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“Big data” revolution?
A new scientific context

e Data everywhere: size does not (always) matter
e Science and industry
e Size and variety

e Learning from examples

— n observations in dimension d
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Visual object recognition




Bioinformatics

e Protein: Crucial elements of cell life
e Massive data: 2 millions for humans

e Complex data
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— d : dimension of each observation (input)
— n : number of observations

e Examples: computer vision, bioinformatics, advertising



Context
Machine learning for “big data”

e Large-scale machine learning: large d, large n

— d : dimension of each observation (input)
— n : number of observations

e Examples: computer vision, bioinformatics, advertising

e Ideal running-time complexity: O(dn)



Context
Machine learning for “big data”

e Large-scale machine learning: large d, large n

— d : dimension of each observation (input)
— n : number of observations

e Examples: computer vision, bioinformatics, advertising
e Ideal running-time complexity: O(dn)

e Going back to simple methods

— Stochastic gradient methods (Robbins and Monro, 1951b)
— Mixing statistics and optimization



Scaling to large problems
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e 1950’s: Computers not powerful enough

IBM “1620", 1959
CPU frequency: 50 KHz
Price > 100 000 dollars

e 2010’s: Data too massive



Scaling to large problems
“Retour aux sources’

e 1950’s: Computers not powerful enough

IBM “1620", 1959
CPU frequency: 50 KHz
Price > 100 000 dollars

e 2010’s: Data too massive

e Stochastic gradient methods (Robbins and Monro, 1951a)

— Going back to simple methods



Outline - |
1. Introduction
e Large-scale machine learning and optimization

e Classes of functions (convex, smooth, etc.)
e T[raditional statistical analysis through Rademacher complexity

2. Classical methods for convex optimization

e Smooth optimization (gradient descent, Newton method)
e Non-smooth optimization (subgradient descent)
e Proximal methods

3. Non-smooth stochastic approximation

e Stochastic (sub)gradient and averaging
e Non-asymptotic results and lower bounds
e Strongly convex vs. non-strongly convex



Outline - 1l
4. Classical stochastic approximation
e Asymptotic analysis

e Robbins-Monro algorithm
e Polyak-Rupert averaging

5. Smooth stochastic approximation algorithms

e Non-asymptotic analysis for smooth functions
e Logistic regression
e Least-squares regression without decaying step-sizes

6. Finite data sets

e Gradient methods with exponential convergence rates
e Convex duality
e (Dual) stochastic coordinate descent - Frank-Wolfe



Supervised machine learning

e Data: n observations (z;,y;) €e X x Y, i=1,...,n, i.i.d.
e Prediction as a linear function ' ®(x) of features ®(x) € R

e (regularized) empirical risk minimization: find § solution of

I T
min Egé(yiﬁ ®(z;)) + pR(0)

convex data fitting term 4+ regularizer



Usual losses

e Regression: y ¢ R, prediction §j = 0 ' &(x)
— quadratic loss 3(y — §)? = 2(y — 0 ®(x))?



Usual losses

e Regression: y € R, prediction §j = 0' ®(z)
— quadratic loss 3(y — §)? = 2(y — 0 ®(x))?

e Classification : y € {—1,1}, prediction § = sign(f' ®(x))

— loss of the form 4(y 0 ' ®(x))
— “True” 0-1 loss: £(y HT(I)(QU)) — 1y9T<I>(fv)<0

— Usual convex losses:
5

— 0-1

4 — hinge
square
logistic

3




Main motivating examples

e Support vector machine (hinge loss): non-smooth

((Y,0"®(X)) = max{l — Y0 ®(X),0}
e Logistic regression: smooth
U(Y,0"®(X)) =log(l + exp(—YO'®(X)))
e Least-squares regression

(Y.0T(X)) = oY — 0T B(X))?

e Structured output regression

— See Tsochantaridis et al. (2005); Lacoste-Julien et al. (2013)



Usual regularizers

e Main goal: avoid overfitting

e (squared) Euclidean norm: ||0]|5 = Z;i:l 10,

— Numerically well-behaved

— Representer theorem and kernel methods : 0 =>"" | a;®(z;)

— See, e.g., Scholkopf and Smola (2001); Shawe-Taylor and
Cristianini (2004)



Usual regularizers

e Main goal: avoid overfitting

e (squared) Euclidean norm: ||0]|5 = Z;i:l 10,

— Numerically well-behaved

— Representer theorem and kernel methods : 0 =>"" | a;®(z;)

— See, e.g., Scholkopf and Smola (2001); Shawe-Taylor and
Cristianini (2004)

e Sparsity-inducing norms

. _ d
— Main example: £1-norm ||0]]y = > _._, (6]
— Perform model selection as well as regularization

— Non-smooth optimization and structured sparsity
— See, e.g., Bach, Jenatton, Mairal, and Obozinski (2012b,a)
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Supervised machine learning

e Data: n observations (z;,y;) € X x Y, i=1,...,n, i.i.d.
e Prediction as a linear function ' ®(z) of features ®(x) € R?

e (regularized) empirical risk minimization: find f solution of

1 n
' — 0(y;, 0" ®(x;)) such that Q(0) < D
min n; (91,0 " ®(x)) su (0)

convex data fitting term + constraint
e Empirical risk: f(0) = I3 l(y;, 0" ®(x;)) training cost
o Expected risk: f(0) = E(,,,)¢(y, 0" (z)) testing cost

e Two fundamental questions: (1) computing 0 and (2) analyzing 6

— May be tackled simultaneously



General assumptions

e Data: n observations (z;,y;) € X x Y, i=1,...,n, i.i.d.
e Bounded features ®(z) € R%: [|®(z)]2 < R

o Empirical risk: f(0) = 23" #(y;,0T®(x;)) training cost
o Expected risk: f(0) = E(,,)¢(y, 0" ®(z)) testing cost

e Loss for a single observation: f;(0) = ¢(y;,0" ®(x;))
= Vi, f(0) =Ef(0)

e Properties of f;, f,f

— Convex on R4
— Additional regularity assumptions: Lipschitz-continuity,
smoothness and strong convexity



e Global definitions

A

Convexity




Convexity

e Global definitions (full domain)

A

012 | »6

— Not assuming differentiability:

V01,02, € [0,1], glab; + (1 —a)bs) < ag(f)+ (1 —a)g(bs)



Convexity

e Global definitions (full domain)

A

012 | »6

— Assuming differentiability:

V01,02, g(61) = g(62) +g'(62) " (61 — 62)

e Extensions to all functions with subgradients / subdifferential



Subgradients and subdifferentials

e Given g : R — R convex

| g(0)+s'(0'—0)
g >9/
— 5 € R%is a subgradient of g at @ if and only if

Vo' e R, g(0") = g(0) +s' (6" — 0)

— Subdifferential dg(#) = set of all subgradients at ¢

— If g is differentiable at 6, then 0g(0) = {4¢'(0)}
— Example: absolute value

e The subdifferential is never empty! See Rockafellar (1997)



Convexity

e Global definitions (full domain)

A

>0

e Local definitions

— Twice differentiable functions
— V0, ¢"(0) = 0 (positive semi-definite Hessians)



Convexity

e Global definitions (full domain)

A

>0
e Local definitions

— Twice differentiable functions
— V0, ¢"(0) = 0 (positive semi-definite Hessians)

e Why convexity?



Why convexity?

¢ Local minimum = global minimum
— Optimality condition (non-smooth): 0 € dg(0)
— Optimality condition (smooth): ¢’(8) =0

e Convex duality

— See Boyd and Vandenberghe (2003)

e Recognizing convex problems

— See Boyd and Vandenberghe (2003)



Lipschitz continuity

e Bounded gradients of g (< Lipschitz-continuity): the function
g if convex, differentiable and has (sub)gradients uniformly bounded
by B on the ball of center 0 and radius D:

v0 € RY [|9]l2 < D = [|g/(0)]]> < B

v9,60" € R 0[]z, 16"]]2 < D = |g(0) — g(¢")] < B|6 — &[]

e Machine learning

= with g(0) = 5 2202 (v, 0" ©(24))
— G-Lipschitz loss and R-bounded data: B =GR



Smoothness and strong convexity

e A function g : R — R is L-smooth if and only if it is differentiable

and its gradient is L-Lipschitz-continuous

V01,02 € R, ||g'(01) — ¢'(62)]]2 < L||61 — 02]|2

e If g is twice differentiable: V8 € R¢, ¢"”(0) < L - Id

A

smooth

A
NON—SMOOt|

e

i




Smoothness and strong convexity

e A function g : R — R is L-smooth if and only if it is differentiable
and its gradient is L-Lipschitz-continuous

V01,05 € R, ||g'(01) — g'(02)]|2 < LI||61 — 022

e If g is twice differentiable: V8 € R¢, ¢"”(0) < L - Id

e Machine learning

— with g(0) = %Z?:l LYy, QT(I)(%))
— Hessian ~ covariance matrix + =N D(z)® (z;) "

— Lioss-smooth loss and R-bounded data: L = L. R?



Smoothness and strong convexity

e A function g : RY — R is p-strongly convex if and only if

V01,02 € RY, g(61) = g(02) + g'(02) ' (01 — 02) + £[|61 — 02]|3

e If g is twice differentiable: V8 € R%, ¢”(0) = p - 1d

A

convex

/

A
strongly

convex

/

T~/



Smoothness and strong convexity

e A function g : RY — R is p-strongly convex if and only if

V01,02 € RY, g(61) = g(02) + g'(02) ' (01 — 02) + £[|61 — 02]|3

e If g is twice differentiable: V8 € R%, ¢”(0) = p - 1d

©

(large p/L) (small u/L)



Smoothness and strong convexity

e A function g : RY — R is p-strongly convex if and only if

V01,02 € R, g(01) = g(02) + ¢'(62) ' (61 — 02) + £]|601 — 02]]3
e If g is twice differentiable: V8 € R%, ¢”(0) = p - 1d

e Machine learning

— with g(0) = %Z?:l Uy, 0" ®(x;))
— Hessian =~ covariance matrix %2?21 O () D ()"
— Data with invertible covariance matrix (low correlation/dimension)



Smoothness and strong convexity

e A function g : RY — R is p-strongly convex if and only if

V01,02 € R, g(01) = g(02) + ¢'(62) ' (61 — 02) + £]|601 — 02]]3
e If g is twice differentiable: V8 € R%, ¢”(0) = p - 1d

e Machine learning

— with g(0) = %Z?:l Uy, 0" ®(x;))
— Hessian ~ covariance matrix %2?21 O (z;)P(z;) "
— Data with invertible covariance matrix (low correlation/dimension)

e Adding regularization by £||0|°

— creates additional bias unless 1 is small



Summary of smoothness/convexity assumptions

e Bounded gradients of g (Lipschitz-continuity): the function g if
convex, differentiable and has (sub)gradients uniformly bounded by

B on the ball of center 0 and radius D:

v0 € RY [|0]2 < D = [|g'(0)]]> < B

e Smoothness of ¢g: the function g is convex, differentiable with
L-Lipschitz-continuous gradient ¢’ (e.g., bounded Hessians):

V01,05 € R, ||g'(61) — g'(62) ]2 < L||61 — 02]|2

e Strong convexity of g: The function g is strongly convex with
respect to the norm || - ||, with convexity constant p > O:

V01,05 € R, g(61) = g(02) + g'(02) T (01 — 02) + 2|0y — 023



Analysis of empirical risk minimization

e Approximation and estimation errors: © = {# ¢ R¢ Q(0) < D}

9cRd 0cO 6cO 9cRd

£(0) — min f() = [f(é) - minf(@)] + [minf(@) — min f(6)
Estimation error Approximation error

— NB: may replace min f(0) by best (non-linear) predictions
OER



Analysis of empirical risk minimization

e Approximation and estimation errors: © = {# ¢ R?, Q(0) < D}

F(6) - min £6) = | £6) ~ pin /)| + | in 1(6) ~ i 6

9cRd 0cO 0cO 9cRd
Estimation error Approximation error

1. Uniform deviation bounds, with | € arg renig 7(0)
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Analysis of empirical risk minimization

e Approximation and estimation errors: © = {# ¢ R¢ Q(0) < D}

()~ min £6) = | £6) = pin £)| + | in 1(6) ~ i 6

O cRd 0cO 0€© OcRd
Estimation error Approximation error

1. Uniform deviation bounds, with | § € arg rgni(g 7()
3

f(0) —min f(0) < sup f(0) — f(0) + sup f(0) — f(6)

0co 0cO 0cO

— Typically slow rate 0(1/\/5)

2. More refined concentration results with faster rates O(1/n)



Analysis of empirical risk minimization

e Approximation and estimation errors: © = {# ¢ R¢ Q(0) < D}

()~ min £6) = | £6) = pin £)| + | in 1(6) ~ i 6

O cRd 0cO 0€© OcRd
Estimation error Approximation error

1. Uniform deviation bounds, with | § € arg rgni(g 7()
3

f(6) —min f(6) < 2-sup|f(0) — f(0)]

HeO HcO
— Typically slow rate 0(1/\/5)

2. More refined concentration results with faster rates O(1/n)



Motivation from least-squares

e For least-squares, we have {(y,0'®(z)) = 1(y — 0" ®(x))?, and

£(0) — f(0)

sup |£(0) — f(9)
10]|2<D

sup | f(0) — F(0)]

10llo<D

IN

/N

1+ T
X ( ZCD ;)P — E®(X)P(X) )9
1/1<
T 2 2
0T (= y®(x;) —EYP(X (=) y2—-EY?),
0 (nZy () ( )>+2(n;y )
D? -
- —ZCD ;)P —E®(X)P(X) )
11 <&
+D —Zyi@(xi) —EY@(X)H +=[= > yP —EY?|,
n n
i=1 2 i=1
O(1/+/n) with high probability from 3 concentrations



Slow rate for supervised learning

e Assumptions (f is the expected risk, fthe empirical risk)

— Q(0) = ||0]|2 (Euclidean norm)

— “Linear” predictors: 0(x) = 0'®(x), with ||®(x)|2 < R as.

— G-Lipschitz loss: f and f are GR-Lipschitz on © = {||0]|» < D}
— No assumptions regarding convexity



Slow rate for supervised learning

e Assumptions (f is the expected risk, fthe empirical risk)
— Q(0) = ||0]||2 (Euclidean norm)
— “Linear” predictors: 6(x) = 0'®(x), with ||®(x)|2s < R a.s.
— G-Lipschitz loss: f and f are GR-Lipschitz on © = {||0||> < D}
— No assumptions regarding convexity

e With probability greater than 1 — ¢

A bo+ GRD [ 9 ]
sup | f(0) — f(0)] < 2+ 4/2log =~
sup | £(0) ~ () < =~ ;2
e Expectated estimation error: ]E[sup ‘f(g) _ f(@)u < 40y + 4GRD
6O Vn

e Using Rademacher averages (see, e.g., Boucheron et al., 2005)

e Lipschitz functions = slow rate



Symmetrization with Rademacher variables
e let D' = {x,vy},...,2,,y.} an independent copy of the data

D ={x1,Y1,---,%n,Yn}, With corresponding loss functions f;(0)
R _ ] —
Elsup 10)~ 0] = Blswp (10~ 132 50))
SN |
= E_SE@H;E(E(Q)_‘ICZ(Q)D)|
1<~ .,
< E E[gggn;(ﬁ-(@) — fi(9)) |D”
1<~ .,
= E gggﬁm (fi(e)_fz(e))]
= E supl ei(f1(0) — fz(e))] with ¢; uniform in {—1,1}
L oco TV —]
1 < .
< QElzggEZEiﬁ(ﬁ)] = Rademacher complexity



Rademacher complexity

e Rademacher complexity of the class of functions (X,Y) ~—

(Y, 07 B(X))
ol

oce N

— with f(0) = £(x;,0 " ®(x;)), (xz,yz) ii.d

e NB 1: two expectations, with respect to D and with respect to ¢

— “Empirical’ Rademacher average }A%n by conditioning on D

%2?21 5z‘fi(‘9)‘

e NB 2: sometimes defined as supycg

e Main property:

E[sup f(8) — f()] and E[sup f(6) — f(6)] < 2R,
0cO 0cO



From Rademacher complexity to uniform bound

o Let Z = supyeo |f(0) — f(6)
e By changing the pair (x;,v;), Z may only change by

2 2 2
—sup (Y, 0" ®(X))| < E(sup 4(Y,0)|[+GRD) < E(KO—I—GRD) = c

with sup |[4(Y,0)| = 4y

e MacDiarmid inequality: with probability greater than 1 — 9,

n | 1 V2 1
/Z < EZ —c-y\/log= < 2R, + — —
+\/;c 0g = R +\/ﬁ(€o+GRD) log5



Bounding the Rademacher average - |
e We have, with ¢;(u) = £(y;, u)—£(y;,0) is almost surely G-Lipschitz:

. I 1 |
R, = Es_sggﬁzém(e)_
1 & ' 1 <
< E. sggﬁ;@ﬁ(o)_ +Es[21€lgE;€i[ﬁ(9)—fi(o)]]
S
< 0+E5_2£5;€i[ﬁ(9)—fi(o)}]

] |
= 0+ E.|sup— ei0:(0" ®(x; ]
_Ge@n; 0i(0" ()

e Using Ledoux-Talagrand contraction results for Rademacher averages
(since ; is G-Lipschitz), we get (Meir and Zhang, 2003):

A

1 mn
R, < 2G-E€[ sup —ZEiQTCI)(a:Z-)]

H9H2<D n i=1



Proof of Ledoux-Talagrand lemma
(Meir and Zhang, 2003, Lemma 5)

e Given any b, a; : ® — R (no assumption) and ¢; : R — R any
1-Lipschitz-functions, 1 = 1,....n

8lsupb +Zezgpzaz ]\ 8lsupb +Zezaz ]

0cO 0cO

e Proof by induction on n

— n = 0: trivial

e From n to n + 1: see next slide



/N

/N

Fromnton-+1

n—+1

Bey,. g [ggg b(0) + Z 5@%(%‘(9))}

Eep.cn [ b(0) + b(6") n zn: sisoi(ai(H)) + pi(a;(0")) n Ont1(ant1(0)) — 90n+1(an+1(9/))]
L 0,0'co 2 P 2 2

Ee,..c ' b(0) +b(¢) | z”: o 2iai(9) + @i(ai(®) | [enri(@ni(8)) = pnti(ana(6))]
L 0,0'co 2 p— 2 2

Ee.cn [ b(6) + b(0") n zn: 8@_%‘(@@'(9)) + i(a;(0")) n |any1(0) — an+1(9')]}
L 0,0/co 2 2 92

1=1

sup b(0) 4+ ep11a,+1(0) + Z z—:iai(Q)] by recursion
e

1=1

|



Bounding the Rademacher average - |l
e \We have:

Ry,

IN

QGE[ sup lz:&:ié’TCID(:EZ-)]

16llo<D T

1 n
= 2GE|D=-) &®(x;
H 02 (1)

2

2

by Jensen’s inequality
2

VA

2GD, |E

\

2GRD
/n

VA

by using ||®(x)||2 < R and independence

e Overall, we get, with probability 1 — o:

, 1 1
sup £(0) = f(9)] < ﬁ(éﬂ + GRD)(4 + 4 /2log 5)



Putting it all together
e We have, with probability 1 — 9

— For exact minimizer 0 € argmingce f(6), we have

f(8) — min f(6) sup f(0) — f(6) + sup f(6) — f(6)

SIS 0O 0cO

A\

2 1
< = D)4+ 1/2log ~
\/ﬁ(é()—l—GR (4 + og(S)

— For inexact minimizer n € ©

f(n) —min f(0) < 2-sup|f(8) = f(O) + [f(n) — [(O)]

96@ 966

e Only need to optimize with precision ﬁ(fo + GRD)



Putting it all together
e We have, with probability 1 — 9

— For exact minimizer 0 € argmingce f(6), we have

f(0) —min f(0) < 2-sup|f(0) — £(0)

6cO 0cO

2 1
< = D)4+ y/2log ~
\/H(EO—I—GR )(4 + ogé)

— For inexact minimizer n € ©

f(n) —min f(0) < 2-sup|f(8) = f(O) + [f(n) — [(O)]

96@ 966

e Only need to optimize with precision ﬁ(fo + GRD)



Slow rate for supervised learning (summary)

e Assumptions (f is the expected risk, fthe empirical risk)

— Q(0) = ||0]|2 (Euclidean norm)

— “Linear” predictors: 6(x) = 0'®(z), with ||®(x)|2s < R a.s.

— G-Lipschitz loss: f and f are GR-Lipschitz on © = {||0]|» < D}
— No assumptions regarding convexity

e With probability greater than 1 — ¢

. (4o + GRD) 2
zgg\f(@—f(@)K /n [2+\/@]

A 4 D
e Expectated estimation error: E[zlelg f(0) — f(e)u S o _:/%;R )

e Using Rademacher averages (see, e.g., Boucheron et al., 2005)

e Lipschitz functions = slow rate



Motivation from mean estimation
. A 1 n . 1 n
o Estimator 0 = = > | z; = argminger 5- ) ,_1(0 — 2;)

e From before:

~ f(0) = JE(0 — 2)* =}
= f(0) = 3(0 — Ez)* + 5var(z) = f(Ez) + O(1/y/n)

2



Motivation from mean estimation

. 1 n
e Estimator § = = > " | 2; = argminger 5~ Zz 1(0 -

e From before:

- f(0) =
~ f(6) =

l\DI»—\l\DIl—\

e More refined/direct bound:

f(

E[f(0)

E(0 —
Ch ]E)

)

~ f(Ez)

— f(Ez)]

1
— ]Ez) = — var(z)
— 2n

e Bound only at 6 + strong convexity (instead of uniform bound)



Fast rate for supervised learning

e Assumptions (f is the expected risk, fthe empirical risk)

— Same as before (bounded features, Lipschitz loss)
— Regularized risks: f#(0) = f(0)+%|0]|5 and f#(0) = f(0)+5]0||5
— Convexity

e For any a > 0, with probability greater than 1 — 6, for all § € R?,
. - 8G*R*(32 + log %)
nE]Rd Joap
e Results from Sridharan, Srebro, and Shalev-Shwartz (2008)

— see also Boucheron and Massart (2011) and references therein

e Strongly convex functions = fast rate

— Warning: p should decrease with n to reduce approximation error



Outline - |
1. Introduction
e Large-scale machine learning and optimization

e Classes of functions (convex, smooth, etc.)
e T[raditional statistical analysis through Rademacher complexity

2. Classical methods for convex optimization

e Smooth optimization (gradient descent, Newton method)
e Non-smooth optimization (subgradient descent)
e Proximal methods

3. Non-smooth stochastic approximation

e Stochastic (sub)gradient and averaging
e Non-asymptotic results and lower bounds
e Strongly convex vs. non-strongly convex



Outline - 1l
4. Classical stochastic approximation
e Asymptotic analysis

e Robbins-Monro algorithm
e Polyak-Rupert averaging

5. Smooth stochastic approximation algorithms

e Non-asymptotic analysis for smooth functions
e Logistic regression
e Least-squares regression without decaying step-sizes

6. Finite data sets

e Gradient methods with exponential convergence rates
e Convex duality
e (Dual) stochastic coordinate descent - Frank-Wolfe



Complexity results in convex optimization

e Assumption: g convex on R?

e Classical generic algorithms

— Gradient descent and accelerated gradient descent
— Newton method
— Subgradient method and ellipsoid algorithm



Complexity results in convex optimization
e Assumption: g convex on R?

e Classical generic algorithms

— Gradient descent and accelerated gradient descent
— Newton method
— Subgradient method and ellipsoid algorithm

e Key additional properties of g

— Lipschitz continuity, smoothness or strong convexity

e Key insight from Bottou and Bousquet (2008)

— In machine learning, no need to optimize below estimation error

e Key references: Nesterov (2004), Bubeck (2015)



Several criteria for characterizing convergence

e Objective function values

g(0) — inf g(n)

neRd

— Usually weaker condition

e lterates

. 2
inf HH — nH
nEarg min g

— Typically used for strongly-convex problems

e NB: similarity with prediction vs. estimation in statistics



(smooth) gradient descent

e Assumptions

— g convex with L-Lipschitz-continuous gradient (e.g., L-smooth)

e Algorithm:
0 =01 — —9/(9t—1)




(smooth) gradient descent - strong convexity

e Assumptions

— g convex with L-Lipschitz-continuous gradient (e.g., L-smooth)
— g u-strongly convex

e Algorithm:
1

O =01 — Zg/((gt—l)

e Bound:

g(0:) — g(0+) < (1 — /L) [g(60) — g(64)]

e Three-line proof

e Line search, steepest descent or constant step-size



(smooth) gradient descent - slow rate

e Assumptions

— g convex with L-Lipschitz-continuous gradient (e.g., L-smooth)
— Minimum attained at 6.

e Algorithm: .
0 =01 — Zg/(et—l)
e Bound: 210 . ”2
9(0:) — 9(0.) < ==

t+4
e Four-line proof

e Adaptivity of gradient descent to problem difficulty

e Not best possible convergence rates after O(d) iterations



Gradient descent - Proof for quadratic functions
e Quadratic convex function: g(f) =20'HY —c'6
— 1 and L are smallest largest eigenvalues of H

— Global optimum 6, = H~ ¢ (or H'¢)

e Gradient descent:

1 1
0 = Or1— F(HO1 — ) = 011 — 7(HO— — HO.)
1 1
0= 0. = (I—FH) (01— 0.) = (I ——H)' (60— 6.)

e Strong convexity x> 0: eigenvalues of (I — +H)"in [0, (1 — £)1]

— Convergence of iterates: ||0; — 0.]|* < (1 — p/L)?*!||6y — 0.]|*
— Function values: ¢(6;) — g(6.) < (1 — pu/L)*|g(60) — g(6.)]



