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Supervised learning and regularization

Minimize with respect to functiorf 2 F :

X
(yis T (i) + Sk k?
i=1
Error on data + Regularization
Loss & function space ? Norm ?

Two theoretical/algorithmic issues:

{ Loss
{ Function space / norm
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Losses for regression(Shawe-Taylor and Cristianini, 2004)

Response y 2 R, prediction$ = f (x),

{ quadratic (square) loss(y;f (x)) = 5(y f (x))?
{ Not many reasons to go beyond square loss!

n —square




Losses for regression(Shawe-Taylor and Cristianini, 2004)
Response y 2 R, prediction$ = f (x),

{ quadratic (square) loss(y;f (x)) = 5y f (x))?

{ Not many reasons to go beyond square loss!

Other convex losses \with added bene ts"

{ "-insensitive loss(y;f (X)) =(jy fX)] ")«
{ Haber loss (mixed quadratic/linear): robustness to owis

n —square
—e-insensitive
—Huber
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Losses for classi cation (Shawe-Taylor and Cristianini, 2004)

Label : y2f 1;1g, predictiony = signf (x))

{ loss of the form'(y:f (x)) = " (yf (X))
{ \True" cost: \(yf (X)) =1 yf (x)<0

{ Usualconvexcosts:
5
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4 — hinge
square
logistic
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Di erences between hinge and logistic loss: di erentiabil ity/sparsity



Image annotation ) multi-class classi cation




Losses for multi-label classi cation (Schelkopf and
Smola, 2001; Shawe-Taylor and Cristianini, 2004)

Two main strategies for k classes (with unclear winners)

1. Using existing binary classi ers (e cient code!) + voting ghemes
{ \one-vs-rest" . learnk classi ers on the entire data
{ \one-vs-one" : learnk(k 1)=2 classi ers on portions of the data



Losses for multi-label classi cation - Linear predictors

Using binary classi ers (left: \one-vs-rest", right: \on&/s-one")

- ‘\/f




Losses for multi-label classi cation (Schelkopf and
Smola, 2001; Shawe-Taylor and Cristianini, 2004)

Two main strategies for k classes (with unclear winners)

1. Using existing binary classi ers (e cient code!) + voting ghemes
{ \one-vs-rest" . learnk classi ers on the entire data
{ \one-vs-one" : learnk(k 1)=2 classi ers on portions of the data
2. Dedicated loss functions for prediction usBi(:g maX; ot 1.k g Ti(X)

{ Softmax regression: loss :IJog(efy(X): < i)
{ Multi-class SVM - 1: loss = ., (1 + fi(x) fy(x)).
{ Multi-class SVM - 2: loss =maX;s 1.k g(1 + fi(X) fy(X))+

Strategies do not consider same predicting functions



Losses for multi-label classi cation - Linear predictors

Using binary classi ers (left: \one-vs-rest”, right: \on&/s-one")

><1
- \
Dedicated loss function
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Image retrieval ) ranking
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Image retrieval ) outlier/novelty detection
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Losses for ther tasks

Outlier detection (Schelkopf et al., 2001; Vert and Vert,0D6)

{ one-class SVM: learn only with positive examples

Ranking

{ simple trick: transform into learning on pairs (Herbrich etl.,
2000), I.e., predictfx >y gorfx 6 yg
{ More general \structured output methods" (Joachims, 2002)

General structured outputs

{ Very active topic in machine learning and computer vision
{ see, e.qg., Taskar (2005)



Dealing with asymmetric cost or unbalanced data in
binary classi cation

Two cases with similar issues:

{ Asymmetric cost (e.g., spam lterting, detection)
{ Unbalanced data, e.g., lots of positive examples (example:

detection)

One number is not enough to characterize the asymmetric
properties

{ ROC curves (Flach, 2003) { cf. precision-recall curves

Training using asymmetric losses (Bach et al., 2006)

X X
min  C.  (yif(x))+ C “(yif (xi) + kf K

f 2F _ .
Ly =1 Ly = 1
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Regularizations

