts

1. Averaged SGD with 7,, oc n~'/2 leads to robust rate O(n~'/?)
for all convex functions

2. Averaged SGD with ~,, constant leads to robust rate O(n™1!)
for all convex quadratic functions

3. Newton's method squares the error at each iteration
for smooth functions

4. A single step of Newton's method is equivalent to minimizing the
quadratic Taylor expansion
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Restoring convergence through online Newton steps

e Known facts

1. Averaged SGD with 7,, oc n~'/2 leads to robust rate O(n~'/?)
for all convex functions

2. Averaged SGD with ~,, constant leads to robust rate O(n™1!)
for all convex quadratic functions = O(n 1)

3. Newton's method squares the error at each iteration
for smooth functions = O((n=1/2)?)

4. A single step of Newton's method is equivalent to minimizing the
quadratic Taylor expansion

e Online Newton step

— Rate: O((n~Y2)2 4+ n=1) =0(n™)
— Complexity: O(d) per iteration
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Restoring convergence through online Newton steps

e The Newton step for f = Ef,(0) = E[l(yn, (0, ®(z,)))] at 0 is

equivalent to minimizing the quadratic approximation

) +3(0 =0, "(6)(0 - 0))

9(9)=f(9) (f'(6),0 -6
fn 79_9>+ <9_97Ef//(9)(9_9)>

(0)
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Restoring convergence through online Newton steps

e The Newton step for f = Ef,(0) = E[l(yn, (0, ®(z,)))] at 0 is

equivalent to minimizing the quadratic approximation

™)

),0 —0) +5(0 -0, f"(0)(0 - 0))

9(0) = £() +{f'(0),
f1(0),0 — 0) +5(0 — 0,Ef//(0)(0 — 0))

= f(0) + (E
=E|£(0) + (£,(0),0 = 0) + 30 — 0, £,1(0)(0 - 9))
e Complexity of least-mean-square recursion for g is O(d)

On, = 01 — Y[ F1(0) + £2(0)(Br—1 — 0)]

- fﬁ’(é) =" (yn, <§, b (x,)))P(x,) ® P(x,) has rank one
— New online Newton step without computing/inverting Hessians
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Choice of support point for online Newton step

e Two-stage procedure

(1) Run n/2 iterations of averaged SGD to obtain 6
(2) Run n/2 iterations of averaged constant step-size LMS

— Reminiscent of one-step estimators (see, e.g., Van der Vaart, 2000)
— Provable convergence rate of O(d/n) for logistic regression
— Additional assumptions but no strong convexity
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Choice of support point for online Newton step

e Two-stage procedure

(1) Run n/2 iterations of averaged SGD to obtain 6
(2) Run n/2 iterations of averaged constant step-size LMS

— Reminiscent of one-step estimators (see, e.g., Van der Vaart, 2000)
— Provable convergence rate of O(d/n) for logistic regression
— Additional assumptions but no strong convexity

e Update at each iteration using the current averaged iterate

— Recursion: | 0,, =60,,_1 — W[fq/z(én—l) + f;:(én—l)(en—l — Hn—l)}

— No provable convergence rate (yet) but best practical behavior
— Note (dis)similarity with regular SGD: 6,, = 0,,_1 — vf] (0,,_1)
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e Gaussian distributions - d = 20

log, ,[f(8)-1(8,)]

Simulations - synthetic examples

synthetic logistic — 1

0 2

4
log, (n)

log, ,[f(8)-1(8,)]

synthetic logistic — 2.

-3 ——every 2P
—every iter.
4 —— 2-step
5| —2I—step—dpl. |
0 2 4 6
log, ()
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log, ,[f(8)—f(6,)]

log, ,[f(8)—f(6,)]

05 alpha logistic C:1E test
0
-0.5¢
1| —1/R?
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—— SAG
—2{| — Adagrad
— Newton
-2.5¢ ‘ ‘
0 4
log, ()
news logistic C=1 test
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0

-0.2
—0.4({| — 1/R?
_0.6/|— URn'?
— SAG
—0.8{| —— Adagrad
Y Neyvton
0 2 4
log, ,(n)

Simulations - benchmarks
e alpha (d = 500, n = 500 OOO), news (d = 1 300 000, n = 20 OOO)

—-2{| — Adagrad
— Newton
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0 4
log, ,(n)
news logistic C=opt test
0.2|)/X :

| — C/R?n'?

— SAG
—0.8}| —— Adagrad
Y — Neyvton
0 2 4
log, ()
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Summary of rates of convergence
e Problem parameters

— D diameter of the domain
— B Lipschitz-constant

— L smoothness constant

— 1 strong convexity constant

convex strongly convex

nonsmooth | deterministic: BD/+\/t deterministic: B?/(tu)
stochastic: BD/\/n stochastic: B%/(nu)

smooth deterministic: LD?/t? deterministic: exp(—t+/u/L)
stochastic: LD?/+/n stochastic: L/(nu)

quadratic | deterministic: LD?/t? deterministic: exp(—t+/u/L)
stochastic: d/n + LD?/n | stochastic: d/n + LD?/n
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Summary of rates of convergence
e Problem parameters

— D diameter of the domain
— B Lipschitz-constant

— L smoothness constant

— 1 strong convexity constant

convex strongly convex
nonsmooth | deterministic: BD/+\/t deterministic: B?/(tu)
stochastic: BD/\/n stochastic: B%/(nu)
smooth deterministic: LD?/t? deterministic: exp(—t+/u/L)
stochastic: LD?/+/n stochastic: L/(nu)
finite sum: n/t finite sum: exp(—t/(n+L/u))
quadratic | deterministic: LD?/t? deterministic: exp(—t+/u/L)
stochastic: d/n + LD?/n | stochastic: d/n + LD?*/n
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Outline - |

