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Supervised learning and regularization

� Data: x i 2 X , yi 2 Y , i = 1 ; : : : ; n

� Minimize with respect to functionf 2 F :

nX

i =1

`(yi ; f (x i )) +
�
2

kf k2

Error on data + Regularization

Loss & function space ? Norm ?

� Two theoretical/algorithmic issues:

{ Loss
{ Function space / norm



Part II - Outline

1. Losses for particular machine learning tasks

� Classi�cation, regression, etc...

2. Regularization by Hilbert norms (kernel methods)

� Kernels and representer theorem
� Convex duality and optimization
� Kernel design

3. Regularization by sparsity-inducing norms

� `1-norm regularization
� Multiple kernel learning
� Theoretical results
� Other extensions



Losses for regression(Shawe-Taylor and Cristianini, 2004)

� Response: y 2 R, prediction ŷ = f (x),

{ quadratic (square) loss̀(y; f (x)) = 1
2(y � f (x))2

{ Not many reasons to go beyond square loss!
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Losses for regression(Shawe-Taylor and Cristianini, 2004)

� Response: y 2 R, prediction ŷ = f (x),

{ quadratic (square) loss̀(y; f (x)) = 1
2(y � f (x))2

{ Not many reasons to go beyond square loss!

� Other convex losses \with added bene�ts"

{ " -insensitive loss̀(y; f (x)) = ( jy � f (x)j � " )+

{ H•uber loss (mixed quadratic/linear): robustness to outliers
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Losses for classi�cation (Shawe-Taylor and Cristianini, 2004)

� Label : y 2 f� 1; 1g, prediction ŷ = sign(f (x))

{ loss of the form`(y; f (x)) = `(yf (x))
{ \True" cost: `(yf (x)) = 1 yf (x )< 0

{ Usualconvexcosts:
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� Di�erences between hinge and logistic loss: di�erentiabil ity/sparsity



Image annotation ) multi-class classi�cation



Losses for multi-label classi�cation (Sch•olkopf and
Smola, 2001; Shawe-Taylor and Cristianini, 2004)

� Two main strategies for k classes (with unclear winners)

1. Using existing binary classi�ers (e�cient code!) + voting schemes
{ \one-vs-rest" : learnk classi�ers on the entire data
{ \one-vs-one" : learnk(k � 1)=2 classi�ers on portions of the data



Losses for multi-label classi�cation - Linear predictors

� Using binary classi�ers (left: \one-vs-rest", right: \one-vs-one")
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Losses for multi-label classi�cation (Sch•olkopf and
Smola, 2001; Shawe-Taylor and Cristianini, 2004)

� Two main strategies for k classes (with unclear winners)

1. Using existing binary classi�ers (e�cient code!) + voting schemes
{ \one-vs-rest" : learnk classi�ers on the entire data
{ \one-vs-one" : learnk(k � 1)=2 classi�ers on portions of the data

2. Dedicated loss functions for prediction usingarg maxi 2f 1;:::;k g f i (x)
{ Softmax regression: loss =� log(ef y (x )=

P k
i =1 ef i (x ) )

{ Multi-class SVM - 1: loss =
P k

i =1 (1 + f i (x) � f y (x))+

{ Multi-class SVM - 2: loss =maxi 2f 1;:::;k g(1 + f i (x) � f y (x))+

� Strategies do not consider same predicting functions



Losses for multi-label classi�cation - Linear predictors

� Using binary classi�ers (left: \one-vs-rest", right: \one-vs-one")
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Image retrieval ) ranking



Image retrieval ) outlier/novelty detection



Losses for ther tasks

� Outlier detection (Sch•olkopf et al., 2001; Vert and Vert, 2006)

{ one-class SVM: learn only with positive examples

� Ranking

{ simple trick: transform into learning on pairs (Herbrich etal.,
2000), i.e., predictf x > y g or f x 6 yg

{ More general \structured output methods" (Joachims, 2002)

� General structured outputs

{ Very active topic in machine learning and computer vision
{ see, e.g., Taskar (2005)



Dealing with asymmetric cost or unbalanced data in
binary classi�cation

� Two cases with similar issues:

{ Asymmetric cost (e.g., spam �lterting, detection)
{ Unbalanced data, e.g., lots of positive examples (example:

detection)

� One number is not enough to characterize the asymmetric
properties

{ ROC curves (Flach, 2003) { cf. precision-recall curves

� Training using asymmetric losses (Bach et al., 2006)

min
f 2F

C+

X

i;y i =1

`(yi f (x i )) + C�

X

i;y i = � 1

`(yi f (x i )) + kf k2



Part II - Outline

1. Losses for particular machine learning tasks

� Classi�cation, regression, etc...

