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Sparsity in signal processing

� Let x 2 Rm be a signal

� Let D = [ d1; : : : ; dp] 2 Rm � p be a set
of normalized \basis vectors".
We call it dictionary

� D is \adapted" to x if it can represent it with a few basis vectors:

{ there exists asparse vector� in Rp such thatx � D� .
We call � the sparse code.
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Sparsity in signal processing
Sparse decomposition problem

min
� 2Rp

1
2jj x � D� jj2

2| {z }
data �tting term

+ � (� )| {z }
sparsity-inducing
regularization

� The term  induces sparsity

{ the `0 \pseudo-norm": jj � jj0
M= # f i s.t. � i 6= 0g (NP-hard)

{ the `1 norm: jj � jj1
M=

P p
i =1 j� i j (convex)

{ . . .



Sparsity in signal processing

� Simultaneously denoise all patches of a given image

� Example from Mairal, Bach, Ponce, Sapiro, and Zisserman (2009d)



Sparsity in signal processing
Applications to computer vision

� Uses the \code"� as representation of observations for subsequent
processing (Raina et al., 2007; Yang et al., 2009b)

� Adapt dictionary elements to speci�c tasks (Mairal et al., 2009c)

{ Discriminative training for weakly supervised pixel classi�cation (Mairal
et al., 2008a)



Sparsity in supervised machine learning

� Observed data(x i ; yi ) 2 Rp � R, i = 1 ; : : : ; n

{ Response vectory = ( y1; : : : ; yn )> 2 Rn

{ Design matrixX = ( x1; : : : ; xn )> 2 Rn � p

� Regularized empirical risk minimization:

min
w2 Rp

1
n

nX

i =1

`(yi ; w> x i ) + � 
( w) = min
w2 Rp

L(y; Xw ) + � 
( w)



Sparsity in supervised machine learning

� Observed data(x i ; yi ) 2 Rp � R, i = 1 ; : : : ; n

{ Response vectory = ( y1; : : : ; yn )> 2 Rn

{ Design matrixX = ( x1; : : : ; xn )> 2 Rn � p

� Regularized empirical risk minimization:

min
w2 Rp

1
n

nX

i =1

`(yi ; w> x i ) + � 
( w) = min
w2 Rp

L(y; Xw ) + � 
( w)

� Norm 
 to promote sparsity

{ square loss +̀ 1-norm ) basis pursuitin signal processing (Chen
et al., 2001),Lassoin statistics/machine learning (Tibshirani, 1996)

{ Proxy for interpretability
{ Allow high-dimensional inference: logp = O(n)
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Why `1-norms lead to sparsity?

� Example 1: quadratic problem in 1D, i.e. min
x 2 R

1
2
x2 � xy + � jxj

� Piecewise quadratic function with a kink at zero

{ Derivative at0+ : g+ = � � y and 0� : g� = � � � y

{ x = 0 is the solution i� g+ > 0 and g� 6 0 (i.e., jyj 6 � )
{ x > 0 is the solution i� g+ 6 0 (i.e., y > � ) ) x � = y � �
{ x 6 0 is the solution i� g� 6 0 (i.e., y 6 � � ) ) x � = y + �

� Solution x � = sign( y)( jyj � � )+ = soft thresholding



Why `1-norms lead to sparsity?

� Example 1: quadratic problem in 1D, i.e. min
x 2 R
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2
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� Piecewise quadratic function with a kink at zero
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Why `1-norms lead to sparsity?

� Example 2: minimize quadratic functionQ(w) subject tokwk1 6 T.

{ coupled softthresholding

� Geometric interpretation

{ NB : penalizing is \equivalent" to constraining
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Non-smooth optimization

� Simple techniques might not work!

{ Gradient descent or coordinate descent

� Special tools

{ Subgradients or directional derivatives

� Typically slower than smooth optimization...

� ... except in some regularized problems



Counter-example
Coordinate descent for nonsmooth objectives
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Regularized problems - Proximal methods

� Gradient descent as a proximal method (di�erentiable functions)

{ wt +1 = arg min
w2 Rp

L(wt ) + ( w � wt )> r L (wt )+
�
2

kw � wt k2
2

{ wt +1 = wt � 1
� r L (wt )



Regularized problems - Proximal methods

� Gradient descent as a proximal method (di�erentiable functions)

{ wt +1 = arg min
w2 Rp

L(wt ) + ( w � wt )> r L (wt )+
�
2

kw � wt k2
2

{ wt +1 = wt � 1
� r L (wt )

� Problems of the form: min
w2 Rp

L(w) + � 
( w)

{ wt +1 = arg min
w2 Rp

L(wt )+ ( w � wt )> r L (wt )+ � 
( w)+
�
2

kw � wt k2
2

{ Thresholded gradient descentwt +1 = SoftThres( wt � 1
� r L (wt ))

� Similar convergence rates than smooth optimization

{ Acceleration methods (Nesterov, 2007; Beck and Teboulle, 2009)
{ depends on the condition number of the loss



Cheap (and not dirty) algorithms for all losses

� Proximal methods



Cheap (and not dirty) algorithms for all losses

� Proximal methods

� Coordinate descent (Fu, 1998; Friedman et al., 2007)