Gradient descent - Proof for quadratic functions
e Quadratic convex function: g(f) =20'HY —c'6

— 1 and L are smallest largest eigenvalues of H
— Global optimum 6, = H~c (or H'c)

e Gradient descent:

1 1
01 — z(HHt—1 — C) =01 — z(HHt—1 — HH*)

0. = (I~ H)(iy —0.) = (I - TH)'(6y — 0.)

0

e Convexity p = 0: eigenvalues of (I — +H)" in [0, 1]

— No convergence of iterates: ||6; — 0.]|° < ||6p — 6.
— Function values: g(0;) —g(0+) < max, (o, 1, v(1—v/L)*||6g—0.||?
g(6:) — g(0+) < 2160 — 6.



Properties of smooth convex functions

o Let g : RY — R a convex L-smooth function. Then for all 8,7 € R%:

— Definition: ||¢'(0) — ¢'(n)|| < L||6 — n||
— If twice differentiable. 0<4"(0)x LI

e Quadratic upper-bound: 0 < g(0)—g(n)—g'(n) " (0—n) < LHH n||?

— Taylor expansion with integral remainder

e Co-coercivity: L]|g'(8) — ¢'(m)|2 < [¢'(0) — o'(m)] " (6 — 1)

o |f g is u-strongly convex, then
1
g(0) < g(n) +9'(n)" (0 —n) + A AVl

e “Distance” to optimum: g(8) — g(8,) < ¢'(0)' (6 — 0,)



Proof of co-coercivity

e Quadratic upper-bound: 0 < g(0)—g(n)—g'(n) " (0—n) < Z[|0—n|

— Taylor expansion with integral remainder

e Lower bound: g(0) > g(n)+4¢'(n)" (60 —n) +5-14'(0) — ¢'(n)]?
— Define h(0) = ( ) —0"g'(n), convex with global minimum at 7

= h(n) < h(0—7h'(0)) < h(0 )+h'(9) (—=7h'(0))+ 51— TR (@),
which is thus Iess than h(0) — 5=||A/ ()2

~ Thus g(n) — 17 /(1) < 9(6) — 67 g/(n) — = 119'(8) — ()]

e Proof of co-coercivity

— Apply lower bound twice for (n,6) and (6,7n), and sum to get
0= [g'(n) — g'(O)]" (0 —n) +£llg'(0) — ' (n)|?

e NB: simple proofs with second-order derivatives



Proof of g(0) < g(n) +g'(n) " (0 —n) + 3;[19'(0) — g'(n)]|*

e Define h(0) = g(0) — 0" ¢'(n), convex with global minimum at 7

e h(n) = ming h(0) > minc h(0) + 1'(0) " (¢ — 0) + £||¢ — 6], which
is attained for ( — 0 = —+h/()
— This leads to h(n ) h(f) — 5= IR (0)])°

— Hence, g(n) —n"¢'(n) > 9(9) —0"g'(n) — 511’ (n) = (0)]?
— NB: no need for smooothness

= |

e NB: simple proofs with second-order derivatives

e With n = 6, global minimizer, another “distance” to optimum

1
g(0) —g(0,) < 2—Hg’(9)H2 Polyak-Lojasiewicz"
u



Convergence proof - gradient descent
smooth strongly convex functions

e |teration: 0; = 0;_1 —vg¢'(0;_1) with y =1/L
L
g(0:) = 9[975—1 - 79/(975—1)] < g(0¢—1) + gl(et—1)T [ — 79/(975—1)] + 5” — 79/(975—1)”2

= g(0;—1) — (1 —~vL/2)||g’ (01—1)|
= 9(01) — 5 llg (B 5 = 1/L.

/N

g(0:—1) — Z[ g(0:—1) — g(+)] using strongly-convex “distance” to optimum

Thus, g(0:) — g(0,) < (1 — M/L)t[g(‘%) - 9(9*)]

e May also get (Nesterov, 2004): |60 — 6.]* < (1 — %)t\\% — 0.]]°

as soon as v < +L



Convergence proof - gradient descent
smooth convex functions - |

e |teration: 0; = 0;_1 —vg¢'(0;_1) with y =1/L

16 — 0.]"

g(et)
g(0t—1) — g(6x)
g(0¢) — g(0+)

N

/A N/ ANE/AN

IN

Or—1— 0 — vg'(0i—1)|?
01— 0.7 + 779" (0:—1)

Or—1 = 0:]1” + 29" (Or—1)|I?
Or1— 0.I1° = v(2/L = 7)llg
0o — 0.||° : bounded iterates

g0 1)——\!9 (0:—1)]” (see
g (0r—1) " (0e—1 — 0.) < ||g' (O

2 —2v(0i—1 — 0,) " g/ (6:—1)

— 2%“9’(@—1”\2 using co-coercivity

"(Or—1)]1* <1101 — 0.7 if v < 2/L

previous slide)

| - [|0e—1 — 04«]| (Cauchy-Schwarz)

2

9(01) —g(0) —

30— 0] ¢

9(0:—1) — 9(6.)]



Convergence proof - gradient descent
smooth convex functions - |l
e |teration: 0; = 0;_1 —vg¢'(0;_1) with y =1/L

1

9(00) = 9(6.) < 9(0-1) = 9(0-) = 5rro—gsl9(61) — 9(6.)])

of the form A, < Ap_1 — aAi_; with 0 < Ay = g(0k) — 9(0,) < g”ek — 0.
Akl—1 < Aik — ozAAk: by dividing by ArAr_1
A:—1 < Aik — « because (Ay) is non-increasing
Aio < Ait — at by summing from k=1 tot
A; < 1 _|_A025A0 by inverting
. 2LH§0+—46*H2 dince A < gHGk | and o = 2LHH()1— -



Limits on convergence rate of first-order methods

e First-order method: any iterative algorithm that selects 6; in
0o + span(f'(0o), . .., f'(0t-1))

e Problem «class: convex L-smooth functions with a global
minimizer 6,

e Theorem: for every integer t < (d — 1)/2 and every 6y, there exist
functions in the problem class such that for any first-order method,

3 L||0y — 0.]|*

— O(1/t) rate for gradient method may not be optimal!



Limits on convergence rate of first-order methods
Proof sketch

e Define quadratic function

gt(e) 2 + Z 9’H—1 (6)15)2 _ 291]

— Fact 1: g; is L-smooth

— Fact 2: minimizer supported by first ¢t coordinates (closed form)

— Fact 3: any first-order method starting from zero will be supported
in the first £ coordinates after iteration &

— Fact 4. the minimum over this support in {1,...,k} may be
computed in closed form

e Given iteration k£, take g = ¢gor+1 and compute lower-bound on

9(05)—9(0+)
100 — 6|2




Accelerated gradient methods (Nesterov, 1983)

e Assumptions

— g convex with L-Lipschitz-cont. gradient , min. attained at 6,

e Algorithm: 1
0, = Nt—1 — zg’(m_l)
t—1
= 0 —(0; — 6, _
Mt t + t—|—2( ' t—1)

e Bound: 2L|6 — 0.,||2
g(61) — g(6.) < 0

e Ten-line proof (see, e.g., Schmidt, Le Roux, and Bach, 2011)

e Not improvable

e Extension to strongly-convex functions



Accelerated gradient methods - strong convexity

e Assumptions

— g convex with L-Lipschitz-cont. gradient , min. attained at 6,
— g u-strongly convex

e Algorithm: .

0 = 77t—1—zgl(77t—1)

Lo VIR g g, )

e = 0+

e Bound: g(6;) — f(6.) < L[| — H*H ( — /L)

— Ten-line proof (see, e.g., Schmidt, Le Roux, and Bach, 2011)
— Not improvable
— Relationship with conjugate gradient for quadratic functions



Optimization for sparsity-inducing norms
(see Bach, Jenatton, Mairal, and Obozinski, 2012b)

e Gradient descent as a proximal method (differentiable functions)

: L
— 0441 = arg min f(6;) + (0 — 9t)TVf(9t)+§H9 — 0,]|3

0 cRd

— 01 =6, — LV f(6))



Optimization for sparsity-inducing norms
(see Bach, Jenatton, Mairal, and Obozinski, 2012b)

e Gradient descent as a proximal method (differentiable functions)

. L
— Oy = argmin f(0;) + (0 — 0;) "V f(0r)+= (|0 — 04]5
fcRd 2

— 01 =0, — %Vf(et)

e Problems of the form: | min f(6) + u€2(9)
o cR?

: L
= fi1 = arg min f(0:) + (6 — Ht)TVf(Ht)+uQ(9)+§H9 — 05
— Q(0) = ||0||1 = Thresholded gradient descent

e Similar convergence rates than smooth optimization

— Acceleration methods (Nesterov, 2007; Beck and Teboulle, 2009)



Soft-thresholding for the /;-norm

1
e Example 1: quadratic problem in 1D, i.e. mi]llg 5:1;2 — xy + A|z|
TE
e Piecewise quadratic function with a kink at zero
— Derivative at 0+: g = A —yand 0—: g_ = -\ —y
A A
r \'/ r

— x = 0 is the solution iff g > 0 and g_ <0 (i.e., |y| < A)
— x > 0 is the solution iff g, <0 (e, y=>A) =2 =y — A
— 2 < 0 is the solution iff g_ <0 (ie, y<=A) = 2" =y + A

e Solution

z* =sign(y)(Jy| — M)+

= soft thresholding



e Example 1: quadratic problem in 1D, i.e.

e Piecewise quadratic function with a kink at zero

e Solution

Soft-thresholding for the /;-norm

z* =sign(y)(Jy| — M)+

r€eR

1

min —x
2

2

— xy + A|z|

= soft thresholding




Projected gradient descent

e Problems of the form: | min f(4)
hek

: L
= Op41 = argmin f(6;) + (6 — Ht)TVf(Ht)+§\\9 — 0415
1 1 2
~ Or1 = argmin = 0 — (6, - 79£(6)
— Projected gradient descent

e Similar convergence rates than smooth optimization

— Acceleration methods (Nesterov, 2007; Beck and Teboulle, 2009)



Newton method

e Given 6;_1, minimize second-order Taylor expansion

. 1

§(6) = 9(0r—1)+9'(6r—1) T (0=0:—1)+5(0—00 1) 9" (61) T (6—0,1)
e Expensive lteration: 0, = 0;_1 — ¢"(0;_1) " 1¢'(0:—1)

— Running-time complexity: O(d®) in general

e Quadratic convergence: If ||#;_1 — 60.]| small enough, for some
constant C, we have

(Cl10 = 0.]1) = (Cl0e—1 — 0.])7

— See Boyd and Vandenberghe (2003)



Summary: minimizing smooth convex functions

e Assumption: g convex

e Gradient descent: 0, = 60; 1 — v;g'(0;_1)

— O(1/t) convergence rate for smooth convex functions
— O(e™t*/ L) convergence rate for strongly smooth convex functions

— Optimal rates O(1/t?) and O(e™*V “/L)

e Newton method: (9,5 = Ht—l — f”((gt_l)_lf/((gt_l)

t
— O(e_p2 ) convergence rate



Summary: minimizing smooth convex functions

e Assumption: g convex

e Gradient descent: 0, = 0; 1 — v, ¢ (0:_1)

— O(1/t) convergence rate for smooth convex functions
— O(e™t*/ L) convergence rate for strongly smooth convex functions

— Optimal rates O(1/t?) and O(e™*V “/L)

e Newton method: (9,5 = Ht—l — f”((gt_l)_lf,((gt_l)

t
— O(e_p2 ) convergence rate

e From smooth to non-smooth

— Subgradient method and ellipsoid



Counter-example (Bertsekas, 1999)
Steepest descent for nonsmooth objectives

[ —5(962 + 1662)Y/2 if 6, > |0,
FONSES A iy

e Steepest descent starting from any 6 such that 6; > |05 >
(9/16)%(61 |




Subgradient method/“descent” (Shor et al., 1985)

e Assumptions

— g convex and B-Lipschitz-continuous on {||f]|2 < D}

2D
Algorithm: 0, =11, 0,1 — ——¢'(0,_
¢ Al t D(tl Bﬂg(tl))

— IIp : orthogonal projection onto {||f|| < D}

=

y

Constraints



Subgradient method/“descent” (Shor et al., 1985)

e Assumptions

— g convex and B-Lipschitz-continuous on {||f]|2 < D}

2D
o Algorithm: 0, =IIp| 0,1 — ——=g'(0;—
g t D(tl Bﬂg(tl))
— IIp : orthogonal projection onto {||f|| < D}
e Bound: -
1 « 2D B
=N g, ) —g(0,) < ==
o(§0) o0 <7
e Three-line proof

e Best possible convergence rate after O(d) iterations (Bubeck, 2015)



Subgradient method/ “descent” - proof - |

® lteration: 0; = IIp(0i—1 — 19" (0:—1)) with v, = é—\%

® Assumption: ||¢’(0)]2 < B and ||0]|2 <

10, — 0.3 0,—1 — 0, — v:9' (0:_1)||5 by contractivity of projections
01 — 0.3+ B*y — 27:(6:—1 — 6.) " ¢'(6:-1) because [|g'(6;-1)l|la < B

Or—1 — 0.3 + B> — 27 [g(0:—1) — g(0.)] (property of subgradients)

NN N

® |eading to

BQ%

1
—1) * < -
g(0i—1) — g(04) 9 2

161 — 0.[15 — 116 — 6.]13]



Subgradient method/ “descent” - proof - Il

B2’Yt

e Starting from  ¢(6;_1) — g(6.) < :

1
+ 5100 = 0.3~ 16, — 0.1

e Constant step-size y; =7y

t t t
7 1
§ [g(eu—l) E 9 E _’Y ||9u—1—9*H§— ||9u—9*||3]
u=1 u=1 u=1
327 B%*y 2
< - ——+-D?
5+ gl <=5+

e Optimized step-size v; = B\[ depends on “horizon”

— Leads to bound of 2D B/t

t—1
1 2D B
e Using convexity: g(z E 9k> —g(0,) < 7



Subgradient method/ “descent” - proof - Il
BQ%
2

_ 1
® Starting from  g(0;_1) — g(0) < + g[”et—l — 0.5 — ||0: — 9*\!%}
(

® Decreasing step-size

t

1
Z 2— ng—l _ Q*H% - Heu - H*H%}

Z [g(eu—l) - 9(9*)]

/N
ﬁMw

u=1 1 u=1

t 2 t—1 2 2

= Z b Tu Z HQ — 0 ||2( 1 - 1 ) + H‘90 . H*HQ o Het - H*HQ
u=1 2 u=1 ’ 2’Yu+1 27“ 2/71 Z’Yt

zt: B — AD?( 1 1 ) AD?

h u=1 2 u=1 Q’yu_|_1 27“ 2,)/1
t
B2y, 4D? 2D

= =4 < 3DBv/t with

Z 2 24 e B\/Z

e Using convexity: g(%z Hk) g(8,) < %



Subgradient descent for machine learning

e Assumptions (f is the expected risk, fthe empirical risk)
— “Linear” predictors: 6(x) = 0'®(x), with ||®(2)|2 < R as.
= f(0) = >0 L(yi, @(x4) ' 6)

A

— G-Lipschitz loss: f and f are GR-Lipschitz on © = {||f||2 < D}

e Statistics: with probability greater than 1 — 9

A GRD 2
sup | (6) - 16)] < T2 |2+ 2108 |

e Optimization: after ¢ iterations of subgradient method

o . oa GRD
f(0) —gggf(ﬁ) < 7

e t = n iterations, with total running-time complexity of O(n?d)



Subgradient descent - strong convexity

e Assumptions

— g convex and B-Lipschitz-continuous on {||0]|> < D}
— g u-strongly convex

2
Algorithm: 0, = 1lIp| 0;_1 — (0, _
® goritnim t D< t—1 M(t"‘l)g( t 1))

e Bound: t
> 232
g(t@“); 1) 90 <

e Three-line proof

e Best possible convergence rate after O(d) iterations (Bubeck, 2015)



Subgradient method - strong convexity - proof - |

® [teration: 0, = IIp(0:—1 — 1:9' (0t—1)) with v, = ﬁ

® Assumption: ||g’(0)||2 < B and ||#||2 < D and p-strong convexity of f

10, — 0,15 < [|0—1 — 0« — 719" (0:_1)||3 by contractivity of projections
< 01 = 04015+ B*y7 — 274(0:-1 — 0.) " g'(6:—1) because [lg'(6:—1)[]2 < B
< 101 = 043 + By — 2% [g(0:-1) — 9(9*)+g\’9t—1 — 0.]3]

(property of subgradients and strong convexity)

® |eading to

B2’yt 1-1
5 +§[W——M}Het 1—‘9||2——Hgt 0.3

BZ
+“[

9(0i-1) —g(0x) <

t—1 t+1
0t — 6,02 = “E g g2

<
4




Subgradient method - strong convexity - proof - |l

t—1 pu(t+1)

4

B2
o From g(6;1) — g(6.) < 5

J10:—1 — 0.l — 16

u=1 t=1 ,LL(
B%* 1 » _ B%t
< 7+1[0—t(t+1)||et—9*\!2] S

t

| | 9 2B?
e Using convexity: ¢ 1 1) Zueu_l —g(6y) < P

u=1

e NB: with step-size v,, = 1/(nu), extra logarithmic factor

t
20 1
70 [ = 1) — 0 — o+
u=1

— 0,12

1)[16 — 0.13]



Ellipsoid method
e Minimizing convex function g : R - R

— Builds a sequence of ellipsoids that contains the global minima.

=]

Eo

e Represent F;, = {# c¢ R% (6 —6,) TP 1(0—0,) <1}

e Fact 1: 0t—|—1 = Qt d_|_1Ptht and Pt—|—1 =

ith hy = 1 (0
W ' \/g’(et)TPtg’(xt) ( )

d2 1(Pt d_|_]_Pthth Pt)

e Fact 2: vol(&;) ~ Vol(gt_l)e—l/Qd — CV rate in O(e—t/dQ)



Summary: minimizing convex functions
e Assumption: g convex

e Gradient descent: 0, = 0; 1 — v, ¢ (0:_1)

— O(1/+/t) convergence rate for non-smooth convex functions

— O(1/t) convergence rate for smooth convex functions

— O(e™**) convergence rate for strongly smooth convex functions
e Newton method: 0; = 0;_1 — ¢"(0;_1) g’ (0;_1)

t
— O(e_p2 ) convergence rate



Summary: minimizing convex functions
e Assumption: g convex

e Gradient descent: 0, = 60; 1 — v:g'(0;_1)

— O(1/+/t) convergence rate for non-smooth convex functions
— O(1/t) convergence rate for smooth convex functions
— O(e™**) convergence rate for strongly smooth convex functions

e Newton method: (9,5 = Ht—l — g”(gt_l)_lg/(gt_l)

t
— O(e_p2 ) convergence rate

e Key insights from Bottou and Bousquet (2008)

1. In machine learning, no need to optimize below statistical error
2. In machine learning, cost functions are averages

= Stochastic approximation



Summary of rates of convergence
e Problem parameters

— D diameter of the domain
— B Lipschitz-constant

— L smoothness constant

— 1 strong convexity constant

convex strongly convex

nonsmooth | deterministic: BD/+\/t deterministic: B*/(tu)

smooth deterministic: LD?/t? deterministic: exp(—t+/ju/L)

quadratic | deterministic: LD?/t? deterministic: exp(—t+\/u/L)




Outline - |
1. Introduction
e Large-scale machine learning and optimization

e Classes of functions (convex, smooth, etc.)
e T[raditional statistical analysis through Rademacher complexity

2. Classical methods for convex optimization

e Smooth optimization (gradient descent, Newton method)
e Non-smooth optimization (subgradient descent)
e Proximal methods

3. Non-smooth stochastic approximation

e Stochastic (sub)gradient and averaging
e Non-asymptotic results and lower bounds
e Strongly convex vs. non-strongly convex



Outline - 1l
4. Classical stochastic approximation
e Asymptotic analysis

e Robbins-Monro algorithm
e Polyak-Rupert averaging

5. Smooth stochastic approximation algorithms

e Non-asymptotic analysis for smooth functions
e Logistic regression
e Least-squares regression without decaying step-sizes

6. Finite data sets

e Gradient methods with exponential convergence rates
e Convex duality
e (Dual) stochastic coordinate descent - Frank-Wolfe



Stochastic approximation

e Goal: Minimizing a function f defined on R

— given only unbiased estimates f/(6,,) of its gradients f'(6,) at
certain points 6,, € R



Stochastic approximation

e Goal: Minimizing a function f defined on R

— given only unbiased estimates f/(6,,) of its gradients f'(6,) at
certain points 6,, € R

e Machine learning - statistics

— loss for a single pair of observations: | f,,(0) = ((y,, 0" ®(z,))
— f(0) =Ef,(0) = EL(y,, 0" ®(x,)) = generalization error

— Expected gradient: f'(6) = Ef}(0) = E{{'(yn,0' ®(z,,)) ®(xn)}
— Non-asymptotic results

e Number of iterations = number of observations



Stochastic approximation

e Goal: Minimizing a function f defined on R
— given only unbiased estimates f/(6,) of its gradients f'(6,) at
certain points 6,, € R
e Stochastic approximation

— (much) broader applicability beyond convex optimization
Qn — 9n—1 — /Vnhn(gn—l) Wlth E[hn((gn—l)’(gn—l} — h(gn—l)

— Beyond convex problems, i.i.d assumption, finite dimension, etc.

