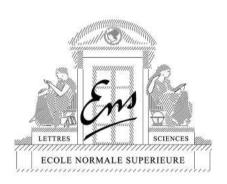
Supervised learning for computer vision:

Theory and algorithms - Part II

Francis Bach¹ & Jean-Yves Audibert^{2,1}

- 1. INRIA Ecole Normale Supérieure
- 2. ENPC



ECCV Tutorial - Marseille, 2008

Supervised learning and regularization

- ullet Data: $x_i \in \mathcal{X}$, $y_i \in \mathcal{Y}$, $i = 1, \ldots, n$
- Minimize with respect to function $f \in \mathcal{F}$:

$$\sum_{i=1}^{n} \ell(y_i, f(x_i)) + \frac{\lambda}{2} ||f||^2$$
 Error on data + Regularization

Loss & function space ? Norm ?

- Two theoretical/algorithmic issues:
 - Loss
 - Function space / norm

Part II - Outline

1. Losses for particular machine learning tasks

• Classification, regression, etc...

2. Regularization by Hilbert norms (kernel methods)

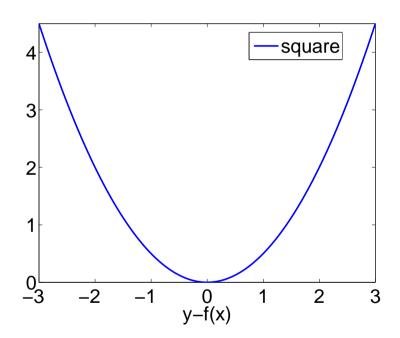
- Kernels and representer theorem
- Convex duality and optimization
- Kernel design

3. Regularization by sparsity-inducing norms

- ℓ_1 -norm regularization
- Multiple kernel learning
- Theoretical results
- Other extensions

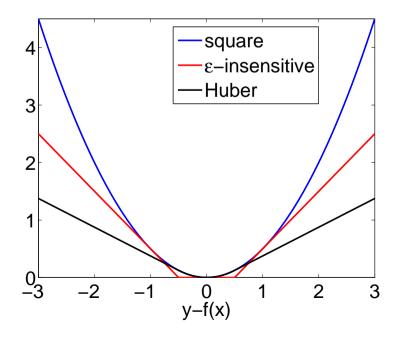
Losses for regression (Shawe-Taylor and Cristianini, 2004)

- Response: $y \in \mathbb{R}$, prediction $\hat{y} = f(x)$,
 - quadratic (square) loss $\ell(y, f(x)) = \frac{1}{2}(y f(x))^2$
 - Not many reasons to go beyond square loss!



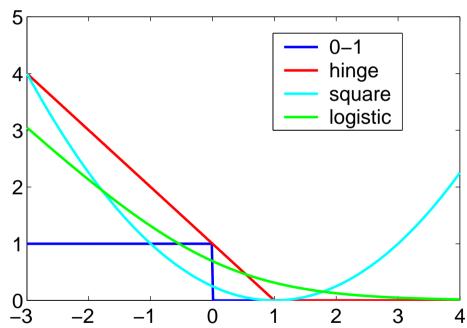
Losses for regression (Shawe-Taylor and Cristianini, 2004)

- Response: $y \in \mathbb{R}$, prediction $\hat{y} = f(x)$,
 - quadratic (square) loss $\ell(y, f(x)) = \frac{1}{2}(y f(x))^2$
 - Not many reasons to go beyond square loss!
- Other convex losses "with added benefits"
 - ε -insensitive loss $\ell(y, f(x)) = (|y f(x)| \varepsilon)_+$
 - Hüber loss (mixed quadratic/linear): robustness to outliers



Losses for classification (Shawe-Taylor and Cristianini, 2004)

- Label : $y \in \{-1, 1\}$, prediction $\hat{y} = \text{sign}(f(x))$
 - loss of the form $\ell(y, f(x)) = \ell(yf(x))$
 - "True" cost: $\ell(yf(x)) = 1_{yf(x) < 0}$
 - Usual convex costs:



Differences between hinge and logistic loss: differentiability/sparsity

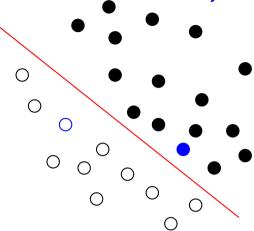
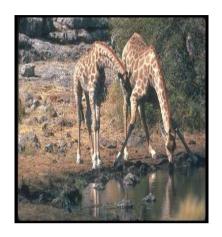


Image annotation ⇒ **multi-class classification**

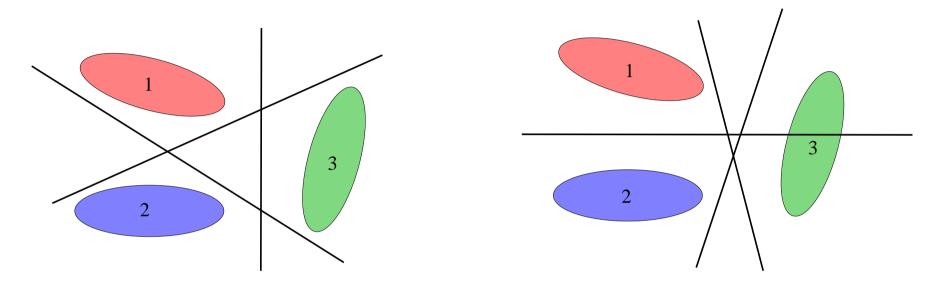


Losses for multi-label classification (Schölkopf and Smola, 2001; Shawe-Taylor and Cristianini, 2004)

- Two main strategies for k classes (with unclear winners)
 - 1. Using existing binary classifiers (efficient code!) + voting schemes
 - "one-vs-rest": learn k classifiers on the entire data
 - "one-vs-one" : learn k(k-1)/2 classifiers on portions of the data

Losses for multi-label classification - Linear predictors

• Using binary classifiers (left: "one-vs-rest", right: "one-vs-one")

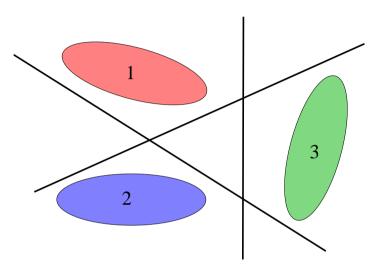


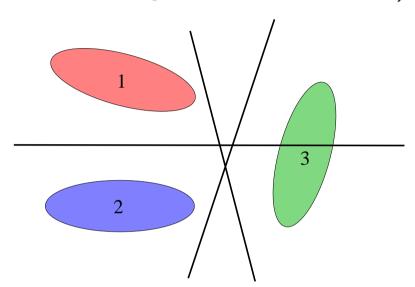
Losses for multi-label classification (Schölkopf and Smola, 2001; Shawe-Taylor and Cristianini, 2004)

- Two main strategies for k classes (with unclear winners)
 - 1. Using existing binary classifiers (efficient code!) + voting schemes
 - "one-vs-rest": learn k classifiers on the entire data
 - "one-vs-one" : learn k(k-1)/2 classifiers on portions of the data
 - 2. Dedicated loss functions for prediction using $\arg\max_{i\in\{1,...,k\}} f_i(x)$
 - Softmax regression: loss = $-\log(e^{f_y(x)}/\sum_{i=1}^k e^{f_i(x)})$
 - Multi-class SVM 1: loss = $\sum_{i=1}^{k} (1 + f_i(x) f_y(x))_+$
 - Multi-class SVM 2: loss = $\max_{i \in \{1,...,k\}} (1 + f_i(x) f_y(x))_+$
- Strategies do not consider same predicting functions

Losses for multi-label classification - Linear predictors

• Using binary classifiers (left: "one-vs-rest", right: "one-vs-one")





• Dedicated loss function

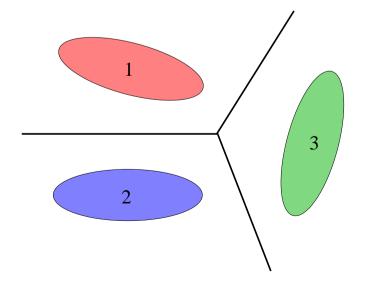


Image retrieval ⇒ **ranking**

Images Showing: All image sizes

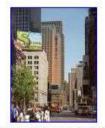
... Un magasin ultra-moderne à New York

New York Travel Guide

New York City

Rockefeller Center in New York

True Crime: New York City



Air Rights in **New York** at \$430 sq ft

New York Hotels Discount Resorts

... from Rider's New York City,

new york hotel bentley, new york

Is this New York?

New-York,-New-York-3---2004

New York Landform Maps Cities AL

Image retrieval ⇒ **outlier/novelty detection**

Images Showing: All image sizes

Paris: History

Monet, Claude: works about Paris

Paris au XIXème siècle

Paris

Paris

PARIS PLAGE

Paris Town Hall

Paris med KLM - SAS - Air France ...

Standard Paris Photos

200101-d30-paris

... Métro de PARIS - Paris Subway

Paris Hilton Pictures

Paris Hilton Pictures

Paris hotel Budget in St Germain ...

paris-figure4.JPG

Losses for ther tasks

- Outlier detection (Schölkopf et al., 2001; Vert and Vert, 2006)
 - one-class SVM: learn only with positive examples
- Ranking
 - simple trick: transform into learning on pairs (Herbrich et al., 2000), i.e., predict $\{x>y\}$ or $\{x\leqslant y\}$
 - More general "structured output methods" (Joachims, 2002)
- General structured outputs
 - Very active topic in machine learning and computer vision
 - see, e.g., Taskar (2005)

Dealing with asymmetric cost or unbalanced data in binary classification

- Two cases with similar issues:
 - Asymmetric cost (e.g., spam filterting, detection)
 - Unbalanced data, e.g., lots of positive examples (example: detection)
- One number is not enough to characterize the asymmetric properties
 - ROC curves (Flach, 2003) cf. precision-recall curves
- Training using asymmetric losses (Bach et al., 2006)

$$\min_{f \in \mathcal{F}} \quad \frac{C_{+}}{\sum_{i,y_{i}=1}} \ell(y_{i}f(x_{i})) + \frac{C_{-}}{\sum_{i,y_{i}=-1}} \ell(y_{i}f(x_{i})) + ||f||^{2}$$

Part II - Outline

1. Losses for particular machine learning tasks

• Classification, regression, etc...