{ convergenthere under reasonable assumptions! (Bertsekas, 1995)
{ separability of optimality conditions
{ equivalent to iterative thresholding



Cheap (and not dirty) algorithms for all losses

� Proximal methods

� Coordinate descent (Fu, 1998; Friedman et al., 2007)

{ convergenthere under reasonable assumptions! (Bertsekas, 1995)
{ separability of optimality conditions
{ equivalent to iterative thresholding

� \ � -trick" (Rakotomamonjy et al., 2008; Jenatton et al., 2009b)

{ Notice that
P p

j =1 jwj j = min � > 0
1
2

P p
j =1

� w 2
j

� j
+ � j

	

{ Alternating minimization with respect to� (closed-form� j = jwj j)
and w (weighted squared̀2-norm regularized problem)

{ Caveat: lack of continuity around(wi ; � i ) = (0 ; 0): add "=� j



Cheap (and not dirty) algorithms for all losses

� Proximal methods

� Coordinate descent (Fu, 1998; Friedman et al., 2007)

{ convergenthere under reasonable assumptions! (Bertsekas, 1995)
{ separability of optimality conditions
{ equivalent to iterative thresholding

� \ � -trick" (Rakotomamonjy et al., 2008; Jenatton et al., 2009b)

{ Notice that
P p

j =1 jwj j = min � > 0
1
2

P p
j =1

� w 2
j

� j
+ � j

	

{ Alternating minimization with respect to� (closed-form� j = jwj j)
and w (weighted squared̀2-norm regularized problem)

{ Caveat: lack of continuity around(wi ; � i ) = (0 ; 0): add "=� i

� Dedicated algorithms that use sparsity (active sets/homotopy)



Piecewise linear paths
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Gaussian hare vs. Laplacian tortoise

� Coord. descent and proximal:O(pn) per iterations for`1 and `2

� \Exact" algorithms: O(kpn) for `1 vs. O(p2n) for `2



Additional methods - Softwares

� Many contributions in signal processing, optimization, mach. learning

{ Extensions to stochastic setting (Bottou and Bousquet, 2008)

� Extensions to other sparsity-inducing norms

{ Computing proximal operator
{ F. Bach, R. Jenatton, J. Mairal, G. Obozinski. Optimizationwith

sparsity-inducing penalties.Foundations and Trends in Machine
Learning, 4(1):1-106, 2011.

� Softwares

{ Many available codes
{ SPAMS (SPArse Modeling Software)

http://www.di.ens.fr/willow/SPAMS/
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Lasso - Two main recent theoretical results

1. Support recovery condition (Zhao and Yu, 2006; Wainwright,
2009; Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistent if
and only if there are low correlations between relevant and irrelevant
variables.



Model selection consistency (Lasso)

� Assumew sparse and denoteJ = f j; w j 6= 0g the nonzero pattern

� Support recovery condition (Zhao and Yu, 2006; Wainwright, 2009;
Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistentif and
only if

kQJcJQ � 1
JJ sign(w J)k1 6 1

whereQ = lim n ! + 1
1
n

P n
i =1 x i x>

i 2 Rp� p and J = Supp(w)



Model selection consistency (Lasso)

� Assumew sparse and denoteJ = f j; w j 6= 0g the nonzero pattern

� Support recovery condition (Zhao and Yu, 2006; Wainwright, 2009;
Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistentif and
only if

kQJcJQ � 1
JJ sign(w J)k1 6 1

whereQ = lim n ! + 1
1
n

P n
i =1 x i x>

i 2 Rp� p and J = Supp(w)

� The Lasso is usually not model-consistent

{ Selects more variables than necessary (see, e.g., Lv and Fan, 2009)
{ Fixing the Lasso: adaptive Lasso (Zou, 2006), relaxed

Lasso (Meinshausen, 2008), thresholding (Lounici, 2008),
Bolasso (Bach, 2008a), stability selection (Meinshausen and
B•uhlmann, 2008), Wasserman and Roeder (2009)



Adaptive Lasso and concave penalization

� Adaptive Lasso (Zou, 2006; Huang et al., 2008)

{ Weighted`1-norm: min
w2 Rp

L(w) + �
pX

j =1

jwj j
jŵj j �

{ ŵ estimator obtained from̀ 2 or `1 regularization

� Reformulation in terms of concave penalization

min
w2 Rp

L(w) +
pX

j =1

g(jwj j)

{ Example:g(jwj j) = jwj j1=2 or log jwj j. Closer to the`0 penalty
{ Concave-convex procedure: replaceg(jwj j) by a�ne upper bound
{ Better sparsity-inducing properties (Fan and Li, 2001; Zouand Li,

2008; Zhang, 2008b)



Lasso - Two main recent theoretical results

1. Support recovery condition (Zhao and Yu, 2006; Wainwright,
2009; Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistent if
and only if there are low correlations between relevant and irrelevant
variables.

