Recent Advances in Conformal Prediction: Multivariate Predictions and Anytime Guarantees

Francis Bach

Inria - Ecole Normale Supérieure

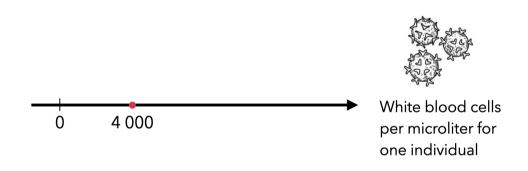
Recent Advances in Conformal Prediction: Multivariate Predictions and Anytime Guarantees

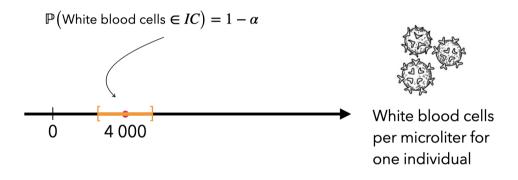
Francis Bach

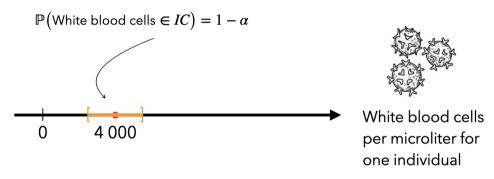
Inria - Ecole Normale Supérieure

Joint work with Sacha Braun, Etienne Gauthier, Eugène Berta, David Holzmüller, Liviu Aolaritei, and Michael Jordan

ICSDS Conference, Seville, Spain - December 16, 2025







 $Difficulty: \ High-dimensional \ inputs/outputs, \ no \ distributional \ assumptions$

Predicting delays on train networks

• Reinforcement learning and robotics

Table of Contents

- Foundations of conformal prediction
- Minimum volume covering sets
- Gaussian conformal prediction
 - Partially Revealed Outputs
 - Projection of the output
- Conformal Prediction with E-values
- 5 Bonus: Evaluating conditional miscoverage
- 6 Conclusion

Conformal prediction yields finite sample guarantees

- **Observation**: dataset \mathcal{D} of n independent and identically distributed (i.i.d.) samples $(X_i, Y_i) \sim \mathbb{P}_{X,Y}$ with $(X_i, Y_i) \in \mathcal{X} \times \mathcal{Y}$
- **Goal**: Given a target miscoverage level $\alpha \in (0,1)$, construct a set-valued predictor $C_{\alpha}(X)$ such that

$$\mathbb{P}_{X,Y}(Y_{n+1} \in C_{\alpha}(X_{n+1})) \approx 1 - \alpha$$

Conformal prediction yields finite sample guarantees

- **Observation**: dataset \mathcal{D} of n independent and identically distributed (i.i.d.) samples $(X_i, Y_i) \sim \mathbb{P}_{X,Y}$ with $(X_i, Y_i) \in \mathcal{X} \times \mathcal{Y}$
- **Goal**: Given a target miscoverage level $\alpha \in (0,1)$, construct a set-valued predictor $C_{\alpha}(X)$ such that

$$\mathbb{P}_{X,Y}(Y_{n+1} \in C_{\alpha}(X_{n+1})) \approx 1 - \alpha$$

Conformal prediction allows finite sample guarantees
 (Vovk et al., 2005; Shafer and Vovk, 2008; Angelopoulos and Bates, 2023; Angelopoulos et al., 2024)

Conformal prediction yields finite sample guarantees

- **Observation**: dataset \mathcal{D} of n independent and identically distributed (i.i.d.) samples $(X_i, Y_i) \sim \mathbb{P}_{X,Y}$ with $(X_i, Y_i) \in \mathcal{X} \times \mathcal{Y}$
- **Goal**: Given a target miscoverage level $\alpha \in (0,1)$, construct a set-valued predictor $C_{\alpha}(X)$ such that

$$\mathbb{P}_{X,Y}(Y_{n+1} \in C_{\alpha}(X_{n+1})) \approx 1 - \alpha$$

- Conformal prediction allows finite sample guarantees
 (Vovk et al., 2005; Shafer and Vovk, 2008; Angelopoulos and Bates, 2023; Angelopoulos et al., 2024)
- Alternative frameworks
 - Bayesian, resampling, PCS (predictability, computability, and stability), etc.

Probabilistic lemma (uniform rank statistics).

Let n+1 independent and identically distributed (i.i.d.) samples $S_i \sim \mathbb{P}_S$ with $S_i \in \mathbb{R}$. Assume there are almost surely no ties between S_i .

Then $rank(S_{n+1})$ is uniformly distributed in [1, n+1].

Probabilistic lemma (uniform rank statistics).

Let n+1 independent and identically distributed (i.i.d.) samples $S_i \sim \mathbb{P}_S$ with $S_i \in \mathbb{R}$. Assume there are almost surely no ties between S_i .

Then $rank(S_{n+1})$ is uniformly distributed in [1, n+1].

Proof: For $k \in [1, n+1]$, because of exchangeability,

$$\mathbb{P}(\operatorname{rank}(S_{n+1}) = k) = \frac{1}{n+1} \sum_{i=1}^{n+1} \mathbb{P}(\operatorname{rank}(S_i) = k) = \frac{1}{n+1}$$

Proposition. Let *n* i.i.d. samples $(X_i, Y_i) \sim \mathbb{P}_{X,Y_i}$ and a fixed $S: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$.

Define $S_i = S(X_i, Y_i)$, and define order statistics as $S_{(1)} < S_{(2)} < \ldots < S_{(n)}$ (no ties a.s.).

For
$$r \le n$$
, define $C_{1-r/(n+1)}(X) := \{y, S(X, y) \le S_{(r)}\}.$

For
$$r \le n$$
, define $C_{1-r/(n+1)}(X) := \{y, S(X, y) \le S_{(r)}\}$.
Then for a new test sample $(X_{n+1}, Y_{n+1}) \sim \mathbb{P}_{X,Y}$,
$$\mathbb{P}\Big(Y_{n+1} \in C_{1-\frac{r}{n+1}}(X_{n+1})\Big) = \frac{r}{n+1}.$$

Proposition. Let *n* i.i.d. samples $(X_i, Y_i) \sim \mathbb{P}_{X,Y_i}$ and a fixed $S: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$.

Define $S_i = S(X_i, Y_i)$, and define order statistics as $S_{(1)} < S_{(2)} < \ldots < S_{(n)}$ (no ties a.s.).

For $r \leq n$, define $C_{1-r/(n+1)}(X) := \{y, S(X, y) \leq S_{(r)}\}.$ Then for a new test sample $(X_{n+1}, Y_{n+1}) \sim \mathbb{P}_{X \mid Y}$.

$$\mathbb{P}\Big(Y_{n+1}\in C_{1-\frac{r}{n+1}}(X_{n+1})\Big)=\frac{r}{n+1}.$$

$$\mathbb{P}\left(Y_{n+1} \in C_{1-\frac{r}{n+1}}(X_{n+1})\right) = \mathbb{P}\left(S(X_{n+1}, Y_{n+1}) \le S_{(r)} = r \text{ smallest of } S_1, \dots, S_n\right)$$

$$= \mathbb{P}\left(S_{n+1} = S(X_{n+1}, Y_{n+1}) \text{ among the } r \text{ smallest of } S_1, \dots, S_n, S_{n+1}\right)$$

$$= \mathbb{P}(\operatorname{rank}(S_i) \le r) = \frac{r}{n+1}$$

Proposition. Let *n* i.i.d. samples $(X_i, Y_i) \sim \mathbb{P}_{X,Y_i}$ and a fixed $S: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$.

Define $S_i = S(X_i, Y_i)$, and define order statistics as $S_{(1)} < S_{(2)} < \ldots < S_{(n)}$ (no ties a.s.).

For $r \leq n$, define $C_{1-r/(n+1)}(X) := \{y, S(X, y) \leq S_{(r)}\}.$ Then for a new test sample $(X_{n+1}, Y_{n+1}) \sim \mathbb{P}_{X \mid Y}$.

$$\mathbb{P}\Big(Y_{n+1}\in C_{1-\frac{r}{n+1}}(X_{n+1})\Big)=\frac{r}{n+1}.$$

$$\mathbb{P}\left(Y_{n+1} \in C_{1-\frac{r}{n+1}}(X_{n+1})\right) = \mathbb{P}\left(S(X_{n+1},Y_{n+1}) \leq S_{(r)} = r \text{ smallest of } S_1,\ldots,S_n\right)$$

$$= \mathbb{P}(\operatorname{rank}(S_i) \leq r) = \frac{r}{n+1}$$

By choosing
$$r = \lceil (1 - \alpha)(n+1) \rceil$$
, we get

$$r=|(1-lpha)(n+1)|$$
, we get $\mathbb{P}\left(Y_{n+1}\in C_lpha(X_{n+1})\right)\in \left[1-lpha,\ 1-lpha+rac{1}{n+1}
ight)$

 $= \mathbb{P}(S_{n+1} = S(X_{n+1}, Y_{n+1}))$ among the r smallest of $S_1, \ldots, S_n, S_{n+1}$

Proposition. Let n i.i.d. samples $(X_i, Y_i) \sim \mathbb{P}_{X,Y}$, and a fixed $S : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$.