Main goal: avoid over tting (see earlier part of the tutorip

Two main lines of work:

1. UseHilbertian (RKHS) norms
{ Non parametric supervised learning and kernel methods
{ Well developped theory (Schelkopf and Smola, 2001; Shawe-
Taylor and Cristianini, 2004; Wahba, 1990)
2. Use\sparsity inducing"” norms P
{ main example: ;-norm kwk; = = I, jw]
{ Perform model selection as well as regularization
{ Theory \in the making"

Goal of (this part of) the course: Understand how and when
to use these di erent norms



Kernel methods for machine learning

De nition : given a set of objects<, a positive de nite kernelis
a symmetric functionk(x;x9 such that for all nite sequences of
pointsx; 2 X and ; 2 R,

ij jk(xi;xj)>o
(1.e., the matrix (K(xi; X;)) Is symmetric positive semi-de nite)

Aronszajn theorem (Aronszajn, 1950): k Is a positive de nite
kernel if and only if there exists a Hilbert spaée and a mapping
. X 7!'F such that

8(x;xY9 2 X 2 k(x;x9 = h( x);: ( xYiy
X =\ input spacé, F =\ feature spacé =\ feature mapg

Functional view:reproducing kernel Hilbert spaces



Classical kernels: kernels on vectors x 2 R

Linearkernelk(x;y) = X~y
{ (X)=x
Polynomialkernelk(x;y) = (L + x”vy)¢

{ ( X) = monomials

Gaussiarkernelk(x;y) =exp(  kx yk?)

{ (x)=?7?



Reproducing kernel Hilbert spaces

Assumek Is apositive de nite kernelon X X

Aronszajn theorem (1950): there exists a Hilbert space and a
mapping : X 7! F such that

8(x;xY 2 X 2 k(x;x9 = h( x);: ( xYiy

X =\ input spacé, F =\ feature spacé =\ feature mapg

RKHS: particular instantiation ofr as afunction space

{ (x)=Kk(;x)

{ function evaluation f (x) = h; ( x)i

{ reproducing propertyk(x;y) = hk( ;x);k( ;y)I

Notations : f (x) = Hf; ( x)i = > ( x), kf k> = H;f i



Classical kernels: kernels on vectors x 2 R

Linearkernelk(x;y) = X~y

{ Linear functions

Polynomialkernelk(x;y) = (L + x> y)¢

{ Polynomial functions

Gaussiarkernelk(x;y) =exp(  kx yk?)

{ Smooth functions



Classical kernels: kernels on vectors x 2 R

Linearkernelk(x;y) = X~y

{ Linear functions

Polynomialkernelk(x;y) = (L + x> y)¢

{ Polynomial functions

Gaussiarkernelk(x;y) =exp(  kx yk?)

{ Smooth functions

Parameter selection? Structured domain?



Regularization and representer theorem

Data: xi 2 X,y;2Y,1=1;:::;n, kernelk (with RKHS F)

P
Minimize with respect tof : frrgan i":l (yis 7 (O xp)) + skf k?

No assumptions on cost or n

Representer theorem (Kimeldorf and Wahba, 1971). optimum Is
reached for vig,elghts of the forpp

f= a0 i (x)=" 4 ik(x)

2 R" dual parametersK 2 R" " kernel matrix
Kii = ( xi)” ( x;) = k(Xi; %)

P
Equivalent problemj min ,rn _; “(Vi;(K )i)+ 5 “K




Kernel trick and modularity

Kernel trick any algorithm for nite-dimensional vectors that only
uses pairwise dot-products can be applied in the featurecsepa

{ Replacing dot-products by kernel functions
{ Implicit use of (very) large feature spaces
{ Linear to non-linear learning methods



Kernel trick and modularity

Kernel trick any algorithm for nite-dimensional vectors that only
uses pairwise dot-products can be applied in the featurecsepa

{ Replacing dot-products by kernel functions
{ Implicit use of (very) large feature spaces
{ Linear to non-linear learning methods