2. Regularization by Hilbert norms (kernel methods)

� Kernels and representer theorem
� Convex duality and optimization
� Kernel design

3. Regularization by sparsity-inducing norms

� `1-norm regularization
� Multiple kernel learning
� Theoretical results
� Other extensions



Regularizations

� Main goal: avoid over�tting (see earlier part of the tutorial)

� Two main lines of work:

1. UseHilbertian (RKHS) norms
{ Non parametric supervised learning and kernel methods
{ Well developped theory (Sch•olkopf and Smola, 2001; Shawe-

Taylor and Cristianini, 2004; Wahba, 1990)
2. Use\sparsity inducing" norms

{ main example:̀ 1-norm kwk1 =
P p

i =1 jwi j
{ Perform model selection as well as regularization
{ Theory \in the making"

� Goal of (this part of) the course: Understand how and when
to use these di�erent norms



Kernel methods for machine learning

� De�nition : given a set of objectsX , a positive de�nite kernelis
a symmetric functionk(x; x 0) such that for all �nite sequences of
points x i 2 X and � i 2 R,

P
i;j � i � j k(x i ; x j ) > 0

(i.e., the matrix (k(x i ; x j )) is symmetric positive semi-de�nite)

� Aronszajn theorem (Aronszajn, 1950): k is a positive de�nite
kernel if and only if there exists a Hilbert spaceF and a mapping
� : X 7! F such that

8(x; x 0) 2 X 2; k(x; x 0) = h�( x); �( x0)i H

� X = \ input space", F = \ feature space", � = \ feature map"

� Functional view:reproducing kernel Hilbert spaces



Classical kernels: kernels on vectors x 2 Rd

� Linearkernelk(x; y) = x> y

{ �( x) = x

� Polynomialkernelk(x; y) = (1 + x> y)d

{ �( x) = monomials

� Gaussiankernelk(x; y) = exp( � � kx � yk2)

{ �( x) =??



Reproducing kernel Hilbert spaces

� Assumek is a positive de�nite kernelon X � X

� Aronszajn theorem (1950): there exists a Hilbert spaceF and a
mapping� : X 7! F such that

8(x; x 0) 2 X 2; k(x; x 0) = h�( x); �( x0)i H

� X = \ input space", F = \ feature space", � = \ feature map"

� RKHS: particular instantiation ofF as afunction space

{ �( x) = k(�; x)

{ function evaluation f (x) = hf; �( x)i

{ reproducing property:k(x; y) = hk(�; x); k(�; y)i

� Notations : f (x) = hf; �( x)i = f > �( x), kf k2 = hf; f i



Classical kernels: kernels on vectors x 2 Rd

� Linearkernelk(x; y) = x> y

{ Linear functions

� Polynomialkernelk(x; y) = (1 + x> y)d

{ Polynomial functions

� Gaussiankernelk(x; y) = exp( � � kx � yk2)

{ Smooth functions



Classical kernels: kernels on vectors x 2 Rd

� Linearkernelk(x; y) = x> y

{ Linear functions

� Polynomialkernelk(x; y) = (1 + x> y)d

{ Polynomial functions

� Gaussiankernelk(x; y) = exp( � � kx � yk2)

{ Smooth functions

� Parameter selection? Structured domain?



Regularization and representer theorem

� Data: x i 2 X , yi 2 Y , i = 1 ; : : : ; n, kernelk (with RKHS F )

� Minimize with respect tof : min
f 2F

P n
i =1 `(yi ; f > �( x i )) + �

2kf k2

� No assumptions on cost̀ or n

� Representer theorem (Kimeldorf and Wahba, 1971): optimum is
reached for weights of the form

f =
P n

j =1 � j �( x j ) =
P n

j =1 � j k(�; x j )

� � 2 Rn dual parameters, K 2 Rn � n kernel matrix:
K ij = �( x i )> �( x j ) = k(x i ; x j )

� Equivalent problem: min � 2 Rn
P n

i =1 `(yi ; (K� ) i ) + �
2 � > K�



Kernel trick and modularity

� Kernel trick: any algorithm for �nite-dimensional vectors that only
uses pairwise dot-products can be applied in the feature space.

{ Replacing dot-products by kernel functions
{ Implicit use of (very) large feature spaces
{ Linear to non-linear learning methods



Kernel trick and modularity

� Kernel trick: any algorithm for �nite-dimensional vectors that only
uses pairwise dot-products can be applied in the feature space.