1. Introduction

e Large-scale machine learning and optimization
e Classes of functions (convex, smooth, etc.)
e Traditional statistical analysis (regardless of optimization)

2. Classical methods for convex optimization

e Smooth optimization (gradient descent, Newton method)
e Non-smooth optimization (subgradient descent)
e Proximal methods

3. Non-smooth stochastic approximation

e Stochastic (sub)gradient and averaging
e Non-asymptotic results and lower bounds
e Strongly convex vs. non-strongly convex
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Outline - 11

4. Classical stochastic approximation (not covered)

e Asymptotic analysis

e Robbins-Monro algorithm and Polyak-Rupert averaging
5. Smooth stochastic approximation algorithms

e Non-asymptotic analysis for smooth functions

e Least-squares regression without decaying step-sizes
6. Finite data sets (partially covered)

e Gradient methods with exponential convergence rates

e (Dual) stochastic coordinate descent
e Frank-Wolfe

7. Non-convex problems ( “open” / not covered)
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Going beyond a single pass over the data

e Stochastic approximation

— Assumes infinite data stream
— Observations are used only once
— Directly minimizes testing cost E, ,y £(y,0 ' ®(z))
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Going beyond a single pass over the data

e Stochastic approximation

— Assumes infinite data stream
— Observations are used only once
— Directly minimizes testing cost E, ,y £(y, 0" ®(z))

e Machine learning practice

— Finite data set (z1,y1,...,ZTn, Yn)

— Multiple passes

— Minimizes training cost %Z;’;l 0(yi, 0" @ ()

— Need to regularize (e.g., by the £5-norm) to avoid overfitting

e Goal: minimize g(0) = %Zfz(ﬁ)
i=1
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Iterative methods for minimizing smooth functions

e Assumption: ¢ convex and L-smooth on R

e Gradient descent: 0, = 60; 1 — v;g'(0;_1)

(small kK = L/u) (large kK = L/ )
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Iterative methods for minimizing smooth functions

e Assumption: ¢ convex and L-smooth on R

e Gradient descent: 0, = 60; 1 — v;g'(0;_1)

9(0:) — g(6:) < O(1/1)
g(0;) — g(0,) <O((1—p/L)) = O(e /L)Y if p-strongly convex

(small kK = L/u) (large kK = L/ )
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Iterative methods for minimizing smooth functions

e Assumption: ¢ convex and L-smooth on R

e Gradient descent: 0, = 60; 1 — v;g'(0;_1)

— O(1/t) convergence rate for convex functions
— O(e7 %) linear if strongly-convex

e Newton method: 9t = Ht—l — g”(@t_l)_lg’(é’t_l)

‘ .
— O(e %) quadratic rate
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Iterative methods for minimizing smooth functions

e Assumption: ¢ convex and L-smooth on R

e Gradient descent: 0, = 60; 1 — v;g'(0;_1)

— O(1/t) convergence rate for convex functions
— O(e7¥*) linear if strongly-convex < O(k log 1) iterations

e Newton method: 9t = Ht—l — g”(@t_l)_lg’(é’t_l)

- O(e‘p2t) quadratic rate < O(loglog 1) iterations
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Iterative methods for minimizing smooth functions

e Assumption: ¢ convex and L-smooth on R

e Gradient descent: 0, = 60; 1 — v;g'(0;_1)

— O(1/t) convergence rate for convex functions
— O(e7¥*) linear if strongly-convex < complexity = O(nd - log %)

e Newton method: 9t = Ht—l — g”(@t_l)_lg’(é’t_l)

—~ O(e—P2t) quadratic rate < complexity = O((nd* + d?) - loglog 1)
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Iterative methods for minimizing smooth functions

e Assumption: ¢ convex and L-smooth on R

e Gradient descent: 0, = 60; 1 — v;g'(0;_1)

— O(1/t) convergence rate for convex functions

— O(e7¥*) linear if strongly-convex < complexity = O(nd - log %)
e Newton method: 9t = Ht—l — g”(@t_l)_lg’(é’t_l)

—~ O(e—P2t) quadratic rate < complexity = O((nd* + d?) - loglog 1)

e Key insights for machine learning (Bottou and Bousquet, 2008)

1. No need to optimize below statistical error
2. Cost functions are averages
3. Testing error is more important than training error
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Iterative methods for minimizing smooth functions

e Assumption: ¢ convex and L-smooth on R

e Gradient descent: 0, = 60; 1 — v;g'(0;_1)

— O(1/t) convergence rate for convex functions

— O(e7¥*) linear if strongly-convex < complexity = O(nd - log %)
e Newton method: 9t = (975_1 — g”(@t_l)_lg’(é’t_l)

—~ O(e—P2t) quadratic rate < complexity = O((nd* + d?) - loglog 1)

e Key insights for machine learning (Bottou and Bousquet, 2008)

1. No need to optimize below statistical error
2. Cost functions are averages
3. Testing error is more important than training error
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Stochastic gradient descent (SGD) for finite sums

0 cRd

min 9(0) = - > £:(0)

e lteration: ‘975 — (9t_1 — ’ytfz/(t) (Ht—l)

— Sampling with replacement: i(t) random element of {1,...,n}
— Polyak-Ruppert averaging: 6, = H% Zf;:o 0.
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Stochastic gradient descent (SGD) for finite sums

min 9(0) = - > £(0)

0 cRd

e lteration: ‘975 — ‘915—1 — ’ytfz/(t) (Ht—l)

