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Scientific context

e Proliferation of digital data

— Personal data
— Industry
— Scientific: from bioinformatics to humanities

e Need for automated processing of massive data



Recent progress in perception (vision, audio, text)

Francais ~ S ) & Anglais~ IE] o)

La France lance une  France launches
grande initiative en major initiative in
intelligence artificielle  artificial intelligence

Essayez avec cette orthographe : La France
lancé une grande initiative en intelligence
artificielle.

person ride dog

From translate.google.fr From Peyre et al. (2017)
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Parametric supervised machine learning

e Data: n observations (z;,y;) € X xY,1=1,...,n

e Prediction function h(z,0) € R parameterized by 0 ¢ R
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Parametric supervised machine learning

e Data: n observations (z;,y;) € X xY,1=1,...,n
e Prediction function h(z,0) € R parameterized by 0 ¢ R
e (regularized) empirical risk minimization:

min lz Cyis h(z,0)) +  AQ(6)

OcRd M “4
1=1

data fitting term + regularizer

e Actual goal: minimize test error E,, ,)¢(y, h(z,0))



Convex optimization problems
1 mn
min - =Y L(yi, h(2:,0)) +  AQ(6)

OcRd M 4
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e Conditions: Convex loss and linear predictions h(x,0) = 0 ' ®(x)

e Consequences

— Efficient algorithms (typically gradient-based)
— Quantitative runtime and prediction performance guarantees
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— Sparsity / low-rank models with first-order methods
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— Stochastic methods for large-scale learning and online learning
— etc.



Convex optimization problems

min lz C(yi, h(x:,0)) +  AQ(0)

OcRd M 4
1=1

e Conditions: Convex loss and linear predictions h(x,0) = 0 ' ®(x)

e Consequences

— Efficient algorithms (typically gradient-based)
— Quantitative runtime and prediction performance guarantees

e Golden years of convexity in machine learning (1995 to 2020)

— Support vector machines and kernel methods

— Sparsity / low-rank models with first-order methods

— Optimal transport

— Stochastic methods for large-scale learning and online learning
— etc.



Exponentially convergent SGD for smooth finite sums

n

e Finite sums: min %Z £,(0) = %Z {e(y@-, Wz, 0)) + )\Q(H)}

0 cRd

1=1



Exponentially convergent SGD for smooth finite sums

n
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e Non-accelerated algorithms (with similar properties)

— SAG (Le Roux, Schmidt, and Bach, 2012)
— SDCA (Shalev-Shwartz and Zhang, 2013)
— SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)
— SAGA (Defazio, Bach, and Lacoste-Julien, 2014), etc...
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Exponentially convergent SGD for smooth finite sums

n

e Finite sums: min %Z £.(0) = = 3 {e(y@-, Wz, 0)) + )\Q(H)}

0 cRd n

1=1
e Non-accelerated algorithms (with similar properties)

— SAG (Le Roux, Schmidt, and Bach, 2012)
— SDCA (Shalev-Shwartz and Zhang, 2013)
— SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)
— SAGA (Defazio, Bach, and Lacoste-Julien, 2014), etc...

e Accelerated algorithms

— Shalev-Shwartz and Zhang (2014); Nitanda (2014)
— Lin et al. (2015); Defazio (2016), etc...
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NB: slightly different (smaller) notion of condition number for batch methods
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(2) full gradient: better exponential rate using the sum structure



Exponentially convergent SGD for finite sums

e Running-time to reach precision ¢ (with k = condition number)

Stochastic gradient descent d X K X

Accelerated gradient descent d X nyk X log

SAG(A), SVRG, SDCA, MISO | dx  (n+x) xlogl

Accelerated versions dx (n++/nk) X log%

e Beating two lower bounds (Nemirovski and Yudin, 1983; Nesterov,
2004): with additional assumptions

(1) stochastic gradient: exponential rate for finite sums
(2) full gradient: better exponential rate using the sum structure

e Matching lower bounds (Woodworth and Srebro, 2016; Lan, 2015)



Exponentially convergent SGD for finite sums
From theory to practice and vice-versa

=

z :

© . £

0 stochastic 8

O 2
< deterministic 2

50 new 8
9 8

. >
time o | | | |

0 10 20 30 40 50
Effective Passes

e Empirical performance “matches” theoretical guarantees

e Theoretical analysis suggests practical improvements

— Non-uniform sampling, acceleration
— Matching upper and lower bounds
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Convex optimization for machine learning
From theory to practice and vice-versa

e Empirical performance “matches” theoretical guarantees
e Theoretical analysis suggests practical improvements

e Many other well-understood areas

— Single pass SGD and generalization errors

— Non-parametric and high-dimensional regression
— Randomized linear algebra

— Bandit problems

— etc...