{ Replacing dot-products by kernel functions
{ Implicit use of (very) large feature spaces
{ Linear to non-linear learning methods

� Modularity of kernel methods

1. Work on new algorithms and theoretical analysis
2. Work on new kernels for speci�c data types



Representer theorem and convex duality

� The parameters� 2 Rn may also be interpreted asLagrange
multipliers

� Assumption: cost function isconvex, ' i (ui ) = `(yi ; ui )

� Primal problem: min
f 2F

P n
i =1 ' i (f > �( x i )) + �

2kf k2

� What about the constant termb? replace�( x) by (�( x); c), c large

' i (ui )
LS regression 1

2(yi � ui )2

Logistic
regression

log(1 + exp( � yi ui ))

SVM (1 � yi ui )+



Representer theorem and convex duality
Proof

� Primal problem: min
f 2F

P n
i =1 ' i (f > �( x i )) + �

2kf k2

� De�ne  i (vi ) = max
u i 2 R

vi ui � ' i (ui ) as theFenchel conjugateof ' i

� Main trick: introduce constraint ui = f > �( x i ) and associated
Lagrange multipliers� i

� LagrangianL (�; f ) =
nX

i =1

' i (ui ) +
�
2

kf k2 + �
nX

i =1

� i (ui � f > �( x i ))

{ Maximize with respect toui ) term of the form�  i (� �� i )
{ Maximize with respect tof ) f =

P n
i =1 � i �( x i )



Representer theorem and convex duality

� Assumption: cost function isconvex' i (ui ) = `(yi ; ui )

� Primal problem: min
f 2F

P n
i =1 ' i (f > �( x i )) + �

2kf k2

� Dual problem: max
� 2 Rn

�
P n

i =1  i (� �� i ) � �
2 � > K�

where i (vi ) = max u i 2 R vi ui � ' i (ui ) is the Fenchel conjugate of' i

� Strong duality

� Relationship between primal and dual variables (at optimum):
f =

P n
i =1 � i �( x i )

� NB: adding constant termb , add constraints
P n

i =1 � i = 0



\Classical" kernel learning (2-norm regularization)

Primal problem minf 2F
� P

i ' i (f > �( x i )) + �
2 jj f jj2

�

Dual problem max� 2 Rn
�
�

P
i  i (�� i ) � �

2 � > K�
�

Optimality conditions f =
P n

i =1 � i �( x i )

� Assumptions on loss' i :

{ ' i (u) convex
{  i (v) Fenchel conjugate of' i (u), i.e.,  i (v) = max u2 R(vu� ' i (u))

' i (ui )  i (v)
LS regression 1

2(yi � ui )2 1
2v2 + vyi

Logistic
regression

log(1 + exp( � yi ui ))
(1+ vyi ) log(1+ vyi )

� vyi log(� vyi )

SVM (1 � yi ui )+ vyi � 1� vy i 2 [0;1]



Particular case of the support vector machine

� Primal problem: min
f 2F

P n
i =1 (1 � yi f > �( x i ))+ + �

2kf k2

� Dual problem: max
� 2 Rn

 

�
X

i

�� i yi � 1� �� i y i 2 [0;1] �
�
2

� > K�

!

� Dual problem (by change of variable�  � Diag(y)� andC = 1=� ):

max
� 2 Rn ; 06 � 6 C

P n
i =1 � i � 1

2� > Diag(y)K Diag(y)�



Particular case of the support vector machine

� Primal problem: min
f 2F

P n
i =1 (1 � yi f > �( x i ))+ + �

2kf k2

� Dual problem:

max
� 2 Rn ; 06 � 6 C

P n
i =1 � i � 1

2� > Diag(y)K Diag(y)�



Particular case of the support vector machine

� Primal problem: min
f 2F

P n
i =1 (1 � yi f > �( x i ))+ + �

2kf k2

� Dual problem:

max
� 2 Rn ; 06 � 6 C

P n
i =1 � i � 1

2� > Diag(y)K Diag(y)�

� What about the traditional picture?



Losses for classi�cation

� Usualconvexcosts:
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� Di�erences between hinge and logistic loss: di�erentiabil ity/sparsity



Support vector machine or logistic regression?

� Predictive performance is similar

� Only true di�erence is numerical

{ SVM: sparsity in�
{ Logistic: di�erentiable loss function

� Which one to use?

{ Linear kernel) Logistic + Newton/Gradient descent
{ Nonlinear kernel) SVM + dual methods or simpleSVM



Algorithms for supervised kernel methods

� Four formulations

1. Dual: max� 2 Rn �
P

i  i (�� i ) � �
2 � > K�

2. Primal: min f 2F
P

i ' i (f > �( x i )) + �
2 jj f jj2

3. Primal + Representer: min � 2 Rn
P

i ' i ((K� ) i ) + �
2 � > K�

4. Convex programming

� Best strategy depends on loss (di�erentiable or not) and ker nel
(linear or not)



Dual methods

� Dual problem:max� 2 Rn �
P

i  i (�� i ) � �
2 � > K�

� Main method: coordinate descent (a.k.a. sequential minimal
optimization - SMO) (Platt, 1998; Bottou and Lin, 2007; Joachims,
1998)

{ E�cient when loss is piecewise quadratic (i.e., hinge = SVM)
{ Sparsity may be used in the case of the SVM

� Computational complexity: between quadratic and cubic inn

� Works for all kernels



Primal methods

� Primal problem:min f 2F
P

i ' i (f > �( x i )) + �
2 jj f jj2

� Only works directly if �( x) may be built explicitly and has small
dimension

{ Example: linear kernel in small dimensions

� Di�erentiable loss: gradient descent or Newton's method are very
e�cient in small dimensions