— Sampling with replacement: i(t) random element of {1,...,n}
— Polyak-Ruppert averaging: 6, = 754%1 Zf;:o 0.

e Convergence rate if each f; is convex L-smooth and g u-strongly-
convex:

] O(1/+/1) if v = 1/(LV1)
Bg(0r) = 9(0:) < { O(L/(1t)) = Ok /1) if v = 1/(ut)

— No adaptivity to strong-convexity in general
— Adaptivity with self-concordance assumption (Bach, 2013)
— Running-time complexity: O(d - k/¢)
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Stochastic vs. deterministic methods

e Minimizing g(6 Zf@ ) with fi(0) = €(y;, h(z;,0)) + AQ(0)
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Stochastic vs. deterministic methods
e Minimizing g(6 Zf@ ) with fi(0) = €(y;, h(z;,0)) + AQ(0)

e Batch gradient descent: 6; = 0;_1—~:9'(0:—1) = 0;_ 1——Zf (0r_1)

— Linear (e.g., exponential) convergence rate in O(e~!/*)
— lteration complexity is linear in n
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Stochastic vs. deterministic methods
e Minimizing g(6 Zf@ ) with fi(0) = €(y;, h(z;,0)) + AQ(0)

e Batch gradient descent: 6; = 0;_1—~:9'(0:—1) = 0;_ 1——Zf (0r_1)
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Stochastic vs. deterministic methods
e Minimizing g(6 Zf@ ) with fi(0) = €(y;, h(z;,0)) + AQ(0)

e Batch gradient descent: 6; = 0;_1—~:9'(0:—1) = 0;_ 1——Zf (0r_1)

— Linear (e.g., exponential) convergence rate in O(e~!/*)
— lteration complexity is linear in n

e Stochastic gradient descent: 0; = 0;_1 — %fi’(t)(ﬁt_l)

— Sampling with replacement: i(t) random element of {1,...,n}
— Convergence rate in O(k/t)
— lteration complexity is independent of n
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Stochastic vs. deterministic methods
e Minimizing g(6 Zf@ ) with fi(0) = €(y;, h(z;,0)) + AQ(0)

e Batch gradient descent: 6; = 0;_1—~:9'(0:—1) = 0;_ 1——Zf (0r_1)

e Stochastic gradient descent: 0; = 0;_1 — %fi’(t)(é’t_l)
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Stochastic vs. deterministic methods

e Goal = best of both worlds: Linear rate with O(d) iteration cost
Simple choice of step size
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Stochastic vs. deterministic methods

e Goal = best of both worlds: Linear rate with O(d) iteration cost
Simple choice of step size
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Accelerating gradient methods - Related work

e Generic acceleration (Nesterov, 1983, 2004)

0y = Nt—1 — ’Ytgl(ﬁt—l) and 7y = 0: + 5t(9t — 9t—1)
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Accelerating gradient methods - Related work

e Generic acceleration (Nesterov, 1983, 2004)

Or = mt—1 — ’Ytgl(ﬁt—l) and 7, = 0; + 0:(0; — 01—1)
— Good choice of momentum term §; € [0,1)
g(0:) — 9(6.) < O(1/1%)
g(0:) —g(8,) < O(e "VHE)y = O(et/ V5 if p-strongly convex
— Optimal rates after t = O(d) iterations (Nesterov, 2004)
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Accelerating gradient methods - Related work

e Generic acceleration (Nesterov, 1983, 2004)

0y = Nt—1 — ’Ytgl(ﬁt—l) and 7y = 0: + 5t(9t — 9t—1)

— Good choice of momentum term §; € [0,1)

g(0:) — 9(6.) < O(1/1%)

g(0:) —g(0y) < O(e_t\/m) = O(e t/V*) if p-strongly convex
— Optimal rates after t = O(d) iterations (Nesterov, 2004)
— Still O(nd) iteration cost: complexity = O(nd - \/klog 1)
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Accelerating gradient methods - Related work

e Constant step-size stochastic gradient

— Solodov (1998); Nedic and Bertsekas (2000)
— Linear convergence, but only up to a fixed tolerance
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Accelerating gradient methods - Related work

e Constant step-size stochastic gradient

— Solodov (1998); Nedic and Bertsekas (2000)

— Linear convergence, but only up to a fixed tolerance
e Stochastic methods in the dual (SDCA)

— Shalev-Shwartz and Zhang (2012)

— Similar linear rate but limited choice for the f;'s
— Extensions without duality: see Shalev-Shwartz (2016)
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Accelerating gradient methods - Related work

e Constant step-size stochastic gradient

— Solodov (1998); Nedic and Bertsekas (2000)

— Linear convergence, but only up to a fixed tolerance
e Stochastic methods in the dual (SDCA)

— Shalev-Shwartz and Zhang (2012)

— Similar linear rate but limited choice for the f;'s
— Extensions without duality: see Shalev-Shwartz (2016)

e Stochastic version of accelerated batch gradient methods

— Tseng (1998); Ghadimi and Lan (2010); Xiao (2010)
— Can improve constants, but still have sublinear O(1/t) rate
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Stochastic average gradient
(Le Roux, Schmidt, and Bach, 2012)

e Stochastic average gradient (SAG) iteration

— Keep in memory the gradients of all functions f;, 2 =1,...,n
— Random selection i(t) € {1,...,n} with replacement

o s, [ fle) = i)
— [teration: 975 — (975_1 — E;y@ with Y, — { t—1

) otherwise
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Stochastic average gradient
(Le Roux, Schmidt, and Bach, 2012)

e Stochastic average gradient (SAG) iteration

— Keep in memory the gradients of all functions f;, 2 =1,...,n
— Random selection i(t) € {1 .,m} with replacement

— lteration: 0, = 0;_ 1——2% with y! = {ft(lt 1) it i =i(?)