2. Exponentially many irrelevant variables (Zhao and Yu, 2006;
Wainwright, 2009; Bickel et al., 2009; Lounici, 2008; Meinshausen
and Yu, 2008): under appropriate assumptions, consistencyis possible
as long as

logp = O(n)



High-dimensional inference
Variable selection without computational limits

� Approaches based on penalized criteria (close to BIC)

min
w2 Rp

1
2ky � Xw k2

2 + C� 2kwk0
�
1 + log

p
kwk0

�

� Oracle inequality if data generated byw with k non-zeros (Massart,
2003; Bunea et al., 2007):

1
n

kX ŵ � X wk2
2 6 C

k� 2

n

�
1 + log

p
k

�

� Gaussian noise -No assumptions regarding correlations

� Scaling between dimensions:
k logp

n
small



High-dimensional inference (Lasso)

� Main result : we only needk logp = O(n)

{ if w is su�ciently sparse
{ and input variables are not too correlated



High-dimensional inference (Lasso)

� Main result : we only needk logp = O(n)

{ if w is su�ciently sparse
{ and input variables are not too correlated

� Precise conditions on covariance matrixQ = 1
n X > X .

{ Mutual incoherence (Lounici, 2008)
{ Restricted eigenvalue conditions (Bickel et al., 2009)
{ Sparse eigenvalues (Meinshausen and Yu, 2008)
{ Null space property (Donoho and Tanner, 2005)

� Links with signal processing and compressed sensing (Cand�es and
Wakin, 2008)

� Slow rate if no assumptions:
q

k log p
n



Alternative sparse methods
Greedy methods

� Forward selection (a.k.a. orthogonal matching pursuit)

� Forward-backward selection

� Non-convex method

{ Harder to analyze
{ Simpler to implement
{ Problems of stability

� Positive theoretical results (Zhang, 2009, 2008a)

{ Similar su�cient conditions than for the Lasso



Comparing Lasso and other strategies for linear
regression

� Compared methods to reach the least-square solution

{ Ridge regression: min
w2 Rp

1
2
ky � Xw k2

2 +
�
2

kwk2
2

{ Lasso: min
w2 Rp

1
2
ky � Xw k2

2 + � kwk1

{ Forward greedy:
� Initialization with empty set
� Sequentially add the variable that best reduces the square loss

� Each method builds a path of solutions from 0 to ordinary least-
squares solution

� Regularization parameters selected on the test set



Simulation results

� i.i.d. Gaussian design matrix,k = 4 , n = 64, p 2 [2; 256], SNR = 1

� Note stability to non-sparsity and variability
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Simulation results

� i.i.d. Gaussian design matrix,k = 4 , n = 64, p 2 [2; 256], SNR = 1

� Note stability to non-sparsity and variability
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Going beyond the Lasso

� `1-norm for linear feature selection inhigh dimensions

{ Lasso usually not applicable directly

� Non-linearities

{ Multiple kernel learning (Lanckriet et al., 2004; Bach et al., 2004)

� Sparse learning on matrices

{ Dictionary learning and matrix factorization

� Dealing with structured set of features

{ Speci�c sets of zeros
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Learning on matrices - Image denoising

� Simultaneously denoise all patches of a given image

� Example from Mairal, Bach, Ponce, Sapiro, and Zisserman (2009d)



Learning on matrices - Collaborative �ltering

� GivennX \movies" x 2 X and nY \customers" y 2 Y ,

� predict the \rating" z(x; y ) 2 Z of customery for moviex

� Training data: largenX � nY incomplete matrixZ that describes the
known ratings of some customers for some movies

� Goal: complete the matrix.
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Learning on matrices - Source separation

� Single microphone (Benaroya et al., 2006; F�evotte et al., 2009)



Learning on matrices - Multi-task learning

� k linear prediction tasks on same covariatesx 2 Rp

{ k weight vectorsw j 2 Rp

{ Joint matrix of predictorsW = ( w1; : : : ; w k ) 2 Rp� k

� Classical application

{ Multi-category classi�cation (one task per class) (Amit etal., 2007)

� Share parameters between tasks

� Joint variable selection (Obozinski et al., 2009)

{ Select variables which are predictive for all tasks

� Joint feature selection (Pontil et al., 2007)

{ Construct linear features common to all tasks



Matrix factorization - Dimension reduction

� Given data matrixX = ( x1; : : : ; xn ) 2 Rp� n

{ Principal component analysis : x i � D � i ) X = DA

{ K-means : x i � dk ) X = DA



Two types of sparsity for matrices M 2 Rn� p

I - Directly on the elements of M

� Many zero elements:M ij = 0

M

� Many zero rows (or columns):(M i 1; : : : ; M ip ) = 0

M



Two types of sparsity for matrices M 2 Rn� p

II - Through a factorization of M = UV >

� Matrix M = UV > , U 2 Rn � k and V 2 Rp� k

� Low rank: m small

=

T

U
V

M

� Sparse decomposition: U sparse

U= VM
T



Structured sparse matrix factorizations

� Matrix M = UV > , U 2 Rn � k and V 2 Rp� k

� Structure on U and/or V

{ Low-rank: U and V have few columns
{ Dictionary learning / sparse PCA:U has many zeros
{ Clustering (k-means):U 2 f 0; 1gn � m , U1 = 1
{ Pointwise positivity: non negative matrix factorization (NMF)
{ Speci�c patterns of zeros (Jenatton et al., 2010)
{ Low-rank + sparse (Cand�es et al., 2009)
{ etc.