2. Regularization by Hilbert norms (kernel methods)

- Kernels and representer theorem
- Convex duality and optimization
- Kernel design

3. Regularization by sparsity-inducing norms

- ℓ_1 -norm regularization
- Multiple kernel learning
- Theoretical results
- Other extensions

Regularizations

- Main goal: avoid overfitting (see earlier part of the tutorial)
- Two main lines of work:
 - 1. Use Hilbertian (RKHS) norms
 - Non parametric supervised learning and kernel methods
 - Well developped theory (Schölkopf and Smola, 2001; Shawe-Taylor and Cristianini, 2004; Wahba, 1990)
 - 2. Use "sparsity inducing" norms
 - main example: ℓ_1 -norm $\|w\|_1 = \sum_{i=1}^p |w_i|$
 - Perform model selection as well as regularization
 - Theory "in the making"
- Goal of (this part of) the course: Understand how and when to use these different norms

Kernel methods for machine learning

• **Definition**: given a set of objects \mathcal{X} , a positive definite kernel is a symmetric function k(x, x') such that for all finite sequences of points $x_i \in \mathcal{X}$ and $\alpha_i \in \mathbb{R}$,

$$\sum_{i,j} \alpha_i \alpha_j k(x_i, x_j) \geqslant 0$$

(i.e., the matrix $(k(x_i, x_j))$ is symmetric positive semi-definite)

• Aronszajn theorem (Aronszajn, 1950): k is a positive definite kernel if and only if there exists a Hilbert space \mathcal{F} and a mapping $\Phi: \mathcal{X} \mapsto \mathcal{F}$ such that

$$\forall (x, x') \in \mathcal{X}^2, \ k(x, x') = \langle \Phi(x), \Phi(x') \rangle_{\mathcal{H}}$$

- ullet $\mathcal{X}=$ "input space", $\mathcal{F}=$ "feature space", $\Phi=$ "feature map"
- Functional view: reproducing kernel Hilbert spaces

Classical kernels: kernels on vectors $x \in \mathbb{R}^d$

- Linear kernel $k(x,y) = x^{\top}y$
 - $-\Phi(x) = x$
- Polynomial kernel $k(x,y) = (1+x^{\top}y)^d$
 - $-\Phi(x) = \text{monomials}$
- Gaussian kernel $k(x,y) = \exp(-\alpha ||x-y||^2)$
 - $-\Phi(x) = ??$

Reproducing kernel Hilbert spaces

- Assume k is a positive definite kernel on $\mathcal{X} \times \mathcal{X}$
- Aronszajn theorem (1950): there exists a Hilbert space \mathcal{F} and a mapping $\Phi: \mathcal{X} \mapsto \mathcal{F}$ such that

$$\forall (x, x') \in \mathcal{X}^2, \ k(x, x') = \langle \Phi(x), \Phi(x') \rangle_{\mathcal{H}}$$

- ullet $\mathcal{X}=$ "input space", $\mathcal{F}=$ "feature space", $\Phi=$ "feature map"
- ullet RKHS: particular instantiation of ${\mathcal F}$ as a function space
 - $-\Phi(x) = k(\cdot, x)$
 - function evaluation $f(x) = \langle f, \Phi(x) \rangle$
 - reproducing property: $\overline{k(x,y)} = \langle \overline{k(\cdot,x)}, k(\cdot,y) \rangle$
- Notations : $f(x) = \langle f, \Phi(x) \rangle = f^{\top} \Phi(x)$, $||f||^2 = \langle f, f \rangle$

Classical kernels: kernels on vectors $x \in \mathbb{R}^d$

- Linear kernel $k(x,y) = x^{\top}y$
 - Linear functions
- Polynomial kernel $k(x,y) = (1+x^{\top}y)^d$
 - Polynomial functions
- Gaussian kernel $k(x,y) = \exp(-\alpha ||x-y||^2)$
 - Smooth functions

Classical kernels: kernels on vectors $x \in \mathbb{R}^d$

- Linear kernel $k(x,y) = x^{\top}y$
 - Linear functions
- Polynomial kernel $k(x,y) = (1+x^{\top}y)^d$
 - Polynomial functions
- Gaussian kernel $k(x,y) = \exp(-\alpha ||x-y||^2)$
 - Smooth functions
- Parameter selection? Structured domain?

Regularization and representer theorem

- Data: $x_i \in \mathcal{X}$, $y_i \in \mathcal{Y}$, i = 1, ..., n, kernel k (with RKHS \mathcal{F})
- Minimize with respect to f: $\min_{f \in \mathcal{F}} \sum_{i=1}^{n} \ell(y_i, f^{\top} \Phi(x_i)) + \frac{\lambda}{2} ||f||^2$
- ullet No assumptions on cost ℓ or n
- Representer theorem (Kimeldorf and Wahba, 1971): optimum is reached for weights of the form

$$f = \sum_{j=1}^{n} \alpha_j \Phi(x_j) = \sum_{j=1}^{n} \alpha_j k(\cdot, x_j)$$

• $\alpha \in \mathbb{R}^n$ dual parameters, $K \in \mathbb{R}^{n \times n}$ kernel matrix:

$$K_{ij} = \Phi(x_i)^{\top} \Phi(x_j) = k(x_i, x_j)$$

• Equivalent problem: $\min_{\alpha \in \mathbb{R}^n} \sum_{i=1}^n \ell(y_i, (K\alpha)_i) + \frac{\lambda}{2} \alpha^\top K \alpha$

Kernel trick and modularity

- Kernel trick: any algorithm for finite-dimensional vectors that only uses pairwise dot-products can be applied in the feature space.
 - Replacing dot-products by kernel functions
 - Implicit use of (very) large feature spaces
 - Linear to non-linear learning methods

Kernel trick and modularity

- Kernel trick: any algorithm for finite-dimensional vectors that only uses pairwise dot-products can be applied in the feature space.
 - Replacing dot-products by kernel functions
 - Implicit use of (very) large feature spaces
 - Linear to non-linear learning methods
- Modularity of kernel methods
 - 1. Work on new algorithms and theoretical analysis
 - 2. Work on new kernels for specific data types

Representer theorem and convex duality

- ullet The parameters $lpha\in\mathbb{R}^n$ may also be interpreted as Lagrange multipliers
- Assumption: cost function is convex, $\varphi_i(u_i) = \ell(y_i, u_i)$
- What about the constant term b? replace $\Phi(x)$ by $(\Phi(x),c)$, c large

	$\varphi_i(u_i)$	
LS regression	$\frac{1}{2}(y_i - u_i)^2$	
Logistic regression	$\log(1 + \exp(-y_i u_i))$	
SVM	$(1 - y_i u_i)_+$	

Representer theorem and convex duality **Proof**

• Primal problem:
$$\min_{f \in \mathcal{F}} \sum_{i=1}^{n} \varphi_i(f^{\top} \Phi(x_i)) + \frac{\lambda}{2} ||f||^2$$

- Define $\psi_i(v_i) = \max_{u_i \in \mathbb{R}} v_i u_i \varphi_i(u_i)$ as the Fenchel conjugate of φ_i
- ullet Main trick: introduce constraint $u_i = f^{\top}\Phi(x_i)$ and associated Lagrange multipliers α_i
- Lagrangian $\mathcal{L}(\alpha, f) = \sum_{i=1}^{n} \varphi_i(u_i) + \frac{\lambda}{2} ||f||^2 + \lambda \sum_{i=1}^{n} \alpha_i(u_i f^{\top}\Phi(x_i))$
 - Maximize with respect to $u_i \Rightarrow$ term of the form $-\psi_i(-\lambda\alpha_i)$
 - Maximize with respect to $f \Rightarrow f = \sum_{i=1}^{n} \alpha_i \Phi(x_i)$

Representer theorem and convex duality

- Assumption: cost function is convex $\varphi_i(u_i) = \ell(y_i, u_i)$
- Primal problem: $\min_{f \in \mathcal{F}} \sum_{i=1}^n \varphi_i(f^\top \Phi(x_i)) + \frac{\lambda}{2} ||f||^2$
- Dual problem: $\max_{\alpha \in \mathbb{R}^n} \sum_{i=1}^n \psi_i(-\lambda \alpha_i) \frac{\lambda}{2} \alpha^\top K \alpha$
 - where $\psi_i(v_i) = \max_{u_i \in \mathbb{R}} v_i u_i \varphi_i(u_i)$ is the Fenchel conjugate of φ_i
- Strong duality
- Relationship between primal and dual variables (at optimum): $f = \sum_{i=1}^{n} \alpha_i \Phi(x_i)$
- NB: adding constant term $b \Leftrightarrow \text{add constraints } \sum_{i=1}^{n} \alpha_i = 0$

"Classical" kernel learning (2-norm regularization)

Primal problem
$$\min_{f \in \mathcal{F}} \left(\sum_{i} \varphi_i(f^{\top} \Phi(x_i)) + \frac{\lambda}{2} ||f||^2 \right)$$

Dual problem
$$\max_{\alpha \in \mathbb{R}^n} \left(-\sum_i \psi_i(\lambda \alpha_i) - \frac{\lambda}{2} \alpha^\top K \alpha \right)$$

Optimality conditions
$$f = \sum_{i=1}^{n} \alpha_i \Phi(x_i)$$

- Assumptions on loss φ_i :
 - $-\varphi_i(u)$ convex
 - $\psi_i(v)$ Fenchel conjugate of $\varphi_i(u)$, i.e., $\psi_i(v) = \max_{u \in \mathbb{R}} (vu \varphi_i(u))$

	$\varphi_i(u_i)$	$\psi_i(v)$
LS regression	$\frac{1}{2}(y_i - u_i)^2$	$\frac{1}{2}v^2 + vy_i$
Logistic regression	$\log(1 + \exp(-y_i u_i))$	
SVM	$(1 - y_i u_i)_+$	$vy_i \times 1_{-vy_i \in [0,1]}$

Particular case of the support vector machine

• Primal problem:
$$\min_{f \in \mathcal{F}} \sum_{i=1}^{n} (1 - y_i f^{\top} \Phi(x_i))_+ + \frac{\lambda}{2} ||f||^2$$

• Dual problem:
$$\left| \max_{\alpha \in \mathbb{R}^n} \left(-\sum_i \lambda \alpha_i y_i \times 1_{-\lambda \alpha_i y_i \in [0,1]} - \frac{\lambda}{2} \alpha^\top K \alpha \right) \right|$$

• Dual problem (by change of variable $\alpha \leftarrow -\text{Diag}(y)\alpha$ and $C = 1/\lambda$):

Particular case of the support vector machine

• Primal problem:
$$\min_{f \in \mathcal{F}} \sum_{i=1}^{n} (1 - y_i f^{\top} \Phi(x_i))_+ + \frac{\lambda}{2} ||f||^2$$

• Dual problem:

$$\max_{\alpha \in \mathbb{R}^n, \ 0 \leqslant \alpha \leqslant C} \sum_{i=1}^n \alpha_i - \frac{1}{2} \alpha^\top \operatorname{Diag}(y) K \operatorname{Diag}(y) \alpha$$

