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ki

of normalized \basis vectors". “ W
We call it dictionary I

D is \adapted" to x If it can represent it with a few basis vectors:

{ there exists asparse vector in RP such thatx D
We call the sparse code

01 0 g 01
@A @ d, |d, dp A %f
a2t |t 5,

2 RP; sparse



Sparsity in signal processing
Sparse decomposition problem

min 3)jx D + ?
i plix P e+ gy
data tting term sparsity-inducing
regularization

The term induces sparsity

{ the o \pseudo-norm' ij JJo Y4 fi st i 6 0g (NP-hard)
{ the 1 norm: || ”1— = 1] i] (convex)

[ ...



Sparsity in signal processing
Simultaneously denoise all patches of a given image

Example from Mairal, Bach, Ponce, Sapiro, and Zisserman @00




Sparsity in signal processing
Applications to computer vision

Uses the \code" as representation of observations for subsequer
processing (Raina et al., 2007; Yang et al., 2009b)

Adapt dictionary elements to speci ¢ tasks (Mairal et al.0Q9c)

{ Discriminative training for weakly supervised pixel clasgion (Mairal
et al., 2008a)



Sparsity in supervised machine learning

Observed datgx;;y;) 2 RP R, 1 =1;:::;n
{ Response vectoy = (y1;:::;¥n)” 2 R"
{ Design matrixX = (Xq;:::;Xn)” 2 R" P

Regularized empirical risk minimization:

1 X

mn =  C(yi;w X))+ (w)=| min L(y;Xw)+

w2RP N . w2 RP

(W)




Sparsity in supervised machine learning

Regularized empirical risk minimization:

I T _
nmin, - (yiw=xi)+  (w)=| min L(y;Xw)+ ( w)

Norm to promote sparsity

{ square loss + 1-norm ) basis pursuitin signal processing (Chen

et al., 2001),Lassan statistics/machine learning (Tibshirani, 1996)
{ Proxy forinterpretability

{ Allow high-dimensional inference¢logp = O(n)
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Why “;-norms lead to sparsity?

1>

Example 1. quadratic problem in 1D, i.el min =x“ Xy +

X2R 2

JX]

Piecewise quadratic function with a kink at zero

{ Derivative atO+: g, =
A

>

yandO : g = Yy

A

/.

{ x=0 is the solutioni g > 0andg 6 0O(i.e.,Jyj6 )
{ x> O0Oisthesolutioni g 6 O(l.e.,y> )) X =Yy
{ x6 Oisthe solutioni g 6 O(l.e.,y 6 )) X =y+

Solution| x = sign(y)(jyj

)+

= soft thresholding




Why “;-norms lead to sparsity?

1,

Example 1. quadratic problem in 1D, i.el min =x“ Xy +

X2R 2

JX]

Piecewise quadratic function with a kink at zero

Solution

X =sign(y)(Jyi

)+

= soft thresholding




Why “;-norms lead to sparsity?

Example 2. minimize quadratic functiorQ(w) subject tokwk; 6 T.

{ coupled softthresholding

Geometric interpretation

{ NB : penalizing is \equivalent" to constraining




Non-smooth optimization

Simple techniques might not work!

{ Gradient descent or coordinate descent

Special tools

{ Subgradients or directional derivatives
Typically slower than smooth optimization...

. except in some regularized problems



Counter-example
Coordinate descent for nonsmooth objectives




Regularized problems - Proximal methods

Gradient descent as a proximal method (di erentiable furucis)

{ Werr =arg min L(w) +(w  w)”r L(w)+=kw wk3
w2 RP 2

{ Wisr = w21 L(wy)



Regularized problems - Proximal methods

Gradient descent as a proximal method (di erentiable furucts)

{ Wrr =arg min L(w) +(w  w)”r L(w)+=kw wk3
w2 RP 2

{ Wie1 = Wi Ly L (W)

Problems of the form] min L(w) + ( w)
w2 RP

{ Wer =arg min L(w)+(w  w)”r L(w)+ ( w)+=kw wk5
w2 RP 2

{ Thresholded gradient descemt;,; = SoftThres(w; *r L(w;))

Similar convergence rates than smooth optimization

{ Acceleration methods (Nesterov, 2007; Beck and Teboul@)9
{ depends on the condition number of the loss



Cheap (and not dirty) algorithms for all losses

Proximal methods



Cheap (and not dirty) algorithms for all losses
Proximal methods

Coordinate descent (Fu, 1998; Friedman et al., 2007)

{ convergenthere under reasonable assumptions! (Bertsekas, 1995
{ separability of optimality conditions
{ equivalent to iterative thresholding



Cheap (and not dirty) algorithms for all losses
Proximal methods

Coordinate descent (Fu, 1998; Friedman et al., 2007)