� Larger scale: stochastic gradient descent (Shalev-Shwartz et al.,
2007; Bottou and Bousquet, 2008)



Primal methods with representer theorems

� Primal problemin � : min � 2 Rn
P

i ' i ((K� ) i ) + �
2 � > K�

� Direct optimization in� poorly conditioned (K has low-rank) unless
Newton method is used (Chapelle, 2007)

� General kernels: use incomplete Cholesky decomposition (Fine and
Scheinberg, 2001; Bach and Jordan, 2002) to obtain a square root
K = GG>

K

T

=
G

G
G of sizen � m,
wherem � n

{ \Empirical input space" of sizem obtained using rows ofG
{ Running time to computeG: O(m2n)



Direct convex programming

� Convex programming toolboxes ) very ine�cient!

� May use special structure of the problem

{ e.g., SVM and sparsity in�

� Active set method for the SVM:SimpleSVM (Vishwanathan et al.,
2003; Loosli et al., 2005)

{ Cubic complexity in the number of support vectors

� Full regularization path for the SVM (Hastie et al., 2005; Bach et al.,
2006)

{ Cubic complexity in the number of support vectors
{ May be extended to other settings (Rosset and Zhu, 2007)



Part II - Outline

1. Losses for particular machine learning tasks

� Classi�cation, regression, etc...

2. Regularization by Hilbert norms (kernel methods)

� Kernels and representer theorem
� Convex duality and optimization
� Kernel design

3. Regularization by sparsity-inducing norms

� `1-norm regularization
� Multiple kernel learning
� Theoretical results
� Other extensions



Kernel design

� Principle: kernel on X = space of functions on X + norm

� Two main design principles

1. Constructing kernels from kernels by algebraic operations
2. Using usual algebraic/numerical tricks to perform e�cient kernel

computation with very high-dimensional feature spaces

� Operations:k1(x; y)= h� 1(x); � 1(y)i , k2(x; y)= h� 2(x); � 2(y)i

{ Sum = concatenation of feature spaces :

k1(x; y) + k2(x; y) =
D� � 1(x )

� 2(x )

�
;
� � 1(y )

� 2(y )

� E

{ Product = tensor product of feature spaces :

k1(x; y)k2(x; y) =


� 1(x)� 2(x)> ; � 1(y)� 2(y)>

�



Classical kernels: kernels on vectors x 2 Rd

� Linearkernelk(x; y) = x> y

{ Linear functions

� Polynomialkernelk(x; y) = (1 + x> y)d

{ Polynomial functions

� Gaussiankernelk(x; y) = exp( � � kx � yk2)

{ Smooth functions

� Data are not always vectors!



E�cient ways of computing large sums

� Goal: �( x) 2 Rp high-dimensional, compute
pX

i =1

� i (x)� i (y) in o(p)

� Sparsity: many� i (x) equal to zero (example: pyramid match kernel)

� Factorization and recursivity : replace sums of many products by
product of few sums (example: polynomial kernel, graph kernel)

(1 + x> y)d =
X

� 1+ ��� + � k 6 d

�
d

� 1; : : : ; � k

�
(x1y1) � 1 � � � (xkyk ) � k



Kernels over (labelled) sets of points

� Common situation in computer vision (e.g., interest points)

� Simple approach: compute averages/histograms of certain features

{ valid kernels over histogramsh and h0 (Hein and Bousquet, 2004)

{ intersection :
P

i min(hi ; h0
i ), chi-square: exp

�
� �

P
i

(h i � h0
i )

2

h i + h0
i

�



Kernels over (labelled) sets of points

� Common situation in computer vision (e.g., interest points)

� Simple approach: compute averages/histograms of certain features

{ valid kernels over histogramsh and h0 (Hein and Bousquet, 2004)

{ intersection :
P

i min(hi ; h0
i ), chi-square: exp

�
� �

P
i

(h i � h0
i )

2

h i + h0
i

�

� Pyramid match (Grauman and Darrell, 2007): e�ciently introducing
localization

{ Form a regular pyramid on top of the image
{ Count the number of common elements in each bin
{ Give a weight to each bin
{ Many bins but most of them are empty

) use sparsity to compute kernel e�ciently



Pyramid match kernel
(Grauman and Darrell, 2007; Lazebnik et al., 2006)

� Two sets of points

� Counting matches at several scales: 7, 5, 4



Kernels from segmentation graphs

� Goal of segmentation: extract objects of interest

� Many methods available, ....

{ ... but, rarely �nd the object of interest entirely

� Segmentation graphs

{ Allows to work on \more reliable" over-segmentation
{ Going to a large square grid (millions of pixels)to a small graph

(dozens or hundreds of regions)

� How to build a kernel over segmenation graphs?

{ NB: more generally, kernelizing existing representations?