Define $S_i = S(X_i, Y_i)$, and define order statistics as $S_{(1)} < S_{(2)} < \ldots < S_{(n)}$ (no ties a.s.).

For $r \le n$, define $C_{1-r/(n+1)}(X) := \{y, S(X, y) \le S_{(r)}\}.$

Then for a new test sample
$$(X_{n+1},Y_{n+1})\sim \mathbb{P}_{X,Y}$$
,
$$\mathbb{P}\Big(Y_{n+1}\in C_{1-\frac{r}{n+1}}(X_{n+1})\Big)=\frac{r}{n+1}.$$

Proof:

$$\mathbb{P}\left(Y_{n+1} \in C_{1-\frac{r}{n+1}}(X_{n+1})\right) = \mathbb{P}\left(S(X_{n+1}, Y_{n+1}) \le S_{(r)} = r \text{ smallest of } S_1, \dots, S_n\right)$$

$$= \mathbb{P}\left(S_{n+1} = S(X_{n+1}, Y_{n+1}) \text{ among the } r \text{ smallest of } S_1, \dots, S_n, S_{n+1}\right)$$

 $= \mathbb{P}(\operatorname{rank}(S_i) \le r) = \frac{r}{n+1}$ (NB: know more than probability)

By choosing
$$r=\lceil (1-\alpha)(n+1) \rceil$$
, we get
$$\mathbb{P}\left(Y_{n+1} \in \mathcal{C}_{\alpha}(X_{n+1})\right) \in \left[1-\alpha, \ 1-\alpha+\frac{1}{n+1}\right)$$

- ullet Given fixed "nonconformity score function" $S:\mathcal{X}\times\mathcal{Y}\to\mathbb{R}$,
 - $\mathbb{P}(Y_{n+1} \in C_{\alpha}(X_{n+1})) \approx 1 \alpha \checkmark$

- Given fixed "nonconformity score function" $S: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$,
 - $\mathbb{P}(Y_{n+1} \in C_{\alpha}(X_{n+1})) \approx 1 \alpha \checkmark$
 - NB: Different from $\mathbb{P}(Y_{n+1} \in C_{\alpha}(X_{n+1})|X_1,Y_1,\ldots,X_n,Y_n) \approx 1-\alpha$ almost surely

- Given fixed "nonconformity score function" $S: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$,
 - $\mathbb{P}(Y_{n+1} \in C_{\alpha}(X_{n+1})) \approx 1 \alpha \checkmark$
 - NB: Different from $\mathbb{P}(Y_{n+1} \in C_{\alpha}(X_{n+1})|X_1,Y_1,\ldots,X_n,Y_n) \approx 1-\alpha$ almost surely
 - $\mathbb{P}(Y_{n+1} \in \mathcal{C}_{\alpha}(X_{n+1}) \mid X_{n+1}) \approx 1 \alpha$ almost surely X

- Given fixed "nonconformity score function" $S: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$,
 - $\mathbb{P}(Y_{n+1} \in C_{\alpha}(X_{n+1})) \approx 1 \alpha \checkmark$
 - NB: Different from $\mathbb{P}(Y_{n+1} \in C_{\alpha}(X_{n+1})|X_1,Y_1,\ldots,X_n,Y_n) \approx 1-\alpha$ almost surely
 - $\mathbb{P}(Y_{n+1} \in C_{\alpha}(X_{n+1}) \mid X_{n+1}) \approx 1 \alpha$ almost surely X
- Impossible to get conditional validity without additional assumptions (see, e.g., Vovk 2012; Foygel Barber et al. 2021; Lei and Wasserman 2014)

- Given fixed "nonconformity score function" $S: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$,
 - $\mathbb{P}(Y_{n+1} \in C_{\alpha}(X_{n+1})) \approx 1 \alpha \checkmark$
 - NB: Different from $\mathbb{P}(Y_{n+1} \in C_{\alpha}(X_{n+1})|X_1,Y_1,\ldots,X_n,Y_n) \approx 1-\alpha$ almost surely
 - $\mathbb{P}(Y_{n+1} \in \mathcal{C}_{\alpha}(X_{n+1}) \mid X_{n+1}) \approx 1 \alpha$ almost surely X
- Impossible to get conditional validity without additional assumptions (see, e.g., Vovk 2012; Foygel Barber et al. 2021; Lei and Wasserman 2014)
- ullet Good conditional coverage \Leftrightarrow score functions that "capture uncertainty" and have weak dependence on X
- Choice of score function is crucial
 - Any (even estimated) score can be "conformalized" using split conformal prediction
 - How to choose a good score?

Split conformal prediction

- Suppose we have n samples i.i.d. $(X_i, Y_i) \sim \mathbb{P}_{X,Y}$
- Split the dataset in two:
 - $\mathcal{D}_1 = \text{training}$ set with $\mathsf{Card}(\mathcal{D}_1) = \mathit{n}_1$
 - $\mathcal{D}_2 = \mathsf{calibration}$ set with $\mathsf{Card}(\mathcal{D}_2) = \mathit{n}_2$
- Learn any model f on the training dataset

Split conformal prediction

- Suppose we have *n* samples i.i.d. $(X_i, Y_i) \sim \mathbb{P}_{X,Y}$
- Split the dataset in two:
 - $\mathcal{D}_1 = \text{training}$ set with $\mathsf{Card}(\mathcal{D}_1) = \mathit{n}_1$
 - $\mathcal{D}_2 = \text{calibration}$ set with $\text{Card}(\mathcal{D}_2) = n_2$
- Learn any model f on the training dataset
- Define the nonconformity score:

$$S(X,Y) = |Y - f(X)|$$

• Let \hat{q}_{α} be the $\lceil (1-\alpha)(n_2+1) \rceil$ -smallest value of all n_2 values of $S(X_i,Y_i)$ of the calibration set

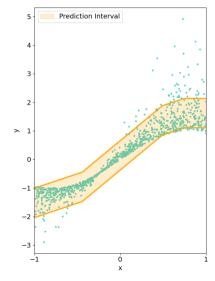
Split conformal prediction

- Suppose we have *n* samples i.i.d. $(X_i, Y_i) \sim \mathbb{P}_{X,Y}$
- Split the dataset in two:
 - $\mathcal{D}_1 = \text{training set with } \mathsf{Card}(\mathcal{D}_1) = n_1$
 - $\mathcal{D}_2 = \text{calibration}$ set with $Card(\mathcal{D}_2) = n_2$
- Learn any model f on the training dataset
- Define the nonconformity score:

$$S(X,Y) = |Y - f(X)|$$

- Let \hat{q}_{α} be the $\lceil (1-\alpha)(n_2+1) \rceil$ -smallest value of all n_2 values of $S(X_i, Y_i)$ of the calibration set
- Then, with $C_{lpha}(X)=\{y,\ f(X)-\hat{q}_{lpha}\leq y\leq f(X)+\hat{q}_{lpha}\}$,

$$\mathbb{P}(Y_{n+1} \in C_{\alpha}(X_{n+1}) \mid \mathcal{D}_{1}) \in \left[1 - \alpha, \ 1 - \alpha + \frac{1}{n_{2} + 1}\right)$$



Improved conditional coverage with standardized residuals

- Also learn $\sigma(X)$, a "spread predictor" to predict the standard deviation of |Y f(X)|
- Define the non-conformity score (Lei et al., 2018)

$$S(X,Y) = \frac{|Y - f(X)|}{\sigma(X)}$$

• Let \hat{q}_{α} be the $\lceil (1-\alpha)(n_2+1) \rceil$ -smallest value of all n_2 values of $S(X_i,Y_i)$ of the calibration set

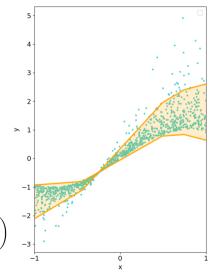
Improved conditional coverage with standardized residuals