� Many applications

� Many open questions (Algorithms, identi�ability, etc.)



Multi-task learning

� Joint matrix of predictorsW = ( w1; : : : ; wk ) 2 Rp� k

� Joint variable selection (Obozinski et al., 2009)

{ Penalize by the sum of the norms of rows ofW (group Lasso)
{ Select variables which are predictive for all tasks



Multi-task learning

� Joint matrix of predictorsW = ( w1; : : : ; wk ) 2 Rp� k

� Joint variable selection (Obozinski et al., 2009)

{ Penalize by the sum of the norms of rows ofW (group Lasso)
{ Select variables which are predictive for all tasks

� Joint feature selection (Pontil et al., 2007)

{ Penalize by the trace-norm (see later)
{ Construct linear features common to all tasks

� Theory: allows number of observations which is sublinear inthe
number of tasks (Obozinski et al., 2008; Lounici et al., 2009)

� Practice: more interpretable models, slightly improved performance



Low-rank matrix factorizations
Trace norm

� Given a matrixM 2 Rn � p

{ Rank ofM is the minimum sizem of all factorizations ofM into
M = UV > , U 2 Rn � m and V 2 Rp� m

{ Singular value decomposition:M = U Diag(s)V > whereU and
V have orthonormal columns ands 2 Rm

+ are singular values

� Rank ofM equal to the number of non-zero singular values



Low-rank matrix factorizations
Trace norm

� Given a matrixM 2 Rn � p

{ Rank ofM is the minimum sizem of all factorizations ofM into
M = UV > , U 2 Rn � m and V 2 Rp� m

{ Singular value decomposition:M = U Diag(s)V > whereU and
V have orthonormal columns ands 2 Rm

+ are singular values

� Rank ofM equal to the number of non-zero singular values

� Trace-norm (a.k.a. nuclear norm) = sum of singular values

� Convex function, leads to a semi-de�nite program (Fazel et al., 2001)

� First used for collaborative �ltering (Srebro et al., 2005)

� Multi-category classif. (Amit et al., 2007; Harchaoui et al., 2012)



Sparse principal component analysis

� Given dataX = ( x>
1 ; : : : ; x>

n ) 2 Rp� n , two views of PCA:

{ Analysis view : �nd the projection d 2 Rp of maximum variance
(with de
ation to obtain more components)

{ Synthesis view : �nd the basis d1; : : : ; dk such that all x i have
low reconstruction error when decomposed on this basis

� For regular PCA, the two views are equivalent



Sparse principal component analysis

� Given dataX = ( x>
1 ; : : : ; x>

n ) 2 Rp� n , two views of PCA:

{ Analysis view : �nd the projection d 2 Rp of maximum variance
(with de
ation to obtain more components)

{ Synthesis view : �nd the basis d1; : : : ; dk such that all x i have
low reconstruction error when decomposed on this basis

� For regular PCA, the two views are equivalent

� Sparse extensions

{ Interpretability
{ High-dimensional inference
{ Two views are di�erents

- For analysis view, see d'Aspremont, Bach, and El Ghaoui (2008)



Sparse principal component analysis
Synthesis view

� Find d1; : : : ; dk 2 Rp sparse so that

nX

i =1

min
� i 2 Rm








 x i �

kX

j =1

(� i ) j d j










2

2
=

nX

i =1

min
� i 2 Rm




 x i � D � i




 2

2 is small

{ Look forA = ( � 1; : : : ; � n ) 2 Rk � n andD = ( d1; : : : ; dk ) 2 Rp� k

such thatD is sparse andkX � DA k2
F is small



Sparse principal component analysis
Synthesis view

� Find d1; : : : ; dk 2 Rp sparse so that

nX

i =1

min
� i 2 Rm








 x i �

kX

j =1

(� i ) j d j










2

2
=

nX

i =1

min
� i 2 Rm




 x i � D � i




 2

2 is small

{ Look forA = ( � 1; : : : ; � n ) 2 Rk � n andD = ( d1; : : : ; dk ) 2 Rp� k

such thatD is sparse andkX � DA k2
F is small

� Sparse formulation (Witten et al., 2009; Bach et al., 2008)

{ Penalize/constraind j by the `1-norm for sparsity
{ Penalize/constrain� i by the `2-norm to avoid trivial solutions

min
D ;A

nX

i =1

kx i � D � i k2
2 + �

kX

j =1

kd j k1 s.t. 8i; k� i k2 6 1



Sparse PCA vs. dictionary learning

� Sparse PCA: x i � D � i , D sparse



Sparse PCA vs. dictionary learning

� Sparse PCA: x i � D � i , D sparse

� Dictionary learning : x i � D � i , � i sparse



Structured matrix factorizations (Bach et al., 2008)

min
D ;A

nX

i =1

kx i � D � i k2
2 + �

kX

j =1

kd j k? s.t. 8i; k� i k� 6 1

min
D ;A

nX

i =1

kx i � D � i k2
2 + �

nX

i =1

k� i k� s.t. 8j; kd j k? 6 1

� Optimization by alternating minimization (non-convex)