— Typically asymptotic results (see next lecture)
— See, e.g., Kushner and Yin (2003); Benveniste et al. (2012)



Relationship to online learning

e Stochastic approximation

— Minimize f(0) = E_¢(0, z) = generalization error of
— Using the gradients of single i.i.d. observations



Relationship to online learning

e Stochastic approximation

— Minimize f(0) = E_¢(0, z) = generalization error of
— Using the gradients of single i.i.d. observations

e Batch learning

— Finite set of observations: z1,..., 2,
— Empirical risk: f(0) ==>"7_, 46, z)

— Estimator § = Minimizer of f(0) over a certain class ©
— Generalization bound using uniform concentration results



Relationship to online learning

e Stochastic approximation

— Minimize f(0) = E_¢(0, z) = generalization error of
— Using the gradients of single i.i.d. observations

e Batch learning

— Finite set of observations: z1,..., 2,

— Empirical risk: f(6) = %ZZ:J 00, z;)

— Estimator 6§ = Minimizer of f(6) over a certain class ©
— Generalization bound using uniform concentration results

¢ Online learning

— Update 0, after each new (potentially adversarial) observation z,
— Cumulative loss: = > 7 0(0k_1, 21)
— Online to batch through averaging (Cesa-Bianchi et al., 2004)



Convex stochastic approximation

e Key properties of f and/or f,

— Smoothness: f B-Lipschitz continuous, f’ L-Lipschitz continuous
— Strong convexity: f u-strongly convex



Convex stochastic approximation

e Key properties of f and/or f,

— Smoothness: f B-Lipschitz continuous, f’ L-Lipschitz continuous
— Strong convexity: f u-strongly convex

e Key algorithm: Stochastic gradient descent (a.k.a. Robbins-Monro)

Qn — Hn—l — /anr,/l(en—l)

— Polyak-Ruppert averaging: 6,, = %ZZ’;; 0

— Which learning rate sequence ~,,? Classical setting: | v, = Cn™ ¢




Convex stochastic approximation

e Key properties of f and/or f,

— Smoothness: f B-Lipschitz continuous, f’ L-Lipschitz continuous
— Strong convexity: f u-strongly convex

e Key algorithm: Stochastic gradient descent (a.k.a. Robbins-Monro)

Qn — Hn—l — A}/nfr,/qJ(Hn—l)

— Polyak-Ruppert averaging: 6,, = %ZZ’;; 0

—

— Which learning rate sequence ~,,? Classical setting: | v, = Cn

e Desirable practical behavior

— Applicable (at least) to classical supervised learning problems
— Robustness to (potentially unknown) constants (L,B,u)
— Adaptivity to difficulty of the problem (e.g., strong convexity)



Stochastic subgradient “descent” /method

e Assumptions

— fn convex and B-Lipschitz-continuous on {||0||> < D}

— (fn) i.i.d. functions such that Ef,, = f
— 0, global optimum of f on C = {||0||2 < D}

2D
Algorithm: 0, =1Ip( 60,1 — ——F'(0,,_
® goritnm D< 1 B\/ﬁ n( 1))



Stochastic subgradient “descent” /method
e Assumptions

— fn convex and B-Lipschitz-continuous on {||0]|2 < D}
— (fn) i.i.d. functions such that Ef,, = f
— 0, global optimum of f on C = {||0]|> < D}

2D
e Algorithm: 0,, =1IIp <6’n 1 — W o (On )>

e Bound: )
1 2DB
Efl— 0. — f(0,) <——
f(, > ) - 10 <20
e “Same” three-line proof as in the deterministic case
e Minimax rate (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

e Running-time complexity: O(dn) after n iterations



Stochastic subgradient method - proof - |

® lteration: 0, =IIp(0p—1 — Vnf;(0n-1)) with v, = B2\l/)ﬁ

® f, : information up to time n

o |[f/(0)]]2 < B and ||0||]2 < D, unbiased gradients/functions E(f,,|F, 1) = f

10, — 0.3 < ||6n — ’ynf’( n—1)|[5 by contractivity of projections
< |0n—1 — 0. Hz ~ 290 (0n—1 — 0.) " f1(0n—1) because || f,(0—1)2 < B
E 10 — 01131 Fn-1] < 16n-1— 0,12+ = 29 (0n-1 = 0:) " f'(On-1)
< NOur — 0.3+ B2 - 27, [f( ) — £(6.)] (subgradient property)
|05 — 0.3 < ||9n 1= 0. ||2 —Q’Vn[Ef( 1) — f(6)]
. BQ’Y?’L 1 2 2
® leading to Ef(6,,_1) — f(0«) < + E||0r—1 — 0.]|5 — E||6, — 6.])3]

2 2%n,



Stochastic subgradient method - proof - Il

B?v, 1
+ o [Efl0n-1 — 0.3 — E[|65, — 0.]]3]

e Starting from Ef(6,,_1) — f(0.) 5 9
Tn

IN

1
3 (B0t — 0.3 — B8, — 6.]13]

/
NE
oy
M§M

Z [Ef(eu—l) R f(e*)] <

"\ B?v, 4D? 2D
< 2DB ith v, = ——=
2.5+ % v with Byn

1 2DB
® Using convexity: [Ef (E Z Qk) — f(0,) < —



Stochastic subgradient method
Extension to online learning

e Assume different and arbitrary functions f,, : R? — R

— Observations of f/ (0,_1) + €n
— with E(e,,|Fn—1) =0 and ||f (6,,—1) + ,|| < B almost surely

e Performance criterion: (normalized) regret

l — 1 —
— iei— — inf - 2(9
n;f( 1) ||9||2<Dn;f()

— Warning: often not normalized
— May not be non-negative (typically is)



Stochastic subgradient method - online learning - |

® lteration: 0, =l p(0,—1 — Y (f,,(0n-1) +&n)) with v, = BZ\I/DH

e 7, : information up to time n - @ an arbitrary point such that ||0|| < D

® |[f/(0h_1)+enll2 < B and||f||2 < D, unbiased gradients E(¢,|F,_1) =0

10,, — 0115 < ||0n—1 — 0 — Yu(f! (0_1) + €,)||5 by contractivity of projections

< |
< N0n—1 — 0|5 + B*v2 — 290 (0n—1 — 0) " (f}(05—1) + €5) because || f1,(0n—1) + &n)2

E[Hen — QH%U:n—l} < ||6)n 1= 9”2 - Q’Vn(e —1 H)Tfolz(en—l)
< |01 — 0|5 + — 27, [fn( 1) — fn(H)] (subgradient property)
El0n =013 < E[0-1 — 9\!2 —2%[Efn( 1) — fu(0)]
B?~,

_ 1
® leadingto Ef,(0,_1) — f,(0) < + ﬁ[EHan —0||3 — E[|6,, — 9“%}

2



Stochastic subgradient method - online learning - |l

B2y, 1
o Starting from Ef, (6,-1) — fu(6) < —* + 5 (Bl = 0115 — Eljon — 0]
D [Efu(bus) = (O] < D =57+ g[EH@u_l — 0|5 — E||6., — 03]
u=1 u=1 u=1 u
"\ B%~, 4D? 2D
< < 2DB ith ~, = ———
Z 2 i 2n Vi with y By/n

u=1

1 — 1 —
e For any 0 such that ||0|| < D: Ekz_:lle:fk(ek_l) —E;fk(e) <

2D B
/n

e Online to batch conversion: assuming convexity



Stochastic subgradient descent - strong convexity - |

e Assumptions

— f, convex and B-Lipschitz-continuous

— (fy) i.id. functions such that Ef,, = f
— f p-strongly convex on {||0||- < D}
— 6, global optimum of f over {||0||> < D}

2
p(n+1)

e Algorithm: 0, =1IIp <9n_1 — fy/z(gn—l)>

¢ Bound:

2 - 2B?
Ef<n(n+ : ;kek) - 10 < 22

e “Same” proof than deterministic case (Lacoste-Julien et al., 2012)

e Minimax rate (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)



Stochastic subgradient - strong convexity - proof - |

® [teration: 0, = IIp(0,—1 — Vnf),(0:—1)) with v, = ﬁ

® Assumption: ||f/(6)|l2 < B and ||| < D and p-strong convexity of f

10, — 0.3 < ||0h—1 — 0« — Yuf’(0:—1) |5 by contractivity of projections
< 01 = 0.3+ B2 — 29, (0n—1 — 0.) ' f1,(6¢—1) because || f(0;-1)[l2 < B
v
E([Fa-1) < [0n-1—0.3+ = 29 [f(Bn1) = F(8) 511601 = 03]

(property of subgradients and strong convexity)

® |eading to

B2y, 1.1 1
FOur) = £0.) < 254 51— s — 0ul3 — 5116 — 0115
B? pen—1 pu(n+ 1)



Stochastic subgradient - strong convexity - proof - |l

(n+1)
4

n—1

® FromEf(0,_1)—f(0.) < —I—H[ }EHHn 1 —0.3— . E|6,—0.

S ulEf(Ou) - FO)] <Y 32 (= D0,y — 0.3 — uluu + )0, ~

— p(u+ DRl —
< Ben + 1[0 (n+ 1)E||6, — 0.]3] < Ben
X - ”n — n\n n Yk X -
w4 SR

9 2B?
® Using convexity: Ef (n(n I 1) Z u@u_1> o 9(9*) S n+1
u=1

e NB: with step-size v,, = 1/(nu), extra logarithmic factor (see later)



Stochastic subgradient descent - strong convexity - ||

e Assumptions

— f, convex and B-Lipschitz-continuous

— (fn) i.i.d. functions such that Ef,, = f

— 0, global optimum of g = f + & - |3

— No compactness assumption - no projections

e Algorithm:

2 .2 ,
,LL(n + 1)gn(9n—1) — (977,—1 ILL(’I’L T 1) [fn(‘gn—l)+ﬁ69n—1}

Hn — Hn—l_

2 z 2 B2
Bound: E kOrp_1) —g(0y) <
¢ boun g(n(n +1) 1; & 1) 9(6:) u(n + 1)

e Minimax convergence rate




Strong convexity - proof with logn factor - |

® lteration: 0, =1Ip(0,—1 — Y f, (0i—1)) with v, = L%n

® Assumption: ||f/(6)|l2 < B and ||| < D and p-strong convexity of f

10, — 0.3 < ||0h—1 — 0. — Yuf’(0:—1)||5 by contractivity of projections
< 0n—1 = 0.3+ B — 29, (0n—1 — 0.) ' f1,(6e—1) because || f(0:-1)[|l2 < B
v
E([Fa-1) < [0n-1—0.3+ = 29 [f (Bn1) = F(8) 511601 = 03]

(property of subgradients and strong convexity)

® |eading to

B%y, 1.1 1
Ef(0n-1) = f(0x) < Sl = 101 = 0ull3 = 5~ [16n — 03
2 2 Yn 29n,
B®  u o np 2
< g g s = 013 = 0 — 6.1



Strong convexity - proof with logn factor - |l

2

B 14 N
® From Ef(é’n_l) — f(@ ) 2,LLTL + = 5 [n — 1] ||6)n—1 — 9*”% — 7“‘971 — H*H%

> [EFGut) ~ £(6)] <30 24 23 [ DEJus — 0.1 — B0, — 0.[3]

u=1 u=1 2,LL’LL u=1
B%loen 1 B?logn
< BN S0 - nE)6, — 03] < St
214 2 21

1 & B?1
® Using convexity: Ef (Ezeu—l) o f ) 211 Oin
u=1

e \Why could this be useful?



Stochastic subgradient descent - strong convexity
Online learning

e Need logn term for uniform averaging. For all 6:

] — 1 — B?logn
— i(0i-1) — — i(0) <
n;f( 1) n;f() 20

e Optimal. See Hazan and Kale (2014).



Beyond convergence in expectation

2D B
/n

— Obtained with simple conditioning arguments

n—1
1
e Typical result: Ef (529k) — f(0) <
k=0

e High-probability bounds

_ 2D B
— Markov inequality: P(f(% Zzé Hk) — f(0) > 6) <

ne




Beyond convergence in expectation

2D B
/n

— Obtained with simple conditioning arguments

n—1
1
e Typical result: Ef (5 E Gk) — f(0s) <
k=0

e High-probability bounds
2DB

— Markov inequality: P(f(% o ek) — (8, = e) <=
— Deviation inequality (Nemirovski et al., 2009; Nesterov and Vial,
2008)

P(f (%nf 0) — (0.) > %(2 +41)) < 2exp(—1?)

e See also Bach (2013) for logistic regression



Stochastic subgradient method - high probability - |

e lteration: 0, = lIp(0n—1 — Vnf,(0n=1)) with v, = BQ\I/)H

® f, : information up to time n

o |[f/(0)]]2 < B and ||0||]2 < D, unbiased gradients/functions E(f,,|F, 1) = f

10, — 0.3 < ||6n — Ynfr (0,—1)||5 by contractivity of projections
< |[0n—1 — 0. Hz + By = 29(0n-1 — 05) ' f,(0n-1) because || f},(6r—1)l|l2 < B
E[[10n — 04131 70—1] < 10n—1 — 04]13 + = 29 (0n-1 = 0:) " f'(0n-1)
< NOur — 0.3+ B2 - 27, [f( ) — £(6.)] (subgradient property)

e Without expectations and with Z,, = —2v,,(0,—1 — 0.) " [f/.(0p—1) — f'(0r_1)]

16 — ‘9*”% < [fn—1— 0*“% + BQ%%, — 27, [f(en—l) - f(Q*)] + Zn



Stochastic subgradient method - high probability - |l

e Without expectations and with Z,, = —2v,,(0,—1 — 0,) " [f/(0p—1) — f'(0r,_1)]

100 = 0405 < 1001 — 04]15 + By, — 2n [f(en—l) - f(Q*)] + Zn

1
f(On—1) — f(0s) < m[uen_l—e*ug—Hen_e*ug]+ 2+

ST [f(Bumr) — f(8)] < ZB %‘+Z 181 = Oullz = 116 — 613 +ZQ%

e Need to study Z — with E(Z,|F,-1) =0 and |Z,| < 8y,DB
27%u




Stochastic subgradient method - high probability - ||

n Zu .
e Need to study E o with IE( L|\Fp—1) =0and |Z,| <4DB
Yu
—1

e Azuma-Hoeffding inequality for bounded martingale increments:
t2

P(if% i 4DB) < exp ()

e Moments with Burkholder-Rosenthal-Pinelis inequality (Pinelis, 1994)



Beyond stochastic gradient method

e Adding a proximal step
— Goal: min f(0)+Q0) =Ef,(0) + Q(60)

DR
— Replace recursion 0,, = 0,,_1 — v f) (05) by

6, = min ||6 — 6,1 + 7 fo(62)||5 + CRA6)
6cRd

— Xiao (2010); Hu et al. (2009)
— May be accelerated (Ghadimi and Lan, 2013)

e Related frameworks

— Regularized dual averaging (Nesterov, 2009; Xiao, 2010)
— Mirror descent (Nemirovski et al., 2009; Lan et al., 2012)



Mirror descent

e Projected (stochastic) gradient descent adapted to Euclidean
geometry

maxg grco || — 0']]2 - maxgeo [ £'(0)]2

NG

— bound:

e \What about other norms?

— Example: natural bound on maxgcg || f/(0)| o leads to v/d factor
— Avoidable with mirror descent, which leads to factor /log d
— Nemirovski et al. (2009); Lan et al. (2012)



Mirror descent

e Projected (stochastic) gradient descent adapted to Euclidean
geometry

maxg grco || — 0']]2 - maxgeo [ £'(0)]2

NG

— bound:

e \What about other norms?

— Example: natural bound on maxgcg || f/(0)| o leads to v/d factor
— Avoidable with mirror descent, which leads to factor /log d
— Nemirovski et al. (2009); Lan et al. (2012)

e From Hilbert to Banach spaces

— Gradient f/(0) defined through f(0 + df) — f(0) = (f(0),d8) for
a certain dot-product
— Generally, the differential is an element of the dual space



Mirror descent set-up

e Function f defined on domain C
e Arbitrary norm || - || with dual norm ||s||. = sup| < 0's
e B-Lipschitz-continuous function w.r.t. || - ||: | f(0)]« < B

e Given a strictly-convex function ®, define the Bregman divergence

Dg(0,n) = @(0) — @(n) — @'(n) " (0 — n)

D)+ (n).(6-1)

| > 0



Mirror map

e Strongly-convex function ® : C4 — R such that

(a) the gradient ®’ takes all possible values in R?, leading to a bijection
from Cg to R?

(b) the gradient &’ diverges on the boundary of Cg

(c) Co contains the closure of the domain C of the optimization
problem

e Bregman projection on C uniquely defined on Cg:

12(0) = in D
c(0) argnégfp%c (1, 0)

= arg min P(y) — S(0) — () (n—0)

= in ®(n) —&'(6)"
arg min () — &(6) 7

e Example of squared Euclidean norm and entropy



Mirror descent

e lteration:

0y = Mg ("' [@(0r—1) — vf'(6r-1)])




Mirror descent

e lteration:
0y = Mg ("' [@(0r—1) — vf'(6r-1)])

e Convergence: assume (a) D? = supycc ®(0) — infoec ®(0), (b) @
is a-strongly convex with respect to || - || and (c) f is B-Lipschitz-

2c,
=

( Z@) inf f(6 )<DB\/%

— See detailed proof in Bubeck (2015, p. 299)
— “Same” as subgradient method + allows stochastic gradients

continuous wr.t. || - ||. Then with ~ = %



Mirror descent (proof)

e Define (I)/(nt) = (I)/(Ht—l) — Wf/((gt—l)- We have

(0,—1) " By — 0) = %(@’wt_l) — (1)) (b1 — 6)

fO—1)—f(0) < f
1
N

Dy (6,0;—1) + — Do (0,m1)]

e By optimality of 8;: (®(0;)—®'(n;)) ' (6;—0) < 0 which is equivalent
to: Dq;(@,?]t) P> Dq;(@,@t) . Thus
= ®(0;1) — (0) — ' (ne) ' (Br—1 — 61)
< (O (Br-1) = () (1 — 6) — 61 — 04l
= ' (O) " (Brms = 0) = 101 — 04

Q (73)2
B0, 1 —0,| ——=|l6,_1 — 0 2<
Y Htl t” 2||t1 t” 9

IN

e Thus 22:1 [f(et—l) _ f(@)] < Dcp(jﬁo) _|_,Ylé_it



Mirror descent examples

|13 with || - [| =[] - |l and Cp = R

e Euclidean: ¢ = ||

— Regular gradient descent

e Simplex: ®(0) = 2?21 0;log6; with || - || = |- |1 and Cp = {0 €
d
RY, S0 6, =1}
— Bregman divergence = Kullback-Leibler divergence

— Iteration (multiplicative update): 6; o< 6;_1 exp(—~vf'(6:—1))
— Constant: D? =logd, a =1

o (y-ball: ©(0) = 3[|0]|7, with || | = || - [, p € (1,2]

— We havea=p—1
— Typically used W|th p = 1+ - to cover the £1-geometry



Minimax rates (Agarwal et al., 2012)
e Model of computation (i.e., algorithms): first-order oracle
— Queries a function f by obtaining f(6x) and f'(6;) with zero-mean
bounded variance noise, for K =0,...,n — 1 and outputs 6,
e Class of functions
— convex B-Lipschitz-continuous (w.r.t. fs-norm) on a compact
convex set C containing an £,.-ball
e Performance measure

— for a given algorithm and function ¢, (algo, f) = f(0,,)—infgcc f(0)

— for a given algorithm: sup  ep(algo, f)
functions y
e Minimax performance: inf sup  ep(algo, f)

algo functions ¢



Minimax rates (Agarwal et al., 2012)

e Convex functions: domain C that contains an ¢..-ball of radius D

d
inf sup e(algo, f) > cst X min {BD\/:, BD}
n

algo functions ¢

— Consequences for £o-ball of radius D: BD/\/n
— Upper-bound through stochastic subgradient

e /-strongly-convex functions:

B? B? d
inf sup  ep(algo, f) > cst X min{ : ,BD\/:, BD}
algo functions ¢ pn pud n



Minimax rates - sketch of proof

1. Create a subclass of functions indexed by some vertices o,
j=1,..., M of the hypercube {—1,1}¢, which are sufficiently far in

Hamming metric Ay (denote V this set Withd\V\ = M)
v.] # ka AH(ai7aj) P Za
e.g., a “%—packing” (possible with M exponential in d - see later)



Minimax rates - sketch of proof

1. Create a subclass of functions indexed by some vertices o,
j=1,..., M of the hypercube {—1,1}¢, which are sufficiently far in

Hamming metric Ay (denote V this set with |V| = M)

v.] # ka AH(O(Z,O(]) P Za

e.g., a “%—packing” (possible with M exponential in d - see later)

2. Design functions so that

— approximate optimization of the function is equivalent to function
identification among the class above

— stochastic oracle corresponds to a sequence of coin tosses with
biases index by o/, j=1,..., M



Minimax rates - sketch of proof

1. Create a subclass of functions indexed by some vertices o,
j=1,..., M of the hypercube {—1,1}¢, which are sufficiently far in

Hamming metric Ay (denote V this set with |V| = M)

v.] # ka AH(O(Z,O(]) P Za

e.g., a “%—packing” (possible with M exponential in d - see later)

2. Design functions so that

— approximate optimization of the function is equivalent to function
identification among the class above

— stochastic oracle corresponds to a sequence of coin tosses with
biases index by o/, j=1,..., M

3. Any such identification procedure (i.e., a test) has a lower bound on
the probability of error



Packing number for the hyper-cube
Proof

e Varshamov-Gilbert’s lemma (Massart, 2003, p. 105): the maximal
number of points in the hypercube that are at least d/4-apart in
Hamming loss is greater than than exp(d/8).

1. Maximality of family V = |y, Bu(a, d/4) = {-1,1}¢
2. Cardinality: >~ ., |Bu(a,d/4)| > 2°
3. Link with deviation of Z distributed as Binomial(d, 1/2)

27 UBr(a,d/4)| =P(Z < d/4) =P(Z > 3d/4)

WV

4. Hoeffding inequality: P(Z — g > %) < exp(—%) = exp(—%)



Designing a class of functions

e Given o € {—1,1}¢, and a precision parameter § > 0:

e Properties

— Functions f;'s and constant ¢ to ensure proper regularity and/or
strong convexity

e Oracle

(a) Pick an index i € {1,...,d} at random
(b) Draw b; € {0,1} from a Bernoulli with parameter £ + ;6
(c) Consider go(z) = c|bif;" + (1 —b;)f;] and its value / gradient



Optimizing is function identification

e Goal: if g, is optimized up to error €, then this identifies oo € V

o “Metric” between functions:

p(f.g9) = Inf f(0) + g(0) — Inf /() — inf g(0)

— p(f,g) = 0 with equality iff f and g have the same minimizers

e Lemma: let () = ming-sey p(ga, g3). For any 6 € C, there is at

most one function g, such that g,(0) — infgcc go(0) < @



Optimizing is function identification

e Goal: if g, is optimized up to error €, then this identifies oo € V

o “Metric” between functions:

p(f.g9) = Inf f(0) + g(0) — Inf /() — inf g(0)

— p(f,g) = 0 with equality iff f and g have the same minimizers

e Lemma: let () = ming-sey p(ga, g3). For any 6 € C, there is at
most one function g, such that g,(0) — infgcc go(0) < @

— (a) optimizing an unknown function from the class up to precision
@ leads to identification of a € V

— (b) If the expected minimax error rate is greater than @, there
exists a function from the set of random gradient and function
values such the probability of error is less than 1/3



Lower bounds on coin tossing
(Agarwal et al., 2012, Lemma 3)

e Lemma: For § < 1/4, given o* uniformly at random in V, if n
outcomes of a random single coin (out of the d) are revealed, then
any test will have a probability of error greater than

16162 + log 2
5 log(2/V/e)

— Proof based on Fano's inequality: If g is a function of Y, and X
takes m values, then

HX[Y)-1 HX) I(XY)+1
P(g(X) #Y) > logm  logm  logm




Construction of f; for convex functions

o fi"(0) =10(i) + 3| and f;(0) = |6(i) — 3
— 1-Lipschitz-continuous with respect to the ¢5-norm. With ¢ = B/2,
then g, 1s B-Lipschitz.
— Calling the oracle reveals a coin
e Lower bound on the discrepancy function
— each g, is minimized at 6, = —a/2

— Fact: p(gas98) = Z2Ap(a, B) = < = (5)

e Set error/precision ¢ = £ so that £ < 1(5)/9

2 72
16n52—|—10g2 : S L4d

e Consequence: % > 1 —




Construction of f; for strongly-convex functions

1—/4; 1

1 2
o FE(0) = omlf) % 5|+~ " (60) £ )

— Strongly convex and Llpschltz—continuous

e Same proof technique (more technical details)

e See more details by Agarwal et al. (2012); Raginsky and Rakhlin
(2011)



Summary of rates of convergence
e Problem parameters

— D diameter of the domain
— B Lipschitz-constant

— L smoothness constant

— 1 strong convexity constant

convex strongly convex

nonsmooth | deterministic: BD/+/t deterministic: B?/(tp)
stochastic: BD/\/n stochastic: B?/(nu)

smooth deterministic: LD?/t? deterministic: exp(—t+/ju/L)

quadratic | deterministic: LD?/t? deterministic: exp(—t+\/u/L)




Outline - |
1. Introduction
e Large-scale machine learning and optimization

e Classes of functions (convex, smooth, etc.)
e T[raditional statistical analysis through Rademacher complexity

2. Classical methods for convex optimization

e Smooth optimization (gradient descent, Newton method)
e Non-smooth optimization (subgradient descent)
e Proximal methods

3. Non-smooth stochastic approximation

e Stochastic (sub)gradient and averaging
e Non-asymptotic results and lower bounds
e Strongly convex vs. non-strongly convex



Outline - 1l
4. Classical stochastic approximation
e Asymptotic analysis

e Robbins-Monro algorithm
e Polyak-Rupert averaging

5. Smooth stochastic approximation algorithms

e Non-asymptotic analysis for smooth functions
e Logistic regression
e Least-squares regression without decaying step-sizes

6. Finite data sets

e Gradient methods with exponential convergence rates
e Convex duality
e (Dual) stochastic coordinate descent - Frank-Wolfe



“Classical” stochastic approximation

e General problem of finding zeros of h : RY — R4

— From random observations of values of A at certain points
— Main example: minimization of f : RY — R, with h = !

e Classical algorithm (Robbins and Monro, 1951b)

Hn — Hn—l — Tn [h(gn—l) + En]



“Classical” stochastic approximation

e General problem of finding zeros of h : RY — R4
— From random observations of values of i at certain points
— Main example: minimization of f : R? — R, with h = f’

e Classical algorithm (Robbins and Monro, 1951b)

Hn — Hn—l — Tn [h(gn—l) + En]

e Goals (see, e.g., Duflo, 1996)

— Beyond reducing noise by averaging observations

— General sufficient conditions for convergence

— Convergence in quadratic mean vs. convergence almost surely
— Rates of convergences and choice of step-sizes

— Asymptotics - no convexity



“Classical” stochastic approximation

e Intuition from recursive mean estimation

— Starting from 6y = 0, getting data z,, € R?
Hn — en—l — fYn((gn—l — an)

— If v, = 1/n, then 8,, = %22:1 Tk



“Classical” stochastic approximation

e Intuition from recursive mean estimation

— Starting from 6y = 0, getting data z,, € R?
Hn — en—l — fYn(en—l — an)

— If v, = 1/n, then 8,, = %22:1 Tk
e In general: Ex,, = x and thus 0,,—x = (1—7,,)(0,,_1—2)+Vn (T, —2)

n n

Or, H(l—”yk (Go—2)+ > 1] 0= w)via — =)

k=1 1=1 k=1+1



“Classical” stochastic approximation

e Expanding the recursion with i.i.d. z,,’s and 0° = E||z,, — z||*:

0, —x = H 1 — ) (0p — x) —I—Z% H (1 —v)(x; — )
k=1 1=1 k=i1+1
E|f, —2|* = H 1 — ) H90—$H2+Z% [I =)

=1 k=1+1



“Classical” stochastic approximation

e Expanding the recursion with i.i.d. z,,’s and 0° = E||z,, — z||*:

0, —x = H 1 — ) (0p — x) —I—Z% H (1 —v)(x; — )

1=1 k=1+1
E[6, — z||* = H(l—%)QHHO—wH2+ZW? [] @—w)%?
k=1 1=1 k=1+1

e Requires study of [[,_,(1 — ) and > 0" v ][, — i (1 — Vi )?