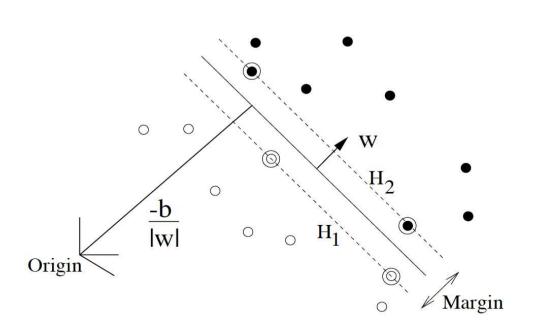
Particular case of the support vector machine

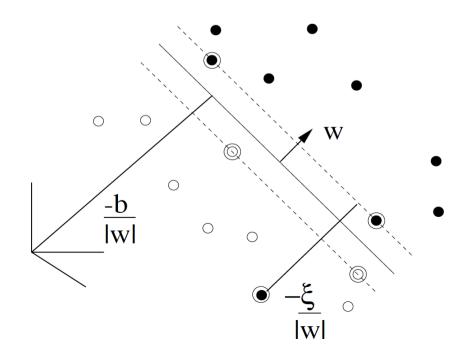
• Primal problem: $\min_{f \in \mathcal{F}} \sum_{i=1}^{n} (1 - y_i f^{\top} \Phi(x_i))_+ + \frac{\lambda}{2} ||f||^2$

• Dual problem:

$$\max_{\alpha \in \mathbb{R}^n, \ 0 \leqslant \alpha \leqslant C} \sum_{i=1}^n \alpha_i - \frac{1}{2} \alpha^\top \operatorname{Diag}(y) K \operatorname{Diag}(y) \alpha$$

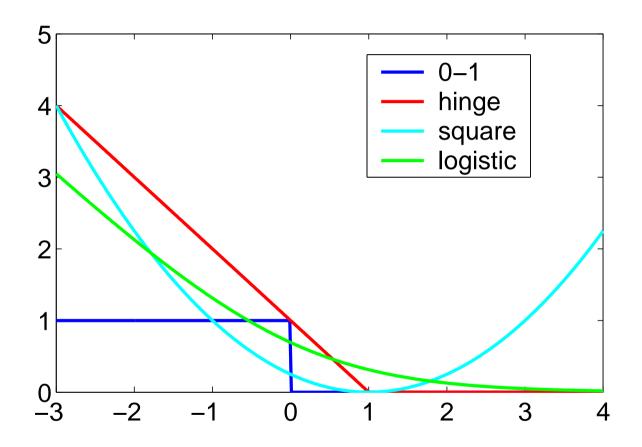
What about the traditional picture?





Losses for classification

• Usual convex costs:



• Differences between hinge and logistic loss: differentiability/sparsity

Support vector machine or logistic regression?

- Predictive performance is similar
- Only true difference is numerical
 - SVM: sparsity in α
 - Logistic: differentiable loss function
- Which one to use?
 - Linear kernel ⇒ Logistic + Newton/Gradient descent
 - Nonlinear kernel \Rightarrow SVM + dual methods or simpleSVM

Algorithms for supervised kernel methods

Four formulations

1. Dual:
$$\max_{\alpha \in \mathbb{R}^n} - \sum_i \psi_i(\lambda \alpha_i) - \frac{\lambda}{2} \alpha^\top K \alpha$$
2. Primal:
$$\min_{f \in \mathcal{F}} \sum_i \varphi_i(f^\top \Phi(x_i)) + \frac{\lambda}{2} ||f||^2$$
3. Primal + Representer:
$$\min_{\alpha \in \mathbb{R}^n} \sum_i \varphi_i((K\alpha)_i) + \frac{\lambda}{2} \alpha^\top K \alpha$$

- 4. Convex programming
- Best strategy depends on loss (differentiable or not) and kernel (linear or not)

Dual methods

- Dual problem: $\max_{\alpha \in \mathbb{R}^n} \sum_i \psi_i(\lambda \alpha_i) \frac{\lambda}{2} \alpha^\top K \alpha$
- Main method: coordinate descent (a.k.a. sequential minimal optimization - SMO) (Platt, 1998; Bottou and Lin, 2007; Joachims, 1998)
 - Efficient when loss is piecewise quadratic (i.e., hinge = SVM)
 - Sparsity may be used in the case of the SVM
- ullet Computational complexity: between quadratic and cubic in n
- Works for all kernels

Primal methods

- Primal problem: $\min_{f \in \mathcal{F}} \sum_{i} \varphi_i(f^{\top} \Phi(x_i)) + \frac{\lambda}{2} ||f||^2$
- ullet Only works directly if $\Phi(x)$ may be built explicitly and has small dimension
 - Example: linear kernel in small dimensions
- Differentiable loss: gradient descent or Newton's method are very efficient in small dimensions
- Larger scale: stochastic gradient descent (Shalev-Shwartz et al., 2007; Bottou and Bousquet, 2008)

Primal methods with representer theorems

- Primal problem in α : $\min_{\alpha \in \mathbb{R}^n} \sum_i \varphi_i((K\alpha)_i) + \frac{\lambda}{2} \alpha^\top K \alpha$
- Direct optimization in α poorly conditioned (K has low-rank) unless Newton method is used (Chapelle, 2007)
- General kernels: use incomplete Cholesky decomposition (Fine and Scheinberg, 2001; Bach and Jordan, 2002) to obtain a square root $K = GG^{\top}$

$$egin{aligned} \mathbf{K} & = & \mathbf{G} & \mathbf{G}^{\mathrm{T}} & G \text{ of size } n imes m, \\ & & \text{where } m \ll n & \mathbf{G} & \mathbf$$

- "Empirical input space" of size m obtained using rows of G
- Running time to compute G: $O(m^2n)$

Direct convex programming

- Convex programming toolboxes ⇒ very inefficient!
- May use special structure of the problem
 - e.g., SVM and sparsity in α
- Active set method for the SVM: SimpleSVM (Vishwanathan et al., 2003; Loosli et al., 2005)
 - Cubic complexity in the number of support vectors
- Full regularization path for the SVM (Hastie et al., 2005; Bach et al., 2006)
 - Cubic complexity in the number of support vectors
 - May be extended to other settings (Rosset and Zhu, 2007)

Part II - Outline

1. Losses for particular machine learning tasks

• Classification, regression, etc...

2. Regularization by Hilbert norms (kernel methods)

- Kernels and representer theorem
- Convex duality and optimization
- Kernel design

3. Regularization by sparsity-inducing norms

- ℓ_1 -norm regularization
- Multiple kernel learning
- Theoretical results
- Other extensions

Kernel design

- Principle: kernel on $\mathcal{X} = \text{space of functions on } \mathcal{X} + \text{norm}$
- Two main design principles
 - 1. Constructing kernels from kernels by algebraic operations
 - 2. Using usual algebraic/numerical tricks to perform efficient kernel computation with very high-dimensional feature spaces
- Operations: $k_1(x,y) = \langle \Phi_1(x), \Phi_1(y) \rangle$, $k_2(x,y) = \langle \Phi_2(x), \Phi_2(y) \rangle$
 - Sum = concatenation of feature spaces:

$$k_1(x,y) + k_2(x,y) = \left\langle \begin{pmatrix} \Phi_1(x) \\ \Phi_2(x) \end{pmatrix}, \begin{pmatrix} \Phi_1(y) \\ \Phi_2(y) \end{pmatrix} \right\rangle$$

– Product = tensor product of feature spaces:

$$k_1(x,y)k_2(x,y) = \left\langle \Phi_1(x)\Phi_2(x)^\top, \Phi_1(y)\Phi_2(y)^\top \right\rangle$$

Classical kernels: kernels on vectors $x \in \mathbb{R}^d$

- Linear kernel $k(x,y) = x^{\top}y$
 - Linear functions
- Polynomial kernel $k(x,y) = (1+x^{\top}y)^d$
 - Polynomial functions
- Gaussian kernel $k(x,y) = \exp(-\alpha ||x-y||^2)$
 - Smooth functions
- Data are not always vectors!

Efficient ways of computing large sums

- ullet Goal: $\Phi(x) \in \mathbb{R}^p$ high-dimensional, compute $\sum_{i=1}^p \Phi_i(x) \Phi_i(y)$ in o(p)
- **Sparsity**: many $\Phi_i(x)$ equal to zero (example: pyramid match kernel)
- Factorization and recursivity: replace sums of many products by product of few sums (example: polynomial kernel, graph kernel)

$$(1+x^{\top}y)^{d} = \sum_{\alpha_{1}+\dots+\alpha_{k} \leqslant d} {d \choose \alpha_{1},\dots,\alpha_{k}} (x_{1}y_{1})^{\alpha_{1}} \cdots (x_{k}y_{k})^{\alpha_{k}}$$

Kernels over (labelled) sets of points

- Common situation in computer vision (e.g., interest points)
- Simple approach: compute averages/histograms of certain features
 - valid kernels over histograms h and h' (Hein and Bousquet, 2004)
 - intersection: $\sum_{i} \min(h_i, h'_i)$, chi-square: $\exp\left(-\alpha \sum_{i} \frac{(h_i h'_i)^2}{h_i + h'_i}\right)$

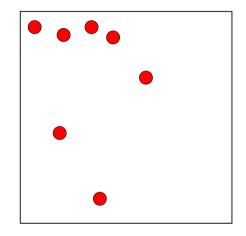
Kernels over (labelled) sets of points

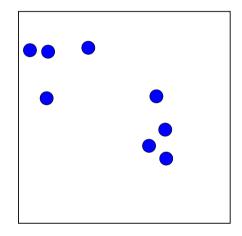
- Common situation in computer vision (e.g., interest points)
- Simple approach: compute averages/histograms of certain features
 - valid kernels over histograms h and h' (Hein and Bousquet, 2004)
 - intersection: $\sum_{i} \min(h_i, h'_i)$, chi-square: $\exp\left(-\alpha \sum_{i} \frac{(h_i h'_i)^2}{h_i + h'_i}\right)$
- Pyramid match (Grauman and Darrell, 2007): efficiently introducing localization
 - Form a regular pyramid on top of the image
 - Count the number of common elements in each bin
 - Give a weight to each bin
 - Many bins but most of them are empty
 - ⇒ use sparsity to compute kernel efficiently

Pyramid match kernel

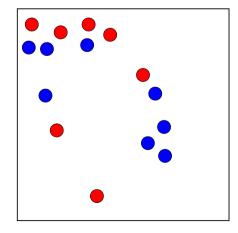
(Grauman and Darrell, 2007; Lazebnik et al., 2006)

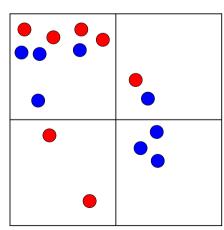
Two sets of points

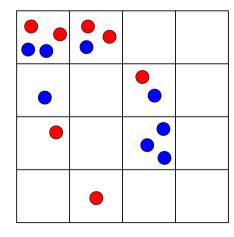




• Counting matches at several scales: 7, 5, 4





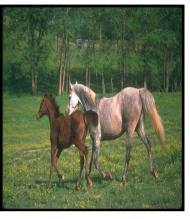


Kernels from segmentation graphs

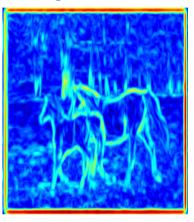
- Goal of segmentation: extract objects of interest
- Many methods available,
 - but, rarely find the object of interest entirely
- Segmentation graphs
 - Allows to work on "more reliable" over-segmentation
 - Going to a large square grid (millions of pixels) to a small graph (dozens or hundreds of regions)
- How to build a kernel over segmenation graphs?
 - NB: more generally, kernelizing existing representations?