� � i decomposition coe�cients(or \code"), d j dictionary elements

� Two related/equivalent problems:

{ Sparse PCA = sparse dictionary (`1-norm ond j )
{ Dictionary learning = sparse decompositions (`1-norm on� i )

(Olshausen and Field, 1997; Elad and Aharon, 2006; Lee et al.,
2007)



Dictionary learning for image denoising

x|{z}
measurements

= y|{z}
original image

+ "|{z}
noise



Dictionary learning for image denoising

� Solving the denoising problem (Elad and Aharon, 2006)

{ Extract all overlapping8 � 8 patchesx i 2 R64

{ Form the matrixX = ( x>
1 ; : : : ; x>

n ) 2 Rn � 64

{ Solve a matrix factorization problem:

min
D ;A

jjX � DA jj2
F = min

D ;A

nX

i =1

jj x i � D � i jj2
2

whereA is sparse, and D is the dictionary
{ Each patch is decomposed intox i = D � i

{ Average the reconstructionD � i of each patchx i to reconstruct a
full-sized image

� The number of patchesn is large (= number of pixels)



Online optimization for dictionary learning

min
A 2 Rk � n ;D 2D

nX

i =1

jj x i � D � i jj2
2 + � jj � i jj1

D M= f D 2 Rp� k s.t. 8j = 1 ; : : : ; k; jjd j jj2 6 1g:

� Classical optimization alternates betweenD and A

� Good results, butvery slow!



Online optimization for dictionary learning

min
A 2 Rk � n ;D 2D

nX

i =1

jj x i � D � i jj2
2 + � jj � i jj1

D M= f D 2 Rp� k s.t. 8j = 1 ; : : : ; k; jjd j jj2 6 1g:

� Classical optimization alternates betweenD and A .

� Good results, butvery slow!

� Online learning (Mairal, Bach, Ponce, and Sapiro, 2009a) can

{ handle potentially in�nite datasets
{ adapt to dynamic training sets

� Simultaneous sparse coding (Mairal et al., 2009d)

{ Links with NL-means (Buades et al., 2008)



Denoising result
(Mairal, Bach, Ponce, Sapiro, and Zisserman, 2009d)



Denoising result
(Mairal, Bach, Ponce, Sapiro, and Zisserman, 2009d)



What does the dictionary D look like?



Inpainting a 12-Mpixel photograph



Inpainting a 12-Mpixel photograph



Inpainting a 12-Mpixel photograph



Inpainting a 12-Mpixel photograph



Additional methods - Softwares

� Many contributions in signal processing, optimization, mach. learning

{ Extensions to stochastic setting (Bottou and Bousquet, 2008)

� Extensions to other sparsity-inducing norms

{ Computing proximal operator
{ F. Bach, R. Jenatton, J. Mairal, G. Obozinski. Optimizationwith

sparsity-inducing penalties.Foundations and Trends in Machine
Learning, 4(1):1-106, 2011.

� Softwares

{ Many available codes
{ SPAMS (SPArse Modeling Software)

http://www.di.ens.fr/willow/SPAMS/
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Learning dictionaries
with a discriminative cost function

� Idea: consider 2 sets S� ; S+ of signals representing2 di�erent
classes. Each set should admit aspeci�c dictionarybest adapted to
its reconstruction.

� Classi�cation procedure for a signalx 2 Rn :

min(R ?(x; D � ); R ?(x; D + ))

whereR ?(x; D ) = min
� 2 Rp

jj x � D� jj2
2 s.t. jj � jj0 � L:

� \Reconstructive" training
(

minD �

P
i 2 S�

R ?(x i ; D � )
minD +

P
i 2 S+

R ?(x i ; D+ )

(Grosse et al., 2007; Huang and Aviyente, 2006; Sprechmann et al., 2010)



Learning dictionaries with a discriminative
cost function

� \Discriminative" training (Mairal, Bach, Ponce, Sapiro, and
Zisserman, 2008b)

min
D � ;D +

X

i

D
�

�z i
�
R ?(x i ; D � ) � R ?(x i ; D+ )

� �
;

wherezi 2 f� 1; +1g is the label ofx i .

Logistic regression function



Learning dictionaries with a discriminative
cost function

� Mixed approach

min
D � ;D +

X

i

D
�

�z i
�
R ?(x i ; D � ) � R ?(x i ; D+ )

� �
+ � R ?(x i ; D zi );

wherezi 2 f� 1; +1g is the label ofx i .

� Keys of the optimization framework

{ Alternation of sparse coding and dictionary updates.
{ Continuation path with decreasing values of� .
{ OMP to address the NP-hard sparse coding problem. . .
{ . . . or homotopy method when using̀1.
{ Use softmax instead of logistic regression forN > 2 classes.