{ convergenthere under reasonable assumptions! (Bertsekas, 1995
{ separability of optimality conditions
{ equivalent to iterative thresholding

\ -trick" (Rakotomamonjy et al., 2008; Jenatton et al., 2009b)

h I:)p 1Pp 1'2
{ Notice that  {_; jwjj=min 035 ., o

{ Alternating minimization with respect to (closed -form ; = Jw;|)
andw (weighted squared,-norm regularized problem)
{ Caveat: lack of continuity around@w;; ;) = (0;0): add"=



Cheap (and not dirty) algorithms for all losses
Proximal methods

Coordinate descent (Fu, 1998; Friedman et al., 2007)

{ convergenthere under reasonable assumptions! (Bertsekas, 1995
{ separability of optimality conditions
{ equivalent to iterative thresholding

\ -trick" (Rakotomamonjy et al., 2008; Jenatton et al., 2009b)

Py _ 1P p 12
{ Notice that 7, jwjj=min 505 [, T

{ Alternating minimization with respect to (closed -form ; = jw;])
andw (weighted squared,-norm regularized problem)
{ Caveat: lack of continuity aroundw;; ;) =(0;0): add"= ;

Dedicated algorithms that use sparsity (active sets/homotopy)



Piecewise linear paths

0 01 02 03 04 05 06
regularization parameter



Gaussian hare vs. Laplacian tortoise

Coord. descent and proximaD(pn) per iterations for ; and
\Exact" algorithms: O(kpn) for “1 vs. O(p?n) for *»



Additional methods - Softwares

Many contributions in signal processing, optimization, amalearning

{ Extensions to stochastic setting (Bottou and Bousquet, 3)0

Extensions to other sparsity-inducing norms

{ Computing proximal operator

{ F. Bach, R. Jenatton, J. Mairal, G. Obozinski. Optimizatiamith
sparsity-inducing penalties.Foundations and Trends in Machine
Learning 4(1):1-106, 2011

Softwares

{ Many available codes
{ SPAMS (SPArse Modeling Software)
http://www.di.ens.fr/iwillow/SPAMS/
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Lasso - Two main recent theoretical results

1. Support recovery condition (Zhao and Yu, 2006; Wainwright,
2009; Zou, 2006; Yuan and Lin, 2007): the Lasso Is sign-ciant if
and only if there are low correlations between relevant amelevant

variables.



Model selection consistency (Lasso)

Assumew sparse and denoté = f|; w; 6 0g the nonzero pattern

Support recovery condition (Zhao and Yu, 2006; Wainwright, 2009;
Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consisié@aind

only If .
y kaleslgn(WJ)kl 6 1

whereQ =1lim 1 +1 %.- inzl Xix; 2 RP P andJ = Supp(w)




Model selection consistency (Lasso)

Assumew sparse and denoté = f]; w; 6 0g the nonzero pattern

Support recovery condition (Zhao and Yu, 2006; Wainwright, 2009;
Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consisiéaind

only If .
y Q3 Q,;'Sign(Wo)ks 6 1

whereQ =1im 1 +1 %.- . XiXx7 2 RP P andJ = Supp(w)

The Lasso Is usually not model-consistent

{ Selects more variables than necessary (see, e.g., Lv andZe49)

{ Fixing the Lasso: adaptive Lasso (Zou, 2006), relaxed
Lasso (Meinshausen, 2008), thresholding (Lounici, 2008)
Bolasso (Bach, 2008a), stability selection (Meinshausend a
Bahlmann, 2008), Wasserman and Roeder (2009)



Adaptive Lasso and concave penalization

Adaptive Lasso (Zou, 2006; Huang et al., 2008)

{ Weighted ;-norm: min L(w) + X JWj J
' " W2RP i joj

{ W estimator obtained from, or 1 regularization

Reformulation in terms of concave penalization

. >@ . . A _z
min L (w) + . g(w; ) '

>

{ Example:g(jw;j) = jw;j'= or logjw;j. Closer to the o penalty

{ Concave-convex procedure: replaggw;|) by a ne upper bound

{ Better sparsity-inducing properties (Fan and Li, 2001; Zand LI,
2008; Zhang, 2008b)



Lasso - Two main recent theoretical results

1. Support recovery condition (Zhao and Yu, 2006; Wainwright,
2009; Zou, 2006; Yuan and Lin, 2007): the Lasso Is sign-ciant if
and only if there are low correlations between relevant amelevant
variables.