—If v, =0(1), log [ [ (1 — &) ~ —>_,_; & should go to —occ
Forgetting initial conditions (even arbitrarily far)

Zz 174 Hk z—|—1( ’Yk)QNZ:L 1 z k z—|—1( — 27)

Robustness to noise



Forgetting of initial conditions

og [[=v) ~ =) %
k=1 k=1

e Examples: | v, = C/n“

—a=1 5" +=1log(n)+ cst +0O(1/n)
—a>1 %", t= ct +0(1/n*1)
—ae(0,1), 37 &= cstxn'"*+0(1)
— Proof using relationship with integrals

e Consequences

— if & > 1, no convergence
— If a € (0,1), exponential convergence
— if @ = 1, convergence of squared norm in 1/n?¢



Decomposition of the noise term

e Assume (7,) is decreasing and less than 1/u; then for any m €

{1,...,n}, we may split the following sum as follows:
I G=pwvi = D 1] Q=i+ Z H (1 — i)y
k=11=k+1 k=11=k+1 k=m-+11=k+1
< I @=p) )i+ m Z H (1= wyi)y
1=m-+1 k=1 k=m+11=k+1
<exp< uz %) 72+ I = p) = 1] = w9
i=m-+1 k=1 'uk:m—|—1 _i:k—|—1 1=k i
< exp <—NZ %)Z%ﬁ*‘%ﬂ 1- 1 (1—M%)]
1=m—+1 k=1 1—=m—+1

/N
D
P
o
|
. B
(]
2
~__—
Py
3
)
=l N
_|_
2
3



Decomposition of the noise term

n n

> (0= )i <

k=1i=k-+1

< exp —MZ ¥i Z’m

1=m-+1

e Require v, to tend to zero (vanishing decaying step-size)

— May not need ) 72 < oo for convergence in quadratic mean

e Examples: | v, = C/n”

and mean estimation (u = 1)

— No need to consider o > 1

- a€(0,1),

— a = 1, convergence of noise term in O(1/n) but forgetting of
initial condition in O(1/n?%)
— Consequences: need o € (0,1] and C > 1/2 for a =1



Robbins-Monro algorithm

e General problem of finding zeros of h : RY — R4
— From random observations of values of h at certain points
— Main example: minimization of f : RY — R, with h = f’

e Classical algorithm (Robbins and Monro, 1951b)

Hn — Hn—l — Tn [h(en—l) + 5n]

e Goals (see, e.g., Duflo, 1996)

— General sufficient conditions for convergence

— Convergence in quadratic mean vs. convergence almost surely
— Rates of convergences and choice of step-sizes

— Asymptotics - no convexity



Different types of convergences

e Goal: show that 6, — 6, or d(6,,,0.) — 0 or f(0,) — f(6,)

— Random quantity 0,, € R tending to zero
e Convergence almost-surely: P(§, — 0) =1
e Convergence in probability: Ve > 0,P(|0,| > ¢) — 0

e Convergence in mean r > 1: E|j,|" — 0



Different types of convergences

e Goal: show that 6, — 6, or d(6,,,0.) — 0 or f(0,) — f(6,)

— Random quantity 0,, € R tending to zero
e Convergence almost-surely: P(§, — 0) =1
e Convergence in probability: Ve > 0,P(|0,| > ¢) — 0
e Convergence in mean r > 1: E|j,|" — 0

e Relationship between convergences

— Almost surely = in probability

— In mean = in probability (Markov's inequality)

— In probability (sufficiently fast) = almost surely (Borel-Cantelli)
— Almost surely + domination = in mean



Robbins-Monro algorithm
Need for Lyapunov functions (even with no noise)

Qn — Hn—l — Tn [h(gn—l) + 571]
e [he Robbins-Monro algorithm cannot converge all the time...

e Lyapunov function V : RY — R with following properties

— Non-negative values: V > 0

— Continuously-differentiable with L-Lipschitz-continuous gradients
— Control of h: V0, ||h(0)]|* < C(1+V(0))

— Gradient condition: V6, | h(8) ' V'(8) > o||V'(0)|?




Robbins-Monro algorithm
Need for Lyapunov functions (even with no noise)

Qn — Hn—l — Tn [h(gn—l) + 571]
e [he Robbins-Monro algorithm cannot converge all the time...

e Lyapunov function V : RY — R with following properties

— Non-negative values: V > 0
— Continuously-differentiable with L-Lipschitz-continuous gradients

— Control of h: V0, [|h(0)]|* < C(1+V(0))
— Gradient condition: V0, | h(8) ' V'(0) > «|V'(0)]?

o If h = f/, then V(0) = f(0) — inf f is the default (but not only)
choice for Lyapunov function: applies also to non-convex functions

— Will require often some additional condition ||V’(0)|* > 2uV (6)



Robbins-Monro algorithm
Martingale noise

Hn — Hn—l — Tn [h(en—l) + gn]

e Assumptions about the noise ¢,

— Typical assumption: ¢, I.i.d. = not needed
— “information up to time n": sequence of increasing o-fields F,,

— Example from machine learning: F,, = o(x1,91,- -, Tn, Yn)
— Assume | E(z,,|F,—1) =0 | and | E[|les||?|Frn-1] < o?| almost
surely

e Key property: 6,, is F,-measurable



Robbins-Monro algorithm
Convergence of the Lyapunov function

e Using regularity (and other properties) of V:

L
V(en) < V(en—l) + V/(Hn—l)—r(en - Hn—l) + Euen - 971—1”2

L 2
= V(0n1) = 3V On-1) T (B(On-1) + 0) + 2" 1h(0n—1) + &0

L~? L~?
E[V(6n)|Fa-1] < V(Bn1) =70V (0n1) 1(Bn1) + 2 1(8n1)|” + =507

Ly,
2

L2
| = %l V/(6n-0)|I” + —5(C + 0?)

LC~;
2

0_2

< V(0n1) — ava ||V (0n-1)||* +

LCH;
2

1+ V(01)] +

< V(en—l) [1 +




Robbins-Monro algorithm

Convergence of the expected Lyapunov function

with “curvature”

o If [V/(0)|I” = 21V (0) and 7, < 35

E[V(0,)[Fnoi] < V(Ono1)[1 — apyn] + MA2
EV(0n) < EV(Op-1)[1 = apyn] + M,

e Need to study non-negative sequence 0,, < 0,1 [1 — Oz,u’yn] + M~;

e Sufficient conditions for convergence of the expected Lyapunov
function (with curvature)

- > . Yn =400 and v, — 0
— Special case of v,, = C/n®



Robbins-Monro algorithm
Convergence of the expected Lyapunov function
with “curvature” - v, = C'/n"

e Need to study non-negative sequence 0,, < 0,—1 [1 — oz,u’yn] + M~?
with ¢, = EV(6,,) (NB: forgetting constraint on ~,, - see next class)

b < 11— apvi)do+ MDY 47 1] (1= apw)
k=1 i=1  k=i+1

e If & > 1: no forgetting of initial conditions
o If € (0,1): dgexp(— cst auC x n® 1) +~, M

e Ifa=1and~, =C/n: Son MY + ~, M



Robbins-Monro algorithm
Convergence of the expected Lyapunov function
with “curvature” - v, = C/n°

e Summary of the rates with dependence on noise



Robbins-Monro algorithm
Almost-sure convergence

e Using regularity of V:

L
V(en) < V(‘gn—l) + V/(en—l)—r(en - en—l) + 5”071 — 9n—1H2

L 2
T2 (0 1) + €]

= V(0,-1) — ’VnV/(en—l)T(h(en—l) +en) + 2

E[V(0n)|Fn-1] < V(On-1) =V (On-1)"h(0n-1) +

< V(0n_1) — avu||V'(0n_1)|* + . 14+ V(1) + —=2"0

LC, Ly,
> = aml[V () I” + =

= V(0n-1) [1 + (C + 0?)



Robbins and Siegmund (1985)

e Assumptions

— Measurability: Let V,,, 8., Xn, Nn four F,-adapted real sequences
— Non-negativity: V,,, B85, Xn, Nn NON-negative

— Summability: > 3, <ooand > x, < o0

— Inequality: E|V,|Fp—1] < Voo1 (14 Br—1) + Xn—1 — M1

e Theorem: (V) converges almost surely to a random variable V
and ) 7, is finite almost surely

e Proof

e Consequence for stochastic approximation (if |[V/(0)||* > 2uV (0)):
V(0,) and ||V'(6,,)|]? converges almost surely to zero



Robbins and Siegmund (1985) - Proof sketch

o Inequality: ]E[Vn‘Fn—l] < Vn—l(l + Bn—l) + Xn—1 —Tn—1

e Define a,, = [[,_,(1 4 Bk) a converging sequence, V) = a1V,
X, = Qn_1Xn and 0. = a,, 1M, so that:

E[VTZ‘Fn_l] < Voot + Xn—1 = M-

e Define the super-martingale Y, = V/ — Z(X;c — n) so that

E[Yn‘Fn—l} < Yn—l

e Probabilistic proof using Doob convergence theorem (Duflo, 1996)



Robbins-Monro analysis - non random errors

¢ Random unbiased errors: no need for vanishing magnitudes

e Non-random errors: need for vanishing magnitudes

— See Duflo (1996, Theorem 2.111.4)
— See also Schmidt et al. (2011)



Robbins-Monro analysis - asymptotic
normality (Fabian, 1968)

e Traditional step-size v = C/n (and proof sketch for differential A of
h at unique 8, symmetric)

en — en—l — /Vnh(en—l) — Yn€n
~ Qn_l — Tn [h/((g*>(0n—1 - 9*)] — Tnén + ’}/nO(HHn o 6*"2)
~ en—l — ’YnA(Hn—l — (9*) — Tnén

n

Qn — 6* ~ (I — ’ynA) (I ’ylA 60 — Z I ’yn I 'ch—|—1A)’7k5k
k=1
O — 0, =~ exp|—(yn+--+71)A] (00— Zexp + Ver1) Al ek
C
AN exp [ CA logn 00 — Z exp C'(logn — log k)A] 7 Ck

e Asymptotic normality by averaging random variables



Robbins-Monro analysis - asymptotic
normality (Fabian, 1968)

e Assuming A, (6 — 0.)(6g — 0,)" and E(exe, ) = ¥ commute

& C

exp | — CAlogn](6y — 6.) — Z exp | — C(logn — log k) A] 7 Ck

Q

Q

Q

k=1

exp [ — 2CAlogn] (0 — 0.)(0p — 0.)

n 02
k=1

’n,_2CA((90 L 0*)(00 L 0*)—|— + n—2CA Z CQk,QCA—QE
k=1
2CA—-1

—2CA/n _ag\T —20A~2
n ((90 9*)(90 9*) +n C ZCA—IZ




Robbins-Monro analysis - asymptotic
normality (Fabian, 1968)

1 1
B o\ o —2CAg gNT L
E(0n — 0.) (0 — 0.) T = 02 4(60 — 6.) (60 — 6.) T + ~C?pmr

e Step-size v = C'/n (note that this only a sketch of proof)

— Need 2CA\uin(A) > 1 for convergence, which implies that the first
term depending on initial condition 8, — 6, is negligible
— (' too small = no convergence - C' too large = large variance

e Dependence on the conditioning of the problem

— If Amin(A) is small, then C' is large

— “Choosing” A proportional to identity for optimal behavior (by
premultiplying A by a conditioning matrix that make A close to a
constant times identity



Polyak-Ruppert averaging

e Problems with Robbins-Monro algorithm
— Choice of step-sizes in Robbins-Monro algorithm
— Dependence on the unknown conditioning of the problem
e Simple but impactful idea (Polyak and Juditsky, 1992; Ruppert,
1988)

_ 1
— Consider the averaged iterate | 0, = — Z 0.,
L

— NB: "Offline” averaging
— Can be computed recursively as 0, = (1 —1/n)0,_1 + %Hn
— In practice, may start the averaging “after a while”

e Analysis

— Unique optimum 6,. See details by Polyak and Juditsky (1992)



Cesaro means

e Assume 6,, — 0., with convergence rate ||0,, — 0.|| < a,,
e Cesaro's theorem: 6, = %22:1 6,, converges to 0,

e What about convergence rate ||0,, — 0.]|?



Cesaro means
e Assume 6,, — 0., with convergence rate ||6,, — 0.| < «
e Cesaro's theorem: 6, = %22:1 6,, converges to 0,

e What about convergence rate ||0,, — 0.]|?

n

_ 1 1
62— 6.1 < =3 16— 0. < 52
k=1 k=1

— Will depend on rate «,,
—If > o, < oo, the rate becomes 1/n independently of o,



Polyak-Ruppert averaging - Proof sketch - |

e Recursion: 0, =60,,_1 — vn(h(0,_1) + €,) with v, = C'/n®

— From before, we know that ||0,, — 0.]|* = O(n~%)

h(en—l) - T _en—l — en —&n
Tn )
1 . _
AOp_1—0.) + O(|0n_1 — 0.|]7) = - 0n—1 — 05| — &, with A = h'(6,)
1
ABp_1—6.) = ,y—[en_l — 0] — entO(n™?)
1 i AOp_1—0,) = — Z Qk 1 — Hk} L i ex+0(n~%)
"= "= % "=

1
— k 1



Polyak-Ruppert averaging - Proof sketch - |l
e Goal: Bounding + Y}, %[9;{_1 — 0] given |16, — 6.]]* = O(n™?)

e Abel's summation formula We have, summing by parts,

n—1
1 1 _
_Z Or1=00) = 2D e =0 =) = (6n = 67, + (90—9)%1
k=1
leading to
1« 1 1 1 _
1= =01 - 00| < Zuek 0.l ity = 9 1+ 110 = Ol + 1180 — 617"

=1 Tk

which is negligible



Polyak-Ruppert averaging - Proof sketch - Il

e Recursion: 0, =60,,_1 — vn(h(0,_1) + €,) with v, = C'/n®

— From before, we know that ||0,, — 0.]|* = O(n~%)

1 mn
- ZA(Hk—l —0,) = Normal(0,%/n)+0(n"%*) +On**1)
k=1

e Consequence: 0, — 0. is asymptotically normal with mean zero and
covariance +A71¥ A1

— Achieves the Cramer-Rao lower bound (see next lecture)
— Independent of step-size (see next lecture)
— Where are the initial conditions? (see next lecture)



Beyond the classical analysis

e Lack of strong-convexity

— Step-size 7,, = 1/n not robust to ill-conditioning
e Robustness of step-sizes

e Explicit forgetting of initial conditions



Outline - |
1. Introduction
e Large-scale machine learning and optimization

e Classes of functions (convex, smooth, etc.)
e T[raditional statistical analysis through Rademacher complexity

2. Classical methods for convex optimization

e Smooth optimization (gradient descent, Newton method)
e Non-smooth optimization (subgradient descent)
e Proximal methods

3. Non-smooth stochastic approximation

e Stochastic (sub)gradient and averaging
e Non-asymptotic results and lower bounds
e Strongly convex vs. non-strongly convex



Outline - 1l
4. Classical stochastic approximation
e Asymptotic analysis

e Robbins-Monro algorithm
e Polyak-Rupert averaging

5. Smooth stochastic approximation algorithms

e Non-asymptotic analysis for smooth functions
e Logistic regression
e Least-squares regression without decaying step-sizes

6. Finite data sets

e Gradient methods with exponential convergence rates
e Convex duality
e (Dual) stochastic coordinate descent - Frank-Wolfe



Convex stochastic approximation
Existing work

e Known global minimax rates of convergence for non-smooth
problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

— Strong|y convex: O((Mn)_l)
Attained by averaged stochastic gradient descent with ~,, o (,un)_l
— Non-strongly convex: O(n~1/2)

Attained by averaged stochastic gradient descent with ~,, oc = %/?



Convex stochastic approximation
Existing work

e Known global minimax rates of convergence for non-smooth
problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

— Strong|y convex: O((Mn)_l)
Attained by averaged stochastic gradient descent with ~,, o (,Lm)_l
— Non-strongly convex: O(n~1/2)

Attained by averaged stochastic gradient descent with ~,, oc = %/?

e Many contributions in optimization and online learning: Bottou
and Le Cun (2005); Bottou and Bousquet (2008); Hazan et al.
(2007); Shalev-Shwartz and Srebro (2008); Shalev-Shwartz et al.
(2007, 2009); Xiao (2010); Duchi and Singer (2009); Nesterov and
Vial (2008); Nemirovski et al. (2009)



Convex stochastic approximation
Existing work

e Known global minimax rates of convergence for non-smooth
problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

— Strong|y convex: O((Mn)_l)
Attained by averaged stochastic gradient descent with ~,, o (,Lm)_l
— Non-strongly convex: O(n~1/2)

Attained by averaged stochastic gradient descent with ~,, oc = %/?

e Asymptotic analysis of averaging (Polyak and Juditsky, 1992;
Ruppert, 1988)

— All step sizes v, = Cn~% with a € (1/2,1) lead to O(n~1) for
smooth strongly convex problems



Convex stochastic approximation
Existing work

e Known global minimax rates of convergence for non-smooth
problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

— Strongly convex: O((un)™1)
Attained by averaged stochastic gradient descent with v, o (un)~
— Non-strongly convex: O(n~1/2)
Attained by averaged stochastic gradient descent with v, xn

1
—1/2

e Asymptotic analysis of averaging (Polyak and Juditsky, 1992;
Ruppert, 1988)

— All step sizes 7, = Cn~% with a € (1/2,1) lead to O(n™1) for
smooth strongly convex problems

e Non-asymptotic analysis for smooth problems?



Smoothness/convexity assumptions

e lteration: | 6, =0,,_1 — VoS! (0rn_1)

— Polyak-Ruppert averaging: 6,, = %ZZ;& 0.

e Smoothness of f,: For each n > 1, the function f,, is a.s. convex,
differentiable with L-Lipschitz-continuous gradient f;:

— Smooth loss and bounded data

e Strong convexity of f: The function f is strongly convex with
respect to the norm || -

, with convexity constant p > 0O:

— Invertible population covariance matrix
— or regularization by £|6]°



Summary of new results (Bach and Moulines, 2011)

e Stochastic gradient descent with learning rate v, = Cn™¢

e Strongly convex smooth objective functions

— Old: O(n~1) rate achieved without averaging for o = 1
— New: O(n~1) rate achieved with averaging for o € [1/2, 1]
— Non-asymptotic analysis with explicit constants

— Forgetting of initial conditions

— Robustness to the choice of C



Summary of new results (Bach and Moulines, 2011)

e Stochastic gradient descent with learning rate ~v,, = Cn™¢

e Strongly convex smooth objective functions

— Old: O(n™1) rate achieved without averaging for o = 1
— New: O(n™!) rate achieved with averaging for o € [1/2, 1]
— Non-asymptotic analysis with explicit constants

— Forgetting of initial conditions

— Robustness to the choice of C

e Convergence rates for E||0,, — 0.||?> and E||0,, — 0.