Segmentation by watershed transform (Meyer, 2001)

image



gradient

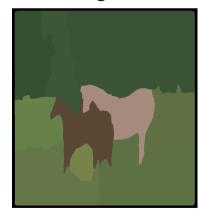


watershed

287 segments

64 segments

10 segments

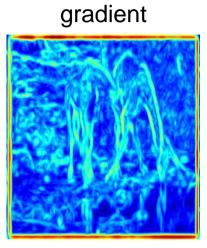


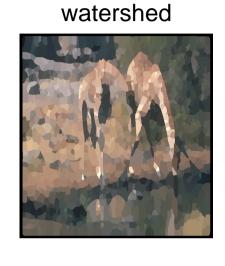
Segmentation by watershed transform (Meyer, 2001)

image

287 segments

64





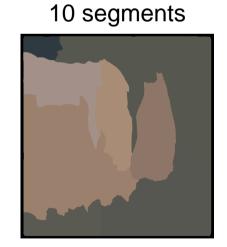


Image as a segmentation graph

- Labelled undirected graph
 - Vertices: connected segmented regions
 - Edges: between spatially neighboring regions
 - Labels: region pixels

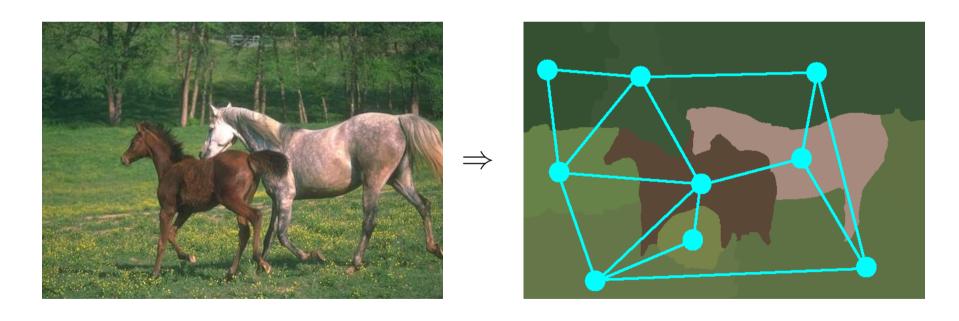


Image as a segmentation graph

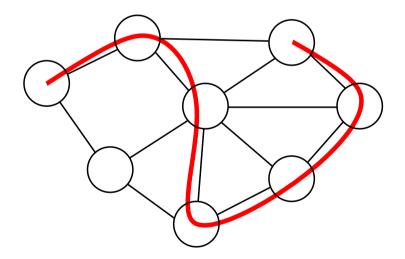
- Labelled undirected graph
 - Vertices: connected segmented regions
 - Edges: between spatially neighboring regions
 - Labels: region pixels
- Difficulties
 - Extremely high-dimensional labels
 - Planar undirected graph
 - Inexact matching
- Graph kernels (Gärtner et al., 2003; Kashima et al., 2004; Harchaoui and Bach, 2007) provide an elegant and efficient solution

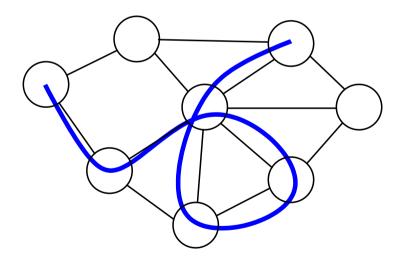
Kernels between structured objects Strings, graphs, etc... (Shawe-Taylor and Cristianini, 2004)

- Numerous applications (text, bio-informatics, speech, vision)
- Common design principle: enumeration of subparts (Haussler, 1999; Watkins, 1999)
 - Efficient for strings
 - Possibility of gaps, partial matches, very efficient algorithms
- Most approaches fails for general graphs (even for undirected trees!)
 - NP-Hardness results (Ramon and Gärtner, 2003)
 - Need specific set of subparts

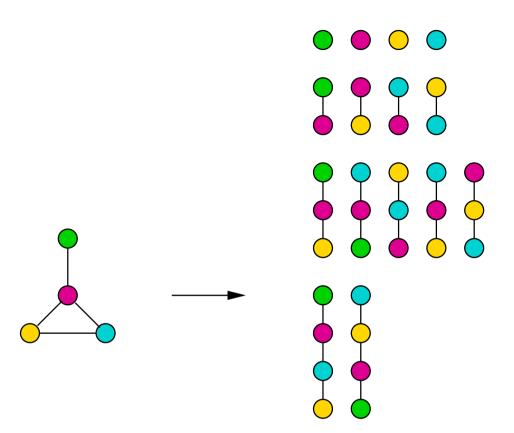
Paths and walks

- \bullet Given a graph G,
 - A path is a sequence of distinct neighboring vertices
 - A walk is a sequence of neighboring vertices
- Apparently similar notions

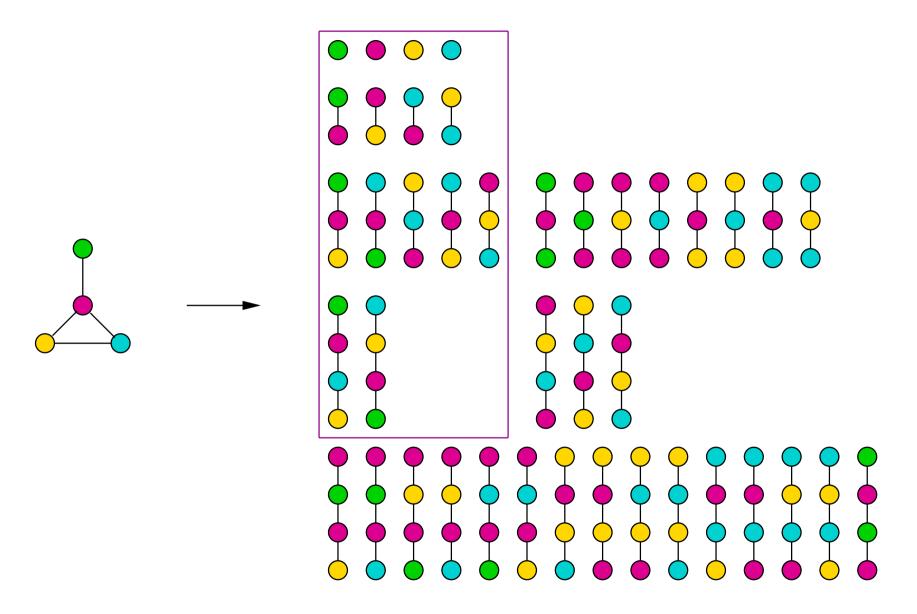




Paths



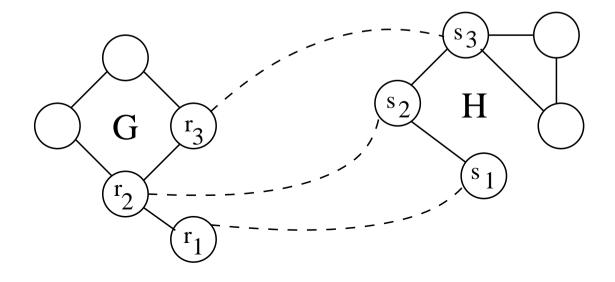
Walks



Walk kernel (Kashima et al., 2004; Borgwardt et al., 2005)

- $\mathcal{W}_{\mathbf{G}}^p$ (resp. $\mathcal{W}_{\mathbf{H}}^p$) denotes the set of walks of length p in \mathbf{G} (resp. \mathbf{H})
- Given basis kernel on labels $k(\ell, \ell')$
- *p*-th order walk kernel:

$$k_{\mathcal{W}}^{p}(\mathbf{G}, \mathbf{H}) = \sum_{\substack{(r_1, \dots, r_p) \in \mathcal{W}_{\mathbf{G}}^p \\ (s_1, \dots, s_p) \in \mathcal{W}_{\mathbf{H}}^p}} \prod_{i=1}^{r} k(\ell_{\mathbf{G}}(r_i), \ell_{\mathbf{H}}(s_i)).$$



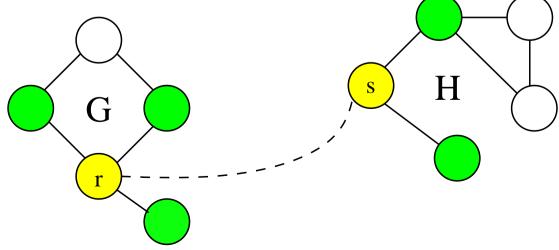
Dynamic programming for the walk kernel

- Dynamic programming in $O(pd_{\mathbf{G}}d_{\mathbf{H}}n_{\mathbf{G}}n_{\mathbf{H}})$
- $k_{\mathcal{W}}^{p}(\mathbf{G}, \mathbf{H}, r, s) = \text{sum restricted to walks starting at } r \text{ and } s$
- ullet recursion between p-1-th walk and p-th walk kernel

$$k_{\mathcal{W}}^{p}(\mathbf{G}, \mathbf{H}, r, s) = k(\ell_{\mathbf{G}}(r), \ell_{\mathbf{H}}(s)) \sum_{\mathbf{f}} k_{\mathcal{W}}^{p-1}(\mathbf{G}, \mathbf{H}, r', s').$$

$$r' \in \mathcal{N}_{\mathbf{G}}(r)$$

$$s' \in \mathcal{N}_{\mathbf{H}}(s)$$



Dynamic programming for the walk kernel

- Dynamic programming in $O(pd_{\mathbf{G}}d_{\mathbf{H}}n_{\mathbf{G}}n_{\mathbf{H}})$
- $k_{\mathcal{W}}^p(\mathbf{G}, \mathbf{H}, r, s) = \text{sum restricted to walks starting at } r \text{ and } s$
- ullet recursion between p-1-th walk and p-th walk kernel

$$k_{\mathcal{W}}^{p}(\mathbf{G}, \mathbf{H}, r, s) = k(\ell_{\mathbf{G}}(r), \ell_{\mathbf{H}}(s)) \sum_{k} k_{\mathcal{W}}^{p-1}(\mathbf{G}, \mathbf{H}, r', s')$$

$$r' \in \mathcal{N}_{\mathbf{G}}(r)$$

$$s' \in \mathcal{N}_{\mathbf{H}}(s)$$

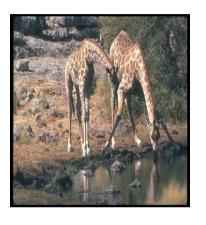
 $\bullet \text{ Kernel obtained as } k_{T}^{p,\alpha}(\mathbf{G},\mathbf{H}) = \sum_{r \in \mathcal{V}_{\mathbf{G}}, s \in \mathcal{V}_{\mathbf{H}}} k_{T}^{p,\alpha}(\mathbf{G},\mathbf{H},r,s)$

Extensions of graph kernels

- Main principle: compare all possible subparts of the graphs
- Going from paths to subtrees
 - Extension of the concept of walks \Rightarrow tree-walks (Ramon and Gärtner, 2003)
- Similar dynamic programming recursions (Harchaoui and Bach, 2007)
- Need to play around with subparts to obtain efficient recursions
 - Do we actually need positive definiteness?