- Also learn $\sigma(X)$, a "spread predictor" to predict the standard deviation of |Y f(X)|
- Define the non-conformity score (Lei et al., 2018)

$$S(X,Y) = \frac{|Y - f(X)|}{\sigma(X)}$$

- Let \hat{q}_{α} be the $\lceil (1-\alpha)(n_2+1) \rceil$ -smallest value of all n_2 values of $S(X_i,Y_i)$ of the calibration set
- Then, with $C_{\alpha}(X) = \{y, \ f(X) \sigma(X)\hat{q}_{\alpha} \le y \le f(X) + \sigma(X)\hat{q}_{\alpha}\},$

$$\mathbb{P}_{X,Y}(Y_{n+1} \in C_{\alpha}(X_{n+1}) \mid \mathcal{D}_{\mathbf{1}}) \in \left[1 - \alpha, \ 1 - \alpha + \frac{1}{n_2 + 1}\right)^{-2}$$



Quantile regression

• Learn $\hat{q}_{\alpha/2}(X)$ and $\hat{q}_{1-\alpha/2}(X)$ by minimizing the pinball loss on the training set, for $\tau = \alpha/2$ and $\tau = 1 - \alpha/2$:

$$L_{ au}(y,\hat{y}) = egin{cases} au(y-\hat{y}) & ext{if } y \geq \hat{y}, \ (1- au)(\hat{y}-y) & ext{if } y < \hat{y}. \end{cases}$$

• Define the score (Romano et al., 2019)

$$S(X,Y) = \max\{\hat{q}_{\alpha/2}(X) - Y, Y - \hat{q}_{1-\alpha/2}(X)\}$$

Quantile regression

• Learn $\hat{q}_{\alpha/2}(X)$ and $\hat{q}_{1-\alpha/2}(X)$ by minimizing the pinball loss on the training set, for $\tau = \alpha/2$ and $\tau = 1 - \alpha/2$:

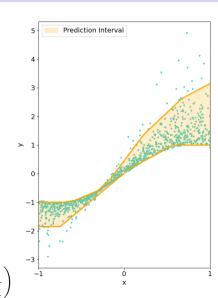
$$L_{ au}(y,\hat{y}) = egin{cases} au(y-\hat{y}) & ext{if } y \geq \hat{y}, \ (1- au)(\hat{y}-y) & ext{if } y < \hat{y}. \end{cases}$$

• Define the score (Romano et al., 2019)

$$S(X, Y) = \max\{\hat{q}_{\alpha/2}(X) - Y, Y - \hat{q}_{1-\alpha/2}(X)\}$$

- Let \hat{q}_{α} be the $\lceil (1-\alpha)(n_2+1) \rceil$ -smallest value of all n_2 values of $S(X_i,Y_i)$ of the calibration set
- Then, with $C_{lpha}(X)=\{y,\;\hat{q}_{lpha/2}(X)-\hat{q}_{lpha}\leq y\leq \hat{q}_{1-lpha/2}(X)+\hat{q}_{lpha}\},$

$$\mathbb{P}_{X,Y}(Y_{n+1} \in C_{\alpha}(X_{n+1}) \mid \mathcal{D}_1) \in \left[1 - \alpha, \ 1 - \alpha + \frac{1}{n_2 + 1}\right)$$



• Guarantees for conditional coverage (Gibbs et al., 2025; Plassier et al., 2025)

- Guarantees for conditional coverage (Gibbs et al., 2025; Plassier et al., 2025)
- Multivariate problems
 - Choice of conformity score based on generalized ellipsoids
 - Trade-off size vs. miscoverage
 - Improving coverage and "flexibility"
 - Braun, Aolaritei, Berta, Jordan, Bach (2025)

• Guarantees for conditional coverage (Gibbs et al., 2025; Plassier et al., 2025)

Multivariate problems

- Choice of conformity score based on generalized ellipsoids
- Trade-off size vs. miscoverage
- Improving coverage and "flexibility"
- Braun, Aolaritei, Berta, Jordan, Bach (2025)

Beyond i.i.d. (or exchangeability)

- ullet Standard CP requires fixing the miscoverage level lpha and the batch size n in advance
- How to handle adaptive goals (e.g., constraints on prediction set size)
 and sequential streams (anytime-validity)
- Extensive use of e-values
- Gauthier, Jordan, Bach (2025)

- Guarantees for conditional coverage (Gibbs et al., 2025; Plassier et al., 2025)
- Multivariate problems
 - Choice of conformity score based on generalized ellipsoids
 - Trade-off size vs. miscoverage
 - Improving coverage and "flexibility"
 - Braun, Aolaritei, Berta, Jordan, Bach (2025)
- Beyond i.i.d. (or exchangeability)
 - ullet Standard CP requires fixing the miscoverage level lpha and the batch size \emph{n} in advance
 - How to handle adaptive goals (e.g., constraints on prediction set size)
 and sequential streams (anytime-validity)
 - Extensive use of *e*-values
 - Gauthier, Jordan, Bach (2025)
- Bonus: How can we evaluate the conditional validity of a strategy?

Minimum volume covering set (Braun et al., 2025a)

- **Goal**: Given a set of points $\{y_1, \ldots, y_n\}$ in \mathbb{R}^k ,
 - Find the smallest set that contains at least a fraction $1-\alpha$ of points, $\alpha \in (0,1)$

- **Goal**: Given a set of points $\{y_1, \ldots, y_n\}$ in \mathbb{R}^k ,
 - Find the smallest set that contains at least a fraction $1-\alpha$ of points, $\alpha \in (0,1)$
- ullet Define sets, with $M \in \mathcal{S}_k^+$ (positive definite matrix), $\mu \in \mathbb{R}^k$, $\|\cdot\|$ a norm,

$$\mathbb{B}(\|\cdot\|, M, \mu) := \{ y \in \mathbb{R}^k \mid \|M(y - \mu)\| \le 1 \}$$

- **Goal**: Given a set of points $\{y_1, \ldots, y_n\}$ in \mathbb{R}^k ,
 - ullet Find the smallest set that contains at least a fraction 1-lpha of points, $lpha\in(0,1)$
- ullet Define sets, with $M\in S_k^+$ (positive definite matrix), $\mu\in\mathbb{R}^k, \quad \|\cdot\|$ a norm,

$$\mathbb{B}(\|\cdot\|, M, \mu) := \{ y \in \mathbb{R}^k \mid \|M(y - \mu)\| \le 1 \}$$

Formulation as optimization problem (MVCS):

min
$$\operatorname{Vol}(\mathbb{B}(\|\cdot\|, M, \mu)) = \lambda(B_{\|\cdot\|}(1)) \cdot \det(M)^{-1}$$

s.t. $M \succcurlyeq 0, \ \mu \in \mathbb{R}^k,$
 $\operatorname{Card}\{i \in [n] \mid \|M(y_i - \mu)\| \le 1\} \ge n - r + 1$

Proposition (unconstrained formulation). Problem (MVCS) is equivalent to

$$\begin{split} \min & & -\log \det(\Lambda) + \sigma_r \left\{ \|\Lambda y_i + \eta\| \right\} + \log \lambda (B_{\|\cdot\|}(1)) \\ \text{s.t.} & & \Lambda \succcurlyeq 0, \; \eta \in \mathbb{R}^k, \end{split}$$

where $\sigma_r\{a_i\}$ is the *r*-th largest element of a set $\{a_i\}_{i=1}^n$ with $a_i \in \mathbb{R}$.

Proof: Change of coordinates $\Lambda := \nu M$, for $\nu > 0$, and $\eta := -\Lambda \mu$

Proposition (unconstrained formulation). Problem (MVCS) is equivalent to

$$\begin{aligned} & \min & & -\log \det(\Lambda) + \sigma_r \left\{ \|\Lambda y_i + \eta\| \right\} + \log \lambda (B_{\|\cdot\|}(1)) \\ & \text{s.t.} & & \Lambda \succcurlyeq 0, \; \eta \in \mathbb{R}^k, \end{aligned}$$

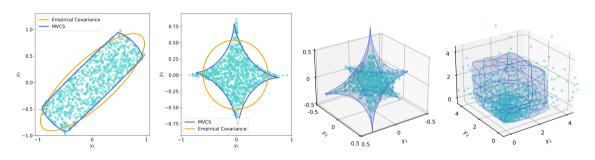
where $\sigma_r\{a_i\}$ is the *r*-th largest element of a set $\{a_i\}_{i=1}^n$ with $a_i \in \mathbb{R}$.