Y, otherwise
functions g=+3" 1 fi ho e fs T4 ces  Ju-1 Ju
oradients € R? .
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Stochastic average gradient
(Le Roux, Schmidt, and Bach, 2012)

e Stochastic average gradient (SAG) iteration

— Keep in memory the gradients of all functions f;, 2 =1,...,n
— Random selection i(t) € {1,...,n} with replacement
~ [(0:—1) ifi=i(t
— lteration: 0, = 0;,_1 — i ny with yf — fi( 1t 1) ( )
n = Y, otherwise
functions g=+3" 1 fi ho e fs 0 Ja ces  Ju-1 Ju
eradients € R? v i1 Ui
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Stochastic average gradient
(Le Roux, Schmidt, and Bach, 2012)

e Stochastic average gradient (SAG) iteration

— Keep in memory the gradients of all functions f;, 2 =1,...,n
— Random selection i(t) € {1,...,n} with replacement
~ [(0;—1) ifi=1i(t
— lteration: 0, = 0;,_1 — i ny with yf — fi( 1t 1) ( )
n = Y, otherwise
functions g=+>0.fi  h fo fs fa cee  Juo1 fu
eradients € R? v i1 Ui

EEEEEEEEEPSS
EEEEEEEEEGS
EEEEEEEEEPSS
EEEEEEEEERSS
[ ]
[ ]
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Stochastic average gradient
(Le Roux, Schmidt, and Bach, 2012)

e Stochastic average gradient (SAG) iteration

— Keep in memory the gradients of all functions f;, 2 =1,...,n
— Random selection i(t) € {1,...,n} with replacement

o s, [ fle) = i)
— [teration: 975 — (975_1 — E;y@ with yf — { t—1

) otherwise

e Stochastic version of incremental average gradient (Blatt et al., 2008)
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Stochastic average gradient
(Le Roux, Schmidt, and Bach, 2012)

e Stochastic average gradient (SAG) iteration

— Keep in memory the gradients of all functions f;, 2 =1,...,n
— Random selection i(t) € {1,...,n} with replacement

o s, [ fle) = i)
— [teration: 975 — (975_1 — E;y@ with yf — { t—1

) otherwise

e Stochastic version of incremental average gradient (Blatt et al., 2008)
e Extra memory requirement: n gradients in R? in general

e Linear supervised machine learning: only n real numbers

— If £i(6) = £(yi, ®(x) " 6), then f/(0) = ' (yi, ®(x;) " 0) B ()
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Stochastic average gradient - Convergence analysis

e Assumptions

— Each f; is L-smooth, i =1,...,n - link with R?

1 :
— 9=+, fi is p-strongly convex
— constant step size v = 1/(16L) - no need to know
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Stochastic average gradient - Convergence analysis

e Assumptions

— Each f; is L-smooth, i =1,...,n - link with R?

1 :
— 9=+, fi is p-strongly convex
— constant step size v = 1/(16L) - no need to know

e Strongly convex case (Le Roux et al., 2012, 2013)

E[g(6:) — g(6.)] < cst x (1 _mm{;n, 1gL})t

— Linear (exponential) convergence rate with O(d) iteration cost

— After one pass, reduction of cost by exp ( — min {%, 1%—‘2})

— NB: in machine learning, may often restrict to u > L/n
= constant error reduction after each effective pass
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Running-time comparisons (strongly-convex)

e Assumptions: g(f) ==>"" , f;(6)

— Each f; convex L-smooth and g u-strongly convex

Stochastic gradient descent | dX % X %
Gradient descent d % n% X log%
Accelerated gradient descent | dXx n\/% X logé
SAG dx (n+) xlog:

— NB-1: for (accelerated) gradient descent, L. = smoothness constant of g

— NB-2: with non-uniform sampling, L = average smoothness constants of all f;’s
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Running-time comparisons (strongly-convex)

e Assumptions: g(f) ==>"" , f;(6)

— Each f; convex L-smooth and g u-strongly convex

Stochastic gradient descent | dX % X %
Gradient descent d % n% X log%
Accelerated gradient descent | dXx n\/% X logé
SAG dx (n+) xlog:

e Beating two lower bounds (Nemirovsky and Yudin, 1983; Nesterov,
2004): with additional assumptions

(1) stochastic gradient: exponential rate for finite sums
(2) full gradient: better exponential rate using the sum structure
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Running-time comparisons (non-strongly-convex)

e Assumptions: g(f) ==>"" | f;(6)

— Each f; convex L-smooth

— |l conditioned problems: g may not be strongly-convex (1 = 0)

Stochastic gradient descent

dx 1/&?