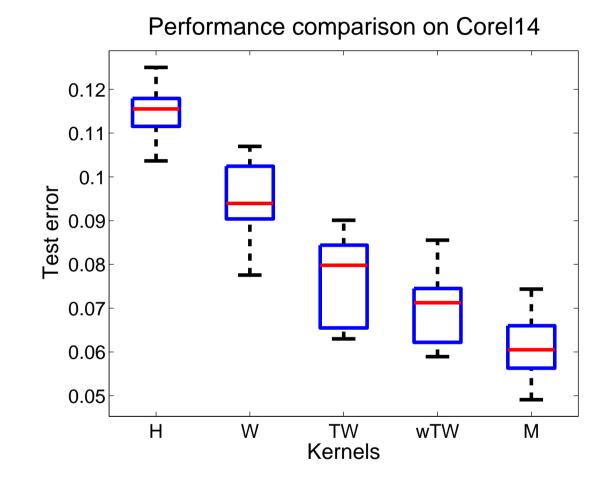
Performance on Corel14 (Harchaoui and Bach, 2007)

• Corel14: 1400 natural images with 14 classes



Performance on Corel14 (Harchaoui & Bach, 2007) Error rates

- Histogram kernels (**H**)
- Walk kernels (W)
- Tree-walk kernels (TW)
- Weighted tree-walks (wTW)
- MKL (M)



Kernel methods - Summary

- Kernels and representer theorems
 - Clear distinction between representation/algorithms
- Algorithms
 - Two formulations (primal/dual)
 - Logistic or SVM?
- Kernel design
 - Very large feature spaces with efficient kernel evaluations

Part II - Outline

1. Losses for particular machine learning tasks

• Classification, regression, etc...

2. Regularization by Hilbert norms (kernel methods)

- Kernels and representer theorem
- Convex duality and optimization
- Kernel design

3. Regularization by sparsity-inducing norms

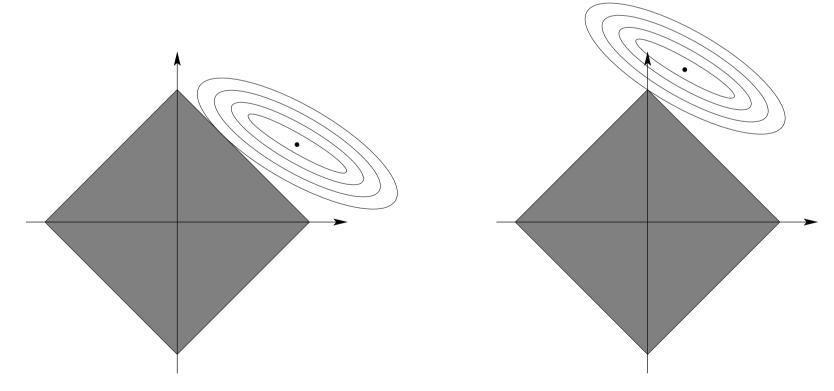
- ℓ_1 -norm regularization
- Multiple kernel learning
- Theoretical results
- Other extensions

Why ℓ_1 -norms lead to sparsity?

• Minimize quadratic objective subjet to constraint

$$||w||_1 = \sum_{i=1}^p |w_i| \leqslant T$$

- coupled soft thresolding
- ullet Geometric interpretation with p=2



ℓ_1 -norm regularization (linear setting)

- Data: covariates $x_i \in \mathbb{R}^p$, responses $y_i \in \mathcal{Y}$, $i = 1, \ldots, n$
- Minimize with respect to loadings/weights $w \in \mathbb{R}^p$:

$$\sum_{i=1}^{n} \ell(y_i, w^{\top} x_i) + \lambda \|w\|_1$$

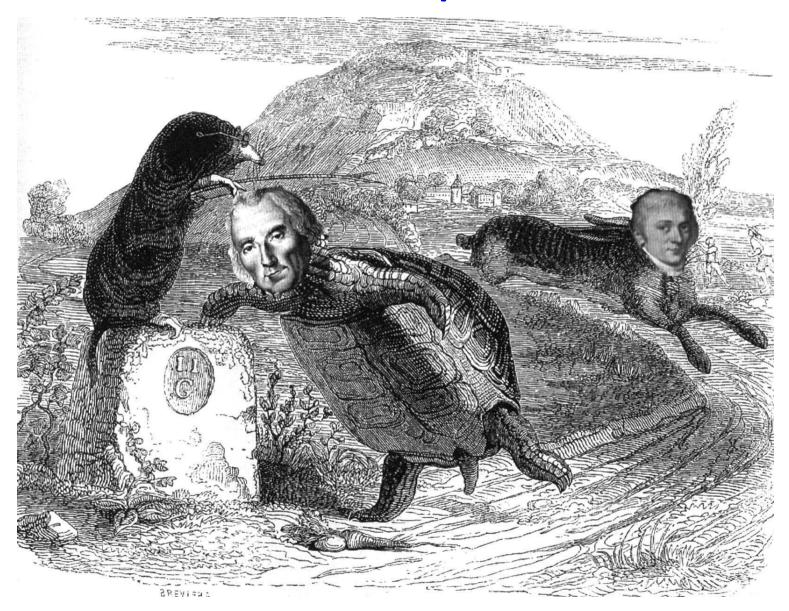
Error on data + Regularization

- Including a constant term b? Penalizing or constraining?
- Assumptions on loss:
 - convex and differentiable in the second variable
 - NB: with the square loss ⇒ basis pursuit (signal processing) (Chen et al., 2001), Lasso (statistics/machine learning) (Tibshirani, 1996)

Nonsmooth optimization

- Simple methods do not always work!
 - Coordinate/steepest descent might not converge to a local minimum
 - Be careful!
- Optimization algorithms
 - First order methods: good for large scale/low precision
 - Second order methods: good for small scale/high precision
- Books: Boyd and Vandenberghe (2003), Bonnans et al. (2003),
 Nocedal and Wright (2006), Borwein and Lewis (2000)

Algorithms for ℓ^1 -norms: Gaussian hare vs. Laplacian tortoise



Two simple algorithms: one good, one (very) bad

- Coordinate descent (Wu and Lange, 2008)
 - Globaly convergent here under reasonable assumptions!
 - very fast updates (thresholding)
- Quadratic programming formulation for the square loss: minimize

$$\frac{1}{2} \sum_{i=1}^{n} (y_i - w^\top x_i)^2 + \lambda \sum_{j=1}^{p} (w_j^+ + w_j^-) \text{ s.t. } w = w^+ - w^-, \ w^+ \geqslant 0, \ w^- \geqslant 0$$

generic toolboxes ⇒ very slow

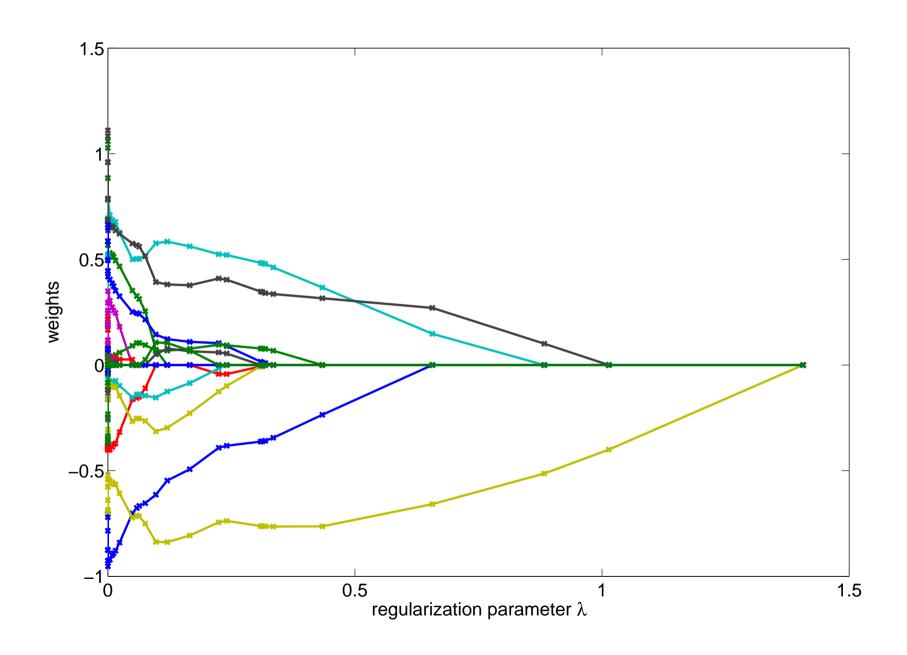
Algorithm: Lars/Lasso for the square loss (Efron et al., 2004)

- ullet Goal: Get all solutions for all possible values of the regularization parameter λ
- Property: the regularization path is piecewise linear
- Simply need to find break points and directions
- Generalizable to many problems (Rosset and Zhu, 2007)

Lasso in action

- Piecewise linear paths
- When is it supposed to work?
 - Simulations with random Gaussians, regularization parameter estimated by cross-validation
 - sparsity is expected or not