Proof: Change of coordinates $\Lambda := \nu M$, for $\nu > 0$, and $\eta := -\Lambda \mu$

- Non-convex optimization problem, in fact NP-hard (Ahmadi et al., 2014)
- Convex relaxation akin to pinball loss: $\sigma_r\{a_i\} \leq \text{sum of } r \text{ largest elements}$
- ullet Classical convex problem for r=1 and $\|\cdot\|=\|\cdot\|_2$ (minimum-volume enclosing ellipsoid)

Shape obtained for different distributions of points

 $\bullet \parallel \cdot \parallel = \parallel \cdot \parallel_{p}$ does not need to be a norm (p can be less than one)



Minimum volume covering set (input / output)

Let
$$\mathbb{B}(M,\mu,p):=\{y\in\mathbb{R}^k\mid \|M(y-\mu)\|_p\leq 1\}$$
, where $M\succcurlyeq 0$, $\mu\in\mathbb{R}^k$, $p>0$.

min
$$\mathbb{E}\left[\operatorname{Vol}(\mathbb{B}(M(X), f_{\theta}(X), p))\right]$$

s.t.
$$\mathbb{P}(Y \in \mathbb{B}(p, M(X), f_{\theta}(X))) \geq 1 - \alpha$$

Minimum volume covering set (input / output)

Let
$$\mathbb{B}(M,\mu,p):=\{y\in\mathbb{R}^k\mid \|M(y-\mu)\|_p\leq 1\}$$
, where $M\succcurlyeq 0$, $\mu\in\mathbb{R}^k$, $p>0$.

$$\begin{array}{ll} \text{min} & \mathbb{E}\left[\mathsf{Vol}(\mathbb{B}(M(X), f_{\theta}(X), p))\right] \\ \text{s.t.} & \mathbb{P}\left(Y \in \mathbb{B}(p, M(X), f_{\theta}(X))\right) \geq 1 - \alpha \end{array}$$

(MVCS-cond.)

Proposition Let $(X_i, Y_i)_{1 \le i \le n}$ be n i.i.d. samples, with $X_i \in \mathbb{R}^d$, $Y_i \in \mathbb{R}^k$.

Then (MVCS-cond.) is equivalent to:

$$\begin{aligned} & \text{min} & & \log\left(\sum_{i=1}^n \frac{1}{\det(\Lambda_\phi(x_i))}\right) + k\log\sigma_r\left\{\|\Lambda_\phi(x_i)(y_i - f_\theta(x_i))\|_p\right\} + \log\lambda(B_{\|\cdot\|_p}(1)) \\ & \text{s.t.} & & \Lambda_\phi(\cdot) \succcurlyeq 0, \; p > 0, \; \theta, \phi \in \Theta. \end{aligned}$$

Minimum volume covering set (input / output)

Let
$$\mathbb{B}(M,\mu,p):=\{y\in\mathbb{R}^k\mid \|M(y-\mu)\|_p\leq 1\}$$
, where $M\succcurlyeq 0$, $\mu\in\mathbb{R}^k$, $p>0$.

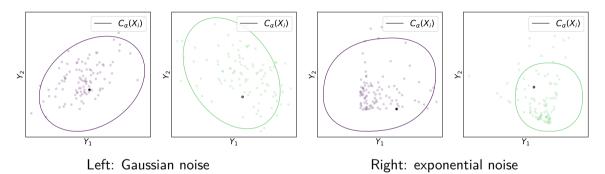
min $\mathbb{E}\left[\operatorname{Vol}(\mathbb{B}(M(X),f_{\theta}(X),p))\right]$
s.t. $\mathbb{P}\left(Y\in\mathbb{B}(p,M(X),f_{\theta}(X))\right)\geq 1-\alpha$ (MVCS-cond.)

Proposition Let $(X_i, Y_i)_{1 \le i \le n}$ be n i.i.d. samples, with $X_i \in \mathbb{R}^d$, $Y_i \in \mathbb{R}^k$.

$$\begin{aligned} & \min & & \log \left(\sum_{i=1}^n \frac{1}{\det(\Lambda_{\phi}(x_i))} \right) + k \log \sigma_r \left\{ \|\Lambda_{\phi}(x_i)(y_i - f_{\theta}(x_i))\|_p \right\} + \log \lambda(B_{\|\cdot\|_p}(1)) \\ & \text{s.t.} & & \Lambda_{\phi}(\cdot) \succcurlyeq 0, \ p > 0, \ \theta, \phi \in \Theta. \end{aligned}$$

- The conformalisation step is made with the score $S(X,Y) = \|\Lambda_{\phi}(X)(Y f_{\theta}(X))\|_{p}$
- Only marginal coverage

Empirical illustration for different distributions



Samples from the distribution of $Y|X \sim f(X) + B(X)$ where B(X) is an heteroskedastic noise

Extending standardized residuals to multivariate regression

Assume

$$Y|X \sim \mathcal{N}(f(X), \Sigma(X)),$$

where $Y \in \mathbb{R}^k$. We can define the Mahalanobis score (Braun et al., 2025b)

$$S_{\mathrm{Mah}}(X,Y) = \|\Sigma(X)^{-1/2}(Y - f(X))\|_{2}$$

- Generalization of the standardized residuals (Lei et al., 2018) in multivariate regression
- ullet Under the Gaussian assumption, $S_{\mathrm{Mah}}(X,Y)|X\sim \chi_2(k)$ which is independent of X

Extending standardized residuals to multivariate regression

Assume

$$Y|X \sim \mathcal{N}(f(X), \Sigma(X)),$$

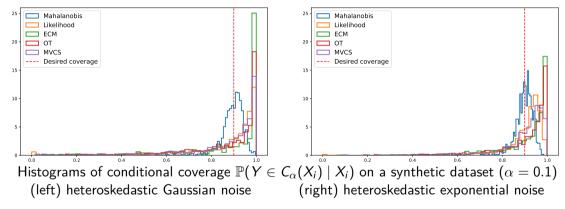
where $Y \in \mathbb{R}^k$. We can define the Mahalanobis score (Braun et al., 2025b)

$$S_{\mathrm{Mah}}(X,Y) = \|\Sigma(X)^{-1/2}(Y - f(X))\|_{2}$$

- Generalization of the standardized residuals (Lei et al., 2018) in multivariate regression
- ullet Under the Gaussian assumption, $S_{\mathrm{Mah}}(X,Y)|X\sim\chi_2(k)$ which is independent of X
- ullet Even if the distribution is not Gaussian, we expect our score to be less dependent on X
 - Let $f(X) = \mathbb{E}[Y|X]$ and $\Sigma(X) = \operatorname{cov}(Y|X)$, and $U = \Sigma(X)^{-1/2}(Y f(X))$
 - Then $\mathbb{E}[U|X] = 0$ and $\text{cov}(U|X) = I_k$ so the distribution of $S_{\text{Mah}}(X,Y) = \|U\|_2$ should less depend on X
- NB: all developments can be extended to elliptical distributions

Improved Conditional Coverage

Modeling via ellipsoids ⇒ estimation of variance along all directions



 Baselines: empirical covariance matrix (Johnstone and Cox, 2021), optimal transport (Thurin et al., 2025)

Partially revealed outputs: motivation

- **Example**: predict fasting blood glucose (Y^1) and cholesterol (Y^2)
 - ullet If conformal set too wide, a costly test (e.g., Y^1) may be performed
 - ullet Once Y^1 is revealed, we want to **refine prediction for** Y^2
 - Standard approach: retrain model with $(X, Y^1) \Rightarrow$ expensive

Partially revealed outputs: motivation

- **Example**: predict fasting blood glucose (Y^1) and cholesterol (Y^2)
 - If conformal set too wide, a costly test (e.g., Y^1) may be performed
 - Once Y^1 is revealed, we want to **refine prediction for** Y^2
 - Standard approach: retrain model with $(X, Y^1) \Rightarrow$ expensive
- Goal: update conformal sets directly using the probabilistic model
 - Leverage classical conditioning properties of the Gaussian distribution

Method: Gaussian conditioning

• Assuming a Gaussian predictive model:

$$\hat{p}(Y|X) = \mathcal{N}\left(\begin{pmatrix} f^r(X) \\ f^h(X) \end{pmatrix}, \begin{pmatrix} \sum^{rr}(X) & \sum^{rh}(X) \\ \sum^{hr}(X) & \sum^{hh}(X) \end{pmatrix}\right)$$

ullet Partition output into revealed Y^r and hidden Y^h

Method: Gaussian conditioning

• Assuming a Gaussian predictive model:

$$\hat{p}(Y|X) = \mathcal{N}\left(\begin{pmatrix} f^r(X) \\ f^h(X) \end{pmatrix}, \begin{pmatrix} \Sigma^{rr}(X) & \Sigma^{rh}(X) \\ \Sigma^{hr}(X) & \Sigma^{hh}(X) \end{pmatrix} \right)$$