2. Exponentially many irrelevant variables (Zhao and Yu, 2006;
Wainwright, 2009; Bickel et al., 2009; Lounici, 2008; Memagisen
and Yu, 2008): under appropriate assumptions, consistaa@ossible
as long as

logp = O(Nn)



High-dimensional inference
Variable selection without computational limits

Approaches based on penalized criteria (close to BIC)

1 2 2 P
Voglgpzky Xwk5+ C “kwkg 1+ log Wk

Oracle inequality if data generated byv with k non-zeros (Massart,
2003; Bunea et al., 2007):

1 k 2 P

“kXW Xwk56 C— 1+log

n 2 n I
Gaussian noise No assumptions regarding correlations

klogp
n

Scaling between dimensions: small



High-dimensional inference (Lasso)

Main result : we only needk logp = O(n)

{ If w Is su ciently sparse
{ and input variables are not too correlated



High-dimensional inference (Lasso)

Main result: we only neek logp = O(n)

{ If w Is su ciently sparse
{ and input variables are not too correlated

Precise conditions on covariance matfx = %X > X.

{ Mutual incoherence (Lounici, 2008)

{ Restricted eigenvalue conditions (Bickel et al., 2009)
{ Sparse eigenvalues (Meinshausen and Yu, 2008)

{ Null space property (Donoho and Tanner, 2005)

Links with signal processing and compressed sensing (€arahd
Wakin, 2008)

Slow rate if no assumptions: %8P



Alternative sparse methods
Greedy methods

Forward selection (a.k.a. orthogonal matching pursuit)
Forward-backward selection

Non-convex method

{ Harder to analyze
{ Simpler to implement
{ Problems of stability

Positive theoretical results (Zhang, 2009, 2008a)

{ Similar su cient conditions than for the Lasso



Comparing Lasso and other strategies for linear
regression

Compared methods to reach the least-square solution

{ Ridge regressionmin ky XWK5 + —kwk3

w2 RP 2 2
{ Lasso min ky XWks +  kwkq
W2 RP 2

{ Forward greedy
Initialization with empty set
Sequentially add the variable that best reduces the squass |

Each method builds a path of solutions from O to ordinary least
sguares solution

Regularization parameters selected on the test set



Simulation results

1.I.d. Gaussian design matrik, =4, n =64, p2 [2;256] SNR =1
Note stability to non-sparsity and variability

09 |—L1

—1L2
0.8 |—greedy
0.7 oracle




Simulation results

1.I.d. Gaussian design matrik, =4, n =64, p2 [2;256] SNR =1
Note stability to non-sparsity and variability

0.9r |—L1 8 0.9
—L2
0.8 —greedy 0.8
0.7l oracle 0.7
5 5
o 0.6f o 0.6f
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© 0.5 © 0.5
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Rotated (non sparse)




Going beyond the Lasso

“1-norm for linear feature selection irhigh dimensions

{ Lasso usually not applicable directly

Non-linearities

{ Multiple kernel learning (Lanckriet et al., 2004; Bach et,a2004)

Sparse learning on matrices

{ Dictionary learning and matrix factorization

Dealing with structured set of features

{ Speci c sets of zeros
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Learning on matrices - Image denoising
Simultaneously denoise all patches of a given image

Example from Mairal, Bach, Ponce, Sapiro, and Zisserman @00



Learning on matrices - Collaborative ltering

Givenny \movies" x 2 X andny \customers'"y 2Y,
predict the \rating" z(x;y) 2 Z of customery for moviex

Training data: largenx ny incomplete matrixZ that describes the
known ratings of some customers for some movies

Goal: complete the matrix.

.

LL.IEI"EE




Learning on matrices - Source separation

Single microphone (Benaroya et al., 2006; Fevotte et alQ(®)



Learning on matrices - Multi-task learning

k linear prediction tasks on same covariate® RP

{ k weight vectorsw; 2 RP

Classical application
{ Multi-category classi cation (one task per class) (Amit et., 2007)

Share parameters between tasks

Joint variable selection (Obozinski et al., 2009)

{ Select variables which are predictive for all tasks

Joint feature selection (Pontil et al., 2007)

{ Construct linear features common to all tasks



Matrix factorization - Dimension reduction

Given data matrixX = (Xq;:::;Xp) 2 RP "
{ Principal component analysis :
+ +
+ +
++ 7t
+++"_'|_++
+ +
&+
+
+
{ K-means: |x; dx) X = DA
+ H
P : ++++ '
Fr+ N




Two types of sparsity for matrices M 2 R" P
| - Directly on the elements of M

Many zero elementsM ;; =0

M

M|
|




Two types of sparsity for matrices M 2 R" P
Il - Through a factorization of M = UV ~

Matrix M = UV >, U2 R" KandV 2 RP K

Sparse decomposition: U sparse

Low rank: m small




Structured sparse matrix factorizations

Matrix M = UV >, U 2 R" KandV 2 RP X

Structure on U and/or V

{ Low-rank: U andV have few columns

{ Dictionary learning / sparse PCAJ has many zeros

{ Clustering k-means):U 210;1g" ™, Ul =1

{ Pointwise positivity: non negative matrix factorization (4F)
{ Speci c patterns of zeros (Jenatton et al., 2010)

{ Low-rank + sparse (Cances et al., 2009)

{ etc.