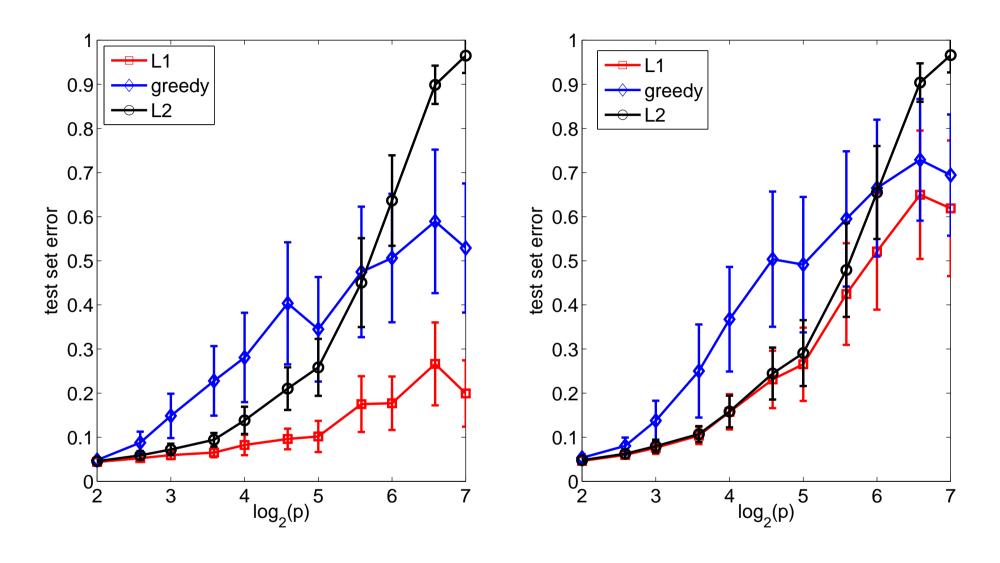
Lasso in action



Comparing Lasso and other strategies for linear regression and subset selection

- Compared methods to reach the least-square solution (Hastie et al., 2001)
 - Ridge regression: $\min_{w = 1}^{\infty} \sum_{i=1}^{n} (y_i w^{\top} x_i)^2 + \frac{\lambda}{2} ||w||_2^2$
 - Lasso: $\min_{w} \frac{1}{2} \sum_{i=1}^{n} (y_i w^{\top} x_i)^2 + \lambda ||w||_1$
 - Forward greedy:
 - * Initialization with empty set
 - * Sequentially add the variable that best reduces the square loss
- ullet Each method builds a path of solutions from 0 to w_{OLS}

Lasso in action



sparsity is expected

sparsity is not expected

Part II - Outline

1. Losses for particular machine learning tasks

• Classification, regression, etc...

2. Regularization by Hilbert norms (kernel methods)

- Kernels and representer theorem
- Convex duality and optimization
- Kernel design

3. Regularization by sparsity-inducing norms

- ℓ_1 -norm regularization
- Multiple kernel learning
- Theoretical results
- Other extensions

Kernel learning with convex optimization

Kernel methods work...

...with the good kernel!

⇒ Why not learn the kernel directly from data?

Kernel learning with convex optimization

Kernel methods work...

...with the good kernel!

⇒ Why not learn the kernel directly from data?

• Proposition (Lanckriet et al., 2004b; Bach et al., 2004a):

$$G(K) = \min_{f \in \mathcal{F}} \sum_{i=1}^{n} \varphi_i(f^{\top} \Phi(x_i)) + \frac{\lambda}{2} ||f||^2$$
$$= \max_{\alpha \in \mathbb{R}^n} - \sum_{i=1}^{n} \psi_i(\lambda \alpha_i) - \frac{\lambda}{2} \alpha^{\top} K \alpha$$

is a convex function of the Gram (a.k.a. kernel) matrix K

• Theoretical learning bounds (Lanckriet et al., 2004b)

MKL framework

ullet Minimize with respect to the kernel matrix K

$$G(K) = \max_{\alpha \in \mathbb{R}^n} - \sum_{i=1}^n \psi_i(\lambda \alpha_i) - \frac{\lambda}{2} \alpha^\top K \alpha$$

- Optimization domain:
 - K positive semi-definite in general : very large set!
 - The set of kernel matrices is a cone \Rightarrow conic representation

$$K(\eta) = \sum_{j=1}^{m} \eta_j K_j, \quad \eta \geqslant 0$$

- $K(\eta) = \sum_{j=1}^m \eta_j K_j, \quad \eta \geqslant 0$ Trace constraints: $\operatorname{tr} K = \sum_{j=1}^m \eta_j \operatorname{tr} K_j = 1$
- Optimization:
 - In most cases, representation in terms of SDP, QCQP or SOCP
 - Optimization by generic toolbox is costly (Lanckriet et al., 2004b)

MKL - "reinterpretation" (Bach et al., 2004a)

- Framework limited to $K = \sum_{j=1}^{m} \eta_j K_j$, $\eta \geqslant 0$
- Summing kernels is equivalent to concatenating feature spaces
 - m "feature maps" $\Phi_j: \mathcal{X} \mapsto \mathcal{F}_j$, $j=1,\ldots,m$.
 - Minimization with respect to $f_1 \in \mathcal{F}_1, \ldots, f_m \in \mathcal{F}_m$
 - Predictor: $f(x) = f_1^{\top} \Phi_1(x) + \cdots + f_m^{\top} \Phi_m(x)$

$$\Phi_{1}(x)^{\top} \quad f_{1}$$

$$\downarrow^{x} \quad \vdots \quad \downarrow^{x}$$

$$x \xrightarrow{\Phi_{j}(x)^{\top}} \quad f_{j} \quad \xrightarrow{f_{1}^{\top}} \Phi_{1}(x) + \cdots + f_{m}^{\top} \Phi_{m}(x)$$

$$\vdots \quad \vdots \quad \nearrow$$

$$\Phi_{m}(x)^{\top} \quad f_{m}$$

– Which regularization?

Regularization for multiple kernels

- Summing kernels is equivalent to concatenating feature spaces
 - m "feature maps" $\Phi_j: \mathcal{X} \mapsto \mathcal{F}_j$, $j = 1, \ldots, m$.
 - Minimization with respect to $f_1 \in \mathcal{F}_1, \ldots, f_m \in \mathcal{F}_m$
 - Predictor: $f(x) = f_1^{\top} \Phi_1(x) + \cdots + f_m^{\top} \Phi_m(x)$
- Regularization by $\sum_{j=1}^{m} \|f_j\|^2$ is equivalent to using $K = \sum_{j=1}^{m} K_j$

Regularization for multiple kernels

- Summing kernels is equivalent to concatenating feature spaces
 - m "feature maps" $\Phi_j: \mathcal{X} \mapsto \mathcal{F}_j$, $j=1,\ldots,m$.
 - Minimization with respect to $f_1 \in \mathcal{F}_1, \ldots, f_m \in \mathcal{F}_m$
 - Predictor: $f(x) = f_1^{\top} \Phi_1(x) + \dots + f_m^{\top} \Phi_m(x)$
- Regularization by $\sum_{j=1}^{m} \|f_j\|^2$ is equivalent to using $K = \sum_{j=1}^{m} K_j$
- ullet Regularization by $\sum_{j=1}^m \|f_j\|$ should impose sparsity at the group level
- Main questions when regularizing by block ℓ^1 -norm:
 - 1. Equivalence with previous formulations
 - 2. Algorithms
 - 3. Analysis of sparsity inducing properties (Bach, 2008c)

MKL - equivalence with general kernel learning (Bach et al., 2004a)

• Block ℓ^1 -norm problem:

$$\sum_{i=1}^{n} \varphi_i(f_1^{\top} \Phi_1(x_i) + \dots + f_m^{\top} \Phi_m(x_i)) + \frac{\lambda}{2} (\|f_1\| + \dots + \|f_m\|)^2$$

- **Proposition**: It is equivalence to minimize with respect to η the optimal value $G(K(\eta))$ of the supervised learning problem (Bach et al., 2004a)
- Kernel weights obtained from optimality conditions and Lagrange multipliers
- \bullet Single optimization problem for learning both weights η and classifier α

Algorithms for MKL

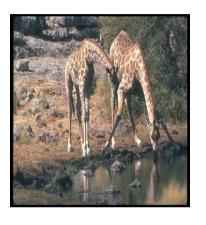
- (very) costly optimization with SDP, QCQP ou SOCP
 - $-n \ge 1,000 10,000, m \ge 100$ not possible
 - "loose" required precision ⇒ first order methods
- Dual coordinate ascent (SMO) with smoothing (Bach et al., 2004a)
- Optimization of G(K) by cutting planes (Sonnenburg et al., 2006)
- Optimization of G(K) with steepest descent with smoothing (Rakotomamonjy et al., 2008)
- Regularization path (Bach et al., 2004b)

Applications

- Several applications
 - Bioinformatics (Lanckriet et al., 2004a)
 - Speech processing (Longworth and Gales, 2008)
 - Image annotation (Harchaoui and Bach, 2007; Varma and Ray, 2007; Bosch et al., 2008)
- Two potential uses
 - Fusion of heterogeneous data sources
 - Learning hyperparameters
 - Sparsity in non-linear settings

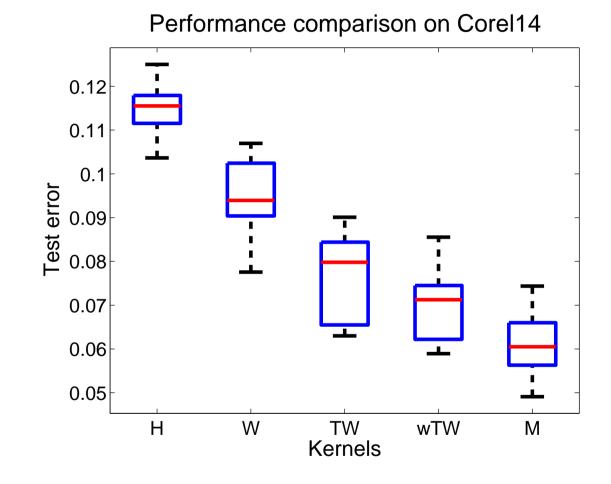
Performance on Corel14 (Harchaoui and Bach, 2007)

• Corel14: 1400 natural images with 14 classes



Performance on Corel14 (Harchaoui and Bach, 2007) Error rates

- Histogram kernels (H)
- Walk kernels (W)
- Tree-walk kernels (TW)
- Weighted tree-walks (wTW)
- MKL (M)



Caltech101 database (Fei-Fei et al., 2006)

Kernel combination for Caltech101 (Varma and Ray, 2007) Classification accuracies

	1- NN	SVM (1 vs. 1)	SVM (1 vs. rest)
Shape GB1	39.67 ± 1.02	57.33 ± 0.94	62.98 ± 0.70
Shape GB2	45.23 ± 0.96	59.30 ± 1.00	61.53 ± 0.57
Self Similarity	40.09 ± 0.98	55.10 ± 1.05	60.83 ± 0.84
PHOG 180	32.01 ± 0.89	48.83 ± 0.78	49.93 ± 0.52
PHOG 360	31.17 ± 0.98	50.63 ± 0.88	52.44 ± 0.85
PHOWColour	32.79 ± 0.92	40.84 ± 0.78	43.44 ± 1.46
PHOWGray	42.08 ± 0.81	52.83 ± 1.00	57.00 ± 0.30
MKL Block ℓ^1		$\textbf{77.72}\pm\textbf{0.94}$	83.78 ± 0.39
(Varma and Ray, 2007)		$\textbf{81.54}\pm\textbf{1.08}$	$\textbf{89.56}\pm\textbf{0.59}$

• See also Bosch et al. (2008)

Part II - Outline

1. Losses for particular machine learning tasks

• Classification, regression, etc...