- Partition output into revealed Y^r and hidden Y^h
- Conditional distribution (closed form):

$$\hat{p}(Y^h|X,Y^r) = \mathcal{N}(\tilde{f}(X),\tilde{\Sigma}(X))$$

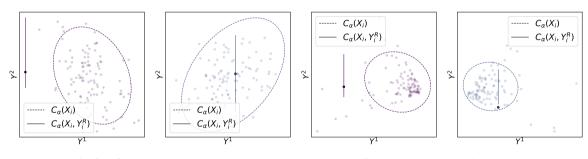
$$\tilde{f}(X) = f^h(X) + \Sigma^{hr}\Sigma^{rr^{-1}}(Y^r - f^r(X)), \quad \tilde{\Sigma}(X) = \Sigma^{hh} - \Sigma^{hr}\Sigma^{rr^{-1}}\Sigma^{rh}$$

Non-conformity score:

$$S_{\text{Revealed}}(X, Y^r, Y^h) = \|\tilde{\Sigma}(X)^{-1/2}(Y^h - \tilde{f}(X))\|_2$$

Illustration of benefits

- Uses revealed Y^r without retraining
- Produces narrower, adaptive sets, and avoids empty sets (robustness)



Left: Gaussian noise

Right: exponential noise.

Different samples from the distribution of $Y|X \sim f(X) + B(X)$ (B(X)=heteroskesdatic noise and Y^1 is revealed)

Projection of the output: motivation

- High-dimensional predictions: $Y \in \mathbb{R}^k$
- Often (at test time) only a subset or linear combination $\varphi(Y)$ is of interest
- Example:
 - Finance: portfolio returns $(R^1, R^2) = (rY^1, pY^2 + qY^3)$.

Projection of the output: motivation

- High-dimensional predictions: $Y \in \mathbb{R}^k$
- Often (at test time) only a subset or linear combination $\varphi(Y)$ is of interest
- Example:
 - Finance: portfolio returns $(R^1, R^2) = (rY^1, pY^2 + qY^3)$.
- Naive approach: project conformal set $\tilde{C}_{\alpha}(X)$ onto $\varphi(Y)$ \Rightarrow conservative (overly large) sets
- Goal: construct direct conformal sets for $\varphi(Y)$ without retraining

Method: linear transformations

• Trained Gaussian model:

$$\hat{p}(Y|X) = \mathcal{N}(f(X), \Sigma(X))$$

• For linear $\varphi(Y) = MY \ (M \in \mathbb{R}^{p \times k})$:

$$\hat{p}(\varphi(Y)|X) = \mathcal{N}(Mf(X), M\Sigma(X)M^{\top})$$

Method: linear transformations

Trained Gaussian model:

$$\hat{p}(Y|X) = \mathcal{N}(f(X), \Sigma(X))$$

• For linear $\varphi(Y) = MY \ (M \in \mathbb{R}^{p \times k})$:

$$\hat{p}(\varphi(Y)|X) = \mathcal{N}(Mf(X), M\Sigma(X)M^{\top})$$

• Non-conformity score in transformed space:

$$S_{\text{Lin.Trans.}}(X,Y) = \|(M\Sigma(X)M^{\top})^{-1/2}(MY - Mf(X))\|_{2}$$

Coverage guarantee:

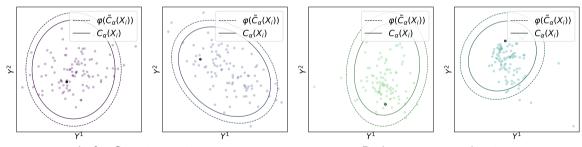
$$\mathbb{P}(MY \in C_{\alpha}(X)) \in \left[1 - \alpha, 1 - \alpha + \frac{1}{n_2 + 1}\right)$$

Results: projected vs. direct sets

- ullet Direct conformalization with $S_{\text{Lin.Trans.}}$ (full line) gives:
 - Tighter sets, correct coverage (if well-specified)
 - Better adaptation to heteroskedasticity
- Projecting $\tilde{\mathcal{C}}_{\alpha}(X)$ (dashed line) gives conservative sets

Results: projected vs. direct sets

- ullet Direct conformalization with $S_{\text{Lin.Trans.}}$ (full line) gives:
 - Tighter sets, correct coverage (if well-specified)
 - Better adaptation to heteroskedasticity
- Projecting $\tilde{C}_{\alpha}(X)$ (dashed line) gives conservative sets



Left: Gaussian noise

Right: exponential noise

Projection of samples from the distribution of $Y|X \sim f(X) + B(X)$ (B(X)=heteroskedastic noise)

Conformal prediction for multivariate predictions

- Minimum volume "ellipsoid"
 - Explicit optimization problem (for marginal coverage only)
 - Beyond ellipsoids

Conformal prediction for multivariate predictions

• Minimum volume "ellipsoid"

- Explicit optimization problem (for marginal coverage only)
- Beyond ellipsoids

Elliptical conditional model

- Allow conditioning and linear projection without retraining
- Added flexibility

Standard conformal prediction: a p-value perspective

Proposition (reformulation). Under the exchangeability assumption,

$$P = \frac{1 + \sum_{i=1}^{n} \mathbb{1}\{S(X_i, Y_i) \ge S(X_{n+1}, Y_{n+1})\}}{n+1}$$

is a p-value: $\forall \alpha, \mathbb{P}(P \leq \alpha) \leq \alpha$.

Standard conformal prediction: a p-value perspective

Proposition (reformulation). Under the exchangeability assumption,

$$P = \frac{1 + \sum_{i=1}^{n} \mathbb{1}\{S(X_i, Y_i) \ge S(X_{n+1}, Y_{n+1})\}}{n+1}$$

is a p-value: $\forall \alpha, \mathbb{P}(P \leq \alpha) \leq \alpha$.

Proof:

- The quantity $\sum_{i=1}^n \mathbb{1}\{S(X_i,Y_i) \geq S(X_{n+1},Y_{n+1})\}$ is n-R where R is the rank of $S(X_{n+1},Y_{n+1})$ among S_1,\ldots,S_n
 - Thus, $P = 1 \frac{R}{n+1}$
 - From previous guarantees, $\mathbb{P}(P \leq \alpha) = \mathbb{P}(1 \frac{R}{n+1} \leq \alpha) \in (\alpha \frac{1}{n+1}, \alpha]$

Limitations of the p-value framework

• Reformulation as *p*-value

$$\mathbb{P}(Y_{n+1} \notin C_{\alpha}(X_{n+1})) \leq \alpha \iff \mathbb{P}(P \leq \alpha) \leq \alpha$$

Limitations of the p-value framework

• Reformulation as *p*-value

$$\mathbb{P}(Y_{n+1} \notin C_{\alpha}(X_{n+1})) \leq \alpha \iff \mathbb{P}(P \leq \alpha) \leq \alpha$$

- Rigid assumptions:
 - **Fixed** α : The miscoverage level α must be fixed *before* observing the data
 - **Fixed batch:** It assumes a fixed batch of exchangeable data. In sequential settings, continuously monitoring p-values leads to validity issues

Limitations of the p-value framework

• Reformulation as *p*-value

$$\mathbb{P}(Y_{n+1} \notin C_{\alpha}(X_{n+1})) \leq \alpha \iff \mathbb{P}(P \leq \alpha) \leq \alpha$$

- Rigid assumptions:
 - **Fixed** α : The miscoverage level α must be fixed *before* observing the data
 - **Fixed batch:** It assumes a fixed batch of exchangeable data. In sequential settings, continuously monitoring p-values leads to validity issues
- ullet To enable **post-hoc** choices of lpha and **anytime-valid** monitoring
 - \Rightarrow Need a more flexible evidence measure: **e-values** (Grünwald et al., 2020; Wasserman et al., 2020; Shafer, 2021; Vovk and Wang, 2021)

Post-hoc guarantees and e-values

Standard CP (fixed α):

The standard validity $\mathbb{P}(Y_{n+1} \notin C_{\alpha}(X_{n+1})) = \mathbb{P}(P \leq \alpha) \leq \alpha$ for all α is equivalent to:

$$\sup_{\alpha} \mathbb{E}\left[\frac{\mathbb{1}\{Y_{n+1} \notin C_{\alpha}(X_{n+1})\}}{\alpha}\right] \leq 1$$