Modularity of kernel methods

1. Work on new algorithms and theoretical analysis
2. Work on new kernels for speci c data types



Representer theorem and convex duality

The parameters 2 R" may also be interpreted asagrange
multipliers

Assumption: cost function isonvex ' ;(uij) = (Vi; Ui)

P
Primal problem: frr%an (T (i) + sk k2

What about the constant termb? replace( x) by (( X);c), clarge

i(up)
LS regression %(yi Uj)2
Logistic o
regression log(1 +exp( yiui))

SVM (1 vyiui)+




Representer theorem and convex duality
Proof

=\

I_J
Primal problem:| min in:1 i(FT(xp)) + ke k?

f 2F
Dene (vj) = ma%e viu; ' i(uj) as theFenchel conjugateof ' ;

Uj
Main trick: introduce constraintu; = f~ ( Xx;) and associated

Lagrange multipliers ;

X X
LagrangianL ( ;f ) = “i(up) + Ekf k* + (Ui 7 ()
=1 =1

{ Maximize with respect tay; ) tern?:,of the form  ( i)

{ Maximize with respecttd ) f = ()



Representer theorem and convex duality

Assumption: cost function igonvex' ;(u;) = “(yi; u;)

P
Primal problem: frr;an LT (X)) + okf k2

P

Dual problem: max . it ) 37K
where ;(vi) =maxy2rVili ' i(u;i) Is the Fenchel conjugate of;

Strong duality

Relationship between prina,al and dual variables (at optimum
f = in:]_ i ( Xi)
P n

NB: adding constant ternb, add constraints ;_; ;=0



\Classical" kernel learning (2-norm regularization)
Primal problem mins o (T (xi) + Siif e
Dual problem max ,gn Pi (i) 5 7K
Optimality conditions f = i i (Oxp)
Assumptions on loss;:

{ " i(u) convex
{ i(v) Fenchel conjugate df;(u), i.e., (V) = max 2r(vu "' i(u))

i(up) (V)

s ui)? SV2+ vy

LS regression

Logjistic (1+ vyi)log(1+ vyi)
regression vyilog( vyi)

SVM (1 vyiui)- Vi 1 w20

log(1 +exp( Yyiui))




Particular case of the support vector machine

=

I_J
Primal problem: 1:rgan @ yvifT (xi))s + Skf K2

X

Dual problem: max | Vi 1 om0 5 > K
I

Dual problem (by change of variable Diag(y) andC =1=):
P n _ 1 > - )
Jimax iz i 7~ Diag(y)K Diag(y)




Particular case of the support vector machine

P
Primal problem: frr;an @ yif T (X)) + kK3

Dual problem:

P . .
Jomax . iy i 3 Diag(y)K Diag(y)




Particular case of the support vector machine

P
Primal problem: frr%an @ yif T (X))« + kK3

Dual problem:

P _ .
J.max iy i 3 Diag(y)K Diag(y)

What about the traditional picture?




Losses for classi cation

Usual convexcosts:

5
— 0-1

4 — hinge

square

logisti
3 ogistic
2_
1
0 . . N\ A
-3 -2 -1 0 1 2 3 4

Di erences between hinge and logistic loss: di erentiabil ity/sparsity



Support vector machine or logistic regression?

Predictive performance is similar

Only true di erence Is numerical

{ SVM: sparsity in

{ Logistic: di erentiable loss function
Which one to use?

{ Linear kernel) Logistic + Newton/Gradient descent
{ Nonlinear kerne) SVM + dual methods or simpleSVM



Algorithms for supervised kernel methods

Four formulations

1

2.
3.
4.

P
Dual: max 2Ry (i) 5 7K
Primal: mingor ;" i(F7 (X)) + 5iif ji?
Primal + Representer: min g " (K )i)+ 5 K

Convex programming

Best strategy depends on loss (di erentiable or not) and ker nel
(linear or not)



Dual methods

P
Dual problem:max ,gn i 1) 5 7K

Main method: coordinate descent (a.k.a. sequential minima
optimization - SMO) (Platt, 1998; Bottou and Lin, 2007; Jod&ms,

1998)

{ E cient when loss is piecewise quadratic (i.e., hinge = SVM)
{ Sparsity may be used in the case of the SVM

Computational complexity: between quadratic and cubicnn

Works for all kernels



Primal methods

P
Primal problem:minsor ' i(f> ( xi)) + 5ijf ji?