2. Regularization by Hilbert norms (kernel methods)

- Kernels and representer theorem
- Convex duality and optimization
- Kernel design

3. Regularization by sparsity-inducing norms

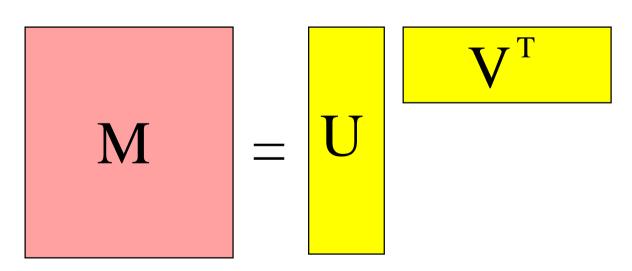
- ℓ_1 -norm regularization
- Multiple kernel learning
- Theoretical results
- Other extensions

Learning on matrices

- Example 1: matrix completion
 - Given a matrix $M \in \mathbb{R}^{n \times p}$ and a subset of observed entries, estimate all entries
 - Many applications: graph learning, collaborative filtering (Breese et al., 1998; Heckerman et al., 2000; Salakhutdinov et al., 2007)
- Example 2: multi-task learning (Obozinski et al., 2007; Pontil et al., 2007)
 - Common features for m learning problems $\Rightarrow m$ different weights, i.e., $W = (w_1, \dots, w_m) \in \mathbb{R}^{p \times m}$
 - Numerous applications
- Example 3: image denoising (Elad and Aharon, 2006; Mairal et al., 2008)
 - Simultaneously denoise all patches of a given image

Three natural types of sparsity for matrices $M \in \mathbb{R}^{n \times p}$

- 1. A lot of zero elements
 - does not use the matrix structure!
- 2. A small rank
 - ullet $M = UV^{ op}$ where $U \in \mathbb{R}^{n \times m}$ and $V \in \mathbb{R}^{n \times m}$, m small
 - Trace norm



Three natural types of sparsity for matrices $M \in \mathbb{R}^{n \times p}$

- 1. A lot of zero elements
 - does not use the matrix structure!
- 2. A small rank
 - ullet $M = UV^{ op}$ where $U \in \mathbb{R}^{n \times m}$ and $V \in \mathbb{R}^{n \times m}$, m small
 - Trace norm (Srebro et al., 2005; Fazel et al., 2001; Bach, 2008d)
- 3. A decomposition into sparse (but large) matrix \Rightarrow redundant dictionaries
 - ullet $M=UV^{ op}$ where $U\in\mathbb{R}^{n imes m}$ and $V\in\mathbb{R}^{n imes m}$, U sparse
 - Dictionary learning (Elad and Aharon, 2006; Mairal et al., 2008)

Trace norm (Srebro et al., 2005; Bach, 2008d)

- Singular value decomposition: $M \in \mathbb{R}^{n \times p}$ can always be decomposed into $M = U \operatorname{Diag}(s) V^{\top}$, where $U \in \mathbb{R}^{n \times m}$ and $V \in \mathbb{R}^{n \times m}$ have orthonormal columns and s is a positive vector (of singular values)
- ullet ℓ^0 norm of singular values = rank
- ullet ℓ^1 norm of singular values = trace norm
- ullet Similar properties than the ℓ^1 -norm
 - Convexity
 - Solutions of penalized problem have low rank
 - Algorithms

Dictionary learning

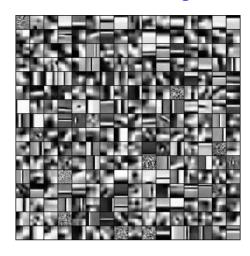
(Elad and Aharon, 2006; Mairal et al., 2008)

- Given $X \in \mathbb{R}^{n \times p}$, i.e., n vectors in \mathbb{R}^p , find
 - m dictionary elements in \mathbb{R}^p : $V = (v_1, \dots, v_m) \in \mathbb{R}^{p \times m}$
 - m set of decomposition coefficients: $U = \in \mathbb{R}^{n \times m}$
 - such that U is sparse and small reconstruction error, i.e., $\|X-UV^\top\|_F^2=\sum_{i=1}^n\|X(i,:)-U(i,:)V^\top\|_2^2$ is small
- NB: Opposite view, i.e., not sparse in term of ranks, sparse in terms of decomposition coefficients
- Minimize with respect to U and V, such that $||V(:,i)||_2 = 1$,

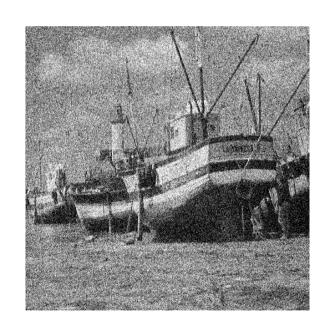
$$\frac{1}{2} \|X - UV^{\top}\|_F^2 + \lambda \sum_{i=1}^N \|U(i,:)\|_1$$

- non convex, alternate minimization $^{i=1}$

Dictionary learning - Denoising (Mairal et al., 2008)

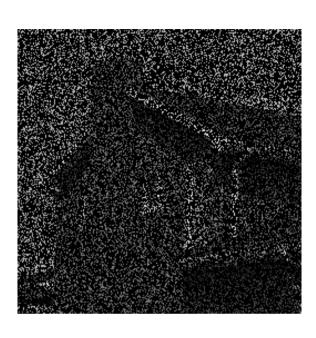


Dictionary



Original Noisy Denoised

Dictionary learning - Inpainting (Mairal et al., 2008)



Original

Missing pixels

Denoised

Theory: model consistency of the Lasso

- Sparsity-inducing norms often used heuristically
- If the responses y_1, \ldots, y_n are such that $y_i = \mathbf{w}^\top x_i + \varepsilon_i$ where ε_i are i.i.d. and \mathbf{w} is sparse, do we get back the correct pattern of zeros?
- Intuitive answer: yes **if and ony if** some consistency condition on the generating covariance matrices is satisfied (Zhao and Yu, 2006; Yuan and Lin, 2007; Zou, 2006; Wainwright, 2006)

$$\|\Sigma_{\mathbf{J}^c \mathbf{J}} \Sigma_{\mathbf{JJ}}^{-1} \operatorname{sign}(\mathbf{w}_{\mathbf{J}})\|_{\infty} \leqslant 1$$

where ${f J}=$ indices of relevant variables, ${f w}=$ true loading vector

- What if condition not satisfied?
 - Adaptive versions (Zou, 2006) or resampling methods (Bach, 2008a)

High-dimensional setting

- \bullet If consistency condition is satisfied, the Lasso is indeed consistent as long as $\log(p) \ll n$
- A lot of on-going work (Meinshausen and Yu, 2008; Wainwright, 2006; Lounici, 2008)

High-dimensional setting (Lounici, 2008)

- Assumptions
 - $-y_i = \mathbf{w}^{\top} x_i + \varepsilon_i$, ε i.i.d. normal with mean zero and variance σ^2
 - $Q = X^{\top}X/n$ with unit diagonal and cross-terms less than $\frac{1}{14s}$
 - **Theorem**: if $\|\mathbf{w}\|_0 \leqslant s$, and $A > 8^{1/2}$, then

$$\mathbb{P}\left(\|\hat{w} - \mathbf{w}\|_{\infty} \leqslant 5A\sigma\left(\frac{\log p}{n}\right)^{1/2}\right) \leqslant 1 - p^{1 - A^2/8}$$

- Get the correct sparsity pattern if $\min_{j,\mathbf{w}_j\neq 0} |\mathbf{w}_j| > C\sigma\left(\frac{\log p}{n}\right)^{1/2}$
- Can have a lot of irrelevant variables!

High-dimensional setting

- \bullet If consistency condition is satisfied, the Lasso is indeed consistent as long as $\log(p) \ll n$
- A lot of on-going work (Meinshausen and Yu, 2008; Wainwright, 2006; Lounici, 2008)
- Link with compressed sensing (Baraniuk, 2007; Candès and Wakin, 2008)
 - Goal of compressed sensing: recover a signal $w \in \mathbb{R}^p$ from only n measurements $y = Xw \in \mathbb{R}^n$
 - Assumptions: the signal is k-sparse, $k \ll p$
 - Algorithm: $\min_{w \in \mathbb{R}^p} \|w\|_1$ such that y = Xw
 - -X is not given but may be chosen (deterministic or random)!

Summary - sparsity-inducing norms

- Sparsity through non Euclidean norms
- Alternative approaches to sparsity
 - greedy approaches Bayesian approaches
- Important (often non treated) question: when does sparsity actually help?
- Current research directions
 - Algorithms, algorithms!
 - Structured norm for structured situations (variables are usually not created equal) ⇒ hierarchical Lasso or MKL (Zhao et al., 2008; Bach, 2008b)

Conclusion - Course Outline

1. Theory

- Probabilistic model and universal consistency
- Local averaging methods
- Empirical risk minimization

2. Algorithms

- Losses for particular machine learning tasks
- Regularization by Hilbert norms (kernel methods)
 - Algorithms
 - Kernel design
- Regularization by sparsity-inducing norms
 - ℓ_1 -norm regularization
 - Multiple kernel learning

References

- N. Aronszajn. Theory of reproducing kernels. *Trans. Am. Math. Soc.*, 68:337–404, 1950.
- F. Bach. Bolasso: model consistent lasso estimation through the bootstrap. In *Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML)*, 2008a.
- F. Bach. Exploring large feature spaces with hierarchical multiple kernel learning. In Adv. NIPS, 2008b.
- F. R. Bach. Consistency of the group Lasso and multiple kernel learning. *Journal of Machine Learning Research*, pages 1179–1225, 2008c.
- F. R. Bach. Consistency of trace norm minimization. *Journal of Machine Learning Research*, to appear, 2008d.
- F. R. Bach and M. I. Jordan. Kernel independent component analysis. *Journal of Machine Learning Research*, 3:1–48, 2002.
- F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan. Multiple kernel learning, conic duality, and the SMO algorithm. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2004a.
- F. R. Bach, R. Thibaux, and M. I. Jordan. Computing regularization paths for learning multiple kernels. In *Advances in Neural Information Processing Systems* 17, 2004b.
- F. R. Bach, D. Heckerman, and E. Horvitz. Considering cost asymmetry in learning classifiers. *Journal of Machine Learning Research*, 7:1713–1741, 2006.
- Richard Baraniuk. Compressive sensing. IEEE Signal Processing Magazine, 24(4):118-121, 2007.
- J. F. Bonnans, J. C. Gilbert, C. Lemaréchal, and C. A. Sagastizbal. *Numerical Optimization Theoretical and Practical Aspects*. Springer, 2003.