Many applications

Many open questions (Algorithms, identi abllity, etc.)



Multi-task learning

Joint variable selection (Obozinski et al., 2009)

{ Penalize by the sum of the norms of rows \&f (group Lasso)
{ Select variables which are predictive for all tasks



Multi-task learning

Joint variable selection (Obozinski et al., 2009)

{ Penalize by the sum of the norms of rows W (group Lasso)
{ Select variables which are predictive for all tasks

Joint feature selection (Pontil et al., 2007)

{ Penalize by the trace-norm (see later)

{ Construct linear features common to all tasks

Theory: allows number of observations which is sublineartha
number of tasks (Obozinski et al., 2008; Lounici et al., 2p09

Practice: more interpretable models, slightly improvedfoemance



| ow-rank matrix factorizations
Trace norm

Given a matrixM 2 R" P

{ Rank ofM is the minimum sizen of all factorizations ofM into
M=UV~,U2R" MandV 2 RP ™M

{ Singular value decomposition = U Diag(s)V~ whereU and
V have orthonormal columns angl2 RT' are singular values

Rank of M equal to the number of non-zero singular values



| ow-rank matrix factorizations
Trace norm

Given a matrixM 2 R" P

{ Rank ofM is the minimum sizen of all factorizations ofM into
M=UV~,U2R" mMandV 2 RP ™M

{ Singular value decompositionM = U Diag(s)V~ whereU and
V have orthonormal columns angl2 RT' are singular values

Rank of M equal to the number of non-zero singular values
Trace-norm (a.k.a. nuclear norm) = sum of singular values
Convex function, leads to a semi-de nite program (Fazel et aD01)
First used for collaborative ltering (Srebro et al., 2005)

Multi-category classif. (Amit et al., 2007; Harchaoui et aAR012)



Sparse principal component analysis

{ Analysis view: nd the projection d 2 RP of maximum variance
(with de ation to obtain more components)

{ Synthesis view: nd the basisdi;:::;dx such that allx; have
low reconstruction error when decomposed on this basis

For regular PCA, the two views are equivalent



Sparse principal component analysis

{ Analysis view: nd the projection d 2 RP of maximum variance
(with de ation to obtain more components)

{ Synthesis view: nd the basisd;:::;dx such that allx; have
low reconstruction error when decomposed on this basis

For regular PCA, the two views are equivalent

Sparse extensions

{ Interpretability
{ High-dimensional inference
{ Two views are di erents
- For analysis view, see d'Aspremont, Bach, and EI Ghaou0&0



Sparse principal component analysis
Synthesis view

x o X 2 X ,
min X, (i)jd; = min X; D ; 2is small
_ i2 RM _ _ i2 RM
i=1 j=1 2 =1
{ LookforA =( 1;:::; o) 2 RK "andD =(dq;:::;dy) 2 RP K

such thatD is sparse and&X DA k2 is small



Sparse principal component analysis
Synthesis view

X XK 2. X 5
min X (i)d; = min X; D ; 2is small
_ i2 RM _ _ i2 RM
1=1 ] =1 2 =1
{ LookforA =( q1;:::; o) 2 RK "andD =(dq;:::;dy) 2 RP K

such thatD is sparse and&X DA k2 is small

Sparse formulation (Witten et al., 2009; Bach et al., 2008)

{ Penalize/constraind; by the "1-norm for sparsity
{ Penalize/constrain ; by the ,-norm to avoid trivial solutions

X0 XK
min KX D |k% + kdj ki s.t. 8k kx6 1
i=1 j=1



Sparse PCA vs. dictionary learning

Sparse PCA: x; D j, D sparse

+ +
++ .|.+
_,_+++++ + 7 4t
+t +t

+ +



Sparse PCA vs. dictionary learning

Sparse PCA: x; D j, D sparse

+ +
&+ ¥ &+ ¥
+ +
Dictionary learning : x; D , | sparse
++ T
+
+F
++ N
+ +
+ +I+ ++++ -::l-+
+ ¥




Structured matrix factorizations (Bach et al., 2008)

X XK
min  kx; D ki+ kdik- s.t. 8i;k ik 61
D;A
] j=1
Ig]lg] KX D ik%+ k ik s.t. 8j; kdj ko 6 1
Ci=l i=1

Optimization by alternating minimization (non-convex)

i decomposition coe cients(or \code"), d; dictionary elements

Two related/equivalent problems:

{ Sparse PCA = sparse dictionary ( 1-norm ond;)
{ Dictionary learning = sparse decompositions (" ;-norm on ;)
(Olshausen and Field, 1997; Elad and Aharon, 2006; Lee et a

2007)



Dictionary learning for image denoising

% = @ iz

measurements  qginal image  NOise



Dictionary learning for image denoising

Solving the denoising problem (Elad and Aharon, 2006)
{ Extract all overlapping 8 patchesx; 2 R%*

{ Solve a matrix factorization problem:
min jiX DA jjg = min- X D i3

=1

whereA is sparse and D is the dictionary
{ Each patch is decomposed intq = D ;

{ Average the reconstructiod ; of each patchx; to reconstruct a

full-sized image

The number of patches Is large (= number of pixels)



Online optimization for dictionary learning
min IXi Doyt )il
A2RKk Nn:D2D 21
DEfD2RP K st 8 =1;:::;k; jidjji=6 1
Classical optimization alternates betwe&n and A

Good results, buwery slow!



Online optimization for dictionary learning

X
min jixi D ijiz+ i i
A2Rk nD2D . _,

DEfD2RP K st 8 =1;:::;k; jidjji26 19
Classical optimization alternates betwe@&n and A.

Good results, butvery slow!

Online learning (Mairal, Bach, Ponce, and Sapiro, 2009a) can
{ handle potentially in nite datasets

{ adapt to dynamic training sets

Simultaneous sparse coding (Mairal et al., 2009d)

{ Links with NL-means (Buades et al., 2008)



Denoising result
(Mairal, Bach, Ponce, Sapiro, and Zisserman, 2009d)



Denoising result
(Mairal, Bach, Ponce, Sapiro, and Zisserman, 2009d)



What does the dictionary D look like?



Inpainting a 12-Mpixel photograph



Inpainting a 12-Mpixel photograph



Inpainting a 12-Mpixel photograph



Inpainting a 12-Mpixel photograph



Additional methods - Softwares

Many contributions in signal processing, optimization, amalearning

{ Extensions to stochastic setting (Bottou and Bousquet, 3)0

Extensions to other sparsity-inducing norms

{ Computing proximal operator

{ F. Bach, R. Jenatton, J. Mairal, G. Obozinski. Optimizatiamith
sparsity-inducing penalties.Foundations and Trends in Machine
Learning 4(1):1-106, 2011

Softwares

{ Many available codes
{ SPAMS (SPArse Modeling Software)
http://www.di.ens.fr/iwillow/SPAMS/
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Learning dictionaries
with a discriminative cost function

ldea: consider2 sets S ;S; of signals representin@ di erent
classes Each set should admit @peci c dictionarybest adapted to

ItS reconstruction.

Classi cation procedure for a signalx 2 R":
min(R?(x;D );R*(x;D+))
whereR?(x;D) = min_jjx D jj5s.tj jjo L:

\Reconstructive" training

(P ,
MiNp 1 i35 R*(x;;D )

Minp, o5, R7(Xi;D+)

(Grosse et al., 2007; Huang and Aviyente, 2006; Sprechmaral.e2010)



Learning dictionaries with a discriminative
cost function

\Discriminative" training (Mairal, Bach, Ponce, Sapiro, and

Zisserman, 2008Db)
X ., 5
Dm_ifg] D zi R (X;;D ) R(x;;Ds+) ;
’ + |

wherez; 2f 1;,+1g is the label ofx;.

Logistic regression function



Learning dictionaries with a discriminative
cost function

Mixed approach

X
_min D z; R°(xi;D ) R?(x;;D:+) + R(xi;Dy);
i |

wherez; 2f 1;,+1qgis the label ofx;.

Keys of the optimization framework

{ Alternation of sparse coding and dictionary updates.

{ Continuation path with decreasing values of

{ OMP to address the NP-hard sparse coding problem. . .
{ ...or homotopy method when using.

{ Use softmax instead of logistic regression for> 2 classes.



Learning dictionaries with a discriminative
cost function - Examples of dictionaries

Top: reconstructive, Bottom: discriminative
Left: Bicycle, Right: Background



Learning dictionaries with a discriminative
cost function - Texture segmentation



Learning dictionaries with a discriminative
cost function - Texture segmentation



Learning dictionaries with a discriminative
cost function - Pixelwise classi cation



Learning dictionaries with a discriminative
cost function - Multiscale scheme



Learning dictionaries with a discriminative
cost function - weakly-supervised pixel classi cation



Application to edge detection and classi cation
(Mairal, Leordeanu, Bach, Hebert, and Ponce, 2008c)

Good edges Bad edges



Application to edge detection and classi cation
Berkeley segmentation benchmark

Raw edge detection on the right



Application to edge detection and classi cation
Berkeley segmentation benchmark

Raw edge detection on the right



Application to edge detection and classi cation
Berkeley segmentation benchmark



Application to edge detection and classi cation
Contour-based classi er (Leordeanu, Hebert, and
Sukthankar, 2007)

Is there a bike, a motorbike, a car or a person on this image?