Only works directly if ( x) may be built explicitly and has small
dimension

{ Example: linear kernel in small dimensions

Di erentiable loss: gradient descent or Newton's methodeavery
e cient in small dimensions

Larger scale: stochastic gradient descent (Shalev-Shavat al.,
2007; Bottou and Bousquet, 2008)



Primal methods with representer theorems

P
Primal problemin : min 2gn ;" i((K )i)+ 5 7K

Direct optimization in  poorly conditioned K has low-rank) unless
Newton method is used (Chapelle, 2007)

General kernels: use incomplete Cholesky decompositiome(Bnd
Scheinberg, 2001; Bach and Jordan, 2002) to obtain a squaret r

K = GG

GT

G of sizen m,
wherem N

K G

{ \Empirical input space" of sizan obtained using rows oG
{ Running time to computeG: O(m?n)



Direct convex programming

Convex programming toolboxes ) very ine cient!

May use special structure of the problem

{ e.g., SVM and sparsity in

Active set method for the SVMSimpleSVM (Vishwanathan et al.,
2003; Loosli et al., 2005)

{ Cubic complexity in the number of support vectors

Full regularization path for the SVM (Hastie et al., 2005; Blaet al.,
20006)

{ Cubic complexity in the number of support vectors
{ May be extended to other settings (Rosset and Zhu, 2007)
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Kernel design
Principle: kernel on X = space of functions on X + norm

Two main design principles

1. Constructing kernels from kernels by algebraic openradio
2. Using usual algebraic/numerical tricks to perform e an¢ kernel
computation with very high-dimensional feature spaces

Operations:ki(X;y)=h 1(x); 1(V)i, k20 y)=h 2(x); 2(y)i

{ Sum = concatenation of feature spaces
D E

GOGY) + ka(y) = ) )

{ Product = tensor product of feature spaces

Ki(x;y)ka(Xy) = 1(X) 2(x)75 1(y) 2(y)”



Classical kernels: kernels on vectors x 2 R

Linearkernelk(x;y) = X~y

{ Linear functions

Polynomialkernelk(x;y) = (L + x> y)¢

{ Polynomial functions

Gaussiarkernelk(x;y) =exp(  kx yk?)

{ Smooth functions

Data are not always vectors!



E cient ways of computing large sums

XP
Goal: ( x) 2 RP high-dimensional, compute i(X) i(y) in o(p)
i=1

Sparsity: many (x) equal to zero (example: pyramid match kernel)
Factorization and recursivity : replace sums of many products by

product of few sums (example: polynomial kernel, graph kdrn

> d _ X d
l+xy)y= (Xay1) ¥ (Xkyk) &



Kernels over (labelled) sets of points

Common situation in computer vision (e.g., interest poipts

Simple approach: compute averages/histograms of certaatdires

{ valid kernels Icg)ver histogrants and h® (Hein and Bolgsquet, 2004)

102
{ intersection : . min(h;; h?), chi-square: exp i (hh'i+hh'ci3




Kernels over (labelled) sets of points

Common situation in computer vision (e.g., interest poipts

Simple approach: compute averages/histograms of certaatdires

{ valid kernels %ver histogrants and h® (Hein and Bolgsquet, 2004)
_ 2
{intersection : . min(h;; hy), chi-square: exp i (hh'i+hh%

Pyramid match (Grauman and Darrell, 2007): e ciently intducing
localization

{ Form a regular pyramid on top of the image
{ Count the number of common elements in each bin
{ Give a weight to each bin
{ Many bins but most of them are empty
) use sparsity to compute kernel e ciently



Pyramid match kernel
(Grauman and Darrell, 2007; Lazebnik et al., 2006)

Two sets of points

Counting matches at several scales: 7, 5, 4




Kernels from segmentation graphs

Goal of segmentation: extract objects of interest

Many methods available, ....