2
0 Vn

— no averaging: O( ) + O(e "™ )[|6y — 6,

tr H(0,)™ 1

160 —H*HQ)

—1 —2x —24«
+pu  O(n"““+n )+O( i

— averaging:



Classical proof sketch (no averaging) - |

100 — 0405 = [16n- vnf’( 1) — H%
-~ Oull3—27n(0n—1 — 0.) " 1, (On1)+752 1 fr (On—1)II5
< 0.ll5—27n (On—1 — 64) " f1,(6n 1)
+2%Hf72(9*)||3 + 29[ f.(0n—1) — f(0)]3
< NOno1 = 053270 (01 — 0.) " 1,00 1)
+27, 1 £n (6 )Hg+2’v L{f}(0n-1) = [5,(0.)] " (001 — 6.)
E[10n — 0.3 Fn-1] < 001 —0ul3—27(001 — 6.) " f' (60 1)
+2v,E| £,,(0 *)||2+2%L[f (6n—1) = 0] (61— 6.)
< 0n—1 = 0ull5-27,(1 - )( no1—0.) " f'(6n1)+2750°
< N0n1 = 0ul5-270(1 — v L)5 uH n1— 9*|\§+2%302
= (1=t = L) 1001 = Oull2+270
E[0, —0.)5] < [1—py(1 }E[H@n A ]+2’vn02



Classical proof sketch (no averaging) - 1l

¢ Main bound

E[H(gn — H*HS] [1 - ,u%?,(l o /VnL)]]E[HHn—l — 9*”3] _|—2/77%,O_2

L= 19/ 2)E[[|0n—1 — 0.[|3] +2750% if 7L < 1/2

/NN

e Classical results from stochastic approximation (Kushner and
Yin, 2003): E|||6,, — 6.]|3] is smaller than

< 11— wv/2)E[]60 — 6.113] +Z H 1 — i/ 2] 2730°
1=1

k=11=k-+1

< exp[——Z%] 160 0,08+ 30 TL [1 - wsf2)2020°

k=1:1=k+1



Decomposition of the noise term

e Assume (7,) is decreasing and less than 1/u; then for any m €

{1,...,n}, we may split the following sum as follows:

n n

Z H (1 — pyi)vie

k=1i=k+1

IN

/N

/N

Z H 1_:“’77,’7%_'_ Z H 1_M71

k=11=k+1

11 ¢

1=m—+1

- (

- <_
- <_

uz Vi

k=1

1=m-+1 )

Y

1=m—+1

Y v

1=m—+1

|
|

k

m

3

1

k=m-+11=k+1

(1= i) D vk +m Z H (1= wyi)y

k=m-+11=k+1

2

Jm
> i+ 2

/ym n n
H (1= pys) —
H= m+1|i=k+1
- J] a=p)
1=m-+1

S+ wi

k

1

1

ith e.g. m =mn/2

|

n

H(l — 1yi)

1=k




Decomposition of the noise term

n n

> T 0= w7k < exp —MZ o Z’m

k=1:1=k+1 1=m-+1

e Require v, to tend to zero (vanishing decaying step-size)

— May not need ) 72 < oo for convergence in quadratic mean

e Examples: | v, = C/n”

—a=1 " 1=log(n) + cst +0O(1/n)
—a>1 3" &= ct +0(1/n*1)
—ae(0,1), 37" &= cstxn'"*+0(1)
— Proof using relatlonship with integrals

— Consequences: need o € (0, 1)




Proof sketch (averaging)
e From Polyak and Juditsky (1992):

en — Hn—l — ’Ynfo{b(en—l)

S F (b)) = (01 —0,)

n

1

& ful0s) + £ (0:)(On1 — 04) = ’v_(en_l = 0) + O([|n—1 — 04]%)
& fol0s) + f1(0.)(0n—1 — 0.) = %(Hn—l = 02) + O([|0n—1 — 64]%)

£O(lf—1 — 6.])en
S Bur— 0= —[(6.) 7 F10.) +—F(6.) (Bnr — 61)

+O([[0n-1 = 0:]1%) + O([|6r—1 — 0| )en

e Averaging to cancel the term %f”(ﬁ*)_l(ﬁn_l —0,)



-]

log[f(6

Robustness to wrong constants for v, = Cn™“

e f(6) = 3|6|* with i.i.d. Gaussian noise (d = 1)

o Left: a =1/2
e Right: a =1

o=1/2

e See also http://leon.bottou.org/projects/sgd

—»—sgd - C=1/5
-%-ave — C=1/5
——sgd - C=1
-9-ave - C=1
—8—sgd - C=5

1|-B-ave — C=5

log[f(6 )~

—»—sgd - C=1/5
- % -ave — C=1/5
——sgd - C=1
-9-ave - C=1
—8—sgd - C=5

 |-B-ave — C=5




Summary of new results (Bach and Moulines, 2011)

e Stochastic gradient descent with learning rate v, = Cn™¢

e Strongly convex smooth objective functions

— Old: O(n~1) rate achieved without averaging for o = 1
— New: O(n~1) rate achieved with averaging for o € [1/2, 1]
— Non-asymptotic analysis with explicit constants



Summary of new results (Bach and Moulines, 2011)

e Stochastic gradient descent with learning rate ~v,, = Cn™¢

e Strongly convex smooth objective functions

— Old: O(n~1) rate achieved without averaging for o = 1
— New: O(n™1) rate achieved with averaging for o € [1/2, 1]
— Non-asymptotic analysis with explicit constants

e Non-strongly convex smooth objective functions
— Old:  O(n~'/2) rate achieved with averaging for o = 1/2
— New: O(max{n'/273%/2 n=2/2 ne=11) rate achieved without
averaging for oo € [1/3, 1]
e Take-home message

— Use @ = 1/2 with averaging to be adaptive to strong convexity



o Left: f(0) =|0]* between —1 and 1

e Right: f(0) = |0]* between —1 and 1

Robustness to lack of strong convexity

e affine outside of [—1, 1], continuously differentiable.

loglf(8, )~

| | =»—sgd - 1/3

- % -ave — 1/3

| |—6—sgd - 1/2

-9-ave - 1/2

\ | —8—sgd - 2/3
\ |-B-ave —2/3

sgd -1
ave -1

loglf(8 )~

power 4

%N —»—sgd - 1/3
-%x-ave - 1/3
0f ——sgd - 1/2
-9-ave - 1/2
—ol —8—sgd - 2/3
Y |-B-ave - 2/3

sgd -1

-4 ave — 1




Convex stochastic approximation
Existing work

e Known global minimax rates of convergence for non-smooth
problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

— Strong|y convex: O((Mn)_l)
Attained by averaged stochastic gradient descent with ~,, o (,un)_l
— Non-strongly convex: O(n~1/2)

Attained by averaged stochastic gradient descent with ~,, oc = %/?

e Asymptotic analysis of averaging (Polyak and Juditsky, 1992;
Ruppert, 1988)

— All step sizes 7, = Cn~% with a € (1/2,1) lead to O(n™1) for

smooth strongly convex problems

e A single adaptive algorithm for smooth problems with
convergence rate O(min{l/un,1/y/n}) in all situations?



Adaptive algorithm for logistic regression
e Logistic regression: (®(z,,),y,) € R x {-1,1}

— Single data point: f,,(0) = log(1 + exp(—yn0 ' ®(x,,)))
— Generalization error: f(0) =Ef,(9)



Adaptive algorithm for logistic regression
e Logistic regression: (®(z,),y,) € R% x {-1,1}
— Single data point: f,,(0) = log(1 + exp(—yn0' ®(x,,)))
— Generalization error: f(0) = Ef,(0)
e Cannot be strongly convex = local strong convexity

— unless restricted to |0 ®(x,,)| < M (with constants e - proof)
— 1 = lowest eigenvalue of the Hessian at the optimum f”(6,)

A
logistic loss




Adaptive algorithm for logistic regression
e Logistic regression: (®(z,,),y,) € R x {-1,1}
— Single data point: f,(8) = log(1 + exp(—yn0 ' ®(x,)))
— Generalization error: f(0) =Ef,(9)
e Cannot be strongly convex = local strong convexity
— unless restricted to |0 ' ®(x,,)| < M (with constants e - proof)
— 1 = lowest eigenvalue of the Hessian at the optimum f”(6,)
e n steps of averaged SGD with constant step-size 1/(2R2\/ﬁ)
— with R = radius of data (Bach, 2013):
1 R
V' np

— Proof based on self-concordance (Nesterov and Nemirovski, 1994)

Ef(0,) — f(0,) < min{ }(15 + 5R||0y — 9*H)4



Self-concordance - |

e Usual definition for convex ¢ : R — R: |¢(t)] < 2¢"(t)3/2

— Affine invariant

— Extendable to all convex functions on R< by looking at rays

— Used for the sharp proof of quadratic convergence of Newton
method (Nesterov and Nemirovski, 1994)

e Generalized notion: |©"(t)| < ¢"(¢)

— Applicable to logistic regression (with extensions)
— @(t) =log(1+e™"), ¢'(t) = (1+¢€") 7, etc...
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e Usual definition for convex ¢ : R — R: |¢(t)] < 2¢"(t)3/2

— Affine invariant

— Extendable to all convex functions on R< by looking at rays

— Used for the sharp proof of quadratic convergence of Newton
method (Nesterov and Nemirovski, 1994)

e Generalized notion: |©"(t)| < ¢"(¢)

— Applicable to logistic regression (with extensions)
— If features bounded by R, h : t — f[@l + t(6y — 91)] satisfies:
vVt € R, |h"'(t)| < R||01 — 62]|h"(2)



Self-concordance - |

e Usual definition for convex ¢ : R — R: |¢(t)] < 2¢"(t)3/2

— Affine invariant

— Extendable to all convex functions on R< by looking at rays

— Used for the sharp proof of quadratic convergence of Newton
method (Nesterov and Nemirovski, 1994)

e Generalized notion: |©"(t)| < ¢"(¢)

— Applicable to logistic regression (with extensions)
— If features bounded by R, h : t — f[@l + t(6y — 91)] satisfies:
vVt € R, |h"'(t)| < R||01 — 62]|h"(2)

e Important properties

— Allows global Taylor expansions
— Relates expansions of derivatives of different orders



Global Taylor expansions

e Lemma: If Vi € R, |¢"(t)| < S¢”(t), for S > 0. Then, Vt > 0:

9" (0) 9" (0)
S? g2

(77" + 8t —1) < g(t) — 9(0) — g'(0)t < (e — St —1)



Global Taylor expansions

e Lemma: If Vi € R, |¢"(¢)| < S¢”(t), for S > 0. Then, Vt > 0:

T D (e 4 5t —1) < glt) — 9(0) — g (O)t < L — 51— 1)

e Proof: Let us first assume that g”(t) is strictly positive for all t € R. We have,

forall t > 0: -5 < dl%iﬂ(t) < 5. Then, by integrating once between 0 and ¢,

taking exponentials, and then integrating twice:
—St <log g¢”(t) —log ¢g”(0) < St,

g"(0)e™ 7" < ¢"(t) < g"(0)e™, (1)

g"(0)S ' (1 —e ") < g'(t) — ¢'(0) < g"(0)S™ (™ — 1),
g(t) = g(0) + ¢'(0)t + ¢"(0)S (e %" + St — 1),
g(t) < g(0) + ¢’ (0)t + ¢"(0)S?(e”" — St — 1),

which leads to the desired result (simple reasoning for strict positivity of ¢")

—~~
w N
~— —



Relating Taylor expansions of different orders

e Lemma: If h: ¢t f|01 +t(02 — 61)] satisfies: Vt € R, |h"(t)] <
R||01 — 05||h"(t). We have, for all 01,0, ¢ R%:

£/ (01)—f"(02)— " (02)(02—01) || < R|f(61)—f(02)—(f'(02),02—01)]



Relating Taylor expansions of different orders

e Lemma: If h: ¢t f|01 +t(02 — 61)] satisfies: Vt € R, |h"(t)] <
R||01 — 05||h"(t). We have, for all 01,0, ¢ R%:
| £/ (61)—F/(62)— £ (62) (62—01) || < R[£(61)— F(B2)—(f'(8:), 62—61)]

e Proof: For |z] =1, Ietgo = (2, ['(02+(01—02)) — f'(02) =t f"(02) (02— 01))
and ¥(t) = [f(92+t(91 2))—f(02)—t(f'(02),02—01)]. Then p(0) = 1(0) =0,

and:

e'(t) = (z f"(02+t(61—02)) — f"(02),01 — 62)

o' (t) = f”/(02 +t(61 — 92)) (2,601 — 05,61 — 65]
< RHZHQf//<(92 +t(61 — 02)) (01 — 02,61 — 65], using App. A of Bach (2010)
= R<6’2 — 04, f”(@g + t(601 — ))( 92)>

'(t) = R{f'(62+ (01 —62)) — f'(62),0 92>

WI(t) = R{02— 0, f"(62+ t(61 — ))( 62)),

Thus ¢'(0) = ¢'(0) =0 and " (t) < ¥”(t), leading to ©(1) < ¢(1) by integrating
twice, which leads to the desired result by maximizing with respect to z.




Adaptive algorithm for logistic regression
Proof sketch

e Step 1: use existing result f(0,) — f(6.) +Z=]6p — 0.1 = O(1/V/n)
o Step 2a: f,(0n—1) = %(Hn—l_en) = %22_1 L(Ok—1) = =—(6p—0,)

o Step2b: o> f/(Ok—1) = 5 D> py [/ (Ok—1)— fr(Ok—1) |+ (00—
0.) + = (0 — 0,) = 0(1/f)

o Step 3: [ /(300 Oh-1) — 2500y F(0k )|
= O(f(0,) — f(8.)) = O(1/y/n) using self-concordance

e Step 4a: if f u-strongly convex, f(0,) — f(0,) < 2u||f (0 H2

e Step 4b: if f self-concordant, “locally true” with = Anin(f"(04))



Adaptive algorithm for logistic regression
e Logistic regression: (®(z,,),y,) € R x {-1,1}
— Single data point: f,(8) = log(1 + exp(—yn0 ' ®(x,)))
— Generalization error: f(0) =Ef,(9)
e Cannot be strongly convex = local strong convexity
— unless restricted to |0 ' ®(x,)| < M (and with constants e)
— 1 = lowest eigenvalue of the Hessian at the optimum f”(6,)
e n steps of averaged SGD with constant step-size 1/(2R2\/ﬁ)
— with R = radius of data (Bach, 2013):
1 R
V' np

— Proof based on self-concordance (Nesterov and Nemirovski, 1994)

Ef(0,) — f(0,) < min{ }(15 + 5R||0y — 9*H)4



Adaptive algorithm for logistic regression
e Logistic regression: (®(z,),y,) € R% x {-1,1}
— Single data point: f,,(0) = log(1 + exp(—y,0' ®(x,,)))
— Generalization error: f(0) =Ef,(0)
e Cannot be strongly convex = local strong convexity

— unless restricted to |0 ' ®(x,)| < M (and with constants )
— 1 = lowest eigenvalue of the Hessian at the optimum f”(6,)

e n steps of averaged SGD with constant step-size 1/(2R2\/ﬁ)
— with R = radius of data (Bach, 2013):
1 R?
V' np

— A single adaptive algorithm for smooth problems with
convergence rate O(1/n) in all situations?

Ef(0,) — f(0,) < min{ }(15 + 5R||0y — 9*H)4



Least-mean-square algorithm

e Least-squares: f(0) = sE|(y, — (®(z,),0))?] with § € R

— SGD = least-mean-square algorithm (see, e.g., Macchi, 1995)
— usually studied without averaging and decreasing step-sizes
— with strong convexity assumption E|®(z,,) @ ®(x,,)| = H = p-1d



Least-mean-square algorithm

o Least-squares: f(0) = sE|(y, — (®(z,),0))?] with § € R

— SGD = least-mean-square algorithm (see, e.g., Macchi, 1995)
— usually studied without averaging and decreasing step-sizes
— with strong convexity assumption E|®(z,,) @ ®(xy,)| = H = p-1d

e New analysis for averaging and constant step-size v = 1/(4R?)

— Assume ||®(z,)|| < R and |y, — (®(x,),0.)| < o almost surely
— No assumption regarding lowest eigenvalues of H

_ 4 2 4 2 — 9, 2
~ Main result: | Ef (8, 1) — f(6.) < 229 4F7000 = 0.]

n n

e Matches statistical lower bound (Tsybakov, 2003)

— Non-asymptotic robust version of Gyorfi and Walk (1996)



Least-squares - Proof technique - |

e LMS recursion:

On — 0. = [I —P(x,) @ P(2,)| (On—1 — 04) + v EnD(zy,)

e Simplified LMS recursion: with H = E|®(z,,) ® ®(z,,)]
0, —0, = [I — fyH} (On_1—0y) +ven®(xy)
— Direct proof technique of Polyak and Juditsky (1992), e.g.,

O — 0. = [I—H]" (00— 0.) +~ ) [I—yH]""
k=1

Ekq)(xk)

e Infinite expansion of Aguech, Moulines, and Priouret (2000) in powers
of ~



Least-squares - Proof technique - Il

e Explicit expansion of 6,,:

On — 0, = |1 — WH]n(HO —0,) + vz I — WH]n_kskCI)(a:k)

k=1
0, — 0, = ! i[[ WH} ((90—(9)+ Ty i [I—vH]i_kekCI)(a:k)
" ’ n—l—li: n—l—l —
1 mn
E(VH) I —(I—~H)"|(80 — 6. Z e ®(zg)
1/2

— Need to bound (E||H'/2(6,, — 6.)|?)
— Using Minkowski inequality



Least-squares - Proof technique - Il
e Explicit expansion of 6,,:

n

(VH) [T = (1= 5H)"] (60 = 0.) + 2 > (7H) e ®(a)
k=0

_ 1
0, — 0, ~

T n
e Bias - I: (vH) ' — (I —~H)"| < (vH) * leading to

1/2

(ElH2(0n — 0.)]%) < | HV/2(6, - 0.)]

n
e Bias - Il: (yH) '] — (I —~vH)"| < /n(yH)~"/? leading to

1/2 1

(EIH (60 = 0)1%) " < —==ll(60 — 6.l

e Variance (next slide)



Least-squares - Proof technique - Il

e Explicit expansion of 6,,:

n

B — 6. ~(yH) 71— (17 H)"] (B0~ 0.) + 2 3" (7H) i ()

k=0
e Variance (next slide)
_ ] — B
E|H'?(0, — 0.)|]> = EZEsi@)(xk),H "D (k)
k=0
1
= —o%d

n



Least-squares - Proof technique - IV

e Expansion of Aguech, Moulines, and Priouret (2000) in powers of ~

— LMS recursion:
O — 0, = [I —4®(2,) @ D(2,)] (01 — 0.) + 7 0P ()
— Simplified LMS recursion: with H = E|[®(x,,) ® ®(x),)]
i — 0 = [I —vH| (-1 — 0.) + v €n P ()

e Expansion of the difference:

On—1n = [1_7¢($n)®¢($n)] (en—l_nn—1)+7 [H_(I)(ivn)@}q)(zn)] (77n—1—9*)



Least-squares - Proof technique - IV

e Expansion of Aguech, Moulines, and Priouret (2000) in powers of ~

— LMS recursion:
O — 0, = [I —4®(2,) @ D(2,)] (01 — 0.) + 7 0P ()
— Simplified LMS recursion: with H = E|[®(x,,) ® ®(x),)]
i — 0 = [I —vH| (-1 — 0.) + v €n P ()

e Expansion of the difference:

On—1n = [1_7¢($n)®¢($n)] (en—l_nn—1)+7 [H_¢($n)®cb($n)] (77n—1—9*)

— New noise process
— May continue the expansion infinitely many times



Markov chain interpretation of constant step sizes

e LMS recursion for f,,(0) = 1(yn — (®(z4,),0))

On, = On—1—Y((2(21), 0n—1) — Yn) P(xn)

2

e The sequence (0,,), is a homogeneous Markov chain

— convergence to a stationary distribution 7,

— with expectation 6, Lt [ 6, (d0)



Markov chain interpretation of constant step sizes

e LMS recursion for f,(0) = %(yn — <(I)(33n)7(9>)2

Hn — Hn—l — /7(<(I)(5En)7 9n—1> — yn)q)(xn)
e The sequence (0,), is a homogeneous Markov chain

— convergence to a stationary distribution 7,
. .= def
— with expectation 0., = [ 6r.(d0)

e For least-squares, 0, = 0,

Qn ?(\ x
X — — — — — — ~ - - — —

/ / N /
| / AN /

I x - o p” 7

N 6 4
/ \)é\ * 0%
/ ~X N /X



Markov chain interpretation of constant step sizes

e LMS recursion for f,(0) = %(yn — <(I)(37n)7(9>)2

Hn — Hn—l — /7(<(I)(5En)7 9n—1> — yn)q)(xn)
e The sequence (0,), is a homogeneous Markov chain

— convergence to a stationary distribution 7,

— with expectation 6, Lt [ 6, (d0)

e For least-squares, 0, = 0,




Markov chain interpretation of constant step sizes

e LMS recursion for f,(0) = %(yn — <(I)(37n)7(9>)2

(gn — Hn—l — /7(<(I)(5En)7 9n—1> — yn)q)(xn)
e The sequence (0,,), is a homogeneous Markov chain

— convergence to a stationary distribution 7,
. .= def
— with expectation 0., = [ . (d6)

e For least-squares, 0, = 0,
— 6,, does not converge to 0, but oscillates around it
— oscillations of order /v

e Ergodic theorem:

— Averaged iterates converge to 0., = 0, at rate O(1/n)



Simulations - synthetic examples

e Gaussian distributions - d = 20

synthetic square

l0g, [f(6)-1(6)]




Simulations - benchmarks
e alpha (d — 500, n = 500 OOO), news (d = 1 300 000, n = 20 OOO)

alpha square C=1 test

alpha square C=opt test

1 : 1
__ 05¢ 0.5
0 | 0
|
o -0.5 -0.5
R . -1} g
< -1.5 l/Rz 1/2 -1.5 C/Rz 1/2
— 1/R"n —C/R"n
~2/| — SAG ~2/| — SAG
0 4 0 4
log, (n) log, ,(n)

news square C=1 test news square C=opt test

0.2 0.2

log[f(6)-f(6.)]

0.8/ _sac ' 0.8 _saG

2 4 2 4
log, (n) log, ,(n)



Optimal bounds for least-squares?
e Least-squares: cannot beat 0d/n (Tsybakov, 2003). Really?

— What if d > n?

¢ Refined assumptions with adaptivity (Dieuleveut and Bach, 2014)

— Beyond strong convexity or lack thereof



Finer assumptions (Dieuleveut and Bach, 2014)
e Covariance eigenvalues

— Pessimistic assumption: all eigenvalues A, less than a constant
— Actual decay as \,, = o(m~®) with tr H/® = Z AL/e small
™m




Finer assumptions (Dieuleveut and Bach, 2014)

e Covariance eigenvalues

— Pessimistic assumption: all eigenvalues A, less than a constant
— Actual decay as \,, = o(m~®) with tr H/® = Z AL/e small
™m

24 2 1/0“5 Hl/a
— New result: replace °° by () :
n n

(y )Y Tr H/% / n
N

alpha



Finer assumptions (Dieuleveut and Bach, 2014)
e Covariance eigenvalues

— Pessimistic assumption: all eigenvalues A, less than a constant
— Actual decay as \,,, = o(m~%) with tr H/* = Z AL/e small

m

2 2 1/04t Hl/a
— New result: replace cc by () !
n

n
e Optimal predictor

— Pessimistic assumption: |0y — 6,]|* finite
— Finer assumption: ||[H'/27"(0y — 6,)||2 small
160 — 0.1 | AIH 277 (60 — 6.)]]2
Y 2rp»2 min{r,1}
mnm Y4 7

— Replace



Optimal bounds for least-squares?
e Least-squares: cannot beat 0d/n (Tsybakov, 2003). Really?

— What if d > n?

¢ Refined assumptions with adaptivity (Dieuleveut and Bach, 2014)

— Beyond strong convexity or lack thereof

B 1652 Hl/a 4 H1/2—r — 0,
FB) — 7(68.) < T vy L1002l

n 727’”2 min{r,1}

— Previous results: a = +o0 and r = 1/2

— Valid for all o and r

— Optimal step-size potentially decaying with n

— Extension to non-parametric estimation (kernels) with optimal rates



From least-squares to non-parametric estimation - |

e Extension to Hilbert spaces: ®(z),0 € H

On, = On—1 —Y((2(21), 0n—1) — yn) P(xn)

o If =0, 0, is a linear combination of ®(x),...,P(x,)

n n—1
0, = Z ap®(xr) and a, = —v Z ap(P(xr), ®P(xn)) + YYn
k=1 k=1



From least-squares to non-parametric estimation - |

e Extension to Hilbert spaces: ®(z),0 € H

On, = On—1 —Y((2(21), 0n—1) — yn) P(xn)

o If 9 =0, 0, is a linear combination of ®(x;),...,P(z,)

n n—1
Hn — Z akq)(mk) and Ay = —7 Z ak<q)($/€)7 (I)(xn» T YYn
k=1 k=1

e Kernel trick: k(z,z') = (®(z), P(2'))

— Reproducing kernel Hilbert spaces and non-parametric estimation

— See, e.g., Scholkopf and Smola (2001); Shawe-Taylor and
Cristianini (2004); Dieuleveut and Bach (2014)

— Still O(n?)



From least-squares to non-parametric estimation - ||
e Simple example: Sobolev space on X = |0, 1]
— ®(x) = weighted Fourier basis ®(x); = ¢, cos(2jmx) (plus sine)
— kernel k(z,2') =} . 3 cos [2jm(x — z')]

— Optimal prediction function 6, has norm [0, = > | F(0x)]°¢;
— Depending on smoothness, may or may not be flnlte



From least-squares to non-parametric estimation - ||
e Simple example: Sobolev space on X = |0, 1]
— ®(x) = weighted Fourier basis ®(x); = ¢, cos(2jmx) (plus sine)
— kernel k(z,2') =} . 3 cos [2jm(x — z')]

— Optimal prediction function 6, has norm [0, = > | F(0x)]°¢;
— Depending on smoothness, may or may not be flnlte

o Adapted norm ||[HY/2770,]12 = 3 | F(6.);]%p; *" may be finite

7 1602 tr H/ Al HY2-7(9y — 6,
f( n) — f(H*) < (fyn)l/o‘ + H ( 0 )HQ

n 727“”2 min{r,1}

1
e Same effect than /5-regularization with weight )\ equal to —

Y1



Simulations - synthetic examples

e Gaussian distributions - d = 20

synthetic square

O T
~ h w1 J
. 1 QN
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e Explaining actual behavior for all n



Bias-variance decomposition
(Défossez and Bach, 2015)

e Simplification: dominating (but exact) term whenn — coand v — 0

e Variance (e.g., starting from the solution)

F(B) ~ 1(0.) ~ B[ @(x)TH B ()

. . - . . ’
— NB: if noise ¢ is independent, then we obtain d%

— Exponentially decaying remainder terms (strongly convex problems)

e Bias (e.g., no noise)

f(On) — f(0s) ~ (00— 0+) " H™' (60 — 6.)

n2~y



Bias-variance decomposition (synthetic data d = 25)
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Bias-variance decomposition (synthetic data d = 25)
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Optimal sampling (Défossez and Bach, 2015)

e Sampling from a different distribution with importance weights

]Ep(a:)p(ym)‘y _ (I)('CE)TH‘2 =E dp(fl?)‘y _ (I)('CE)TH‘2

q(x)p(ylr)dg(z)

— Recursion: 0,, =0, _1 — fygggzg (@(xn)THn_l — yn)q)(xn)



Optimal sampling (Défossez and Bach, 2015)

e Sampling from a different distribution with importance weights

]Ep(a:)p(ym)‘y _ (I)('CE)TH‘2 =E dp(fl?)‘y _ (I)('CE)TH‘2

q(x)p(ylr)dg(z)

— Recursion: 0, =0,,_1 — 7%(@(xn)T9n_1 — yn)q)(xn)
dp(2) dp(w)q)(x)T(g‘z

q(z)p(y|z) dq(:z:)y dq(x)
— Reweighting of the data: same bounds apply!