Segmentation by watershed transform (Meyer, 2001)

image gradient watershed

287 segments 64 segments 10 segments



Segmentation by watershed transform (Meyer, 2001)

image gradient watershed

287 segments 64 segments 10 segments



Image as a segmentation graph

� Labelled undirected graph

{ Vertices: connected segmented regions
{ Edges: between spatially neighboring regions
{ Labels: region pixels

)



Image as a segmentation graph

� Labelled undirected graph

{ Vertices: connected segmented regions
{ Edges: between spatially neighboring regions
{ Labels: region pixels

� Di�culties

{ Extremely high-dimensional labels
{ Planar undirected graph
{ Inexact matching

� Graph kernels (G•artner et al., 2003; Kashima et al., 2004; Harchaoui
and Bach, 2007) provide an elegant and e�cient solution



Kernels between structured objects
Strings, graphs, etc... (Shawe-Taylor and Cristianini, 2004)

� Numerous applications (text, bio-informatics, speech, vision)

� Common design principle:enumeration of subparts (Haussler,
1999; Watkins, 1999)

{ E�cient for strings
{ Possibility of gaps, partial matches, very e�cient algorithms

� Most approaches fails for general graphs(even for undirected trees!)

{ NP-Hardness results (Ramon and G•artner, 2003)
{ Need speci�c set of subparts



Paths and walks

� Given a graphG,

{ A path is a sequence ofdistinct neighboring vertices
{ A walk is a sequence of neighboring vertices

� Apparently similar notions



Paths



Walks



Walk kernel (Kashima et al., 2004; Borgwardt et al., 2005)

� W p
G (resp. W p

H ) denotes the set of walks of lengthp in G (resp. H )

� Givenbasis kernelon labelsk(`; ` 0)

� p-th order walk kernel:

kp
W (G ; H ) =

X

(r 1; : : : ; rp) 2 W p
G

(s1; : : : ; sp) 2 W p
H

pY

i =1

k(`G (r i ); `H (si )) :

G

1

s3

2s

s1r2

3r
H

r



Dynamic programming for the walk kernel

� Dynamic programming inO(pdGdH nGnH )

� kp
W (G ; H ; r; s) = sum restricted to walks starting atr and s

� recursion betweenp � 1-th walk andp-th walk kernel

kp
W (G ; H ; r; s)= k(`G (r ); `H (s))

X

r 0 2 N G (r )
s0 2 N H (s)

kp� 1
W (G ; H ; r 0; s0):

G
s

r

H



Dynamic programming for the walk kernel

� Dynamic programming inO(pdGdH nGnH )

� kp
W (G ; H ; r; s) = sum restricted to walks starting atr and s

� recursion betweenp � 1-th walk andp-th walk kernel

kp
W (G ; H ; r; s)= k(`G (r ); `H (s))

X

r 0 2 N G (r )
s0 2 N H (s)

kp� 1
W (G ; H ; r 0; s0)

� Kernel obtained askp;�
T (G ; H ) =

X

r 2V G ;s2V H

kp;�
T (G ; H ; r; s)



Extensions of graph kernels

� Main principle: compare all possible subparts of the graphs

� Going from paths to subtrees

{ Extension of the concept of walks) tree-walks (Ramon and
G•artner, 2003)

� Similar dynamic programming recursions (Harchaoui and Bach, 2007)

� Need to play around with subparts to obtain e�cient recursions

{ Do we actually need positive de�niteness?



Performance on Corel14 (Harchaoui and Bach, 2007)

� Corel14 : 1400natural images with14 classes



Performance on Corel14 (Harchaoui & Bach, 2007)

Error rates

� Histogram kernels (H)

� Walk kernels (W)

� Tree-walk kernels (TW )

� Weighted tree-walks
(wTW )

� MKL (M ) H W TW wTW M
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Performance comparison on Corel14



Kernel methods - Summary

� Kernels and representer theorems

{ Clear distinction between representation/algorithms

� Algorithms

{ Two formulations (primal/dual)
{ Logistic or SVM?

� Kernel design

{ Very large feature spaces with e�cient kernel evaluations
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Why `1-norms lead to sparsity?

� Minimize quadratic objective subjet to constraint

kwk1 =
P p

i =1 jwi j 6 T

{ coupledsoft thresolding

� Geometric interpretation withp = 2



`1-norm regularization (linear setting)

� Data: covariatesx i 2 Rp, responsesyi 2 Y , i = 1 ; : : : ; n

� Minimize with respect toloadings/weightsw 2 Rp:

nX

i =1

`(yi ; w> x i ) + � kwk1

Error on data + Regularization

� Including a constant termb? Penalizing or constraining?

� Assumptions on loss:

{ convex and di�erentiable in the second variable
{ NB: with the square loss) basis pursuit(signal processing) (Chen

et al., 2001),Lasso(statistics/machine learning) (Tibshirani, 1996)



Nonsmooth optimization

� Simple methods do not always work!

{ Coordinate/steepest descent might not converge to a local
minimum

{ Be careful!