e What about deep learning?
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Theoretical analysis of deep learning

e Multi-layer neural network h(z,0) =0'o(0'!_ o(---0,0(0] x))

— NB: already a simplification

e Main difficulties

1. Non-convex optimization problems
2. Generalization guarantees in the overparameterized regime



Optimization for multi-layer neural networks

e What can go wrong with non-convex optimization problems?
— Local minima
— Stationary points
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e What can go wrong with non-convex optimization problems?
— Local minima
— Stationary points
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— Plateaux

— Bad initialization 05/
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e Generic local theoretical guarantees

— Convergence to stationary points or local minima
— See, e.g., Lee et al. (2016); Jin et al. (2017)
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Optimization for multi-layer neural networks

e What can go wrong with non-convex optimization problems?

— Local minima

— Stationary points
— Plateaux

— Bad initialization 05|

~ etc... |\
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e General global performance guarantees impossible to obtain

e Special case of (deep) neural networks

— Most local minima are equivalent (Choromanska et al., 2015)
— No spurrious local minima (Soltanolkotabi et al., 2018)
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e Goal: minimize R(h) = E,(, ,){(y, h(x)), with R convex

e Main insight
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Gradient descent for a single hidden layer

e Goal: minimize R(h) = E,(, ,){(y, h(x)), with R convex

e Main insight
1 m
—h=— g U (w;) :/ U(w)du(w) with du(w g Ow;
T “ W
=1

— Overpara_meterized models with m large ~ measure p Wlth densities
— Barron (1993); Kurkova and Sanguineti (2001); Bengio et al.
(2006); Rosset et al. (2007); Bach (2017)
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— Non-tractable (Bach, 2017), not what is used in practice



Optimization on measures

e Minimize with respect to measure . R(/ \If(w)d,u(w))

W
— Convex optimization problem on measures

— Frank-Wolfe techniques for incremental learning

— Non-tractable (Bach, 2017), not what is used in practice

e Represent by a finite set of “particles” y=.->""", 0y,

— Backpropagation = gradient descent on (w1, ..., W)

e Three questions:

— Algorithm limit when number of particles m gets large
— Global convergence to a global minimizer
— Prediction performance



Many particle limit and global convergence
(Chizat and Bach, 2018)

e General framework: minimize F(u) = R(/

W\If<w>du<w>)

1 m
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gorithm: minimizing F},,(w; W) mj; (wj)



Many particle limit and global convergence
(Chizat and Bach, 2018)

e General framework: minimize F'(u) = R(/W\If(w)d,u(w))

1 m
— Algorithm: minimizing F.. (w1, .. . (— U (w )
gorithm: minimizing F,,(w; m;

— Gradient flow W = —mVF,,(W), with W = (w1, ..., wm)
— Idealization of (stochastic) gradient descent



Many particle limit and global convergence
(Chizat and Bach, 2018)

e General framework: minimize F'(u) = R(/W\If(w)d,u(w))

1 m
— Algorithm: minimizing F.. (w1, .. . (— U (w )
gorithm: minimizing F,,(w; m;
— Gradient flow W = —mVF,,(W), with W = (w1, ..., wm)
— Idealization of (stochastic) gradient descent
1. Single pass SGD on the unobserved expected risk

2. Multiple pass SGD or full GD on the empirical risk



Many particle limit and global convergence
(Chizat and Bach, 2018)

e General framework: minimize F'(u) = R(/W\If(w)d,u(w))

1 m
— Algorithm: minimizing F.. (w1, .. . (— U (w )
gorithm: minimizing F,,(w; m;

— Gradient flow W = —mVF,,(W), with W = (w1, ..., wm)
— Idealization of (stochastic) gradient descent

e Limit when m tends to infinity

— Wasserstein gradient flow (Nitanda and Suzuki, 2017; Chizat and
Bach, 2018; Song, Montanari, and Nguyen, 2018; Sirignano and
Spiliopoulos, 2018; Rotskoff and Vanden-Eijnden, 2018)

e NB: for more details on gradient flows, see Ambrosio et al. (2008)



Many particle limit and global convergence
(Chizat and Bach, 2018)

e (informal) theorem: when the number of particles tends to infinity,
the gradient flow converges to the global optimum



Many particle limit and global convergence
(Chizat and Bach, 2018)

e (informal) theorem: when the number of particles tends to infinity,
the gradient flow converges to the global optimum

— See precise definitions and statement in paper
— Two key ingredients: homogeneity and initialization



Many particle limit and global convergence
(Chizat and Bach, 2018)

e (informal) theorem: when the number of particles tends to infinity,
the gradient flow converges to the global optimum