— Specific to least-squares = [E




Optimal sampling (Défossez and Bach, 2015)

e Sampling from a different distribution with importance weights

]Ep(a:)p(ym)‘y _ (I)('CE)TH‘2 =E dp(fl?)‘y _ (I)('CE)TH‘2

q(x)p(ylr)dg(z)

— Recursion: 0, =0,,_1 — 7%(@(:1;71)T9n_1 — yn)q)(xn)

2
— Specific to least-squares = E, () (yx) jgggy — igggcb(x)TH‘
— Reweighting of the data: same bounds apply!

e Optimal for variance: dg(z) x \/<I>(:I:)TH—1<I>(:1:)

dp(z)

— Same density as active learning (Kanamori and Shimodaira, 2003)
— Limited gains: different between first and second moments
— Caveat: need to know H



Optimal sampling (Défossez and Bach, 2015)

e Sampling from a different distribution with importance weights

]Ep(a:)p(ym)‘y _ (I)('CE)TH‘2 =E dp(fl?)‘y _ (I)('CE)TH‘2

q(x)p(ylr)dg(z)

— Recursion: 0, =0,,_1 — 7%(@(:1;71)T9n_1 — yn)q)(xn)

2
— Specific to least-squares = E, () (yx) jgggy — igggcb(x)TH‘
— Reweighting of the data: same bounds apply!

. . dq(z) 2

e Optimal for bias: x || P(x

i 2@

— Simpy allows biggest possible step size v < —=
— Large gains in practice
— Corresponds to normalized least-mean-squares



Convergence on Sido dataset (d = 4932)
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Achieving optimal bias and variance terms

e Current results with averaged SGD
o?d
n

R? 0y — 0., 2 R4 (90—(9*,[_]_1 90—9*)>
» }

2

— Variance (starting from optimal 6,) =

— Bias (no noise) = min {
n n



Achieving optimal bias and variance terms

e Current results with averaged SGD (ill-conditioned problems)
o4d

— Variance (starting from optimal 6,) =
n

R?||60 — 6x|1®

n

— Bias (no noise) =



Achieving optimal bias and variance terms

e Current results with averaged SGD (ill-conditioned problems)
o4d

— Variance (starting from optimal 6,) =
n

R?||60 — 6x|1®

n

— Bias (no noise) =

Bias Variance

Averaged gradient descent

R?||0y — 0. 21
(Bach and Moulines, 2013) 1600 | o

n n




Achieving optimal bias and variance terms

Bias Variance
Averaged gradient descent
R?||60y — 0.]|? 2d
(Bach and Moulines, 2013) [0 | g4
n n




Achieving optimal bias and variance terms

Bias Variance
Averaged gradient descent
R?||60y — 0.]|? 2d
(Bach and Moulines, 2013) 1% | 2-
n n
Accelerated gradient descent
R?[00 — 0.]|° 2
(Nesterov, 1983) 5 o°d
n

e Acceleration is notoriously non-robust to noise (d'Aspremont,

2008; Schmidt et al., 2011)

— For non-structured noise, see Lan (2012)




Achieving optimal bias and variance terms

Bias Variance
Averaged gradient descent
R?||60y — 0.]|? 2d
(Bach and Moulines, 2013) 1% | 2-
n n
Accelerated gradient descent
R?||0 — 0.]°
(Nesterov, 1983) 5 o?d
n
“Between” averaging and acceleration
R?||60y — 0.]|? 2d
(Flammarion and Bach, 2015) Hn01+a | n01—a




Achieving optimal bias and variance terms

Bias Variance
Averaged gradient descent
R?||60y — 0.]|? 2d
(Bach and Moulines, 2013) 1% | 2-
n n
Accelerated gradient descent
R?||0 — 0.]°
(Nesterov, 1983) 5 o?d
n
“Between” averaging and acceleration
R?||60y — 0.]|? 2d
(Flammarion and Bach, 2015) Hn01+a | n01—a
Averaging and acceleration
R?|10y — 0. 2d
(Dieuleveut, Flammarion, and Bach, 2016) [0 | i
n? n




Beyond least-squares - Markov chain interpretation

e Recursion 0, =60,,_1 —~vf/(0,,_1) also defines a Markov chain

— Stationary distribution 7., such that | f/(6 Wv(dﬁ) =0
— When f’ is not linear, f'([ 0m,(df)) # [ f'(0)my(d0) =0



Beyond least-squares - Markov chain interpretation

e Recursion 0, =60,,_1 —~vf/(0,,_1) also defines a Markov chain

— Stationary distribution 7., such that | f/(6 Wv(dﬁ) =0
— When f’ is not linear, f'([ 0m,(df)) # [ f'(0)my(d0) =0

e 0, oscillates around the wrong value 0., # 0,




Beyond least-squares - Markov chain interpretation

e Recursion 0, =60,,_1 —~vf/(0,,_1) also defines a Markov chain
— Stationary distribution 7., such that | f/(6 Wv(dﬁ) =0
— When f’ is not linear, f'([ 0m,(df)) # [ f'(0)my(d0) =0

e 0, oscillates around the wrong value 0., # 0,

— moreover, ||0, —0,| = O,(\/7)

— Linear convergence up to the noise level for strongly-convex
problems (Nedic and Bertsekas, 2000)
e Ergodic theorem

— averaged iterates converge to 0., # 0, at rate O(1/n)
— moreover, ||6. — 0, = O(y) (Bach, 2013)



Simulations - synthetic examples

e Gaussian distributions - d = 20

synthetic logistic — 1

l0g, [f(6)-1(6)]

0 2

A
log, (n)



Restoring convergence through online Newton steps

e Known facts

1. Averaged SGD with v,, oc n~'/2 leads to robust rate O(n~'/?)
for all convex functions

2. Averaged SGD with ~,, constant leads to robust rate O(n™!)
for all convex quadratic functions

3. Newton's method squares the error at each iteration
for smooth functions

4. A single step of Newton's method is equivalent to minimizing the
quadratic Taylor expansion



Restoring convergence through online Newton steps

e Known facts

1. Averaged SGD with v,, oc n~'/2 leads to robust rate O(n~'/?)
for all convex functions

2. Averaged SGD with ~,, constant leads to robust rate O(n™!)
for all convex quadratic functions = O(n 1)

3. Newton's method squares the error at each iteration
for smooth functions = O((n=1/2)?)

4. A single step of Newton's method is equivalent to minimizing the
quadratic Taylor expansion

e Online Newton step

— Rate: O((n™ Y22 4+ n=1) =0(n™1)
— Complexity: O(d) per iteration



Restoring convergence through online Newton steps

e The Newton step for f = Ef,(0) = E[l(yn, (0, (z,)))] at 6 is

equivalent to minimizing the quadratic approximation



Restoring convergence through online Newton steps

e The Newton step for f = Ef,(0) = E[l(yn, (0, (z,)))] at 6 is

equivalent to minimizing the quadratic approximation
9(0) = £(0) + (f'(0),0 = 0) + 5(0 — 0, f"(0)(6 — 9))
= [(O) + (ES},(0),0 = 0) + (0 — 0,Ef/(0)(0 — )

e Complexity of least-mean-square recursion for g is O(d)

On, = 01 — Y[ 2 (0) + F1(0)(8,—1 — 0)]

- f,,’l’(é) = 0" (yn, <9~, O (x,)))P(x,) ® ®(x,) has rank one
— New online Newton step without computing/inverting Hessians



Choice of support point for online Newton step

e Two-stage procedure

(1) Run n/2 iterations of averaged SGD to obtain 6
(2) Run n/2 iterations of averaged constant step-size LMS

— Reminiscent of one-step estimators (see, e.g., Van der Vaart, 2000)
— Provable convergence rate of O(d/n) for logistic regression
— Additional assumptions but no strong convexity



Logistic regression - Proof technique

e Using generalized self-concordance of ¢ : u — log(1 4+ e™*):
" ()] < @ (u)
— NB: difference with regular self-concordance: ¢ (u)| < 29" (u)3/?

e Using novel high-probability convergence results for regular averaged
stochastic gradient descent

e Requires assumption on the kurtosis in every direction, i.e.,

E<(I)(xn)7 77>4 <K [E<(I)(ajn)’ 77>2} 2



Choice of support point for online Newton step

e Two-stage procedure

(1) Run n/2 iterations of averaged SGD to obtain 6
(2) Run n/2 iterations of averaged constant step-size LMS

— Reminiscent of one-step estimators (see, e.g., Van der Vaart, 2000)
— Provable convergence rate of O(d/n) for logistic regression
— Additional assumptions but no strong convexity

e Update at each iteration using the current averaged iterate

— Recursion: 9n = Hn_l — "}/[f,,/%((g_n_ﬂ + fg(ﬁ_n_l)(en_l — Hn_l)]

— No provable convergence rate (yet) but best practical behavior
— Note (dis)similarity with regular SGD: 0,, = 60,,_1 — vf] (0,_1)



Online Newton algorithm
Current proof (Flammarion et al., 2014)

e Recursion

en—l _ W[fqlq,(e_n—l) + qu(e_n—l)(en—l — (9_77,—1)}

O
en — en—l =+ %(en — e_n—l)

e Instance of two-time-scale stochastic approximation (Borkar, 1997)

— Given 0, 0, = 0,1 — Y[fL(0) + [/(0)(On_1 — 0)| defines a
homogeneous Markov chain (fast dynamics)
— 0, is updated at rate 1/n (slow dynamics)

e Difficulty: preserving robustness to ill-conditioning



e Gaussian distributions - d = 20

log, [f(6)~f(6,)]

Simulations - synthetic examples

synthetic logistic — 1

log, [f(6)~f(6,)]

synthetic logistic — 2

-3 ——every 2°
| — every iter.

~4 — 2—-step

5l 2I—step—dpl. |
0 6

4
log, (n)



Simulations - benchmarks
e alpha (d — 500, n = 500 OOO), news (d = 1 300 000, n = 20 OOO)

05 alpha logistic C=1E test 05 alpha logistic C=opt test
0 0
o -0.5 -0.5
|
e Ll—ur? ~li|—-cIr?
G’g _1sl —— 1/R?n12 _1sl —— C/R2n2
o ——SAG ——SAG
—2|— Adagrad —2{| — Adagrad
— Newton — Newton
—-2.5¢ ‘ ‘ -2.5¢ ‘ ‘
0 4 0 4
log 10(n) log 10(n)

news logistic C=1 test

news logistic C=opt test
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g —0.4} 1R -0.4}| —C/R?
o 2.2 . 2 1/2
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—0.8{| —— Adagrad| ’ —0.8}| —— Adagrad
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[ ] 2 e
Why is Z¢ optimal for least-squares?
mn
e Reduction to an hypothesis testing problem

— Application of Varshamov-Gilbert's lemma

e Best possible prediction independently of computation

— To be contrasted with lower bounds based on specific models of
computation

e See http://www-math.mit.edu/~rigollet/PDFs/RigNotesl5.pdf



Summary of rates of convergence
e Problem parameters

— D diameter of the domain
— B Lipschitz-constant

— L smoothness constant

— 1 strong convexity constant

convex strongly convex

nonsmooth | deterministic: BD/+\/t deterministic: B*/(tu)
stochastic: BD//n stochastic: B%/(nu)

smooth deterministic: LD?/t? deterministic: exp(—t+/ju/L)
stochastic: LD?/\/n stochastic: L/(nu)

quadratic | deterministic: LD?/t? deterministic: exp(—t+\/u/L)
stochastic: d/n + LD?/n | stochastic: d/n + LD?/n




Summary of rates of convergence
e Problem parameters

— D diameter of the domain
— B Lipschitz-constant

— L smoothness constant

— 1 strong convexity constant

convex strongly convex
nonsmooth | deterministic: BD/+\/t deterministic: B*/(tu)
stochastic: BD//n stochastic: B%/(nu)
smooth deterministic: LD?/t? deterministic: exp(—t+/ju/L)
stochastic: LD?/\/n stochastic: L/(nu)
finite sum: n/t finite sum: exp(— min{1/n, u/L}t)
quadratic | deterministic: LD?/t? deterministic: exp(—t+\/u/L)
stochastic: d/n + LD?/n | stochastic: d/n + LD?/n




Outline - |
1. Introduction
e Large-scale machine learning and optimization

e Classes of functions (convex, smooth, etc.)
e T[raditional statistical analysis through Rademacher complexity

2. Classical methods for convex optimization

e Smooth optimization (gradient descent, Newton method)
e Non-smooth optimization (subgradient descent)
e Proximal methods

3. Non-smooth stochastic approximation

e Stochastic (sub)gradient and averaging
e Non-asymptotic results and lower bounds
e Strongly convex vs. non-strongly convex



Outline - 1l
4. Classical stochastic approximation
e Asymptotic analysis

e Robbins-Monro algorithm
e Polyak-Rupert averaging

5. Smooth stochastic approximation algorithms

e Non-asymptotic analysis for smooth functions
e Logistic regression
e Least-squares regression without decaying step-sizes

6. Finite data sets

e Gradient methods with exponential convergence rates
e Convex duality
e (Dual) stochastic coordinate descent - Frank-Wolfe



Going beyond a single pass over the data

e Stochastic approximation

— Assumes infinite data stream
— Observations are used only once
— Directly minimizes testing cost E, .y £(y,0 ' ®(z))



Going beyond a single pass over the data

e Stochastic approximation

— Assumes infinite data stream
— Observations are used only once
— Directly minimizes testing cost E, ,y £(y,0 ' ®(z))

e Machine learning practice

— Finite data set (x1,91,...,%n, Yn)

— Multiple passes

— Minimizes training cost %2?21 0(y;, HT(P(%'))

— Need to regularize (e.g., by the ¢5-norm) to avoid overfitting

e Goal: minimize g(f) = %Zfz(ﬁ)
i=1



Iterative methods for minimizing smooth functions

e Assumption: g convex and L-smooth on R

e Gradient descent: 0, = 60; 1 — v:g'(0;_1)

(small kK = L/u)



Iterative methods for minimizing smooth functions

e Assumption: g convex and L-smooth on R

e Gradient descent: 0, = 60; 1 — v:g'(0;_1)

g9(0) — g(0.) < O(1/1)
g(0;) — g(0,) <O((1—p/L)) = O(e ¥/ L)) if y-strongly convex

(small kK = L/u)



Iterative methods for minimizing smooth functions

e Assumption: g convex and L-smooth on R

e Gradient descent: 0, = 60; 1 — v;g'(0;_1)
— O(1/t) convergence rate for convex functions
— O(e™t*) linear if strongly-convex
e Newton method: 0; = 0;_1 — ¢"(0;_1) g’ (0;_1)

t .
— O(e %) quadratic rate



Iterative methods for minimizing smooth functions

e Assumption: g convex and L-smooth on R

e Gradient descent: 0, = 60; 1 — v;g'(0;_1)

— O(1/t) convergence rate for convex functions

— O(e™t*) linear if strongly-convex < O(klog 1) iterations
e Newton method: 0; = 0;_1 — ¢"(0;_1) g’ (0;_1)

— O(e_th) quadratic rate < O(loglog 1) iterations



Iterative methods for minimizing smooth functions

e Assumption: g convex and L-smooth on R

e Gradient descent: 0, = 60; 1 — v;g'(0;_1)

— O(1/t) convergence rate for convex functions

— O(e™t*) linear if strongly-convex < complexity = O(nd - k log %)
e Newton method: 0; = 0;_1 — ¢"(0;_1) g’ (0;_1)

— O(e_th) quadratic rate < complexity = O((nd* + d*) - loglog 1)



Iterative methods for minimizing smooth functions

e Assumption: g convex and L-smooth on R

e Gradient descent: 0, = 60; 1 — v;g'(0;_1)

— O(1/t) convergence rate for convex functions

— O(e™t*) linear if strongly-convex < complexity = O(nd - k log %)
e Newton method: 0; = 0;_1 — ¢"(0;_1) g’ (0;_1)

— O(e_th) quadratic rate < complexity = O((nd* + d*) - loglog 1)

e Key insights for machine learning (Bottou and Bousquet, 2008)

1. No need to optimize below statistical error
2. Cost functions are averages
3. Testing error is more important than training error



Iterative methods for minimizing smooth functions

e Assumption: g convex and L-smooth on R

e Gradient descent: 0, = 60; 1 — v;g'(0;_1)

— O(1/t) convergence rate for convex functions

— O(e™t*) linear if strongly-convex < complexity = O(nd - k log %)
e Newton method: 0; = 0;_1 — ¢"(0;_1) g’ (0;_1)

— O(e—th) quadratic rate < complexity = O((nd* + d*) - loglog 1)

e Key insights for machine learning (Bottou and Bousquet, 2008)

1. No need to optimize below statistical error
2. Cost functions are averages
3. Testing error is more important than training error



Stochastic gradient descent (SGD) for finite sums
. I,
min g(0) = — ; fi(0)

e lteration: Ht = Ht—l — /ytfz/(t) (9,5_1)

— Sampling with replacement: i(t) random element of {1,...,n}
— Polyak-Ruppert averaging: 6; = H% ZZ:O 6.



Stochastic gradient descent (SGD) for finite sums

min g(f) = %Z fi(6)

0 cRd

e lteration: Ht = Ht—l — /ytfz/(t) ((9,5_1)

— Sampling with replacement: i(t) random element of {1,...,n}
— Polyak-Ruppert averaging: 6; = H% ZZ:O 6.

e Convergence rate if each f; is convex L-smooth and g u-strongly-
convex:

. O(1//1) if v =1/(LV1)
Eg(0:) — 9(0x) < { O(L/(ut)) = O(k/t) if v =1/(ut)

— No adaptivity to strong-convexity in general
— Adaptivity with self-concordance assumption (Bach, 2013)
— Running-time complexity: O(d - k/¢)



Stochastic vs. deterministic methods

e Minimizing g(0 Zfz ) with f;(0) = €(y;, h(z;,0)) + AQ2(0)



Stochastic vs. deterministic methods
e Minimizing g(0 Zfz ) with f;(0) = €(y;, h(z;,0)) + AQ2(0)

e Batch gradient descent: 6; = 0;_1—~:g'(0;_1) = 6;_ 1——Zf (0;_1)

— Linear (e.g., exponential) convergence rate in O(e~t/*)
— lteration complexity is linear in n



Stochastic vs. deterministic methods
e Minimizing g(0 Zfz ) with f;(0) = €(y;, h(z;,0)) + AQ2(0)

e Batch gradient descent: 6; = 0;_1—~:g'(0;_1) = 6;_ 1——Zf (0;_1)



Stochastic vs. deterministic methods
e Minimizing g(0 Zfz ) with f;(0) = €(y;, h(z;,0)) + AQ2(0)

e Batch gradient descent: 6; = 0;_1—~:g'(0;_1) = 6;_ 1——Zf (0;_1)

— Linear (e.g., exponential) convergence rate in O(e~t/*)
— lteration complexity is linear in n

e Stochastic gradient descent: 6; = 0;_1 — fytfi’(t)(et_l)

— Sampling with replacement: i(t) random element of {1,...,n}
— Convergence rate in O(k/t)
— lteration complexity is independent of n



Stochastic vs. deterministic methods
e Minimizing g(0 Zfz ) with f;(0) = €(y;, h(z;,0)) + AQ2(0)

e Batch gradient descent: 6; = 0;_1—~:g'(0;_1) = 6;_ 1——Zf (0;_1)

e Stochastic gradient descent: 6; = 0;_1 — fytfz.’(t)(et_l)

&




Stochastic vs. deterministic methods

e Goal = best of both worlds: Linear rate with O(d) iteration cost
Simple choice of step size
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Stochastic vs. deterministic methods

e Goal = best of both worlds: Linear rate with O(d) iteration cost
Simple choice of step size
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Accelerating gradient methods - Related work

e Generic acceleration (Nesterov, 1983, 2004)

Or =mni—1— Y9 (m—1) and g = 6, + 6,(6; — 6, 1)



Accelerating gradient methods - Related work

e Generic acceleration (Nesterov, 1983, 2004)

Or =mni—1— Y9 (m—1) and g = 6, + 6,(6; — 6, 1)

— Good choice of momentum term §; € [0,1)

g9(0:) — g(0:) < O(1/t%)

g(0:) —g(0,) < O(e_t\/“TL) = O(e ¥/V*) if u-strongly convex
— Optimal rates after t = O(d) iterations (Nesterov, 2004)



Accelerating gradient methods - Related work

e Generic acceleration (Nesterov, 1983, 2004)

Or =mni—1— Y9 (m—1) and g = 6, + 6,(6; — 6, 1)

— Good choice of momentum term §; € [0,1)

g9(0:) — g(0:) < O(1/t%)

g(0:) —g(0,) < O(e_t\/“TL) = O(e ¥/V*) if u-strongly convex
— Optimal rates after t = O(d) iterations (Nesterov, 2004)
— Still O(nd) iteration cost: complexity = O(nd - \/klog 1)



Accelerating gradient methods - Related work

e Constant step-size stochastic gradient

— Solodov (1998); Nedic and Bertsekas (2000)
— Linear convergence, but only up to a fixed tolerance



Accelerating gradient methods - Related work

e Constant step-size stochastic gradient

— Solodov (1998); Nedic and Bertsekas (2000)
— Linear convergence, but only up to a fixed tolerance

e Stochastic methods in the dual (SDCA)

— Shalev-Shwartz and Zhang (2012)

— Similar linear rate but limited choice for the f;'s
— Extensions without duality: see Shalev-Shwartz (2016)



Accelerating gradient methods - Related work

e Constant step-size stochastic gradient

— Solodov (1998); Nedic and Bertsekas (2000)
— Linear convergence, but only up to a fixed tolerance

e Stochastic methods in the dual (SDCA)

— Shalev-Shwartz and Zhang (2012)

— Similar linear rate but limited choice for the f;'s
— Extensions without duality: see Shalev-Shwartz (2016)

e Stochastic version of accelerated batch gradient methods

— Tseng (1998); Ghadimi and Lan (2010); Xiao (2010)
— Can improve constants, but still have sublinear O(1/t) rate



Stochastic average gradient
(Le Roux, Schmidt, and Bach, 2012)

e Stochastic average gradient (SAG) iteration

— Keep in memory the gradients of all functions f;, 2 =1,...,n
— Random selection i(t) € {1,...,n} with replacement

i (0, _ if 2 = (¢t
— lteration: 0, = 0;_1 — Tt E y,f with yf = fi( 1t 2 ( )
n (. otherwise



Stochastic average gradient
(Le Roux, Schmidt, and Bach, 2012)

e Stochastic average gradient (SAG) iteration

— Keep in memory the gradients of all functions f;, 2 =1,...,n
— Random selection i(t) € {1,...,n} with replacement
- (0;—1) ifi=1i(t
— lteration: 6y = 60;_1 — il ny with y! = fi( 1t V) ( )
n ( otherwise
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Stochastic average gradient
(Le Roux, Schmidt, and Bach, 2012)

e Stochastic average gradient (SAG) iteration

— Keep in memory the gradients of all functions f;, 2 =1,...,n
— Random selection i(t) € {1,...,n} with replacement
~ (0;—1) ifi=1i(t
— lteration: 0, = 0;,_1 — Eny with y! = fi(_lt 2 ( )
n Y, otherwise

e Stochastic version of incremental average gradient (Blatt et al., 2008)
e Extra memory requirement: n gradients in R? in general

e Linear supervised machine learning: only n real numbers

— If f;(0) = £(y;, @(x;)T0), then f1(0) = ¢ (y;, ®(x:)70) ®(;)



Stochastic average gradient - Convergence analysis

e Assumptions

— Each f; is L-smooth, i =1,...,n - link with R?

— g=+%"", fi is p-strongly convex
— constant step size v = 1/(16L) - no need to know pu



Stochastic average gradient - Convergence analysis

e Assumptions

— Each f; is L-smooth, i =1,...,n - link with R?