� Optimization algorithms

{ First order methods: good for large scale/low precision
{ Second order methods: good for small scale/high precision

� Books: Boyd and Vandenberghe (2003), Bonnans et al. (2003),
Nocedal and Wright (2006), Borwein and Lewis (2000)



Algorithms for `1-norms:
Gaussian hare vs. Laplacian tortoise



Two simple algorithms: one good, one (very) bad

� Coordinate descent (Wu and Lange, 2008)

{ Globaly convergent here under reasonable assumptions!
{ very fast updates (thresholding)

� Quadratic programming formulation for the square loss: minimize

1
2

nX

i =1

(yi � w> x i )2+ �
pX

j =1

(w+
j + w�

j ) s.t. w = w+ � w� ; w+ > 0; w� > 0

{ generic toolboxes ) very slow



Algorithm: Lars/Lasso for the square loss
(Efron et al., 2004)

� Goal: Get all solutions for all possible values of the regularization
parameter�

� Property: the regularization path is piecewise linear

� Simply need to �nd break points and directions

� Generalizable to many problems (Rosset and Zhu, 2007)



Lasso in action

� Piecewise linear paths

� When is it supposed to work?

{ Simulations with random Gaussians, regularization parameter
estimated by cross-validation

{ sparsity is expected or not



Lasso in action
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Comparing Lasso and other strategies for linear
regression and subset selection

� Compared methods to reach the least-square solution (Hastie et al.,
2001)

{ Ridge regression: minw
1
2

P n
i =1 (yi � w> x i )2 + �

2kwk2
2

{ Lasso: minw
1
2

P n
i =1 (yi � w> x i )2 + � kwk1

{ Forward greedy:
� Initialization with empty set
� Sequentially add the variable that best reduces the square loss

� Each method builds a path of solutions from 0 towOLS



Lasso in action
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Part II - Outline

1. Losses for particular machine learning tasks

� Classi�cation, regression, etc...

2. Regularization by Hilbert norms (kernel methods)

� Kernels and representer theorem
� Convex duality and optimization
� Kernel design

3. Regularization by sparsity-inducing norms

� `1-norm regularization
� Multiple kernel learning
� Theoretical results
� Other extensions



Kernel learning with convex optimization

� Kernel methods work...
...with the good kernel!

) Why not learn the kernel directly from data?



Kernel learning with convex optimization

� Kernel methods work...
...with the good kernel!

) Why not learn the kernel directly from data?

� Proposition (Lanckriet et al., 2004b; Bach et al., 2004a):

G(K ) = min
f 2F

P n
i =1 ' i (f > �( x i )) + �

2kf k2

= max
� 2 Rn

�
P n

i =1  i (�� i ) � �
2 � > K�

is a convexfunction of theGram (a.k.a. kernel) matrixK

� Theoretical learningbounds(Lanckriet et al., 2004b)



MKL framework

� Minimize with respect to the kernel matrixK

G(K ) = max
� 2 Rn

�
P n

i =1  i (�� i ) � �
2 � > K�

� Optimization domain:

{ K positive semi-de�nite in general : very large set!
{ The set of kernel matrices is a cone) conic representation

K (� ) =
P m

j =1 � j K j ; � > 0

{ Trace constraints:tr K =
P m

j =1 � j tr K j = 1

� Optimization:

{ In most cases, representation in terms ofSDP, QCQPor SOCP
{ Optimization by generic toolbox is costly (Lanckriet et al., 2004b)



MKL - \reinterpretation" (Bach et al., 2004a)

� Framework limited toK =
P m

j =1 � j K j , � > 0

� Summing kernels is equivalent to concatenating feature spaces

{ m \feature maps" � j : X 7! F j , j = 1 ; : : : ; m.
{ Minimization with respect tof 1 2 F 1; : : : ; f m 2 F m

{ Predictor: f (x) = f 1
> � 1(x) + � � � + f m

> � m (x)

x

� 1(x)> f 1

% ... ... &
�! � j (x)> f j �!
& ... ... %

� m (x)> f m

f >
1 � 1(x) + � � � + f >

m � m (x)

{ Which regularization?



Regularization for multiple kernels

� Summing kernels is equivalent to concatenating feature spaces

{ m \feature maps" � j : X 7! F j , j = 1 ; : : : ; m.
{ Minimization with respect tof 1 2 F 1; : : : ; f m 2 F m

{ Predictor: f (x) = f 1
> � 1(x) + � � � + f m

> � m (x)

� Regularization by
P m

j =1 kf j k2 is equivalent to usingK =
P m

j =1 K j



Regularization for multiple kernels

� Summing kernels is equivalent to concatenating feature spaces

{ m \feature maps" � j : X 7! F j , j = 1 ; : : : ; m.
{ Minimization with respect tof 1 2 F 1; : : : ; f m 2 F m

{ Predictor: f (x) = f 1
> � 1(x) + � � � + f m

> � m (x)