Post-hoc guarantees and e-values

Standard CP (fixed α):

The standard validity $\mathbb{P}(Y_{n+1} \notin C_{\alpha}(X_{n+1})) = \mathbb{P}(P \leq \alpha) \leq \alpha$ for all α is equivalent to:

$$\sup_{\alpha} \mathbb{E}\left[\frac{\mathbb{1}\{Y_{n+1} \notin C_{\alpha}(X_{n+1})\}}{\alpha}\right] \leq 1$$

Post-hoc CP (data-dependent $\tilde{\alpha}$):

To enable data-dependent decision making, we seek a stronger post-hoc guarantee:

$$\sup_{\tilde{\alpha}} \mathbb{E}\left[\frac{\mathbb{P}(\{Y_{n+1} \notin C_{\tilde{\alpha}}(X_{n+1}) | \tilde{\alpha})}{\tilde{\alpha}}\right] = \sup_{\tilde{\alpha}} \mathbb{E}\left[\frac{\mathbb{1}\{Y_{n+1} \notin C_{\tilde{\alpha}}(X_{n+1})\}}{\tilde{\alpha}}\right] = \mathbb{E}\left[\sup_{\alpha} \frac{\mathbb{1}\{Y_{n+1} \notin C_{\alpha}(X_{n+1})\}}{\alpha}\right] \leq 1$$

Post-hoc guarantees and e-values

Standard CP (fixed α):

The standard validity $\mathbb{P}(Y_{n+1} \notin C_{\alpha}(X_{n+1})) = \mathbb{P}(P \leq \alpha) \leq \alpha$ for all α is equivalent to:

$$\sup_{\alpha} \mathbb{E}\left[\frac{\mathbb{I}\{Y_{n+1} \notin C_{\alpha}(X_{n+1})\}}{\alpha}\right] \leq 1$$

Post-hoc CP (data-dependent $\tilde{\alpha}$):

To enable data-dependent decision making, we seek a stronger post-hoc guarantee:

$$\sup_{\tilde{\alpha}} \mathbb{E}\left[\frac{\mathbb{P}(\{Y_{n+1} \notin C_{\tilde{\alpha}}(X_{n+1}) | \tilde{\alpha})}{\tilde{\alpha}}\right] = \sup_{\tilde{\alpha}} \mathbb{E}\left[\frac{\mathbb{I}\{Y_{n+1} \notin C_{\tilde{\alpha}}(X_{n+1})\}}{\tilde{\alpha}}\right] = \mathbb{E}\left[\sup_{\alpha} \frac{\mathbb{I}\{Y_{n+1} \notin C_{\alpha}(X_{n+1})\}}{\alpha}\right] \leq 1$$

This requires the concept of **post-hoc p-values** and **e-values**.

Definitions (Ramdas and Wang, 2025)

- An **e-value** E is a non-negative random variable such that $\mathbb{E}[E] \leq 1$
- A **post-hoc p-value** P satisfies the post-hoc guarantee above: $\mathbb{E}\left[\sup_{\alpha}\mathbb{1}\{P\leq\alpha\}/\alpha\right]\leq 1$

Theorem (Koning, 2024): Post-hoc p-values are exactly the inverses of e-values (P = 1/E).

Conformal prediction with adaptive coverage

Here, the e-value is the soft-rank e-value (Wang and Ramdas, 2022; Koning, 2025):

$$E = \frac{(n+1)S(X_{n+1}, Y_{n+1})}{\sum_{i=1}^{n} S(X_i, Y_i) + S(X_{n+1}, Y_{n+1})} = \frac{S(X_{n+1}, Y_{n+1})}{\frac{1}{n+1} \sum_{i=1}^{n} S(X_i, Y_i) + \frac{1}{n+1} S(X_{n+1}, Y_{n+1})}$$

Conformal prediction with adaptive coverage

Adaptive Coverage Guarantee (Gauthier et al., 2025b)

Let $\tilde{\alpha}$ be any (possibly data-dependent) miscoverage level that can depend on the calibration data $\{(X_i, Y_i)\}_{i=1}^n$ and the test feature X_{n+1} . Then we have:

$$\mathbb{E}\left[\frac{\mathbb{1}\{Y_{n+1}\notin\mathcal{C}_{\tilde{\alpha}}(X_{n+1})\}}{\tilde{\alpha}}\right]\leq 1,$$

where the prediction set $\mathcal{C}_{\tilde{\alpha}}$ is defined as:

$$C_{\tilde{\alpha}}(X_{n+1}) = \left\{ y \in \mathcal{Y} : \frac{(n+1)S(X_{n+1}, y)}{\sum_{i=1}^{n} S(X_{i}, Y_{i}) + S(X_{n+1}, y)} < \frac{1}{\tilde{\alpha}} \right\}.$$

Here, the e-value is the soft-rank e-value (Wang and Ramdas, 2022; Koning, 2025):

$$E = \frac{(n+1)S(X_{n+1}, Y_{n+1})}{\sum_{i=1}^{n} S(X_i, Y_i) + S(X_{n+1}, Y_{n+1})} = \frac{S(X_{n+1}, Y_{n+1})}{\frac{1}{n+1} \sum_{i=1}^{n} S(X_i, Y_i) + \frac{1}{n+1} S(X_{n+1}, Y_{n+1})}$$

Application: backward conformal prediction (Gauthier et al., 2025a)

• Motivation: Standard CP fixes coverage and lets size vary. Real-world systems often have physical constraints that dictate a size budget k, which may depend on the data

Application: backward conformal prediction (Gauthier et al., 2025a)

- Motivation: Standard CP fixes coverage and lets size vary. Real-world systems often have physical constraints that dictate a size budget k, which may depend on the data
- **Example:** In a recommender system, the number of items k we display depends on:
 - **Device type** (X_{n+1}) : mobile (small screen) vs. desktop (large screen)
 - Calibration uncertainty (\mathcal{D}_{cal}): high variance \implies increase the budget k

Application: backward conformal prediction (Gauthier et al., 2025a)

- Motivation: Standard CP fixes coverage and lets size vary. Real-world systems often have physical constraints that dictate a size budget k, which may depend on the data
- **Example:** In a recommender system, the number of items k we display depends on:
 - **Device type** (X_{n+1}) : mobile (small screen) vs. desktop (large screen)
 - Calibration uncertainty (\mathcal{D}_{cal}): high variance \implies increase the budget k
- **Backward CP**: fix size $k(X_{n+1}, \mathcal{D}_{cal})$, and adjust miscoverage:

$$\tilde{\alpha} = \inf \left\{ \alpha \in (0,1) : |\mathcal{C}_{\alpha}(X_{n+1})| \le k(X_{n+1}, \mathcal{D}_{cal}) \right\}.$$

 $\bullet \ \ \text{Guarantee} : \ \mathbb{E}[\mathbb{1}\{Y_{n+1} \notin C_{\tilde{\alpha}}(X_{n+1})\}/\tilde{\alpha}] \leq 1 \qquad \Longrightarrow \qquad \mathbb{P}(Y_{n+1} \in C_{\tilde{\alpha}}(X_{n+1})) \gtrapprox 1 - \mathbb{E}[\tilde{\alpha}]$

Estimating expected miscoverage $\mathbb{E}[\tilde{lpha}]$

Problem: Coverage depends on unknown $\mathbb{E}[\tilde{\alpha}]$

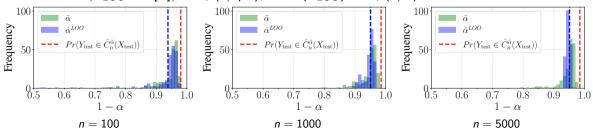
Solution: Estimate via Leave-One-Out (LOO) on calibration set

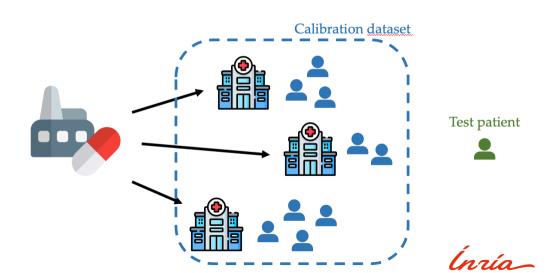
LOO Estimator: For each i = 1, ..., n:

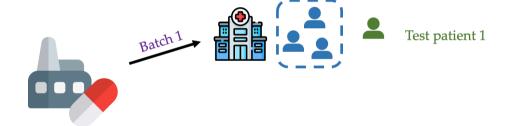
- Treat (X_i, Y_i) as pseudo-test point
- **②** Compute $\tilde{\alpha}_i$ using remaining data $\mathcal{D}_{cal} \setminus \{(X_i, Y_i)\}$