Learning dictionaries with a discriminative
cost function - Examples of dictionaries

Top: reconstructive, Bottom: discriminative
Left: Bicycle, Right: Background



Learning dictionaries with a discriminative
cost function - Texture segmentation



Learning dictionaries with a discriminative
cost function - Texture segmentation



Learning dictionaries with a discriminative
cost function - Pixelwise classi�cation



Learning dictionaries with a discriminative
cost function - Multiscale scheme



Learning dictionaries with a discriminative
cost function - weakly-supervised pixel classi�cation



Application to edge detection and classi�cation
(Mairal, Leordeanu, Bach, Hebert, and Ponce, 2008c)

Good edges Bad edges



Application to edge detection and classi�cation
Berkeley segmentation benchmark

Raw edge detection on the right
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Application to edge detection and classi�cation
Berkeley segmentation benchmark



Application to edge detection and classi�cation
Contour-based classi�er (Leordeanu, Hebert, and

Sukthankar, 2007)

Is there a bike, a motorbike, a car or a person on this image?



Application to edge detection and classi�cation



Application to edge detection and classi�cation
Performance gain due to the pre�ltering

Ours+ [Leordeanu '07] [Leordeanu '07] [Winn '05]

96:8% 89:4% 76:9%
Recognition rates for the same experiment as (Winn et al., 2005) on
VOC 2005.

Category Ours+[Leordeanu '07] [Leordeanu '07]
Aeroplane 71:9% 61:9%

Boat 67:1% 56:4%
Cat 82:6% 53:4%
Cow 68:7% 59:2%
Horse 76:0% 67%

Motorbike 80:6% 73:6%
Sheep 72:9% 58:4%

Tvmonitor 87:7% 83:8%

Average 75:9% 64.2 %

Recognition performance at equal error rate for8 classes on a subset
of images from Pascal 07.



Learning Codebooks for Image Classi�cation

� Idea: Replacing Vector Quantization by Learned Dictionaries!

{ unsupervised: (Yang et al., 2009a)
{ supervised: (Boureau et al., 2010; Yang et al., 2010) (CVPR '10)



Learning Codebooks for Image Classi�cation

� Let an image be represented by a set of low-level descriptorsx i at N
locations identi�ed with their indicesi = 1 ; : : : ; N

{ hard-quantization:

x i � D� i ; � i 2 f 0; 1gp and
pX

j =1

(� i ) j = 1

{ soft-quantization:

(� i ) j =
e� � kx i � dj k2

2

P p
k=1 e� � kx i � dk k2

2

{ sparse coding:

x i � D� i ; � i = argmin
�

1
2
kx i � D� k2

2 + � k� k1



Learning Codebooks for Image Classi�cation
Table from Boureau, Bach, Lecun, and Ponce (2010)

Yang et al. (2009a) have won the PASCAL VOC'09 challenge using this
kind of techniques.



Task-driven dictionary learning
(Mairal, Bach, and Ponce, 2010a)

� De�ne � � (D; x ) = argmin �
1
2kx � D� k2

2 + � k� k1

� � is used as a code forx

� Direct optimization of � � (D; x ) with respect to D

{ Application to image processing tasks such inverse half-
toning (Mairal, Bach, and Ponce, 2010a)

{ Image super-resolution (Couzinie-Devy, Mairal, Bach, andPonce,
2011)



Digital Zooming (Couzinie-Devy et al., 2011)



Digital Zooming (Couzinie-Devy et al., 2011)



Inverse half-toning (Mairal et al., 2010a)



Inverse half-toning (Mairal et al., 2010a)



Inverse half-toning (Mairal et al., 2010a)



Inverse half-toning (Mairal et al., 2010a)



Inverse half-toning (Mairal et al., 2010a)



Inverse half-toning (Mairal et al., 2010a)
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Why structured sparsity?

� Interpretability

{ Structured dictionary elements (Jenatton et al., 2009b)
{ Dictionary elements \organized" in atree or a grid (Kavukcuoglu

et al., 2009; Jenatton et al., 2010; Mairal et al., 2010b)



Structured sparse PCA (Jenatton et al., 2009b)

raw data sparse PCA

� Unstructed sparse PCA) many zeros do not lead to better
interpretability
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Structured sparse PCA (Jenatton et al., 2009b)

raw data Structured sparse PCA

� Enforce selection ofconvex nonzero patterns) robustness to
occlusion in face identi�cation



Structured sparse PCA (Jenatton et al., 2009b)

raw data Structured sparse PCA

� Enforce selection ofconvex nonzero patterns) robustness to
occlusion in face identi�cation
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{ Structured dictionary elements (Jenatton et al., 2009b)
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Why structured sparsity?

� Interpretability

{ Structured dictionary elements (Jenatton et al., 2009b)
{ Dictionary elements \organized" in atree or a grid (Kavukcuoglu

et al., 2009; Jenatton et al., 2010; Mairal et al., 2010b)

� Stability and identi�ability

{ Optimization problemminw2 Rp L(y; Xw ) + � kwk1 is unstable
{ \Codes" wj often used in later processing (Mairal et al., 2009c)

� Prediction or estimation performance

{ When prior knowledge matches data (Haupt and Nowak, 2006;
Baraniuk et al., 2008; Jenatton et al., 2009a; Huang et al., 2009)

� Numerical e�ciency

{ Non-linear variable selection with2p subsets (Bach, 2008b)



Classical approaches to structured sparsity

� Many application domains

{ Computer vision (Cevher et al., 2008; Mairal et al., 2009b)
{ Neuro-imaging (Gramfort and Kowalski, 2009; Jenatton et al.,