� Regularization by
P m

j =1 kf j k2 is equivalent to usingK =
P m

j =1 K j

� Regularization by
P m

j =1 kf j k should impose sparsity at the group
level

� Main questions when regularizing by block `1-norm:

1. Equivalence with previous formulations
2. Algorithms
3. Analysis of sparsity inducing properties(Bach, 2008c)



MKL - equivalence with general kernel learning
(Bach et al., 2004a)

� Block `1-norm problem:

P n
i =1 ' i (f >

1 � 1(x i ) + � � � + f >
m � m (x i )) + �

2 (kf 1k + � � � + kf m k)2

� Proposition : It is equivalence to minimize with respect to� the
optimal value G(K (� )) of the supervised learning problem (Bach
et al., 2004a)

� Kernel weights obtained from optimality conditions and Lagrange
multipliers

� Single optimization problem for learning both weights � and
classi�er �



Algorithms for MKL

� (very) costly optimization with SDP, QCQP ou SOCP

{ n > 1; 000� 10; 000, m > 100 not possible
{ \loose" required precision) �rst order methods

� Dual coordinate ascent (SMO) with smoothing (Bach et al., 2004a)

� Optimization of G(K ) by cutting planes (Sonnenburg et al., 2006)

� Optimization of G(K ) with steepest descent with smoothing
(Rakotomamonjy et al., 2008)

� Regularization path (Bach et al., 2004b)



Applications

� Several applications

{ Bioinformatics (Lanckriet et al., 2004a)
{ Speech processing (Longworth and Gales, 2008)
{ Image annotation (Harchaoui and Bach, 2007; Varma and Ray,

2007; Bosch et al., 2008)

� Two potential uses

{ Fusion of heterogeneous data sources
{ Learning hyperparameters
{ Sparsity in non-linear settings



Performance on Corel14 (Harchaoui and Bach, 2007)

� Corel14 : 1400natural images with14 classes



Performance on Corel14 (Harchaoui and Bach, 2007)

Error rates

� Histogram kernels (H)

� Walk kernels (W)

� Tree-walk kernels (TW )

� Weighted tree-walks
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Caltech101 database (Fei-Fei et al., 2006)



Kernel combination for Caltech101 (Varma and Ray, 2007)

Classi�cation accuracies

1- NN SVM (1 vs. 1) SVM (1 vs. rest)
Shape GB1 39.67� 1.02 57.33� 0.94 62.98� 0.70
Shape GB2 45.23� 0.96 59.30� 1.00 61.53� 0.57
Self Similarity 40.09� 0.98 55.10� 1.05 60.83� 0.84
PHOG 180 32.01� 0.89 48.83� 0.78 49.93� 0.52
PHOG 360 31.17� 0.98 50.63� 0.88 52.44� 0.85
PHOWColour 32.79� 0.92 40.84� 0.78 43.44� 1.46
PHOWGray 42.08� 0.81 52.83� 1.00 57.00� 0.30
MKL Block `1 77.72 � 0.94 83.78 � 0.39
(Varma and Ray, 2007) 81.54 � 1.08 89.56 � 0.59

� See also Bosch et al. (2008)
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Learning on matrices

� Example 1:matrix completion

{ Given a matrix M 2 Rn � p and a subset of observed entries,
estimate all entries

{ Many applications: graph learning, collaborative �ltering (Breese

et al., 1998; Heckerman et al., 2000; Salakhutdinov et al., 2007)

� Example 2:multi-task learning (Obozinski et al., 2007; Pontil et al., 2007)

{ Common features form learning problems) m di�erent weights,
i.e., W = ( w1; : : : ; wm ) 2 Rp� m

{ Numerous applications

� Example 3:image denoising (Elad and Aharon, 2006; Mairal et al., 2008)

{ Simultaneously denoise all patches of a given image



Three natural types of sparsity for matrices M 2 Rn� p

1. A lot of zero elements

� does not use the matrix structure!

2. A small rank

� M = UV> whereU 2 Rn � m and V 2 Rn � m , m small
� Trace norm

U=
V

M

T



Three natural types of sparsity for matrices M 2 Rn� p

1. A lot of zero elements

� does not use the matrix structure!

2. A small rank

� M = UV> whereU 2 Rn � m and V 2 Rn � m , m small
� Trace norm (Srebro et al., 2005; Fazel et al., 2001; Bach, 2008d)

3. A decomposition into sparse (but large) matrix) redundant
dictionaries

� M = UV> whereU 2 Rn � m and V 2 Rn � m , U sparse
� Dictionary learning (Elad and Aharon, 2006; Mairal et al., 2008)



Trace norm (Srebro et al., 2005; Bach, 2008d)

� Singular value decomposition:M 2 Rn � p can always be decomposed
into M = U Diag(s)V > , where U 2 Rn � m and V 2 Rn � m have
orthonormal columns ands is a positive vector (of singular values)