Application to edge detection and classi cation



Application to edge detection and classi cation
Performance gain due to the pre ltering

Ours+ [Leordeanu '07] [Leordeanu '07] [Winn '05]

96.8% 89:4% 76:9%
Recognition rates for the same experiment as (Winn et al., 200n
VOC 2005

Category | Ours+[Leordeanu '07]| [Leordeanu '07]
Aeroplane 71:9% 61:9%
Boat 67:1% 56:4%
Cat 82:6% 53:4%
Cow 68:7% 59:2%
Horse 76:0% 67%
Motorbike 80:6% 73:6%
Sheep 72:9% 58:4%
Tvmonitor 87. 7% 83:8%
Average 75:9% 64.2%

Recognition performance at equal error rate #riclasses on a subset
of images from Pascal 07.



Learning Codebooks for Image Classi cation

ldea: Replacing Vector Quantization by Learned Dictionaries!

{ unsupervised: (Yang et al., 2009a)
{ supervised: (Boureau et al., 2010; Yang et al., 2010) (CVHR)'



Learning Codebooks for Image Classi cation

Let an image be represented by a set of low-level descriptpest N

{ hard-quantization:

XP
Xi D i; i2f0;1gp and ( i)j:]-
j=1
{ soft-quantization:
o kxi djk
(i) =P PN

{ sparse coding

x; D i; | =argmin %kxi D ki+ Kk ki



Learning Codebooks for Image Classi cation
Table from Boureau, Bach, Lecun, and Ponce (2010)

Yang et al. (2009a) have won the PASCAL VOC'09 challenge gisims
kind of techniques.



Task-driven dictionary learning
(Mairal, Bach, and Ponce, 2010a)

Dene (D;x)=argmin zkx D ki+ k k

IS used as a code for

Direct optimization of (D;x) with respectto D

{ Application to Image processing tasks such iInverse hal
toning (Mairal, Bach, and Ponce, 2010a)

{ Image super-resolution (Couzinie-Devy, Mairal, Bach, drahce,
2011)



Digital Zooming (Couzinie-Devy et al., 2011)



Digital Zooming (Couzinie-Devy et al., 2011)



Inverse half-toning (Mairal et al., 2010a)



Inverse half-toning (Mairal et al., 2010a)



Inverse half-toning (Mairal et al., 2010a)



Inverse half-toning (Mairal et al., 2010a)
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Why structured sparsity?

Interpretability

{ Structured dictionary elements (Jenatton et al., 2009b)
{ Dictionary elements \organized" in d@ree or a grid (Kavukcuoglu
et al., 2009, Jenatton et al., 2010; Mairal et al., 2010Db)
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Why structured sparsity?

Interpretability

{ Structured dictionary elements (Jenatton et al., 2009b)
{ Dictionary elements \organized" in dree or a grid (Kavukcuoglu
et al., 2009, Jenatton et al., 2010; Mairal et al., 2010Db)

Stability and identi ability

{ Optimization problemmin,ore L(y;Xw)+ kwk; IS unstable
{ \Codes" w! often used in later processing (Mairal et al., 2009c)

Prediction or estimation performance

{ When prior knowledge matches data (Haupt and Nowak, 2006
Baraniuk et al., 2008; Jenatton et al., 2009a; Huang et alQ(®)

Numerical e ciency

{ Non-linear variable selection witP® subsets (Bach, 2008b)



Classical approaches to structured sparsity

Many application domains

{ Computer vision (Cevher et al., 2008; Mairal et al., 2009b)

{ Neuro-imaging (Gramfort and Kowalski, 2009; Jenatton et,al.
2011)

{ Bio-informatics (Rapaport et al., 2008; Kim and Xing, 2010)

Non-convex approaches

{ Haupt and Nowak (2006); Baraniuk et al. (2008); Huang et al.
(2009)

Convex approaches

{ Design of sparsity-inducing norms



Sparsity-inducing norms

Popular choice for
{ The 1- 2 norm,

X X X
kwgk, = W
G2H G2H j2G -

{ with H apartition of f1;:::;pg .
{ The 1-, norm sets to zerogroups of non-overlapping
variables(as opposed to single variables for thenorm)

{ For the square loss, group Lasso (Yuan and Lin, 2006) |



Unit norm balls
Geometric Interpretation
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Sparsity-inducing norms

Popular choice for
{ The 1- 2 norm,

X X X
1=2
kwgk, = w? Gy

G2H G2H j2G -+

{ with H a partition of f1;:::;pg T
{ The 1-, norm sets to zerogroups of non-overlapping

variables(as opposed to single variables for thenorm) GB
{ For the square loss, group Lasso (Yuan and Lin, 2006) |

However, the 1- > norm encodesxed/static prior information
requires to know in advance how to group the variables

What happens if the set of groupd Is not a partition anymore?