— See precise definitions and statement in paper
— Two key ingredients: homogeneity and initialization

e Homogeneity (see, e.g., Haeffele and Vidal, 2017; Bach et al., 2008)
— Full or partial, e.g., ¥(w;)(z) = mb2(j) - o|61(-,4) ']

— Applies to rectified linear units (but also to sigmoid activations)

e Sufficiently spread initial measure

— Needs to cover the entire sphere of directions



Many particle limit and global convergence
(Chizat and Bach, 2018)

e (informal) theorem: when the number of particles tends to infinity,
the gradient flow converges to the global optimum

— See precise definitions and statement in paper
— Two key ingredients: homogeneity and initialization

e Homogeneity (see, e.g., Haeffele and Vidal, 2017; Bach et al., 2008)

— Full or partial, e.g., ¥(w;)(z) = mb2(j) - o|61(-,4) ']
— Applies to rectified linear units (but also to sigmoid activations)

e Sufficiently spread initial measure

— Needs to cover the entire sphere of directions

e Only qualititative!



Simple simulations with neural networks

e RelLU units with d = 2 (optimal predictor has 5 neurons)

1T —— particle gradient flow REN

1T @ limit measure ~
1

——- optimal positions SS
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5 neurons

m

1
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() = — 3 W) (@) = =3 0:0) (0:(,) ),

(plotting |02(7)|01(-, j) for each hidden neuron j)

NB : also applies to spike deconvolution
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e RelLU units with d = 2 (optimal predictor has 5 neurons)

1T —— particle gradient flow \‘\\\
——- optimal positions ‘x\\
—-27 @ limit measure <
2 -1 0 1 2 3 2 -1 0 1 2 3 2 -1 0 1 2 3
5 neurons 10 neurons 100 neurons

NB : also applies to spike deconvolution
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— Requires well-spread initialization, no quantitative results
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From optimization to statistics

o Summary: with h(z) = — 3 (w;)(z) = %Zeg(g’)(el(-,j)%)+
j=1 —

— If m tends to infinity, the gradient flow converges to a global
minimizer of the risk R(h) = E, ,4(y, h(x))
— Requires well-spread initialization, no quantitative results
e Single-pass SGD with R the (unobserved) expected risk
— Converges to an optimal predictor on the testing distribution
— Tends to underfit
e Multiple-pass SGD or full GD with R the empirical risk

— Converges to an optimal predictor on the training distribution
— Should overfit?
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e Minimizing R(h Zﬁ i, h(x;)) for h(x ZOQ
— When m(d + 1) > n, typically there exist many h such that

Vied{l,...,n}, h(z;)=vy; (or £(y;,h(z;)) = 0)

— See Belkin et al. (2018); Ma et al. (2018); Vaswani et al. (2019)
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Interpolation regime

e Minimizing R(h Zﬁ i, h(x;)) for h(x ZOQ
— When m(d + 1) > n, typically there exist many h such that
Vied{l,...,n}, h(z;)=1vy; (or £(y;,h(z;)) = 0)
— See Belkin et al. (2018); Ma et al. (2018); Vaswani et al. (2019)

e Which £ is the gradient flow converging to?

— Implicit bias of (stochastic) gradient descent

— Typically minimum Euclidean norm solution (Gunasekar et al.,

2017; Soudry et al., 2018; Gunasekar et al., 2018)
— Surprisingly difficult for the square loss
— Surprisingly easy for the logistic loss
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Maximum margin and logistic regression
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e Logistic regression: min — E log(1 + exp(—y;0 ' x;))
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— Separable data: 30 ¢ R4, Vi {1,...,n}, y0'z; > 1
— 0 = infimum of the risk, attained for infinitely large ||6]|2
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Maximum margin and logistic regression

1 n
e Logistic regression: min — Z log(1 + exp(—y:6 ' ;))
OERT N5

— Separable data: 30 ¢ R4, Vi {1,...,n}, y0'z; > 1

— 0 = infimum of the risk, attained for infinitely large ||0]|2

e Implicit bias of gradient descent (Soudry et al., 2018)

— GD diverges but m&t converges to maximum margin separator

max  min ymez-
[nll2=1 <€{1,...,n}

— often written as
min ||0]|2 such that Vi, y;0 ' z; > 1

— Separable support vector machine
(Vapnik and Chervonenkis, 1964)
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Logistic regression for two-layer neural networks

() = —30:7) (0:(,) ) ,

e Overparameterized regime m — +oo

— Will converge to well-defined “maximum margin” separator

e Two different regimes (Chizat and Bach, 2020)

1. Optimizing over output layer only 65: random feature kernel
2. Optimizing over all layers 61, 65: feature learning
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Random feature kernel regime - |

e Prediction function h(z 292 )+

— Input weights 6:(-,5), 7 = 1,...,m, random and fixed
— Optimize over output weights «92 c R™
— Corresponds to linear predictor with ®(x); = \/Lm(@l(-,j)Tx)Jr

e Converges to separator with minimum norm ||6,]|3

— Direct application of results from Soudry et al. (2018)
— Limit when m tends to infinity?