- Karsten M. Borgwardt, Cheng Soon Ong, Stefan Schönauer, S. V. N. Vishwanathan, Alex J. Smola, and Hans-Peter Kriegel. Protein function prediction via graph kernels. *Bioinformatics*, 21, 2005.
- J. M. Borwein and A. S. Lewis. *Convex Analysis and Nonlinear Optimization*. Number 3 in CMS Books in Mathematics. Springer-Verlag, 2000.
- A. Bosch, Zisserman A., and X. Munoz. Image classification using rois and multiple kernel learning. International Journal of Computer Vision, 2008. submitted.
- L. Bottou and C. J. Lin. Support vector machine solvers. In Large scale kernel machines, 2007.
- Léon Bottou and Olivier Bousquet. Learning using large datasets. In *Mining Massive DataSets for Security*, NATO ASI Workshop Series. IOS Press, Amsterdam, 2008. URL http://leon.bottou.org/papers/bottou-bousquet-2008b. to appear.
- S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge Univ. Press, 2003.
- J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithms for collaborative filtering. In *14th Conference on Uncertainty in Artificial Intelligence*, pages 43–52, Madison, W.I., 1998. Morgan Kaufman.
- Emmanuel Candès and Michael Wakin. An introduction to compressive sampling. *IEEE Signal Processing Magazine*, 25(2):21–30, 2008.
- O. Chapelle. Training a support vector machine in the primal. *Neural Computation*, 19(5):1155–1178, 2007.
- Scott Shaobing Chen, David L. Donoho, and Michael A. Saunders. Atomic decomposition by basis pursuit. *SIAM Rev.*, 43(1):129–159, 2001. ISSN 0036-1445.
- B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Ann. Stat., 32:407, 2004.

- M. Elad and M. Aharon. Image denoising via sparse and redundant representations over learned dictionaries. *IEEE Trans. Image Proc.*, 15(12):3736–3745, 2006.
- M. Fazel, H. Hindi, and S. P. Boyd. A rank minimization heuristic with application to minimum order system approximation. In *Proceedings American Control Conference*, volume 6, pages 4734–4739, 2001.
- L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models for 101 object categories. Computer Vision and Image Understanding, 2006.
- S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representations. *Journal of Machine Learning Research*, 2:243–264, 2001.
- P. A. Flach. The geometry of ROC space: understanding machine learning metrics through ROC isometrics. In *International Conference on Machine Learning (ICML)*, 2003.
- Thomas Gärtner, Peter A. Flach, and Stefan Wrobel. On graph kernels: Hardness results and efficient alternatives. In *COLT*, 2003.
- K. Grauman and T. Darrell. The pyramid match kernel: Efficient learning with sets of features. *J. Mach. Learn. Res.*, 8:725–760, 2007. ISSN 1533-7928.
- Z. Harchaoui and F. R. Bach. Image classification with segmentation graph kernels. In *Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR)*, 2007.
- T. Hastie, R. Tibshirani, and J. Friedman. *The Elements of Statistical Learning*. Springer-Verlag, 2001.
- T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu. The entire regularization path for the support vector machine. *Journal of Machine Learning Research*, 5:1391–1415, 2005.

- David Haussler. Convolution kernels on discrete structures. Technical report, UCSC, 1999.
- D. Heckerman, D. M. Chickering, C. Meek, R. Rounthwaite, and C. Kadie. Dependency networks for inference, collaborative filtering, and data visualization. *J. Mach. Learn. Res.*, 1:49–75, 2000.
- M. Hein and O. Bousquet. Hilbertian metrics and positive-definite kernels on probability measures. In *AISTATS*, 2004.
- R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries for ordinal regression. In *Advances in Large Margin Classifiers*. MIT Press, Cambridge, MA, 2000.
- T. Joachims. Optimizing search engines using clickthrough data. In ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), pages 133–142, 2002.
- T. Joachims. Making large-scale support vector machine learning practical. In *Advances in kernel methods Support Vector learning*. MIT Press, 1998.
- Hisashi Kashima, Koji Tsuda, and Akihiro Inokuchi. Kernels for graphs. In *Kernel Methods in Computational Biology*. MIT Press, 2004.
- G. S. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions. *J. Math. Anal. Applicat.*, 33:82–95, 1971.
- G. R. G. Lanckriet, T. De Bie, N. Cristianini, M. I. Jordan, and W. S. Noble. A statistical framework for genomic data fusion. *Bioinf.*, 20:2626–2635, 2004a.
- G. R. G. Lanckriet, N. Cristianini, L. El Ghaoui, P. Bartlett, and M. I. Jordan. Learning the kernel matrix with semidefinite programming. *Journal of Machine Learning Research*, 5:27–72, 2004b.
- S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In *Proc. CVPR*, 2006.

- C. Longworth and M. J. F. Gales. Multiple kernel learning for speaker verification. In *Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, 2008.
- G. Loosli, S. Canu, S. Vishwanathan, A. Smola, and M. Chattopadhyay. Boîte à outils SVM simple et rapide. *Revue dIntelligence Artificielle*, 19(4-5):741–767, 2005.
- K. Lounici. Sup-norm convergence rate and sign concentration property of Lasso and Dantzig estimators. *Electronic Journal of Statistics*, 2, 2008.
- J. Mairal, G. Sapiro, and M. Elad. Learning multiscale sparse representations for image and video restoration. *SIAM Multiscale Modeling and Simulation*, 7(1):214–241, 2008.
- N. Meinshausen and B. Yu. Lasso-type recovery of sparse representations for high-dimensional data. *Ann. Stat.*, page to appear, 2008.
- F. Meyer. Hierarchies of partitions and morphological segmentation. In *Scale-Space and Morphology in Computer Vision*. Springer-Verlag, 2001.
- Jorge Nocedal and Stephen J. Wright. Numerical Optimization, chapter 1. Springer, 2nd edition, 2006.
- G. Obozinski, B. Taskar, and M. I. Jordan. Multi-task feature selection. Technical report, UC Berkeley, 2007.
- J. Platt. Fast training of support vector machines using sequential minimal optimization. In *Advances in Kernel Methods: Support Vector Learning*, 1998.
- M. Pontil, A. Argyriou, and T. Evgeniou. Multi-task feature learning. In *Advances in Neural Information Processing Systems*, 2007.
- A. Rakotomamonjy, F. R. Bach, S. Canu, and Y. Grandvalet. Simplemkl. *Journal of Machine Learning Research*, to appear, 2008.

- Jan Ramon and Thomas Gärtner. Expressivity versus efficiency of graph kernels. In *First International Workshop on Mining Graphs, Trees and Sequences*, 2003.
- S. Rosset and J. Zhu. Piecewise linear regularized solution paths. *Ann. Statist.*, 35(3):1012–1030, 2007.
- R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted boltzmann machines for collaborative filtering. In *ICML '07: Proceedings of the 24th international conference on Machine learning*, pages 791–798, New York, NY, USA, 2007. ACM.
- B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, 2001.
- B. Schölkopf, J. C. Platt, J. S. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estimating the support of a high-dimensional distribution. *Neural Computation*, 13(7):1443–1471, 2001.
- S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver for SVM. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2007.
- J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Camb. U. P., 2004.
- S. Sonnenburg, G. Räsch, C. Schäfer, and B. Schölkopf. Large scale multiple kernel learning. *Journal of Machine Learning Research*, 7:1531–1565, 2006.
- N. Srebro, J. D. M. Rennie, and T. S. Jaakkola. Maximum-margin matrix factorization. In *Advances in Neural Information Processing Systems* 17, 2005.
- B. Taskar. Structured prediction: A large margin approach. In NIPS Tutorial, 2005. URL media. nips.cc/Conferences/2007/Tutorials/Slides/taskar-NIPS-07-tutorial.ppt.
- R. Tibshirani. Regression shrinkage and selection via the lasso. *Journal of The Royal Statistical Society Series B*, 58(1):267–288, 1996.

- M. Varma and D. Ray. Learning the discriminative power-invariance trade-off. In Proc. ICCV, 2007.
- R. Vert and J.-P. Vert. Consistency and convergence rates of one-class syms and related algorithms. *Journal of Machine Learning Research*, 7:817–854, 2006.
- S. V. N. Vishwanathan, A. J. Smola, and M. Murty. Simplesvm. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2003.
- G. Wahba. Spline Models for Observational Data. SIAM, 1990.
- M. J. Wainwright. Sharp thresholds for noisy and high-dimensional recovery of sparsity using ℓ_1 -constrained quadratic programming. Technical Report 709, Dpt. of Statistics, UC Berkeley, 2006.
- C. Watkins. Dynamic alignment kernels. Technical report, RHUL, 1999.
- Tong Tong Wu and Kenneth Lange. Coordinate descent algorithms for lasso penalized regression. *Ann. Appl. Stat.*, 2(1):224–244, 2008.
- M. Yuan and Y. Lin. On the non-negative garrotte estimator. *Journal of The Royal Statistical Society Series B*, 69(2):143–161, 2007.
- P. Zhao and B. Yu. On model selection consistency of Lasso. *Journal of Machine Learning Research*, 7:2541–2563, 2006.
- P. Zhao, G. Rocha, and B. Yu. Grouped and hierarchical model selection through composite absolute penalties. *Annals of Statistics*, To appear, 2008.
- H. Zou. The adaptive Lasso and its oracle properties. *Journal of the American Statistical Association*, 101:1418–1429, December 2006.

Code

SVM and other supervised learning techniques
 www.shogun-toolbox.org
 http://gaelle.loosli.fr/research/tools/simplesvm.html
 http://www.kyb.tuebingen.mpg.de/bs/people/spider/main.html

- ℓ^1 -penalization: Matlab/C/R codes available from www.dsp.ece.rice.edu/cs
- Multiple kernel learning: asi.insa-rouen.fr/enseignants/~arakotom/code/mklindex.html www.stat.berkeley.edu/~gobo/SKMsmo.tar

Conclusion - Interesting problems

- Kernel design for computer vision
 - Benefits of "kernelizing" existing representations
 - Combining kernels
- Sparsity and computer vision
 - Going beyond image denoising
- Large numbers of classes
 - Theoretical and algorithmic challenges
- Structured output