Structured sparsity with overlapping groups
(Jenatton, Audibert, and Bach, 2009a)

When penalizing by thé;-", norm, Gl
X X X

kwgk, = W G,

G2H G2H j2G 1 |

{ The 1 norm induces sparsity at the group level:
Somewg's are set to zero — G3

{ Inside the groups, the, norm does not promote sparsity




Structured sparsity with overlapping groups
(Jenatton, Audibert, and Bach, 2009a)

When penalizing by thé;-"» norm, Gl
X X X 1=

kwgk, = W G,

G2H G2H j2G 1 | =

{ The 1 norm induces sparsity at the group level:
Somewg's are set to zero — G3

{ Inside the groups, the, norm does not promote sparsity

The zero pattern ofw Is given by

[
fj; wi =0g= G for someH® H
G2HO
Zero patterns are unions of groups



Examples of set of groups H

Selection of contiguous patterns on a sequenpe, 6

-

{ H Is the set of blue groups

{ Any union of blue groups set to zero leads to the selection of
contiguous pattern



Examples of set of groups H

Selection of rectangles on a 2-D grids= 25

{ H Is the set of blue/green groups (with their not displayed
complements)

{ Any union of blue/green groups set to zero leads to the setect
of a rectangle



Examples of set of groups H

Selection of diamond-shaped patterns on a 2-D grigds; 25.
{ Itis possible to extend such settings to 3-D space, or monaplex
topologies




Unit norm balls
Geometric Interpretation

kwk P W2 + W3 + jWa] kwkz + Jwy] + Jw)




Comparison of optimization algorithms
(Mairal, Jenatton, Obozinski, and Bach, 2010b)
Small scale

Speci ¢ norms which can be implemented through network ows

n=100, p=1000, one-dimensional DCT
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Comparison of optimization algorithms
(Mairal, Jenatton, Obozinski, and Bach, 2010b)
Large scale

Speci ¢ norms which can be implemented through network ows

n=1024, p=10000, one-dimensional DCT n=1024, p=100000, one-dimensional DCT

| == ProxFlox

log(Primal-Optimum)
N
log(Primal-Optimum)

-6 —_—SG | == ProxFlox
= = = ADMM —SG
-8 [| =@~ Lin-ADMM -8 [| - = - ADMM
CP -©- Lin-ADMM
-10 - - -10 - -
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log(Seconds) log(Seconds)



Application to background subtraction
(Mairal, Jenatton, Obozinski, and Bach, 2010b)

Input “1-norm Structured norm



Application to background subtraction
(Mairal, Jenatton, Obozinski, and Bach, 2010b)

Background “1-norm Structured norm



Application to neuro-imaging
Structured sparsity for fMRI (Jenatton et al., 2011)

\Brain reading": prediction of (seen) object size

Multi-scale activity levels through hierarchical penalion
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Application to neuro-imaging
Structured sparsity for fMRI (Jenatton et al., 2011)

\Brain reading": prediction of (seen) object size

Multi-scale activity levels through hierarchical penalion



Sparse Structured PCA
(Jenatton, Obozinski, and Bach, 2009b)

Learningsparse and structured dictionary elements:

1 X _ . xP | |
min ~—  ky' Xw'ks+ ( X)) s.t. 8i; kw'k, 1
K n-. p kN 2
W2R* X 2R i1 =1



Application to face databases (1/3)

raw data (unstructured) NMF

NMF obtains partially local features



Application to face databases (2/3)

(unstructured) sparse PCA  Structured sparse PCA

Enforce selection ofconvex nonzero patterns) robustness to
occlusion



Application to face databases (2/3)

(unstructured) sparse PCA  Structured sparse PCA

Enforce selection ofconvex nonzero patterns) robustness to
occlusion



Application to face databases (3/3)

Quantitative performance evaluation on classi cation task

45

''''' raw data
~—=PCA
| == NMF
40 —SPCA
%shared-SPCA
SSPCA
shared-SSPCA

w
a1

w
o

et L

N

% Correct classification

20 40 60 80 100 120 140
Dictionary size



Structured sparse PCA on resting state activity
(Varoquaux, Jenatton, Gramfort, Obozinski, Thirion,
and Bach, 2010)




Dictionary learning vs. sparse structured PCA
Exchange roles of X and w

Sparse structured PCAstructured dictionary elements ):