— g=+%"", fi is p-strongly convex
— constant step size v = 1/(16L) - no need to know pu

e Strongly convex case (Le Roux et al., 2012, 2013)

E|g(0;) — g(0+)] < cst x (1 _min{81n7 1gL})t

— Linear (exponential) convergence rate with O(d) iteration cost

— After one pass, reduction of cost by exp ( — min {%, 1%—*2})
— NB: in machine learning, may often restrict to > L/n

= constant error reduction after each effective pass




Convergence analysis - Proof sketch

e Main step: find “good” Lyapunov function J(6;, 3¢, ..., 9%)

— such that E[J (04,4, ..., y5 )| Fic1] < J(0r—1,y7 'yeo oyt h)
— no natural candidates

e Computer-aided proof

— Parameterize function J(6;, 4%, ..., 9y%) = g(0;) —g(0,) +quadratic
— Solve semidefinite program to obtain candidates (that depend on

n, u, L)
— Check validity with symbolic computations



Running-time comparisons (strongly-convex)

e Assumptions: g(0) = =>"" | fi(6)

n

— Each f; convex L-smooth and g u-strongly convex

Stochastic gradient descent | dXx % X %

Gradient descent d x ni xlogi
7 €
L

Accelerated gradient descent | dX n

SAG dx (n+%) xlogz

T
X
)
o]
=

— NB-1: for (accelerated) gradient descent, . = smoothness constant of g

— NB-2: with non-uniform sampling, L. = average smoothness constants of all f;'s



Running-time comparisons (strongly-convex)

e Assumptions: g(f) = =>"" | f;(6)

— Each f; convex L-smooth and g u-strongly convex

Stochastic gradient descent | dXx % X %
Gradient descent d X n% x log <
Accelerated gradient descent | dXx n\/% X log%

L 1
SAG dx (n+) xlogz

e Beating two lower bounds (Nemirovsky and Yudin, 1983; Nesterov,
2004): with additional assumptions

(1) stochastic gradient: exponential rate for finite sums
(2) full gradient: better exponential rate using the sum structure



Running-time comparisons (non-strongly-convex)
e Assumptions: g(f) ==>"" , f;(6)

— Each f; convex L-smooth
— |l conditioned problems: g may not be strongly-convex (i = 0)

Stochastic gradient descent | dx  1/&”

Gradient descent dx nfe

Accelerated gradient descent | dx n/+/e

SAG dx +/n/e

e Adaptivity to potentially hidden strong convexity

e No need to know the local/global strong-convexity constant



Stochastic average gradient
Implementation details and extensions

e Sparsity in the features

— Just-in-time updates = replace O(d) by number of non zeros
— See also Leblond, Pedregosa, and Lacoste-Julien (2016)

e Mini-batches

— Reduces the memory requirement + block access to data

e Line-search

— Avoids knowing L in advance

¢ Non-uniform sampling

— Favors functions with large variations

e See www.cs.ubc.ca/~schmidtm/Software/SAG.html



Objective minus Optimum

Experimental results (logistic regression)

quantum dataset rcvl dataset
(n =50 000, d = 78) (n =697 641, d = 47 236)

Objective minus Optimum
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Objective minus Optimum

Before non-uniform sampling

protein dataset sido dataset
(n =145 751, d =T74) (n =12 678, d = 4 932)

Objective minus Optimum
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Objective minus Optimum

After non-uniform sampling

protein dataset sido dataset
(n =145 751, d =T74)

(n =12 678, d = 4 932)

Objective minus Optimum
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Linearly convergent stochastic gradient algorithms

e Many related algorithms

— SAG (Le Roux, Schmidt, and Bach, 2012)

— SDCA (Shalev-Shwartz and Zhang, 2012)

— SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)
— MISO (Mairal, 2015)

— Finito (Defazio et al., 2014a)

— SAGA (Defazio, Bach, and Lacoste-Julien, 2014b)

e Similar rates of convergence and iterations



Linearly convergent stochastic gradient algorithms

e Many related algorithms

— SAG (Le Roux, Schmidt, and Bach, 2012)

— SDCA (Shalev-Shwartz and Zhang, 2012)

— SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)
— MISO (Mairal, 2015)

— Finito (Defazio et al., 2014a)

— SAGA (Defazio, Bach, and Lacoste-Julien, 2014b)

e Similar rates of convergence and iterations

¢ Different interpretations and proofs / proof lengths

— Lazy gradient evaluations
— Variance reduction



Variance reduction

e Principle: reducing variance of sample of X by using a sample from
another random variable Y with known expectation

Zo=a(X —Y)+EY

— EZy = aEX + (1 — )EY

— var(Z,) = o?| var(X) + var(Y') — 2cov(X,Y)]

— a = 1: no bias, a < 1: potential bias (but reduced variance)
— Useful if Y positively correlated with X



Variance reduction

e Principle: reducing variance of sample of X by using a sample from
another random variable Y with known expectation

Zo=a(X —Y)+EY

— EZy = aEX + (1 — )EY

— var(Z,) = o?| var(X) + var(Y') — 2cov(X,Y)]

— a = 1: no bias, a < 1: potential bias (but reduced variance)
— Useful if Y positively correlated with X

e Application to gradient estimation (Johnson and Zhang, 2013;
Zhang, Mahdavi, and Jin, 2013)

= SVRG: X = fj()(0-1), ¥ = f’(t)(~), o = 1, with 6 stored
- EY =257 | f/(0) full gradient ath, X —V = f(t)(Ht_l) — fz.’(t)(ﬁ)



Stochastic variance reduced gradient (SVRG)
(Johnson and Zhang, 2013; Zhang et al., 2013)

e Initialize § € R4

e For iepoch = 1 to # of epochs

— Compute all gradients f/(6) ; store g'() = 3" | f/(6)
— Initialize 65 = 6
— For t =1 to length of epochs

Op = 01 — V{gl(é)  (fitp (1) = f’&'/(t)(é))}
— Update 60 = 6,

~

e Output: 6




Stochastic variance reduced gradient (SVRG)
(Johnson and Zhang, 2013; Zhang et al., 2013)

e Initialize § € R4

e For iepoch = 1 to # of epochs

— Compute all gradients f/(6) ; store g'() = 3" | f/(6)
— Initialize 65 = 6
— For t =1 to length of epochs

Op = 01 — V{gl(é)  (fitp (1) = f’&'/(t)(é))}
— Update 60 = 6,

~

e Output: 6

— No need to store gradients - two gradient evaluations per inner step
— Two parameters: length of epochs + step-size ~

— Same linear convergence rate as SAG, simpler proof



Stochastic variance reduced gradient (SVRG)

e Algorithm divide into “epochs”

e At each epoch, starting from 6y = é perform the iteration

— Sample 7; uniformly at random

— Gradient step: 0, = 0,_1 — W{ {t(Qt—l) — {t(é) -+ gl(é) }

e Proposition: If each f; is R?-smooth and g = %2?21 fi is -
strongly convex, then after k = 20R? /s steps and with v = 1/10R?,
then f(0) — f(0,) is reduced by 10%



SVRG proof - from Bubeck (2015)

o Lemma: E|f/(6) — £/(6.)1> < 2R2[g(0) — 9(6.)]

— Proof: E||f/(6) — £/(6.)|2<2R2E[£:(0) — £i(6,) — £1(6.) T (6—6.)]
by the proof of co-coercivity, which is equal to 2R? [g’(ﬁ) — 9(9*)}



SVRG proof - from Bubeck (2015)
o Lemma: E||f{(0) — f;(6.)]° < 2R*[g(0) — 9(0.)]

e From iteration 0; = 0,_; — ’y[fi’t(ﬁt_l) — f,{t(é) — g’(é)] = 0i—1 — Y9t

10: — 0.117 = [16:—1 — 0.1 = 27(0—1 — 0.) g0 + 72 llgell?

E[10; — 0.0%Fi1] < N0i—1 — 0.)* = 2v(0:—1 — 0.) " 9" (0, 1)

+292 (| £ (0e—1) — F1,(0117 + 29211 £1.(0) — f1.(6.) — g'(O) I

10:—1 — 0.]1* — 27(0r—1 — 0.) "¢ (0:—1)

+29°R?[g(0;—1) — g(0.) + g(0) — g(6.)]

< 01— 04)° — 2v(1 — 2vR*)[g(0:—1) — g(0:)] + 4R*?[g(6) — g(0.)]

IN

e By summing k times, we get:
k
Ell0 — 0.[1° < 60— 0.]* = 29(1 = 2yR?) Y E[g(6:—1) — g(6.)] + 4kR*v?[g(0) — g(6.)]
t=1

which leads to the desired result



Interpretation of SAG as variance reduction

. 0. TR
e SAG update: 6; =60,_4 —lny with y; = {fi( 1t 1) Z.( |
n<— Y, otherwise

— Interpretation as lazy gradient evaluations



Interpretation of SAG as variance reduction

fi(O:—1) ifi=1i(t)
e SAG update: 0; = 0,1 — — with
P o Z?/@ Vi = {yf ! otherwise

— Interpretation as lazy gradlent evaluations

e SAG update: 0; = 0;,_1 — ’y{l Z? 1yf R ( Z(,g)(@t 1) — f(_t)l)}

— Biased update (expectation w.r.t. to () not equal to full gradient)



Interpretation of SAG as variance reduction

fi(O:—1) ifi=1i(t)
e SAG update: 0, =0;_1 — — with
P o Z?/@ Vi = {yf ! otherwise

— Interpretation as lazy gradlent evaluations
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— Biased update (expectation w.r.t. to () not equal to full gradient)
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— Unbiased update



Interpretation of SAG as variance reduction

fi(O:—1) ifi=1i(t)
e SAG update: 0, =0;_1 — — with
P o Z?/@ Vi = {yf ! otherwise

— Interpretation as lazy gradlent evaluations

e SAG update: (975 — 975_1 — ’Y{l Z? 1yf ! + = ( Z(t)(et 1) z(_t)l)}

— Biased update (expectation w.r.t. to () not equal to full gradient)

e SVRG update: 60; =60;,_1—~ { ZZ 1f( ) (f{(t)(et—ﬂ— {(t)(é))}

— Unbiased update

® SAGA update: (9,5 = Ht—l — ”}/|:l Z? 1yf ! + ( Z(t)(gt 1) z(_t)l)i|

— Defazio, Bach, and Lacoste-Julien (2014b)
— Unbiased update without epochs



SVRG vs. SAGA
[ SAGA update: (9,5 = Ht—l — ”7|:% 2?21 y;;f—l + ( 7,/(75) (Ht—l) o yf(_t)l)}

e SVRG update: 0; = 9t—1—7{% Sy f{(§)+( ,{(t)((%—l)— g(t)(é>)}

SAGA SVRG
Storage of gradients yes no
Epoch-based no yes
Parameters step-size | step-size & epoch lengths
Gradient evaluations per step | 1 at least 2
Adaptivity to strong-convexity | yes no
Robustness to ill-conditioning | yes no

— See Babanezhad et al. (2015)



Proximal extensions

1 n
e Composite optimization problems: min —Zfi(e)w(e)
HcRE N P

— f; smooth and convex
— h convex, potentially non-smooth



Proximal extensions

e Composite optimization problems: min l2:]‘};(9)7%(9)
HcRd n
— f; smooth and convex
— h convex, potentially non-smooth
— Constrained optimization: h(f) =0 if 6 € K, and +oco otherwise
— Sparsity-inducing norms, e.g., h(0) = ||0||1



Proximal extensions

e Composite optimization problems: min lz:j};((9)+h(9)
HcRd n
— f; smooth and convex
— h convex, potentially non-smooth
— Constrained optimization: h(f) = 0 if § € K, and 400 otherwise
— Sparsity-inducing norms, e.g., h(0) = ||0||1

e Proximal methods (a.k.a. splitting methods)

— Extra projection / soft thresholding step after gradient update
— See, e.g., Combettes and Pesquet (2011); Bach, Jenatton, Mairal,
and Obozinski (2012b); Parikh and Boyd (2014)



Proximal extensions

1 n
e Composite optimization problems: min —Zfi(H)Jrh(H)
OERT T 7

— f; smooth and convex

— h convex, potentially non-smooth

— Constrained optimization: h(f) = 0 if § € K, and 400 otherwise
— Sparsity-inducing norms, e.g., h(8) = ||0||1

e Proximal methods (a.k.a. splitting methods)

— Extra projection / soft thresholding step after gradient update
— See, e.g., Combettes and Pesquet (2011); Bach, Jenatton, Mairal,
and Obozinski (2012b); Parikh and Boyd (2014)

e Directly extends to variance-reduced gradient techniques

— Same rates of convergence



Acceleration

e Similar guarantees for finite sums: SAG, SDCA, SVRG (Xiao and
Zhang, 2014), SAGA, MISO (Mairal, 2015)

Gradient descent d nt x log
Accelerated gradient descent | dX n\/% X log%
SAG(A), SVRG, SDCA, MISO | dx  (n+ %) x log <




Acceleration

e Similar guarantees for finite sums: SAG, SDCA, SVRG (Xiao and
Zhang, 2014), SAGA, MISO (Mairal, 2015)

Gradient descent dx L« log%

7
Accelerated gradient descent | dX n\/% X log%
SAG(A), SVRG, SDCA, MISO | dx  (n+ %) x log <

- L 1
Accelerated versions dx (n + nﬁ) % logg

e Acceleration for special algorithms (e.g., Shalev-Shwartz and
Zhang, 2014; Nitanda, 2014; Lan, 2015)

e Catalyst (Lin, Mairal, and Harchaoui, 2015)

— Widely applicable generic acceleration scheme



From training to testing errors

e rcvl dataset (n = 697 641, d = 47 236)
— NB: IAG, SG-C, ASG with optimal step-sizes in hindsight

Training cost

bj ective mnus Optinum

10720 T T T T
0 10 20 30 40 50
Ef f ecti ve Passes



From training to testing errors

e rcvl dataset (n = 697 641, d = 47 236)
— NB: IAG, SG-C, ASG with optimal step-sizes in hindsight

Training cost Testing cost

Test Logistic Loss

bj ective mnus Optinum

10720 I I I I 0 T T I I
0 10 20 30 40 50 0 10 20 30 40 50

Ef fecti ve Passes Ef fecti ve Passes



SGD minimizes the testing cost!

e Goal: minimize f(0) = E,(; ) 0(y,0" ®(x))

— Given n independent samples (x;,y;), ¢t = 1,...,n from p(x,y)
— Given a single pass of stochastic gradient descent
— Bounds on the excess testing cost Ef(0,,) — infy pa f(6)
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— Given n independent samples (x;,y;), ¢t = 1,...,n from p(x,y)
— Given a single pass of stochastic gradient descent
— Bounds on the excess testing cost Ef(0,,) — infy pa f(6)

e Optimal convergence rates: O(1//n) and O(1/(nu))

— Optimal for non-smooth losses (Nemirovsky and Yudin, 1983)
— Attained by averaged SGD with decaying step-sizes



SGD minimizes the testing cost!

e Goal: minimize f(0) = E,(; ) 0(y,0" ®(x))

— Given n independent samples (x;,y;), ¢t = 1,...,n from p(x,y)
— Given a single pass of stochastic gradient descent
— Bounds on the excess testing cost Ef(0,,) — infy pa f(6)

e Optimal convergence rates: O(1//n) and O(1/(nu))
— Optimal for non-smooth losses (Nemirovsky and Yudin, 1983)
— Attained by averaged SGD with decaying step-sizes

e Constant-step-size SGD

— Linear convergence up to the noise level for strongly-convex
problems (Solodov, 1998; Nedic and Bertsekas, 2000)
— Full convergence and robustness to ill-conditioning?



Robust averaged stochastic gradient
(Bach and Moulines, 2013)

e Constant-step-size SGD is convergent for least-squares

— Convergence rate in O(1/n) without any dependence on u
— Simple choice of step-size (equal to 1/L)

news (n=20 000, d=1 300 000)
0.2} | : ]

0
-0.2}

-0.4;

—-0.6¢

log_ [f(6)—f(6.)]

-0.8;
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Robust averaged stochastic gradient
(Bach and Moulines, 2013)

e Constant-step-size SGD is convergent for least-squares

— Convergence rate in O(1/n) without any dependence on u
— Simple choice of step-size (equal to 1/L)

news (n=20 000, d=1 300 000)
0.2} | : ]

0
-0.2}

-0.4;

log_ [f(6)—f(6.)]

—-0.6¢

—1/Ln"?
——SAG

0 2 4
l0g.(n)

e Convergence in O(1/n) for smooth losses with O(d) online Newton
step

-0.8;




Conclusions - variance reduction

e Linearly-convergent stochastic gradient methods

— Provable and precise rates
— Improves on two known lower-bounds (by using structure)
— Several extensions / interpretations / accelerations
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e Linearly-convergent stochastic gradient methods

— Provable and precise rates
— Improves on two known lower-bounds (by using structure)
— Several extensions / interpretations / accelerations

e Extensions and future work

— Extension to saddle-point problems (Balamurugan and Bach, 2016)

— Lower bounds for finite sums (Agarwal and Bottou, 2014; Lan,
2015; Arjevani and Shamir, 2016)

— Sampling without replacement (Gurbuzbalaban et al., 2015;
Shamir, 2016)



Conclusions - variance reduction

e Linearly-convergent stochastic gradient methods

— Provable and precise rates
— Improves on two known lower-bounds (by using structure)
— Several extensions / interpretations / accelerations

e Extensions and future work

— Extension to saddle-point problems (Balamurugan and Bach, 2016)

— Lower bounds for finite sums (Agarwal and Bottou, 2014; Lan,
2015; Arjevani and Shamir, 2016)

— Sampling without replacement (Gurbuzbalaban et al., 2015;
Shamir, 2016)

— Bounds on testing errors for incremental methods (Frostig et al.,
2015; Babanezhad et al., 2015)



Fundamentals of constrained optimization

e We consider the following primal optimization problem

Hélgf(x) st Vie{l,...,m},hi(x)=0and Vj € {1,...,r},g;(z) <0

— We denote by D* the set of x € D satisfying the constraints



Fundamentals of constrained optimization

e We consider the following primal optimization problem

Hélgf(x) st Vie{l,...,m},hi(x)=0and Vj € {1,...,r},g;(z) <0

— We denote by D* the set of x € D satisfying the constraints

e Lagrangian: function £ : R™ x R'_ defined as
L(x, A ) = f(x) + A" h(z) +p' g(z)

— A et 1 are called Lagrange multipliers or dual variables
— Primal problem = supremum of Lagrangian with respect to dual

variables: for all x € D, { f(x) si z € D*

Lz, @) = !
(/\,M)SE%%X[RQ (:C’ ,,u) 400 otherwise



Fundamentals of constrained optimization

e Primal problem equivalent to p* = inf sup L(x, A\, 1)
TED (X, 1) ER™ xR,

e Dual function: g(\, )= inlf)ﬁ(:zj, A, )= inlf) fl@)+X"h(x)+u' g(z)
re Te

e Dual problem: minimization of ¢ on R™ x R”_, equivalent to

d* = sup inf L(x, \,p).
(\,u)ER™ xR" TED

— Concave maximization problem (no assumption)



Fundamentals of constrained optimization

e Primal problem equivalent to p* = inf sup L(x, A\, 1)
TED (X, 1) ER™ xR,

e Dual function: g(\, )= inlf)ﬁ(:zj, A, )= inlf) fl@)+X"h(x)+u' g(z)
re Te

e Dual problem: minimization of ¢ on R™ x R”_, equivalent to

d* = sup inf L(x, \,p).
(\,u)ER™ xR" TED

— Concave maximization problem (no assumption)
o Weak duality (no assumption): V(A, ) € R™ x R’ , Vo € D*

inf L(z', )\, p) < L(x,\pn) < sup L(x, N, u)
v'eD (N, 1) ER™ X,

which implies g(\, ) < f(x) and thus d* < p*



Sufficient conditions for strong duality

e Geometric interpretation for min,cp f(z) s.t g(z) <0

— Consider A = {(u,t) e R?, v € D, f(x) < t,g9(v) < u}

e Slater’s conditions

— D is convex, h; affine and g; convex and there is a strictly feasible
point, that is 3 € D* such that V7, g;(z) <0
— then d* = p* (strong duality).



Sufficient conditions for strong duality

e Geometric interpretation for min,cp f(z) s.t g(z) <0

— Consider A = {(u,t) e R?, v € D, f(x) < t,g9(v) < u}

e Slater’s conditions

— D is convex, h; affine and g; convex and there is a strictly feasible
point, that is 3 € D* such that V7, g;(z) <0
— then d* = p* (strong duality).

e Karush-Kiithn-Tucker (KKT) conditions: If strong duality holds,
then z* is primal optimal and (\*, u*) are dual optimal if and only if:

— Primal stationarity: x* minimizes x — L(xz, A", u*).
— Feasibility: x* and (\*, u*) are feasible
— Complementary slackness: Vj, u%g;(x*) =0



Strong duality: remarks and examples

e Remarks: (a) the dual of the dual is the primal, (b) potentially
several dual problems, (c) strong duality does not always hold

: TR T, T
e Linear programming: ming,—p ,>0C T = maXATygcb J

¢ Quadratic programming with equality constraint:
min,t, iz Qv —q'x

e Lagrangian relaxation for combinatorial problem - Max Cut:
MiNge({_1,1}n z'Wax

e Strong duality for non convex problem: min, r 4 %xTQ:E —q'z



Dual stochastic coordinate ascent - |

e General learning formulation:
n L30T () + 0]
111111 nz i (z:)) + 2H 15

=  min =) f(w)+ HQHQ such that Vi, u; = 0" ®(z;)

o min max —Zg (U’L ‘HHQ Zaz — QT(I) xz))

0cR yeR? a€ER™ N 4

— max min —Zf(uz ‘HHQ Zaz i — 0" O(z,))

a€ER™ gcRd ycR? TN 4

— max min —Zﬁ(uz HHHQ_I_ZO" —HT(I) (7))

a€ER™ gecRd R N 4



Dual stochastic coordinate ascent - ||

e General learning formulation:

1 v
min EZ&(H%(%)HgH@H%

6 cRd
1 mn
— max min — li(uy;) 0115 + o (u HTCD (x;
max _min nz_: ( H 15 Z )
1 1 n 2
— max meuZER{ ﬁ(uz)—l—azui}—— ZO%(I)(%)
aeR” 20l i 2
n 1 n 2
= — Q) — — iP(x;
mas o) 5| o) |

— Minimizers obtained as 0 = %Z?:l o; ®(z;)
— 1p; convex (up to affine transform = Fenchel-Legendre dual of ¢;)



Dual stochastic coordinate ascent - Il

e General learning formulation:

n 2

1
min —Zf (07 () +5 1613 = max — 3 vi(ai)—5-
!

0cRd N acR™ :
1=1

n

1=1

2

e From primal to dual
— ¢; smooth & 1); strongly convex

— ¢, strongly convex < 1); smooth

e Applying coordinate descent in the dual

— Nesterov (2012); Shalev-Shwartz and Zhang (2012)
— Linear convergence rate with simple iterations



Dual stochastic coordinate ascent - |V

2

aER™

- 1

e Dual formulation: max — g vi(ai) — 2,
' M
1=1

j;:Cmiwlﬁ)
1=1

e Stochastic coordinate descent: at iteration ¢

2

— Choose a coordinate 7 at random ,

1
— Optimzte w.r.t. o;; max —v;(a;) — —
> max Vi) o

O%¢%1ﬁ)%-2530%¢%1ﬁ)
j#i 2
— Can be done by a single access to ®(x;) and updating

> im0 P(x5)
e Convergence proof

— See Nesterov (2012); Shalev-Shwartz and Zhang (2012)
— Similar linear convergence than SAG




Randomized coordinate descent
Proof - |

e Simplest setting: minimize f : R” — R which is L-smooth

— Local smoothness constants L; = sup,cgn fi: ()
—maX;eq1 . Li<Land LY " | Ly
— NB: in dual problems in machine learning max;c¢y . n1 Li X R?

e Algorithm: at iteration ¢,

— Choose a coordinate 7; at random with probability p;

— Local descent step: oy = ap_1 — %f,(@t—l)iteit
(37

e Two choices for p;: (a) uniform or (b) proportional to L;



Randomized coordinate descent
Proof - |l

e |teration Oy =— Qg1 — Li%f (at 1) +€iy

L.

e From smoothness, f(a:) < f(au—1) — f/(ou—1)" (o — —1) + St — a1 )?

leading to f(ay) < flaz_1) — ﬁ’f’(at—l)itp

e Taking expectations: E[f(cy)|Fi—1] < f(a—1)— >0, 2L | £ (eep—1)4?