2011)
{ Bio-informatics (Rapaport et al., 2008; Kim and Xing, 2010)

� Non-convex approaches

{ Haupt and Nowak (2006); Baraniuk et al. (2008); Huang et al.
(2009)

� Convex approaches

{ Design of sparsity-inducing norms



Sparsity-inducing norms

� Popular choice for 

{ The `1-`2 norm,

X

G2 H

kwGk2 =
X

G2 H

� X

j 2 G

w2
j

� 1=2

{ with H a partition of f 1; : : : ; pg
{ The `1-`2 norm sets to zerogroups of non-overlapping

variables(as opposed to single variables for the`1-norm)
{ For the square loss, group Lasso (Yuan and Lin, 2006)

G

2G

3G

1



Unit norm balls
Geometric interpretation

kwk2 kwk1

p
w2

1 + w2
2 + jw3j



Sparsity-inducing norms

� Popular choice for 

{ The `1-`2 norm,

X

G2 H

kwGk2 =
X

G2 H

� X

j 2 G

w2
j

� 1=2

{ with H a partition of f 1; : : : ; pg
{ The `1-`2 norm sets to zerogroups of non-overlapping

variables(as opposed to single variables for the`1-norm)
{ For the square loss, group Lasso (Yuan and Lin, 2006)

G

2G

3G

1

� However, the`1-`2 norm encodes�xed/static prior information ,
requires to know in advance how to group the variables

� What happens if the set of groupsH is not a partition anymore?



Structured sparsity with overlapping groups
(Jenatton, Audibert, and Bach, 2009a)

� When penalizing by thè1-`2 norm,

X

G2 H

kwGk2 =
X

G2 H

� X

j 2 G

w2
j

� 1=2

{ The `1 norm induces sparsity at the group level:
� SomewG 's are set to zero

{ Inside the groups, thè2 norm does not promote sparsity

GG2

1G
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2



Structured sparsity with overlapping groups
(Jenatton, Audibert, and Bach, 2009a)

� When penalizing by thè1-`2 norm,

X

G2 H

kwGk2 =
X

G2 H

� X

j 2 G

w2
j

� 1=2

{ The `1 norm induces sparsity at the group level:
� SomewG 's are set to zero

{ Inside the groups, thè2 norm does not promote sparsity

GG2

1G

3G

2

� The zero pattern ofw is given by

f j; w j = 0g =
[

G2 H 0

G for someH 0 � H

� Zero patterns are unions of groups



Examples of set of groups H

� Selection of contiguous patterns on a sequence,p = 6

{ H is the set of blue groups

{ Any union of blue groups set to zero leads to the selection of a
contiguous pattern



Examples of set of groups H

� Selection of rectangles on a 2-D grids,p = 25

{ H is the set of blue/green groups (with their not displayed
complements)

{ Any union of blue/green groups set to zero leads to the selection
of a rectangle



Examples of set of groups H

� Selection of diamond-shaped patterns on a 2-D grids,p = 25.

{ It is possible to extend such settings to 3-D space, or more complex
topologies



Unit norm balls
Geometric interpretation

kwk1

p
w2

1 + w2
2 + jw3j kwk2 + jw1j + jw2j



Comparison of optimization algorithms
(Mairal, Jenatton, Obozinski, and Bach, 2010b)

Small scale

� Speci�c norms which can be implemented through network 
ows
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Comparison of optimization algorithms
(Mairal, Jenatton, Obozinski, and Bach, 2010b)

Large scale

� Speci�c norms which can be implemented through network 
ows
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Application to background subtraction
(Mairal, Jenatton, Obozinski, and Bach, 2010b)

Input `1-norm Structured norm



Application to background subtraction
(Mairal, Jenatton, Obozinski, and Bach, 2010b)

Background `1-norm Structured norm



Application to neuro-imaging
Structured sparsity for fMRI (Jenatton et al., 2011)

� \Brain reading": prediction of (seen) object size

� Multi-scale activity levels through hierarchical penalization
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Application to neuro-imaging
Structured sparsity for fMRI (Jenatton et al., 2011)

� \Brain reading": prediction of (seen) object size

� Multi-scale activity levels through hierarchical penalization



Sparse Structured PCA
(Jenatton, Obozinski, and Bach, 2009b)

� Learningsparse and structured dictionary elements :

min
W 2 Rk � n ;X 2 Rp� k

1
n

nX

i =1

kyi � Xw i k2
2 + �

pX

j =1


( x j ) s.t. 8i; kwi k2 � 1



Application to face databases (1/3)

raw data (unstructured) NMF

� NMF obtains partially local features



Application to face databases (2/3)

(unstructured) sparse PCA Structured sparse PCA

� Enforce selection ofconvex nonzero patterns) robustness to
occlusion



Application to face databases (2/3)

(unstructured) sparse PCA Structured sparse PCA

� Enforce selection ofconvex nonzero patterns) robustness to
occlusion



Application to face databases (3/3)

� Quantitative performance evaluation on classi�cation task
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Structured sparse PCA on resting state activity
(Varoquaux, Jenatton, Gramfort, Obozinski, Thirion,

and Bach, 2010)