Gradient descent

Accelerated gradient descent

dx nje

dx n/+/e

SAG

dx +/nj/e

e Adaptivity to potentially hidden strong convexity

e No need to know the local/global strong-convexity constant
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Stochastic average gradient
Implementation details and extensions

e Sparsity in the features

— Just-in-time updates = replace O(d) by number of non zeros
— See also Leblond, Pedregosa, and Lacoste-Julien (2016)

e Mini-batches

— Reduces the memory requirement + block access to data

e Line-search

— Avoids knowing L in advance

e Non-uniform sampling

— Favors functions with large variations

e See www.cs.ubc.ca/~schmidtm/Software/SAG.html
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Objective minus Optimum

Experimental results (logistic regression)

quantum dataset rcvl dataset
(n =50 000, d = 78) (n =697 641, d = 47 236)

Objective minus Optimum

J—
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T T T T
0 10 20 30 40 50 0 10 20 30 40 50
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Objective minus Optimum

Experimental results (logistic regression)

quantum dataset rcvl dataset
(n =50 000, d = 78) (n =697 641, d = 47 236)

Objective minus Optimum

| | | |
0 10 20 30 40 50 0 10 20 30 40 50
Effective Passes Effective Passes
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Objective minus Optimum

Before non-uniform sampling

protein dataset
(n =145 751, d = T74)

T
0 10 20 30 40 50
Effective Passes

Objective minus Optimum

sido dataset
(n =12 678, d = 4 932)
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Objective minus Optimum

After non-uniform sampling

protein dataset sido dataset
(n =145 751, d = T74) (n =12 678, d = 4 932)

Objective minus Optimum

10 T T T 10 T T

| |
0 10 20 30 40 50 0 10 20 30 40 50
Effective Passes Effective Passes
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Linearly convergent stochastic gradient algorithms

e Many related algorithms

— SAG (Le Roux, Schmidt, and Bach, 2012)

— SDCA (Shalev-Shwartz and Zhang, 2012)

— SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)
— MISO (Mairal, 2015)

— Finito (Defazio et al., 2014a)

— SAGA (Defazio, Bach, and Lacoste-Julien, 2014b)

e Similar rates of convergence and iterations
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Linearly convergent stochastic gradient algorithms

e Many related algorithms

— SAG (Le Roux, Schmidt, and Bach, 2012)

— SDCA (Shalev-Shwartz and Zhang, 2012)

— SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)
— MISO (Mairal, 2015)

— Finito (Defazio et al., 2014a)

— SAGA (Defazio, Bach, and Lacoste-Julien, 2014b)

e Similar rates of convergence and iterations

e Different interpretations and proofs / proof lengths

— Lazy gradient evaluations
— Variance reduction
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Variance reduction

e Principle: reducing variance of sample of X by using a sample from
another random variable Y with known expectation

Zo=a(X —Y)+EY

—~EZ, = aEX + (1 — @)EY

— var(Z,) = o?| var(X) + var(Y) — 2cov(X,Y)]

— a = 1: no bias, a < 1: potential bias (but reduced variance)
— Useful if Y positively correlated with X
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Variance reduction

e Principle: reducing variance of sample of X by using a sample from
another random variable Y with known expectation

Zo=a(X —Y)+EY

- EZ, = aEX + (1 — )EY

— var(Z,) = o?| var(X) + var(Y) — 2cov(X,Y)

— a = 1: no bias, a < 1: potential bias (but reduced variance)
— Useful if Y positively correlated with X

e Application to gradient estimation (Johnson and Zhang, 2013;
Zhang, Mahdavi, and Jin, 2013)

= SVRG: X = fj()(0-1), ¥ = f’(t)(N), o = 1, with 6 stored
—EY =237 f/(0) full gradientat 6, X — Y = f/,,(6:—1) — f},,(0)
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Stochastic variance reduced gradient (SVRG)
(Johnson and Zhang, 2013; Zhang et al., 2013)

e Initialize 6 € R?

e For iepocn = 1 to 7 of epochs
— Compute all gradients f;(6 ) ; store ¢'(0) = 1 e B ))
— Initialize 6 = 6
— For t =1 to length of epochs
01 = 011 —’Y{g( ) + (f (t)(et 1) — fz/(t)(é))}
— Update H =0,
e Output: 0
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Stochastic variance reduced gradient (SVRG)
(Johnson and Zhang, 2013; Zhang et al., 2013)

e Initialize 6 € R?

e For iepocn = 1 to 7 of epochs
— Compute all gradients f;(6 ) ; store ¢'(0) = 1 e B ))
— Initialize 6 = 6
— For t =1 to length of epochs
01 = 011 —’Y{g( ) + (f (t)(et 1) — fz/(t)(é))}
— Update H =0,
e Output: 0

— No need to store gradients - two gradient evaluations per inner step
— Two parameters: length of epochs + step-size

— Same linear convergence rate as SAG, simpler proof
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Interpretation of SAG as variance reduction

" 0, N i — i1
e SAG update: 0, =, —~ > y! with y! = {f;(f ) e Z_( )
n = Y, otherwise

— Interpretation as lazy gradient evaluations
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Interpretation of SAG as variance reduction

" 0, N i — i1
e SAG update: 0, =, —~ > y! with y! = {f;(f ) e Z_( )
n = Y, otherwise

— Interpretation as lazy gradient evaluations

e SAG update: 0; = 0;_1 — ’Y{% Z?:l yf‘l + %(f@-/(t)(@t—l) - yf(_t)l)}

— Biased update (expectation w.r.t. to i(t) not equal to full gradient)
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Interpretation of SAG as variance reduction

" 0, N i — i1
e SAG update: 0, =, —~ > y! with y! = {f;(f ) e Z_( )
n = Y, otherwise

— Interpretation as lazy gradient evaluations

e SAG update: 0; = 0;_1 — ’Y{% Z?:l yf‘l + %(f@-/(t)(@t—l) - yf(_t)l)}

— Biased update (expectation w.r.t. to i(t) not equal to full gradient)

e SVRG update: 0; = Ht_l—’y{% Z?:l f{(é)ﬂL(f{(t)(@t—l)_ i/(t)(é))}

— Unbiased update
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Interpretation of SAG as variance reduction

| VTN by fi(0i—1) if i =i(t)
e SAG update: 60, =0;,_{ — — L with ut =
i o ”Zyz g {yf ! otherwise