Randomized coordinate descent

Proof -

lteration oy = a1 — Lif (Oét 1) iy
@7

From smoothness, f(o;) < flai—1) — f/(ai—1) " (o — 1) +

leading to f(ay) < flaz_1) — ﬁ’f’(at—l)itp

Taking expectations: E[f(a¢)|Fi—1] < flaz—

If p; = 1/n (uniform), E[f ()| Fi—1] < flag_1) —

With strong convexity: Ef(a;) < Ef(az_1) —

to a linear convergence rate with factor 1 —

1) = 2ie

L.
%H&t —Oﬁt—lH2

12L [ f'(ep—1)il?

n maxZ

T 1MaXx; LZ

Qnm;sz Hf/(&t 1)”2

[Ef(ozt 1) — f(oz*)} leading



Randomized coordinate descent
Proof - |l

lteration oy = a1 — Lif (Oét 1) iy
@7

L;

From smoothness, f(a:) < flar—1) — f(aw—1) " (@ — au—1) + S|l — ap—1]]?

leading to f(ay) < flaz_1) — %it’f/(@t—l)’itp

Taking expectations: E[f(c:)|Fi—1] < flou—1) — D i, 2L | £ (eep—1)4?

If pi = 1/n (uniform), E[f ()| Fi—1] < flaz-1) - gnm;XZL 1f (ee—1)[7
With strong convexity: Ef(ou) < Ef(ou—1) — it [Ef(ozt 1) — f(a*)] leading
1

to a linear convergence rate with factor 1 —
T 1MaXx; LZ

It p; = 7 1L Ef(at) = f(&t—l) 22 L Ly Hf (O‘t 1)”2

With strong convexity: Ef(a;) < Ef(a;:— 1) = 1L Ef(ai—1) — f(a*)] leading
0

2?21 L;

to a linear convergence rate with factor 1 —



Randomized coordinate descent
Discussion

o lteration oy = ay_1 — L]”(Oét—1)7;t€z‘t

L;,
B . . [
— If p; = 1/n (uniform), linear rate 1 —
| nmax; L;
—If p;, = < linear rate 1 —
P 2j=1L Z?:l L,

e Best-case scenario: " is diagonal, and L = max; L;

e Worst-case scenario: f" is constant and L =) . L,



Frank-Wolfe - conditional gradient - |

e Goal: minimize smooth convex function f(6) on compact set C

e Standard result: accelerated projected gradient descent with optimal
rate O(1/t?)

— Requires projection oracle: arg mingec %H@ — 77H2

e Only availability of the linear oracle: arg mingec 6 ' n

— Many examples (sparsity, low-rank, large polytopes, etc.)
— Iterative Frank-Wolfe algorithm (see, e.g., Jaggi, 2013, and
references therein) with geometric interpretation

{ 0 € argmin 6 f'(01)

0r = (1 — pt)0i_1 + P10y



Frank-Wolfe - conditional gradient - Il

2Ldi 2
e Convergence rates: f(0;) — f(0,) < tliml(c)

0, € aremin® ' (0,_
Iteration: f 5 oeC 110 1_)
0 = (1 — pt)0r—1 + p:0s

_ L _
From smoothness: f(0¢) < f(0s—1) + " (0:-1) " [pe(0s = 00-1)] + 5 [l p2(6: = 0r—) |

_ L .
From compactness: f(0;) < f(01—1) + £ (0:—1) " [p+(0r — 0:-1)] + §pfd1am(C)2

From convexity, f(0;) — f(0.) < f'(0:—1) " (6,1 —6,) < max F(0_1) " (0,_1—0),
which is equal to f/(0;—1) " (6;—1 — 0;)

L
Thus, f(0:) < f(0:—1) — pe[ f(Or—1) — f(0.)] + §Pfdiam(c)2

With p, =2/(t+1): f(6;) < 2Ldiirri(c)2 by direct expansion




Frank-Wolfe - conditional gradient - Il

21L.di 2
e Convergence rates: f(0;) — f(0,) < 13;“(6)

e Remarks and extensions

— Affine-invariant algorithms

— Certified duality gaps and dual interpretations (Bach, 2015)

— Adapted to very large polytopes

— Line-search extensions: minimize quadratic upper-bound

— Stochastic extensions (Lacoste-Julien et al., 2013)

— Away and pairwise steps to avoid oscillations (Lacoste-Julien and

Jaggi, 2015)



Outline - |
1. Introduction
e Large-scale machine learning and optimization

e Classes of functions (convex, smooth, etc.)
e T[raditional statistical analysis through Rademacher complexity

2. Classical methods for convex optimization

e Smooth optimization (gradient descent, Newton method)
e Non-smooth optimization (subgradient descent)
e Proximal methods

3. Non-smooth stochastic approximation

e Stochastic (sub)gradient and averaging
e Non-asymptotic results and lower bounds
e Strongly convex vs. non-strongly convex



Outline - 1l
4. Classical stochastic approximation
e Asymptotic analysis

e Robbins-Monro algorithm
e Polyak-Rupert averaging

5. Smooth stochastic approximation algorithms

e Non-asymptotic analysis for smooth functions
e Logistic regression
e Least-squares regression without decaying step-sizes

6. Finite data sets

e Gradient methods with exponential convergence rates
e Convex duality
e (Dual) stochastic coordinate descent - Frank-Wolfe



Subgradient descent for machine learning

e Assumptions (f is the expected risk, fthe empirical risk)
— “Linear” predictors: 6(x) = 0'®(x), with ||®(2)|2 < R as.
= f(0) = >0 L(yi, @(x4) ' 6)

A

— G-Lipschitz loss: f and f are GR-Lipschitz on © = {||f||2 < D}

e Statistics: with probability greater than 1 — 9

A GRD 2
sup | (6) - 16)] < T2 |2+ 2108 |

e Optimization: after ¢ iterations of subgradient method

o . oa GRD
f(0) —gggf(ﬁ) < 7

e t = n iterations, with total running-time complexity of O(n?d)



Stochastic subgradient “descent” /method
e Assumptions

— fn convex and B-Lipschitz-continuous on {||0||> < D}

— (fn) i.i.d. functions such that Ef,, = f
— 6, global optimum of f on {||0||- < D}

2D
e Algorithm: 0,, =1IIp <6’n 1 — W o (On )>

e Bound: )
1 2DB
Efl— 0. — f(0,) <——
f(, > ) - 10 <20
e “Same” three-line proof as in the deterministic case
e Minimax rate (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

e Running-time complexity: O(dn) after n iterations



Summary of new results (Bach and Moulines, 2011)

e Stochastic gradient descent with learning rate ~v,, = Cn™¢

e Strongly convex smooth objective functions

— Old: O(n™1) rate achieved without averaging for o = 1
— New: O(n™!) rate achieved with averaging for o € [1/2, 1]
— Non-asymptotic analysis with explicit constants

— Forgetting of initial conditions

— Robustness to the choice of C

e Convergence rates for E||0,, — 0.||?> and E||0,, — 0.

2
0 Vn

— no averaging: O( ) + O(e "™ )[|6y — 6,

tr H(0,)™ 1

160 —H*HQ)

—1 —2x —24«
+pu  O(n"““+n )+O( i

— averaging:



Least-mean-square algorithm

o Least-squares: f(0) = sE|(y, — (®(z,),0))?] with § € R

— SGD = least-mean-square algorithm (see, e.g., Macchi, 1995)
— usually studied without averaging and decreasing step-sizes
— with strong convexity assumption E|®(z,,) @ ®(xy,)| = H = p-1d

e New analysis for averaging and constant step-size v = 1/(4R?)

— Assume ||®(z,)|| < R and |y, — (®(x,),0.)| < o almost surely
— No assumption regarding lowest eigenvalues of H

_ 4 2 4 2 — 9, 2
~ Main result: | Ef (8, 1) — f(6.) < 229 4F7000 = 0.]

n n

e Matches statistical lower bound (Tsybakov, 2003)

— Non-asymptotic robust version of Gyorfi and Walk (1996)



Choice of support point for online Newton step

e Two-stage procedure

(1) Run n/2 iterations of averaged SGD to obtain 6
(2) Run n/2 iterations of averaged constant step-size LMS

— Reminiscent of one-step estimators (see, e.g., Van der Vaart, 2000)
— Provable convergence rate of O(d/n) for logistic regression
— Additional assumptions but no strong convexity

e Update at each iteration using the current averaged iterate

— Recursion: 9n = Hn_l — "}/[f,,/%((g_n_ﬂ + fg(ﬁ_n_l)(en_l — Hn_l)]

— No provable convergence rate (yet) but best practical behavior
— Note (dis)similarity with regular SGD: 0,, = 60,,_1 — vf] (0,_1)



Stochastic average gradient
(Le Roux, Schmidt, and Bach, 2012)

e Stochastic average gradient (SAG) iteration

— Keep in memory the gradients of all functions f;, 1 =1,...,n
— Random selection i(t) € {1,...,n} with replacement
& [(0;—1) ifi=i(t
— lteration: 6, = 6;_1 — i ny with y} = fi( 1t ) ( )
n Y, otherwise

e Stochastic version of incremental average gradient (Blatt et al., 2008)

e Extra memory requirement

— Supervised machine learning

— Only need to store n real numbers



Summary of rates of convergence
e Problem parameters

— D diameter of the domain
— B Lipschitz-constant

— L smoothness constant

— 1 strong convexity constant

convex strongly convex
nonsmooth | deterministic: BD/+\/t deterministic: B*/(tu)
stochastic: BD//n stochastic: B%/(nu)
smooth deterministic: LD?/t? deterministic: exp(—t+/ju/L)
stochastic: LD?/\/n stochastic: L/(nu)
finite sum: n/t finite sum: exp(— min{1/n, u/L}t)
quadratic | deterministic: LD?/t? deterministic: exp(—t+\/u/L)
stochastic: d/n + LD?/n | stochastic: d/n + LD?/n




Conclusions
Machine learning and convex optimization

e Statistics with or without optimization?

— Significance of mixing algorithms with analysis
— Benefits of mixing algorithms with analysis

e Open problems

— Non-parametric stochastic approximation

— Characterization of implicit regularization of online methods

— Structured prediction

— Going beyond a single pass over the data (testing performance)

— Further links between convex optimization and online
learning /bandits

— Parallel and distributed optimization

— Non-convex optimization



References

A. Agarwal, P. L. Bartlett, P. Ravikumar, and M. J. Wainwright. Information-theoretic lower bounds
on the oracle complexity of stochastic convex optimization. [EEE Transactions on Information
Theory, 58(5):3235-3249, 2012.

Alekh Agarwal and Leon Bottou. A lower bound for the optimization of finite sums. arXiv preprint
arXiv:1410.0723, 2014.

R. Aguech, E. Moulines, and P. Priouret. On a perturbation approach for the analysis of stochastic
tracking algorithms. SIAM J. Control and Optimization, 39(3):872-899, 2000.

Y. Arjevani and O. Shamir. Dimension-free iteration complexity of finite sum optimization problems.
In Advances In Neural Information Processing Systems, 2016.

R. Babanezhad, M. O. Ahmed, A. Virani, M. W. Schmidt, J. Konecny, and S. Sallinen. Stopwasting
my gradients: Practical SVRG. In Advances in Neural Information Processing Systems, 2015.

F. Bach. Self-concordant analysis for logistic regression. Electronic Journal of Statistics, 4:384—414,
2010. ISSN 1935-7524.

F. Bach. Adaptivity of averaged stochastic gradient descent to local strong convexity for logistic
regression. Technical Report 00804431, HAL, 2013.

F. Bach and E. Moulines. Non-asymptotic analysis of stochastic approximation algorithms for machine
learning. In Adv. NIPS, 2011.

F. Bach and E. Moulines. Non-strongly-convex smooth stochastic approximation with convergence
rate o(1/mn). Technical Report 00831977, HAL, 2013.



F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Structured sparsity through convex optimization,
2012a.

Francis Bach. Duality between subgradient and conditional gradient methods. SIAM Journal on
Optimization, 25(1):115-129, 2015.

Francis Bach, Rodolphe Jenatton, Julien Mairal, and Guillaume Obozinski. Optimization with sparsity-
inducing penalties. Foundations and Trends(R) in Machine Learning, 4(1):1-106, 2012b.

P. Balamurugan and F. Bach. Stochastic variance reduction methods for saddle-point problems.
Technical Report 01319293, HAL, 2016.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM Journal on Imaging Sciences, 2(1):183-202, 20009.

Albert Benveniste, Michel Métivier, and Pierre Priouret. Adaptive algorithms and stochastic
approximations. Springer Publishing Company, Incorporated, 2012.

D. P. Bertsekas. Nonlinear programming. Athena scientific, 1999.

D. Blatt, A. O. Hero, and H. Gauchman. A convergent incremental gradient method with a constant
step size. SIAM Journal on Optimization, 18(1):29-51, 2008.

V. S. Borkar. Stochastic approximation with two time scales. Systems & Control Letters, 29(5):
291-294, 1997.

L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In Adv. NIPS, 2008.

L. Bottou and Y. Le Cun. On-line learning for very large data sets. Applied Stochastic Models in
Business and Industry, 21(2):137-151, 2005.

S. Boucheron and P. Massart. A high-dimensional wilks phenomenon. Probability theory and related



fields, 150(3-4):405-433, 2011.

S. Boucheron, O. Bousquet, G. Lugosi, et al. Theory of classification: A survey of some recent
advances. ESAIM Probability and statistics, 9:323-375, 2005.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2003.

S. Bubeck. Convex optimization: Algorithms and complexity. Foundations and Trends in Machine
Learning, 8(3-4):231-357, 2015.

N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization ability of on-line learning algorithms.
Information Theory, IEEE Transactions on, 50(9):2050-2057, 2004.

P. L. Combettes and J.-C. Pesquet. Proximal splitting methods in signal processing. In Fixed-point
algorithms for inverse problems in science and engineering, pages 185-212. Springer, 2011.

A. d'Aspremont. Smooth optimization with approximate gradient. SIAM J. Optim., 19(3):1171-1183,
2008.

A. Defazio, J. Domke, and T. S. Caetano. Finito: A faster, permutable incremental gradient method
for big data problems. In Proc. ICML, 2014a.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient method
with support for non-strongly convex composite objectives. In Advances in Neural Information
Processing Systems, pages 1646-1654, 2014b.

A. Défossez and F. Bach. Constant step size least-mean-square: Bias-variance trade-offs and optimal
sampling distributions. 2015.

A. Dieuleveut and F. Bach. Non-parametric Stochastic Approximation with Large Step sizes. Technical
report, ArXiv, 2014.



A. Dieuleveut, N. Flammarion, and F. Bach. Harder, better, faster, stronger convergence rates for
least-squares regression. Technical Report 1602.05419, arXiv, 2016.

J. Duchi and Y. Singer. Efficient online and batch learning using forward backward splitting. Journal
of Machine Learning Research, 10:2899-2934, 2009. ISSN 1532-4435.

M. Duflo. Algorithmes stochastiques. Springer-Verlag, 1996.

V. Fabian. On asymptotic normality in stochastic approximation. The Annals of Mathematical
Statistics, 39(4):1327-1332, 1968.

N. Flammarion and F. Bach. From averaging to acceleration, there is only a step-size. arXiv preprint
arXiv:1504.01577, 2015.

R. Frostig, R. Ge, S. M. Kakade, and A. Sidford. Competing with the empirical risk minimizer in a
single pass. In Proceedings of the Conference on Learning Theory, 2015.

S. Ghadimi and G. Lan. Optimal stochastic approximation algorithms for strongly convex stochastic
composite optimization. Optimization Online, July, 2010.

Saeed Ghadimi and Guanghui Lan. Optimal stochastic approximation algorithms for strongly convex
stochastic composite optimization, ii: shrinking procedures and optimal algorithms. SIAM Journal
on Optimization, 23(4):2061-2089, 2013.

M. Gurbuzbalaban, A. Ozdaglar, and P. Parrilo. On the convergence rate of incremental aggregated
gradient algorithms. Technical Report 1506.02081, arXiv, 2015.

L. Gyorfi and H. Walk. On the averaged stochastic approximation for linear regression. SIAM Journal
on Control and Optimization, 34(1):31-61, 1996.

E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret algorithms for online convex optimization.



Machine Learning, 69(2):169-192, 2007.

Elad Hazan and Satyen Kale. Beyond the regret minimization barrier: optimal algorithms for stochastic
strongly-convex optimization. The Journal of Machine Learning Research, 15(1):2489-2512, 2014.

Chonghai Hu, James T Kwok, and Weike Pan. Accelerated gradient methods for stochastic optimization
and online learning. In NIPS, volume 22, pages 781-789, 2009.

Martin Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In Proceedings of
the 30th International Conference on Machine Learning (ICML-13), pages 427-435, 2013.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in Neural Information Processing Systems, pages 315-323, 2013.

Takafumi Kanamori and Hidetoshi Shimodaira. Active learning algorithm using the maximum weighted
log-likelihood estimator. Journal of statistical planning and inference, 116(1):149-162, 2003.

H. J. Kushner and G. G. Yin. Stochastic approximation and recursive algorithms and applications.
Springer-Verlag, second edition, 2003.

S. Lacoste-Julien and M. Jaggi. On the global linear convergence of frank-wolfe optimization variants.
In Advances in Neural Information Processing Systems (NIPS), 2015.

S. Lacoste-Julien, M. Schmidt, and F. Bach. A simpler approach to obtaining an o (1/t) convergence
rate for projected stochastic subgradient descent. Technical Report 1212.2002, ArXiv, 2012.

Simon Lacoste-Julien, Martin Jaggi, Mark Schmidt, and Patrick Pletscher. Block-coordinate {Frank-
Wolfe} optimization for structural {SVMs}. In Proceedings of The 30th International Conference
on Machine Learning, pages 53-61, 2013.

G. Lan. An optimal method for stochastic composite optimization. Math. Program., 133(1-2, Ser. A):



365-397, 2012,

G. Lan. An optimal randomized incremental gradient method. Technical Report 1507.02000, arXiv,
2015.

Guanghui Lan, Arkadi Nemirovski, and Alexander Shapiro. Validation analysis of mirror descent
stochastic approximation method. Mathematical programming, 134(2):425-458, 2012.

N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential convergence
rate for strongly-convex optimization with finite training sets. In Adv. NIPS, 2012.

N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential convergence
rate for strongly-convex optimization with finite training sets. Technical Report 00674995, HAL,
2013.

R. Leblond, F. Pedregosa, and S. Lacoste-Julien. Asaga: Asynchronous parallel Saga. Technical Report
1606.04809, arXiv, 2016.

H. Lin, J. Mairal, and Z. Harchaoui. A universal catalyst for first-order optimization. In Advances in
Neural Information Processing Systems (NIPS), 2015.

O. Macchi. Adaptive processing: The least mean squares approach with applications in transmission.
Wiley West Sussex, 1995.

J. Mairal. Incremental majorization-minimization optimization with application to large-scale machine
learning. SIAM Journal on Optimization, 25(2):829-855, 2015.

P. Massart. Concentration Inequalities and Model Selection: Ecole d'été de Probabilités de Saint-Flour
23. Springer, 2003.

R. Meir and T. Zhang. Generalization error bounds for bayesian mixture algorithms. Journal of Machine



Learning Research, 4:839-860, 2003.

A. Nedic and D. Bertsekas. Convergence rate of incremental subgradient algorithms. Stochastic
Optimization: Algorithms and Applications, pages 263-304, 2000.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to
stochastic programming. SIAM Journal on Optimization, 19(4):1574-1609, 2009.

A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in optimization. Wiley
& Sons, 1983.

Y. Nesterov. A method for solving a convex programming problem with rate of convergence O(1/k?).
Soviet Math. Doklady, 269(3):543-547, 1983.

Y. Nesterov. Introductory lectures on convex optimization: a basic course. Kluwer Academic Publishers,
2004.

Y. Nesterov. Gradient methods for minimizing composite objective function. Center for Operations
Research and Econometrics (CORE), Catholic University of Louvain, Tech. Rep, 76, 2007.

Y. Nesterov. Primal-dual subgradient methods for convex problems. Mathematical programming, 120
(1):221-259, 20009.

Y. Nesterov and A. Nemirovski. Interior-point polynomial algorithms in convex programming. SIAM
studies in Applied Mathematics, 1994.

Y. Nesterov and J. P. Vial. Confidence level solutions for stochastic programming. Automatica, 44(6):
1559-1568, 2008. ISSN 0005-1098.

Yu Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM
Journal on Optimization, 22(2):341-362, 2012.



A. Nitanda. Stochastic proximal gradient descent with acceleration techniques. In Advances in Neural
Information Processing Systems (NIPS), 2014.

N. Parikh and S. P. Boyd. Proximal algorithms. Foundations and Trends in optimization, 1(3):127-239,
2014.

|. Pinelis. Optimum bounds for the distributions of martingales in banach spaces. The Annals of
Probability, 22(4):pp. 1679-1706, 1994. URL http://www. jstor.org/stable/2244912.

B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging. SIAM Journal
on Control and Optimization, 30(4):838-855, 1992.

Maxim Raginsky and Alexander Rakhlin. Information-based complexity, feedback and dynamics in
convex programming. Information Theory, IEEE Transactions on, 57(10):7036-7056, 2011.

H. Robbins and S. Monro. A stochastic approximation method. The Annals of Mathematical Statistics,
pages 400-407, 1951a.

H. Robbins and S. Monro. A stochastic approximation method. Ann. Math. Statistics, 22:400-407,
1951b.

Herbert Robbins and David Siegmund. A convergence theorem for non negative almost supermartingales
and some applications. In Herbert Robbins Selected Papers, pages 111-135. Springer, 1985.

R Tyrrell Rockafellar. Convex Analysis. Number 28. Princeton University Press, 1997.

D. Ruppert. Efficient estimations from a slowly convergent Robbins-Monro process. Technical Report
781, Cornell University Operations Research and Industrial Engineering, 1988.

M. Schmidt, N. Le Roux, and F. Bach. Optimization with approximate gradients. Technical report,
HAL, 2011.



B. Scholkopf and A. J. Smola. Learning with Kernels. MIT Press, 2001.

S. Shalev-Shwartz. Sdca without duality, regularization, and individual convexity. Technical Report
1602.01582, arXiv, 2016.

S. Shalev-Shwartz and N. Srebro. SVM optimization: inverse dependence on training set size. In Proc.
ICML, 2008.

S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized loss
minimization. Technical Report 1209.1873, Arxiv, 2012.

S. Shalev-Shwartz and T. Zhang. Accelerated proximal stochastic dual coordinate ascent for regularized
loss minimization. In Proc. ICML, 2014.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver for svm.
In Proc. ICML, 2007.

S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan. Stochastic convex optimization. In proc.
COLT, 20009.

O. Shamir. Without-replacement sampling for stochastic gradient methods: Convergence results and
application to distributed optimization. Technical Report 1603.00570, arXiv, 2016.

J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge University Press,
2004.

Naum Zuselevich Shor, Krzysztof C. Kiwiel, and Andrzej Ruszcay?ski. Minimization methods for
non-differentiable functions. Springer-Verlag New York, Inc., 1985.

M.V. Solodov. Incremental gradient algorithms with stepsizes bounded away from zero. Computational
Optimization and Applications, 11(1):23-35, 1998.



K. Sridharan, N. Srebro, and S. Shalev-Shwartz. Fast rates for regularized objectives. 2008.

P. Tseng. An incremental gradient(-projection) method with momentum term and adaptive stepsize
rule. SIAM Journal on Optimization, 8(2):506-531, 1998.

|. Tsochantaridis, Thomas Joachims, T., Y. Altun, and Y. Singer. Large margin methods for structured
and interdependent output variables. Journal of Machine Learning Research, 6:1453-1484, 2005.

A. B. Tsybakov. Optimal rates of aggregation. In Proc. COLT, 2003.
A. W. Van der Vaart. Asymptotic statistics, volume 3. Cambridge Univ. press, 2000.

L. Xiao. Dual averaging methods for regularized stochastic learning and online optimization. Journal
of Machine Learning Research, 9:2543-2596, 2010. ISSN 1532-4435.

L. Xiao and T. Zhang. A proximal stochastic gradient method with progressive variance reduction.
SIAM Journal on Optimization, 24(4):2057-2075, 2014.

L. Zhang, M. Mahdavi, and R. Jin. Linear convergence with condition number independent access of
full gradients. In Advances in Neural Information Processing Systems, 2013.