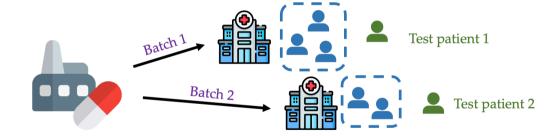
$$\widehat{\alpha}_{\mathsf{LOO}} = \frac{1}{n} \sum_{i=1}^{n} \widetilde{\alpha}_{i}$$

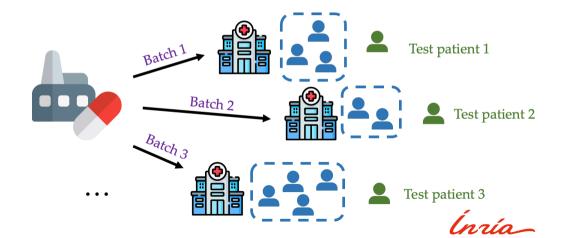
Guarantee: $|\widehat{\alpha}_{LOO} - \mathbb{E}[\widetilde{\alpha}]| = O_P(1/\sqrt{n}), \quad \text{Var}(\widehat{\alpha}_{LOO}) = O_P(1/n).$











Insight: Beyond post-hoc guarantees, e-values naturally enable anytime-valid coverage

Insight: Beyond post-hoc guarantees, e-values naturally enable anytime-valid coverage

Scenario: We perform conformal prediction on multiple data batches sequentially. At each step t, we process a batch (where we aim to cover the target Y_{n-1}^t):

$$\{(X_1^t,Y_1^t),\ldots,(X_{n_t}^t,Y_{n_t}^t),(X_{n_t+1}^t,Y_{n_t+1}^t)\}$$

Problem: Standard CP validity holds marginally for a fixed batch

Insight: Beyond post-hoc guarantees, e-values naturally enable anytime-valid coverage

Scenario: We perform conformal prediction on multiple data batches sequentially. At each step t, we process a batch (where we aim to cover the target Y_{n+1}^t):

$$\{(X_1^t, Y_1^t), \dots, (X_{n_t}^t, Y_{n_t}^t), (X_{n_t+1}^t, Y_{n_t+1}^t)\}$$

Problem: Standard CP validity holds marginally for a fixed batch

Solution: Anytime-validity with e-values

• Construct a martingale $(M_t)_{t\geq 0}$ accumulating evidence over batches:

$$M_t = \prod_{s=1}^t (1 - \beta_s + \beta_s E_b), \quad \text{where } E_s = \frac{(n_s + 1)S(X_{n_s+1}^s, Y_{n_s+1}^s)}{\sum_{i=1}^{n_s} S(X_i^s, Y_i^s) + S(X_{n_s+1}^s, Y_{n_s+1}^s)}$$

Insight: Beyond post-hoc guarantees, e-values naturally enable anytime-valid coverage

Scenario: We perform conformal prediction on multiple data batches sequentially. At each step t, we process a batch (where we aim to cover the target $Y_{n_t+1}^t$):

$$\{(X_1^t,Y_1^t),\dots,(X_{n_t}^t,Y_{n_t}^t),(X_{n_t+1}^t,Y_{n_t+1}^t)\}$$

Problem: Standard CP validity holds marginally for a fixed batch

Solution: Anytime-validity with e-values

• Construct a martingale $(M_t)_{t\geq 0}$ accumulating evidence over batches:

$$M_t = \prod_{s=1}^t (1 - \beta_s + \beta_s E_b), \quad \text{where } E_s = \frac{(n_s + 1)S(X_{n_s+1}^s, Y_{n_s+1}^s)}{\sum_{i=1}^{n_s} S(X_i^s, Y_i^s) + S(X_{n_s+1}^s, Y_{n_s+1}^s)}$$

• Ville's Inequality for supermartingales $\mathbb{P}(\sup_t M_t \geqslant \alpha) \leqslant \mathbb{E}[M_0]/\alpha$

Insight: Beyond post-hoc guarantees, e-values naturally enable anytime-valid coverage

Scenario: We perform conformal prediction on multiple data batches sequentially. At each step t, we process a batch (where we aim to cover the target $Y_{n_t+1}^t$):

$$\{(X_1^t, Y_1^t), \dots, (X_{n_t}^t, Y_{n_t}^t), (X_{n_t+1}^t, Y_{n_t+1}^t)\}$$

Problem: Standard CP validity holds marginally for a fixed batch

Solution: Anytime-validity with e-values

• Construct a martingale $(M_t)_{t>0}$ accumulating evidence over batches:

$$M_t = \prod_{s=1}^t (1 - \beta_s + \beta_s E_b), \quad \text{where } E_s = \frac{(n_s + 1)S(X_{n_s+1}^s, Y_{n_s+1}^s)}{\sum_{i=1}^{n_s} S(X_i^s, Y_i^s) + S(X_{n_s+1}^s, Y_{n_s+1}^s)}$$

• Ville's Inequality for supermartingales $\mathbb{P}(\sup_t M_t \geqslant \alpha) \leqslant \mathbb{E}[M_0]/\alpha$, ensures the coverage holds simultaneously for all time steps t (provided that the data in each batch is exchangeable conditional on the history:

$$\mathbb{P}(\forall t, Y_{n_t+1} \in C_t(X_{n_t+1})) \geq 1 - \alpha$$

Bonus: Evaluating conditional miscoverage

Excess risk of the target coverage

- ullet For any data-dependent set C_lpha , let $Z=\mathbbm{1}\{Y\in C_lpha(X)\}\in\{0,1\}$
- Perfect conditional coverage if $p(X) := \mathbb{P}(Y \in C_{\alpha}(X)|X) = \mathbb{P}(Z = 1|X) = 1 \alpha$ a.s.

Excess risk of the target coverage

- For any data-dependent set C_{α} , let $Z = \mathbb{1}\{Y \in C_{\alpha}(X)\} \in \{0,1\}$
- Perfect conditional coverage if $p(X) := \mathbb{P}(Y \in C_{\alpha}(X)|X) = \mathbb{P}(Z = 1|X) = 1 \alpha$ a.s.
- **Key idea**: Estimating $\mathbb{P}(Z=1|X=x)$ is a binary classification problem
 - ullet Classification task equivalent to minimizing the risk for a proper score ℓ

$$\mathcal{R}_{\ell}(h) = \mathbb{E}[\ell(h(X), Z)]$$

• Minimizer of \mathcal{R}_ℓ sastisfies $h^*(X) \in rg \min_{q \in [0,1]} \mathbb{E}[\ell(q,Z) \mid X] = \mathbb{E}[Z \mid X] = p(X)$

Excess risk of the target coverage

- For any data-dependent set C_{α} , let $Z = \mathbb{1}\{Y \in C_{\alpha}(X)\} \in \{0,1\}$
- Perfect conditional coverage if $p(X) := \mathbb{P}(Y \in C_{\alpha}(X)|X) = \mathbb{P}(Z = 1|X) = 1 \alpha$ a.s.
- **Key idea**: Estimating $\mathbb{P}(Z=1|X=x)$ is a binary classification problem
 - ullet Classification task equivalent to minimizing the risk for a proper score ℓ

$$\mathcal{R}_{\ell}(h) = \mathbb{E}[\ell(h(X), Z)]$$

- Minimizer of \mathcal{R}_ℓ sastisfies $h^*(X) \in rg \min_{q \in [0,1]} \mathbb{E}[\ell(q,Z) \mid X] = \mathbb{E}[Z \mid X] = p(X)$
- "Excess risk of target coverage" (Braun et al., 2025c)

$$\ell$$
-ERT = $\mathcal{R}_{\ell}(1-\alpha) - \mathcal{R}_{\ell}(p) = \mathcal{R}_{\ell}(1-\alpha) - \inf_{h} \mathcal{R}_{\ell}(h)$

- Provides a measure of miscoverage and a detailed diagnostic of over/under coverage
- Can be estimated with standard tools from non-parametric estimation

Benefits: a set of interpretable metrics

• Property of excess risk for a proper loss

$$\ell$$
-ERT = $\mathcal{R}_{\ell}(1-\alpha) - \mathcal{R}_{\ell}(p) = \mathbb{E}_{X}[d_{\ell}(1-\alpha,p(X))]$

where d_ℓ is the associated Bregman divergence

Benefits: a set of interpretable metrics

• Property of excess risk for a proper loss

$$\ell$$
-ERT = $\mathcal{R}_{\ell}(1-\alpha) - \mathcal{R}_{\ell}(p) = \mathbb{E}_{X}[d_{\ell}(1-\alpha,p(X))]$