� `0 norm of singular values = rank

� `1 norm of singular values = trace norm

� Similar properties than thè1-norm

{ Convexity
{ Solutions of penalized problem have low rank
{ Algorithms



Dictionary learning
(Elad and Aharon, 2006; Mairal et al., 2008)

� GivenX 2 Rn � p, i.e., n vectors inRp, �nd

{ m dictionary elementsin Rp: V = ( v1; : : : ; vm ) 2 Rp� m

{ m set of decomposition coe�cients: U = 2 Rn � m

{ such thatU is sparseand small reconstruction error, i.e.,
kX � UV> k2

F =
P n

i =1 kX (i; :) � U(i; :)V > k2
2 is small

� NB: Opposite view, i.e., not sparse in term of ranks, sparse in terms
of decomposition coe�cients

� Minimize with respect toU and V , such thatkV (:; i )k2 = 1 ,

1
2
kX � UV> k2

F + �
NX

i =1

kU(i; :)k1

{ non convex, alternate minimization



Dictionary learning - Denoising (Mairal et al., 2008)

Dictionary

Original Noisy Denoised



Dictionary learning - Inpainting (Mairal et al., 2008)

Original Missing pixels Denoised



Theory: model consistency of the Lasso

� Sparsity-inducing norms often used heuristically

� If the responsesy1; : : : ; yn are such thatyi = w > x i + " i where" i are
i.i.d. and w is sparse, do we get back the correct pattern of zeros?

� Intuitive answer: yesif and ony if some consistency condition on
the generating covariance matrices is satis�ed (Zhao and Yu, 2006;
Yuan and Lin, 2007; Zou, 2006; Wainwright, 2006)

k� JcJ � � 1
JJ sign(w J)k1 6 1

whereJ = indices of relevant variables,w = true loading vector

� What if condition not satis�ed?

{ Adaptive versions(Zou, 2006) or resampling methods(Bach, 2008a)



High-dimensional setting

� If consistency condition is satis�ed, the Lasso is indeed consistent as
long aslog(p) � n

� A lot of on-going work (Meinshausen and Yu, 2008; Wainwright,
2006; Lounici, 2008)



High-dimensional setting (Lounici, 2008)

� Assumptions

{ yi = w > x i + " i , " i.i.d. normal with mean zero and variance� 2

{ Q = X > X=n with unit diagonal and cross-terms less than114s
{ Theorem : if kwk0 6 s, and A > 81=2, then

P

 

kŵ � wk1 6 5A�
�

logp
n

� 1=2
!

6 1 � p1� A 2=8

� Get the correct sparsity pattern ifmin j; w j 6=0 jw j j > C�
�

log p
n

� 1=2

� Can have a lot of irrelevant variables!



High-dimensional setting

� If consistency condition is satis�ed, the Lasso is indeed consistent as
long aslog(p) � n

� A lot of on-going work (Meinshausen and Yu, 2008; Wainwright,
2006; Lounici, 2008)

� Link with compressed sensing(Baraniuk, 2007; Cand�es and Wakin, 2008)

{ Goal of compressed sensing: recover a signalw 2 Rp from only n
measurementsy = Xw 2 Rn

{ Assumptions: the signal isk-sparse,k � p
{ Algorithm: minw2 Rp kwk1 such thaty = Xw
{ X is not given but may be chosen (deterministic or random)!



Summary - sparsity-inducing norms

� Sparsity through non Euclidean norms

� Alternative approaches to sparsity

{ greedy approaches - Bayesian approaches

� Important (often non treated) question: when does sparsityactually
help?

� Current research directions

{ Algorithms, algorithms, algorithms!
{ Structured norm for structured situations (variables are usually not

created equal)) hierarchical Lasso or MKL (Zhao et al., 2008;
Bach, 2008b)



Conclusion - Course Outline

1. Theory

� Probabilistic model and universal consistency
� Local averaging methods
� Empirical risk minimization

2. Algorithms

� Losses for particular machine learning tasks
� Regularization by Hilbert norms (kernel methods)

{ Algorithms
{ Kernel design

� Regularization by sparsity-inducing norms
{ `1-norm regularization
{ Multiple kernel learning
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Code

� SVM and other supervised learning techniques
www.shogun-toolbox.org
http://gaelle.loosli.fr/research/tools/simplesvm.ht ml
http://www.kyb.tuebingen.mpg.de/bs/people/spider/ma in.html

� `1-penalization: Matlab/C/R codes available from
www.dsp.ece.rice.edu/cs

� Multiple kernel learning:
asi.insa-rouen.fr/enseignants/ ~arakotom/code/mklindex.html
www.stat.berkeley.edu/ ~gobo/SKMsmo.tar



Conclusion - Interesting problems

� Kernel design for computer vision

{ Bene�ts of \kernelizing" existing representations
{ Combining kernels

� Sparsity and computer vision

{ Going beyond image denoising

� Large numbers of classes

{ Theoretical and algorithmic challenges

� Structured output