— Interpretation as lazy gradient evaluations

* SAG update: 0 = 0,1 — |5 Y0 vl 1 (F (0-) — i)

— Biased update (expectation w.r.t. to i(t) not equal to full gradient)

o SVRG update: Ht — (975_1—’}/{% Z?:l f@/(é)+(fz(t) (et 1) z(t) (é))}

— Unbiased update

e SAGA update (975 = (975 1 — 7[1 Zn 1 yz (f@/(t) (‘975—1) o yf(_t)l)}

— Defazio, Bach, and Lacoste-Julien (2014b)
— Unbiased update without epochs
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SVRG vs. SAGA

e SAGA update: 0; = 0;,_1 — W{

n

* SVRG update: 6, = 0, 17|}

= Z?ﬂ yf_l

n

+ (fly(01) = o))

Sy FHO)+ (FliyBer) = Fli (D))

SAGA SVRG
Storage of gradients yes no
Epoch-based no yes
Parameters step-size | step-size & epoch lengths
Gradient evaluations per step | 1 at least 2
Adaptivity to strong-convexity | yes no
Robustness to ill-conditioning | yes no

— See Babanezhad et al. (2015)
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Proximal extensions

1 n
e Composite optimization problems: min —Z fi(6)+h(0)
OERT T

— f; smooth and convex
— h convex, potentially non-smooth
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Proximal extensions

e Composite optimization problems: min lZfz-(é’)qth(ﬁ)
HcRd n<3
— f; smooth and convex
— h convex, potentially non-smooth
— Constrained optimization: h(f) = 0 if § € K, and 400 otherwise
— Sparsity-inducing norms, e.g., h(0) = ||0||1
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Proximal extensions

e Composite optimization problems: min lZf,-(é’)qth(ﬁ)
HcRd n<3
— f; smooth and convex
— h convex, potentially non-smooth
— Constrained optimization: h(f) = 0 if § € K, and 400 otherwise
— Sparsity-inducing norms, e.g., h(0) = ||0||1

e Proximal methods (a.k.a. splitting methods)

— Extra projection / soft thresholding step after gradient update
— See, e.g., Combettes and Pesquet (2011); Bach, Jenatton, Mairal,
and Obozinski (2012b); Parikh and Boyd (2014)
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Proximal extensions

1 n
e Composite optimization problems: min —Z fi(6)+h(0)
OERT T

— f; smooth and convex

— h convex, potentially non-smooth

— Constrained optimization: h(f) = 0 if § € K, and 400 otherwise
— Sparsity-inducing norms, e.g., h(8) = ||0||1

e Proximal methods (a.k.a. splitting methods)

— Extra projection / soft thresholding step after gradient update
— See, e.g., Combettes and Pesquet (2011); Bach, Jenatton, Mairal,
and Obozinski (2012b); Parikh and Boyd (2014)

e Directly extends to variance-reduced gradient techniques

— Same rates of convergence
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Acceleration

e Similar guarantees for finite sums: SAG, SDCA, SVRG (Xiao and
Zhang, 2014), SAGA, MISO (Mairal, 2015)

Gradient descent d % X 108;%
Accelerated gradient descent | dX n\/% X log%
SAG(A), SVRG, SDCA, MISO | dx (n + %) X log%
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Acceleration

e Similar guarantees for finite sums: SAG, SDCA, SVRG (Xiao and
Zhang, 2014), SAGA, MISO (Mairal, 2015)

Gradient descent d X n% x log 1
Accelerated gradient descent | dX n % X log%
SAG(A), SVRG, SDCA, MISO | dx (n + %) X log%
Accelerated versions dx (n + \@) X log%

e Acceleration for special algorithms (e.g., Shalev-Shwartz and
Zhang, 2014; Nitanda, 2014; Lan, 2015)

e Catalyst (Lin, Mairal, and Harchaoui, 2015)

— Widely applicable generic acceleration scheme
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From training to testing errors

e rcvl dataset (n = 697 641, d = 47 236)
— NB: IAG, SG-C, ASG with optimal step-sizes in hindsight

Training cost

-10—4 -

=
(@)

Objective minus Optimum

H
o
|

i

1020 T T T T

0 10 20 30 40 50

Effective Passes

215



From training to testing errors

e rcvl dataset (n = 697 641, d = 47 236)
— NB: IAG, SG-C, ASG with optimal step-sizes in hindsight

Training cost Testing cost
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SGD minimizes the testing cost!

e Goal: minimize f(0) = E,(, ,l(y,0 " ®(x))

— Given n independent samples (x;,y;), ¢t = 1,...,n from p(x,y)
— Given a single pass of stochastic gradient descent
— Bounds on the excess testing cost Ef(6,,) — infy ga ()
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SGD minimizes the testing cost!

e Goal: minimize f(0) = E,(, ,l(y,0 " ®(x))

— Given n independent samples (x;,y;), ¢t = 1,...,n from p(x,y)
— Given a single pass of stochastic gradient descent
— Bounds on the excess testing cost Ef(6,,) — infy ga ()

e Optimal convergence rates: O(1/+4/n) and O(1/(nu))

— Optimal for non-smooth losses (Nemirovsky and Yudin, 1983)
— Attained by averaged SGD with decaying step-sizes
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SGD minimizes the testing cost!

e Goal: minimize f(0) = E,(, ,l(y,0 " ®(x))
— Given n independent samples (x;,y;), ¢t = 1,...,n from p(x,y)
— Given a single pass of stochastic gradient descent
— Bounds on the excess testing cost Ef(6,,) — infy ga ()

e Optimal convergence rates: O(1/+4/n) and O(1/(nu))
— Optimal for non-smooth losses (Nemirovsky and Yudin, 1983)
— Attained by averaged SGD with decaying step-sizes

e Constant-step-size SGD

— Linear convergence up to the noise level for strongly-convex
problems (Solodov, 1998; Nedic and Bertsekas, 2000)
— Full convergence and robustness to ill-conditioning?
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Robust averaged stochastic gradient
(Bach and Moulines, 2013)

e Constant-step-size SGD is convergent for least-squares

— Convergence rate in O(1/n) without any dependence on p
— Simple choice of step-size (equal to 1/L)

news (n=20 000, d=1 300 000)
0.2 | -

0
-0.2¢
—-0.4;

log, [f(8)-f(6.)]