1 X _ . XK | .
min = ky' Xw'ks+ ( x!) s.t. 8i; kw'ks
kK n-. p kN 2
W 2Rk N:X 2R - =1

Dictionary learning withstructured sparsity for codes w:

. 1 X
min —

ky!  Xw'ks+ (w') s.t. 8j; kxlky
W2RKk n:X 2RP kN -

1
Optimization :

{ Alternating optimization
{ Modularity of implementation if proximal step is e cient
(Jenatton et al., 2010; Mairal et al., 2010b)

1

1



Hierarchical dictionary learning
(Jenatton, Mairal, Obozinski, and Bach, 2010)

Structure on codesv (not on dictionary X))

Hierarchical penalization: ( w) = 5,4 kwgk, where groupsG
In H are equal toset of descendantef some nodes in a tree

Variable selected after its ancestors (Zhao et al., 2009; IBa2008b)



Hierarchical dictionary learning
Modelling of text corpora

Each document is modelled through word counts

{ Low-rank matrix factorization of word-document matrix
{ Similar to NMF with multinomial loss

Probabilistic topic models (Blel et al., 2003a)

{ Similar structures based on non parametric Bayesian megh(&lel
et al., 2004)

{ Can we achieve similar performance with simple matrix
factorization formulation?



Topic models and matrix factorization

Latent Dirichlet allocation (Blei et al., 2003b)

{ For a document, sample 2 R* from a Dirichlet( )

{ For the n-th word of the same document,
sample a topiz, from a multinomial with parameter
sample a wordv, from a multinomial with parameter (z,;:)

Interpretation as multinomial PCA (Buntine and Perttu, 2003)

{ Marginalizing over topi,, gi\ﬁgn , each woraw,, Is selected from
a multinomial with parameter 5:1 , (z;)= ~
{ Row of = dictionary elements, code for a document



Modelling of text corpora - Dictionary tree

hidden
units theorem
layer proof
training let
trained class
bounded
cells connection 1
cell patterns an would state
firing pattern on way states
response neurons \ be |—1 What control
stimulus system the do current
x does reinforcement
probability matrix
likelihood n performance circuit
distribution t test analog
~models vector experiments chip
distributions r table implemented
| performed implementation
optimal |
error images
objects




Topic models, NMF and matrix factorization

Three di erent views on the same problem

{ Interesting parallels to be made
{ Common problems to be solved

Structure on dictionary/decomposition coe cients  with adapted
priors, e.g., nested Chinese restaurant processes (Blal.e2004)

Learning hyperparameters from data
ldenti ability and interpretation/evaluation of results

Discriminative tasks (Blei and McAulie, 2008; Lacoste-Julien
et al., 2008; Mairal et al., 2009c)

Optimization and local minima



Structure on codes within dictionary learning

X
AgnRipn KX D ik%+ ( i) S.tL. 8j; kdjkz 1:
poRrp k'

Impose topology between dictionary elements

{ Hierarchical and topographic dictionaries for image patshe

Grouping atoms

{ Source separation



Hierarchical dictionaries (Jenatton et al., 2010)



Topographic dictionaries (Mairal et al., 2010Db)



Amplitude

Frequency

Structured sparsity - Audio processing
Source separation (Leévre et al., 2011)

Amplitude

) Time
Time
>
(@)
[
(¢B)
-
O
&)
LL
Time

Time



Structured sparsity - Audio processing
Musical instrument separation (Leévre et al., 2011)

Unsupervised source separation with group-sparsity prior

{ Top: mixture

{ Left: source tracks (guitar, voice). Right: separated track
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“1-norm = convex envelope of cardinality of support

Cardinality of support : kwky = Card(Supp(w))

Convex envelope = largest convex lower bound (see, e.g.dBow
Vandenberghe, 2004)

AN A S

1 1

“1-norm = convex envelope ofp-quasi-norm on the ; -ball[ 1; 1]



Convex envelopes of general functions of the support
(Bach, 2010)

LetF : 2Y I R be aset-function

{ AssumeF Is non-decreasing (i.,e., A B ) F(A)6 F(B))
{ Explicit prior knowledge on supports (Haupt and Nowak, 2006
Baraniuk et al., 2008; Huang et al., 2009)

Dene ( w)= F(Supp(w)): How to get its convex envelope?

1. Possible ifF is alsosubmodular
2. Allowsuni ed theory and algorithm
3. Providesnew regularizers

References on submodular functions (Fujishige, 2005; Bati0?
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Conclusion

Sparsity for machine learning and vision

{ Many applications (image, audio, text, etc.)
{ May be achieved througbtructured sparsity-inducing norms
{ May be adapted to adiscriminative task

On-going work on structured sparsity

{ Norm designthrough submodular functions (Bach, 2010)
{ Large-scale learning (Le Roux et al., 2012)
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