Dictionary learning vs. sparse structured PCA
Exchange roles of X and w

� Sparse structured PCA (structured dictionary elements ):

min
W 2 Rk � n ;X 2 Rp� k

1
n

nX

i =1

kyi � Xw i k2
2 + �

kX

j =1


( x j ) s.t. 8i; kwi k2 � 1:

� Dictionary learning withstructured sparsity for codes w:

min
W 2 Rk � n ;X 2 Rp� k

1
n

nX

i =1

kyi � Xw i k2
2 + � 
( wi ) s.t. 8j; kx j k2 � 1:

� Optimization :

{ Alternating optimization
{ Modularity of implementation if proximal step is e�cient

(Jenatton et al., 2010; Mairal et al., 2010b)



Hierarchical dictionary learning
(Jenatton, Mairal, Obozinski, and Bach, 2010)

� Structure on codesw (not on dictionaryX )

� Hierarchical penalization:
( w) =
P

G2 H kwGk2 where groupsG
in H are equal toset of descendantsof some nodes in a tree

� Variable selected after its ancestors (Zhao et al., 2009; Bach, 2008b)



Hierarchical dictionary learning
Modelling of text corpora

� Each document is modelled through word counts

{ Low-rank matrix factorization of word-document matrix
{ Similar to NMF with multinomial loss

� Probabilistic topic models (Blei et al., 2003a)

{ Similar structures based on non parametric Bayesian methods (Blei
et al., 2004)

{ Can we achieve similar performance with simple matrix
factorization formulation?



Topic models and matrix factorization

� Latent Dirichlet allocation (Blei et al., 2003b)

{ For a document, sample� 2 Rk from a Dirichlet(� )
{ For the n-th word of the same document,

� sample a topiczn from a multinomial with parameter�
� sample a wordwn from a multinomial with parameter� (zn ; :)

� Interpretation as multinomial PCA (Buntine and Perttu, 2003)

{ Marginalizing over topiczn , given� , each wordwn is selected from
a multinomial with parameter

P k
z=1 � z � (z; :) = � > �

{ Row of � = dictionary elements,� code for a document



Modelling of text corpora - Dictionary tree



Topic models, NMF and matrix factorization

� Three di�erent views on the same problem

{ Interesting parallels to be made
{ Common problems to be solved

� Structure on dictionary/decomposition coe�cients with adapted
priors, e.g., nested Chinese restaurant processes (Blei etal., 2004)

� Learning hyperparameters from data

� Identi�ability and interpretation/evaluation of results

� Discriminative tasks (Blei and McAuli�e, 2008; Lacoste-Julien
et al., 2008; Mairal et al., 2009c)

� Optimization and local minima



Structure on codes within dictionary learning

min
A 2 Rk � n

D 2 Rp� k

nX

i =1

kx i � D � i k2
2 + � (� i ) s.t. 8j; kd j k2 � 1:

� Impose topology between dictionary elements

{ Hierarchical and topographic dictionaries for image patches

� Grouping atoms

{ Source separation



Hierarchical dictionaries (Jenatton et al., 2010)



Topographic dictionaries (Mairal et al., 2010b)



Structured sparsity - Audio processing
Source separation (Lef�evre et al., 2011)
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Structured sparsity - Audio processing
Musical instrument separation (Lef�evre et al., 2011)

� Unsupervised source separation with group-sparsity prior

{ Top: mixture
{ Left: source tracks (guitar, voice). Right: separated tracks.
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`1-norm = convex envelope of cardinality of support

� Let w 2 Rp. Let V = f 1; : : : ; pg and Supp(w) = f j 2 V; wj 6= 0g

� Cardinality of support : kwk0 = Card(Supp( w))

� Convex envelope = largest convex lower bound (see, e.g., Boyd and
Vandenberghe, 2004)

1

0

||w||

||w||

-1 1

� `1-norm = convex envelope of̀0-quasi-norm on thè 1 -ball [� 1; 1]p



Convex envelopes of general functions of the support
(Bach, 2010)

� Let F : 2V ! R be aset-function

{ AssumeF is non-decreasing (i.e., A � B ) F (A) 6 F (B ))
{ Explicit prior knowledge on supports (Haupt and Nowak, 2006;

Baraniuk et al., 2008; Huang et al., 2009)

� De�ne �( w) = F (Supp(w)) : How to get its convex envelope?

1. Possible ifF is alsosubmodular
2. Allowsuni�ed theory and algorithm
3. Providesnew regularizers

� References on submodular functions (Fujishige, 2005; Bach, 2010)
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Conclusion

� Sparsity for machine learning and vision

{ Many applications (image, audio, text, etc.)
{ May be achieved throughstructured sparsity-inducing norms
{ May be adapted to adiscriminative task



Conclusion

� Sparsity for machine learning and vision

{ Many applications (image, audio, text, etc.)
{ May be achieved throughstructured sparsity-inducing norms
{ May be adapted to adiscriminative task

� On-going work on structured sparsity

{ Norm designthrough submodular functions (Bach, 2010)
{ Large-scale learning (Le Roux et al., 2012)
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