—-0.6;

—-0.8;
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Robust averaged stochastic gradient
(Bach and Moulines, 2013)

e Constant-step-size SGD is convergent for least-squares

— Convergence rate in O(1/n) without any dependence on p
— Simple choice of step-size (equal to 1/L)

news (n=20 000, d=1 300 000)
0.2¢ | 5' ]

0
-0.2¢

~0.4

log, [f(8)-f(6.)]

-0.6;|—1/L

—1/Ln"?
——SAG

0 2 4
0g ("

e Convergence in O(1/n) for smooth losses with O(d) online Newton
step

—-0.8;
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Conclusions - variance reduction

e Linearly-convergent stochastic gradient methods

— Provable and precise rates
— Improves on two known lower-bounds (by using structure)
— Several extensions / interpretations / accelerations
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Conclusions - variance reduction

e Linearly-convergent stochastic gradient methods

— Provable and precise rates
— Improves on two known lower-bounds (by using structure)
— Several extensions / interpretations / accelerations

e Extensions and future work

— Extension to saddle-point problems (Balamurugan and Bach, 2016)

— Lower bounds for finite sums (Agarwal and Bottou, 2014; Lan,
2015; Arjevani and Shamir, 2016)

— Sampling without replacement (Gurbuzbalaban et al., 2015;
Shamir, 2016)
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Conclusions - variance reduction

e Linearly-convergent stochastic gradient methods

— Provable and precise rates
— Improves on two known lower-bounds (by using structure)
— Several extensions / interpretations / accelerations

e Extensions and future work

— Extension to saddle-point problems (Balamurugan and Bach, 2016)

— Lower bounds for finite sums (Agarwal and Bottou, 2014; Lan,
2015; Arjevani and Shamir, 2016)

— Sampling without replacement (Gurbuzbalaban et al., 2015;
Shamir, 2016)

— Bounds on testing errors for incremental methods (Frostig et al.,
2015; Babanezhad et al., 2015)

224



Frank-Wolfe - conditional gradient - |

e Goal: minimize smooth convex function f(#) on compact set C

e Standard result: accelerated projected gradient descent with optimal
rate O(1/t?)

— Requires projection oracle: arg mingecc %H@ —nl?

e Only availability of the linear oracle: arg mingcc 6 'n

— Many examples (sparsity, low-rank, large polytopes, etc.)
— Iterative Frank-Wolfe algorithm (see, e.g., Jaggi, 2013, and
references therein) with geometric interpretation (see board)

{ 0 € argmin 6" f'(6,-1)

0r = (1 — pt)0i—1 + peby
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Frank-Wolfe - conditional gradient - |l

21L.d1 2
e Convergence rates: f(0;) — f(0,) < tliml(c)

ocC

_ 0, € argmin®' f'(6,_1)
lteration: _
0r = (1 — pt)0r—1 + p:0s

_ I
From smoothness: f(6:) < f(6:—1)+ f'(6:—1) " [pt(et_et—l)} ‘|‘§Hpt(9t_9t—1)H2

_ L
From compactness: f(0;) < f(0:—1) + f'(01—1) " [pe(0r — O1—1)] + Epgdiam(c)2
From convexity, f(6:) — f(8,) < f(0:—1) " (6:—1 —0,) < max F(0_1)" (6,1 —6),
which is equal to f/(0;—1)" (6;,—1 — 6;)

Thus, £(00) < f(0n-1) = pu[100-1) — [(0.)] + Sodiam(C)?

With py =2/(t+1): f(0:) < 2Ldiﬁ?(c)z by direct expansion
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Frank-Wolfe - conditional gradient - |l

21L.d1 2
e Convergence rates: f(@t) — f(H*) < lazn(C)

e Remarks and extensions

— Affine-invariant algorithms

— Certified duality gaps and dual interpretations (Bach, 2015)

— Adapted to very large polytopes

— Line-search extensions: minimize quadratic upper-bound

— Stochastic extensions (Lacoste-Julien et al., 2013)

— Away and pairwise steps to avoid oscillations (Lacoste-Julien and

Jaggi, 2015)
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Outline - |

1. Introduction

e Large-scale machine learning and optimization
e Classes of functions (convex, smooth, etc.)
e Traditional statistical analysis (regardless of optimization)

2. Classical methods for convex optimization

e Smooth optimization (gradient descent, Newton method)
e Non-smooth optimization (subgradient descent)
e Proximal methods

3. Non-smooth stochastic approximation

e Stochastic (sub)gradient and averaging
e Non-asymptotic results and lower bounds
e Strongly convex vs. non-strongly convex