Z 91( j) /)+

7).,
al,

1995 Rahimi and Recht, 2007)

e Kernel () =

1
m
— Converges to E ( )
— “Random features” (Ne
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Random feature kernel regime - Il

e Limiting kernel E,, (nTx)+(77Tx’)+

— Reproducing kernel Hilbert spaces (RKHS)
(see, e.g., Scholkopf and Smola, 2001)
— Space of (very) smooth functions (Bach, 2017)

e (informal) theorem (Chizat and Bach, 2020): when m — +o0, the
gradient flow converges to the function in the RKHS that separates

the data with minimum RKHS norm

— Quantitative analysis available

— Letting m — +00 is useless in practice
— See Montanari et al. (2019) for related work in the context of

“double descent”



From RKHS norm to variation norm

e Alternative definition of the RKHS norm

I = inf [ lan)ldr(a) such that f(a) = | 0" o)-aln)ar(n

— Input weigths uniformly distributed on the sphere (Bach, 2017)
— Smooth functions (does not allow single hidden neuron)



From RKHS norm to variation norm

e Alternative definition of the RKHS norm

I = inf [ lan)ldr(a) such that f(a) = | 0" o)-aln)ar(n

— Input weigths uniformly distributed on the sphere (Bach, 2017)
— Smooth functions (does not allow single hidden neuron)

e Variation norm (Kurkova and Sanguineti, 2001)

af) = int [ lalmldrtn) such that (@)= | (7o) aln)dr(n

— Larger space including non-smooth functions
— Allows single hidden neuron
— Adaptivity to linear structures (Bach, 2017)
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Feature learning regime

1 m
e Prediction function h(z) = RE 05(5)(01(-4) ") ,
7=1

— Optimize over all weights 61, 65

e (informal) theorem (Chizat and Bach, 2020): when m — 400, the
gradient flow converges to the function that separates the data with
minimum variation norm

— Actual learning of representations

— Adaptivity to linear structures (see Chizat and Bach, 2020)
— No known convex optimization algorithms in polynomial time
— End of the curve of double descent (Belkin et al., 2018)



Optimizing over two layers

e [wo-dimensional classification with “bias’ term

Space of parameters Space of predictors
e Plot of |62(5)[01(+,7) e (4+/—) training set
e Color depends on sign of 65(7) e One color per class

e ‘tanh” radial scale e Line shows 0O level set of h





Comparison of kernel and feature learning regimes

o /5 (left: kernel) vs. ¢ (right: feature learning and variation norm)





Comparison of kernel and feature learning regimes
e Adaptivity to linear structures

e Two-class classification in dimension d = 15

— Two first coordinates as shown below
— All other coordinates uniformly at random
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e Summary
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— Global convergence with infinitely many neurons

— Convergence to maximum margin separators in well-defined
function spaces

— Only qualitative
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e Summary

— Qualitative analysis of gradient descent for 2-layer neural networks

— Global convergence with infinitely many neurons

— Convergence to maximum margin separators in well-defined
function spaces

— Only qualitative

e Open problems

— Quantitative analysis in terms of number of neurons m and time ¢
— Extension to convolutional neural networks

— Extension to deep neural networks

— Relationships between theory and practice



Can learning theory resist deep learning?

e Empirical successes of deep learning cannot be ignored

— Understanding core principles and influencing practitioners

e Scientific standards should not be lowered

— Critics and limits of theoretical and empirical results
— Rigor beyond mathematical guarantees



Can learning theory resist deep learning?

e Empirical successes of deep learning cannot be ignored

— Understanding core principles and influencing practitioners

e Scientific standards should not be lowered

— Critics and limits of theoretical and empirical results
— Rigor beyond mathematical guarantees

e Some wisdom from physics:

Physical Review adheres to the following policy with respect to use of terms such
as “new” or “novel:” All material accepted for publication in the Physical Review
Is expected to contain new results in physics. Phrases such as “new,” ‘for the
first time,” etc., therefore should normally be unnecessary; they are not in keeping
with the journal’s scientific style. Furthermore, such phrases could be construed as

claims of priority, which the editors cannot assess and hence must rule out.
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