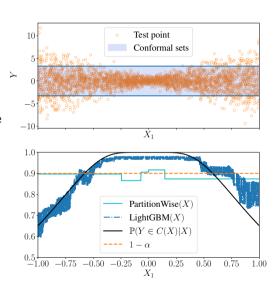
where d_ℓ is the associated Bregman divergence

Examples of proper scoring rules and their associated ERT scores

Name	Proper score $\ell(p, y)$	ℓ-ERT
L_1 -ERT	sgn(p-(1-lpha))(1-lpha-y)	$\mathbb{E}_{X}[1-\alpha-p(X)]$
L_2 -ERT (Brier score)	$(y - p)^2$	$\mathbb{E}_X[(1-\alpha-p(X))^2]$
KL-ERT (Log loss)	$-\log p_y$	$\mathbb{E}_{X}[D_{\mathrm{KL}}(p(X) 1-\alpha)]$

Metrics comparison without conditional coverage

- $X \sim \mathcal{U}([-1,1]^8)$
- $Y \sim \mathcal{N}(0, \sigma(X_1))$
- Sets are obtained by doing conformal prediction with the score S(X,Y) = |Y|
- *L*₁-ERT(LightGBM) = 0.09 (boosting with decision trees)
- L_1 -ERT(PartitionWise) = 0.01 (a classical diagnostic measure)





Multivariate problems

- Choice of conformity score based on generalized ellipsoids
- Trade-offs between volume, coverage, and "flexibility"
- Braun, Aolaritei, Berta, Jordan, Bach (2025)

Multivariate problems

- Choice of conformity score based on generalized ellipsoids
- Trade-offs between volume, coverage, and "flexibility"
- Braun, Aolaritei, Berta, Jordan, Bach (2025)

Beyond i.i.d. (or exchangeability)

- Handling adaptive goals and sequential streams (anytime-validity)
- Extensive use of *e*-values
- Gauthier, Jordan, Bach (2025)

Multivariate problems

- Choice of conformity score based on generalized ellipsoids
- Trade-offs between volume, coverage, and "flexibility"
- Braun, Aolaritei, Berta, Jordan, Bach (2025)

Beyond i.i.d. (or exchangeability)

- Handling adaptive goals and sequential streams (anytime-validity)
- Extensive use of *e*-values
- Gauthier, Jordan, Bach (2025)
- Bonus: Evaluating conditional miscoverage using machine learning

Multivariate problems

- Choice of conformity score based on generalized ellipsoids
- Trade-offs between volume, coverage, and "flexibility"
- Braun, Aolaritei, Berta, Jordan, Bach (2025)

Beyond i.i.d. (or exchangeability)

- Handling adaptive goals and sequential streams (anytime-validity)
- Extensive use of *e*-values
- Gauthier, Jordan, Bach (2025)
- Bonus: Evaluating conditional miscoverage using machine learning

Many open problems

- Guarantees for conditional coverage (Gibbs et al., 2025; Plassier et al., 2025)
- Conditional guarantees for trade-offs between size and miscoverage
- Extension of conformal prediction to reinforcement learning

Multivariate problems

- Choice of conformity score based on generalized ellipsoids
- Trade-offs between volume, coverage, and "flexibility"
- Braun, Aolaritei, Berta, Jordan, Bach (2025)

Beyond i.i.d. (or exchangeability)

- Handling adaptive goals and sequential streams (anytime-validity)
- Extensive use of *e*-values
- Gauthier, Jordan, Bach (2025)
- Bonus: Evaluating conditional miscoverage using machine learning

Many open problems

- Guarantees for conditional coverage (Gibbs et al., 2025; Plassier et al., 2025)
- Conditional guarantees for trade-offs between size and miscoverage
- Extension of conformal prediction to reinforcement learning

References I

- Ahmadi, A. A., Malioutov, D., and Luss, R. (2014). Robust minimum volume ellipsoids and higher-order polynomial level sets. In *NIPS workshop on optimization for machine learning, Montreal, Quebec, Canada*.
- Angelopoulos, A. N., Barber, R. F., and Bates, S. (2024). Theoretical foundations of conformal prediction. arXiv preprint arXiv:2411.11824.
- Angelopoulos, A. N. and Bates, S. (2023). Conformal prediction: A gentle introduction. *Foundations and Trends in Machine Learning*, 16(4):494–591.
- Braun, S., Aolaritei, L., Jordan, M. I., and Bach, F. (2025a). Minimum volume conformal sets for multivariate regression. *arXiv preprint arXiv:2503.19068*.
- Braun, S., Berta, E., Jordan, M. I., and Bach, F. (2025b). Multivariate conformal prediction via conformalized gaussian scoring. *arXiv* preprint arXiv:2507.20941.
- Braun, S., Holzmüller, D., Jordan, M. I., and Bach, F. (2025c). Conditional coverage diagnostics for conformal prediction. *arXiv preprint arXiv:2512.11779*.

References II

- Foygel Barber, R., Candès, E. J., Ramdas, A., and Tibshirani, R. J. (2021). The limits of distribution-free conditional predictive inference. *Information and Inference: A Journal of the IMA*, 10(2):455–482.
- Gauthier, E., Bach, F., and Jordan, M. I. (2025a). Backward conformal prediction. In *Advances in Neural Information Processing Systems*.
- Gauthier, E., Bach, F., and Jordan, M. I. (2025b). E-values expand the scope of conformal prediction. arXiv preprint arXiv:2503.13050.
- Gibbs, I., Cherian, J. J., and Candès, E. J. (2025). Conformal prediction with conditional guarantees. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 87(4):1100—1126.
- Grünwald, P., de Heide, R., and Koolen, W. M. (2020). Safe testing. In *2020 Information Theory and Applications Workshop (ITA)*, pages 1–54.
- Johnstone, C. and Cox, B. (2021). Conformal uncertainty sets for robust optimization. In *Conformal and Probabilistic Prediction and Applications*, volume 152, pages 72–90.
- Koning, N. W. (2024). Post-hoc α hypothesis testing and the post-hoc p-value. *arXiv preprint* arXiv:2312.08040.

References III

- Koning, N. W. (2025). Measuring evidence against exchangeability and group invariance with e-values. arXiv preprint arXiv:2310.01153.
- Lei, J., G'Sell, M., Rinaldo, A., Tibshirani, R. J., and Wasserman, L. (2018). Distribution-free predictive inference for regression. *Journal of the American Statistical Association*, 113(523):1094–1111.
- Lei, J. and Wasserman, L. (2014). Distribution-free prediction bands for non-parametric regression. Journal of the Royal Statistical Society Series B: Statistical Methodology, 76(1):71–96.
- Plassier, V., Fishkov, A., Dheur, V., Guizani, M., Taieb, S. B., Panov, M., and Moulines, E. (2025). Rectifying conformity scores for better conditional coverage. In *International Conference on Machine Learning*.
- Ramdas, A. and Wang, R. (2025). Hypothesis testing with e-values. *Foundations and Trends in Statistics*, 1(1-2):1–390.
- Romano, Y., Patterson, E., and Candès, E. (2019). Conformalized quantile regression. *Advances in Neural Information Processing systems*, 32.
- Shafer, G. (2021). Testing by betting: A strategy for statistical and scientific communication. *Journal of the Royal Statistical Society: Series A (Statistics in Society)*, 184:407–431.

References IV

- Shafer, G. and Vovk, V. (2008). A tutorial on conformal prediction. *Journal of Machine Learning Research*, 9(3):371–421.
- Thurin, G., Nadjahi, K., and Boyer, C. (2025). Optimal transport-based conformal prediction. *International Conference on Machine Learning*.
- Vovk, V. (2012). Conditional validity of inductive conformal predictors. In *Asian Conference on Machine Learning*, pages 475–490.
- Vovk, V., Gammerman, A., and Shafer, G. (2005). Algorithmic Learning in a Random World. Springer.
- Vovk, V. and Wang, R. (2021). E-values: Calibration, combination and applications. *The Annals of Statistics*, 49(3):1736 1754.
- Wang, R. and Ramdas, A. (2022). False discovery rate control with e-values. *Journal of the Royal Statistical Society Series B*, 84(3):822–852.
- Wasserman, L., Ramdas, A., and Balakrishnan, S. (2020). Universal inference. *Proceedings of the National Academy of Sciences*, 117(29):16880–16890.