228



Outline - 11

4. Classical stochastic approximation (not covered)

e Asymptotic analysis

e Robbins-Monro algorithm and Polyak-Rupert averaging
5. Smooth stochastic approximation algorithms

e Non-asymptotic analysis for smooth functions

e Least-squares regression without decaying step-sizes
6. Finite data sets (partially covered)

e Gradient methods with exponential convergence rates

e (Dual) stochastic coordinate descent
e Frank-Wolfe

7. Non-convex problems ( “open” / not covered)
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Subgradient descent for machine learning

e Assumptions (f is the expected risk, fthe empirical risk)

— “Linear” predictors: §(x) = 0' ®(x), with ||®(x)]2 < R a.s.
= J(0) = 3 220 Ly, () "6)

A

— G-Lipschitz loss: f and f are GR-Lipschitz on © = {||0||2 < D}

e Statistics: with probability greater than 1 — 9

A G
ggg\fw)—f(em%[ﬂ 2log§]

e Optimization: after ¢ iterations of subgradient method

A R GRD
f( )—gggf(??)<7

e t = n iterations, with total running-time complexity of O(n?d)
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Stochastic subgradient “descent” /method

e Assumptions

— fn convex and B-Lipschitz-continuous on {||#]|2 < D}

— (fn) i.i.d. functions such that Ef,, = f
— 6, global optimum of f on {||0||- < D}

_ 2D
e Algorithm: 6, =1Ip (Hn_1 — B—\/ﬁ ;L(en—l)>

e Bound:

122 2DB
Ef(ﬁgek) — f(0s) < NG

e “Same” three-line proof as in the deterministic case

e Minimax rate (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

e Running-time complexity: O(dn) after n iterations
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Summary of new results (Bach and Moulines, 2011)

e Stochastic gradient descent with learning rate v, = Cn™¢

e Strongly convex smooth objective functions

— Old: O(n™1) rate achieved without averaging for o = 1
— New: O(n™1) rate achieved with averaging for o € [1/2, 1]
— Non-asymptotic analysis with explicit constants

— Forgetting of initial conditions

— Robustness to the choice of C

e Convergence rates for E||0,, — 0,]|? and E||0,, — 0.

2
O " Vn

— no averaging: O( ) + O(e™H"1)||0g — 0|7

tr H(0,)™ 1

160 — 9*!!2)

—1 —2x —24+«
+u " O(n" " “+n )+O( i

— averaging:
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Least-mean-square algorithm

e Least-squares: f(0) = iE|(y, — (®(z,,),0))?] with § € R

— SGD = least-mean-square algorithm (see, e.g., Macchi, 1995)
— usually studied without averaging and decreasing step-sizes
— with strong convexity assumption E|®(z,,) @ ®(xy,)| = H = p-1d

e New analysis for averaging and constant step-size v = 1/(4R?)

— Assume ||®(x,)|| < R and |y, — (®(x),0s)| < o almost surely
— No assumption regarding lowest eigenvalues of H

7 4do%d  4R?||6p — 0.])?
— Main result: | Ef(0,-1) — f(6x) < °4, R0, |

n n

e Matches statistical lower bound (Tsybakov, 2003)

— Non-asymptotic robust version of Gyorfi and Walk (1996)
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Choice of support point for online Newton step

e Two-stage procedure

(1) Run n/2 iterations of averaged SGD to obtain 6
(2) Run n/2 iterations of averaged constant step-size LMS

— Reminiscent of one-step estimators (see, e.g., Van der Vaart, 2000)
— Provable convergence rate of O(d/n) for logistic regression
— Additional assumptions but no strong convexity

e Update at each iteration using the current averaged iterate

— Recursion: | 0,, =60,,_1 — W[fq/z(én—l) + f;:(én—l)(en—l — Hn—l)}

— No provable convergence rate (yet) but best practical behavior
— Note (dis)similarity with regular SGD: 6,, = 0,,_1 — vf] (0,,_1)
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Stochastic average gradient
(Le Roux, Schmidt, and Bach, 2012)

e Stochastic average gradient (SAG) iteration

— Keep in memory the gradients of all functions f;, 1 =1,...,n
— Random selection i(t) € {1,...,n} with replacement

ik (0 if 2 = 1(t
— lteration: 0, = 0;_1 — i E yf with y,f = ft( 1t 2 ( )
n = Y, otherwise

e Stochastic version of incremental average gradient (Blatt et al., 2008)

e Extra memory requirement

— Supervised machine learning

= If fi(0) = i(ys, ©(z) ' 0), then fi(0) = &i(ys, (z:) " 0) (x4)
— Only need to store n real numbers
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Summary of rates of convergence
e Problem parameters

— D diameter of the domain
— B Lipschitz-constant

— L smoothness constant

— 1 strong convexity constant

convex strongly convex
nonsmooth | deterministic: BD /+\/t deterministic: B?/(tu)
stochastic: BD/\/n stochastic: B%/(nu)
smooth deterministic: LD?/t? deterministic: exp(—t+/u/L)
stochastic: LD?/+/n stochastic: L/(nu)
finite sum: n/t finite sum: exp(—t/(n+L/u))
quadratic | deterministic: LD?/t? deterministic: exp(—t+/u/L)
stochastic: d/n + LD?/n | stochastic: d/n + LD?/n
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Conclusions
Machine learning and convex optimization

e Statistics with or without optimization?

— Significance of mixing algorithms with analysis
— Benefits of mixing algorithms with analysis

e Open problems

— Non-parametric stochastic approximation (see, e.g. Dieuleveut and
Bach, 2014)

— Characterization of implicit regularization of online methods

— Structured prediction

— Going beyond a single pass over the data (testing performance)

— Parallel and distributed optimization

— Non-convex optimization (see, e.g. Reddi et al., 2016)
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