{ ... but, rarely nd the object of interest entirely

Segmentation graphs

{ Allows to work on \more reliable" over-segmentation
{ Going to alarge square grid (millions of pixeldp a small graph
(dozens or hundreds of regions)

How to build a kernel over segmenation graphs?

{ NB: more generally, kernelizing existing representatidons



Segmentation by watershed transform (Meyer, 2001)

image gradient watershed

287 segments 64 segments 10 segments

-.




Segmentation by watershed transform (Meyer, 2001)

image gradient watershed

287 segments 64 segments 10 segments

A




Image as a segmentation graph

Labelled undirected graph

{ Vertices connected segmented regions
{ Edges between spatially neighboring regions
{ Labels region pixels



Image as a segmentation graph

Labelled undirected graph

{ Vertices connected segmented regions
{ Edges between spatially neighboring regions
{ Labels region pixels

Di culties

{ Extremely high-dimensional labels
{ Planar undirected graph
{ Inexact matching

Graph kernels (Gartner et al., 2003; Kashima et al., 2004; Harchaouili
and Bach, 2007) provide an elegant and e cient solution



Kernels between structured objects
Strings, graphs, etc... (Shawe-Taylor and Cristianini, 2004)

Numerous applications (text, bio-informatics, speechsign)
Common design principle:enumeration of subparts (Haussler,
1999; Watkins, 1999)

{ E cient for strings

{ Possibility of gaps, partial matches, very e cient algohins

Most approaches fails for general graplfeven for undirected trees!)

{ NP-Hardness results (Ramon and Gartner, 2003)
{ Need specic set of subparts



Paths and walks

Given a graplG,

{ A pathis a sequence dlistinct neighboring vertices
{ A walkis a sequence of neighboring vertices

Apparently similar notions










Walk kernel (Kashima et al., 2004; Borgwardt et al., 2005)

W & (resp. W]}) denotes the set of walks of lengthin G (resp. H)
Givenbasis kernebn labelsk("; ™9

p-th order walk kernel «
kb, (G;H) = K(Ca(ri); n(si)):




Dynamic programming for the walk kernel

Dynamic programming irO(pdgdyngny)
kiy, (G;H;r;s) = sum restricted to walks starting ar ands

recursion betweemp 1-th walk andp-th walk kernel

X
kb (G;H;r;s)= k(e(r); h(s)) kb, H(G;H;r%sY:
r°2 Ng(r)
s’2 N H(S)

_— e — — = T



Dynamic programming for the walk kernel

Dynamic programming irO(pdgdyngny)
kiy, (G;H;r;s) = sum restricted to walks starting ar and s

recursion betweemp 1-th walk andp-th walk kernel

X

k{y (GiH;1;8)=K(a(r); "H(s)) kb, H(G;H;r%sY
r°2 Ng(r)
s°2 N H(S)

X .
Kernel obtained a%}y (G;H) = k¥ (G;H;r;s)

r2V g;s2V y



Extensions of graph kernels

Main principle: compare all possible subparts of the graphs

Going from paths to subtrees

{ Extension of the concept of walk$ tree-walks (Ramon and
Gartner, 2003)

Similar dynamic programming recursions (Harchaoui and IB&007)

Need to play around with subparts to obtain e cient recursis

{ Do we actually need positive de niteness?



Performance on Corell4 (Harchaoui and Bach, 2007)

Corell4: 1400 natural images withl4 classes



Performance on Corell4 (Harchaoui & Bach, 2007)
Error rates

Performance comparison on Corell4

012t
Histogram kernelsKl) 011} _
Walk kernels W) - O
5 0.09 . -
Tree-walk kernels TW ) 9 0.08f _E_ T
1 -
_ 0.07} !
Weighted tree-walks - :
(WTW ) 0.06} -
0.05} o
MKL (M) H W W WTW M

Kernels



Kernel methods - Summary

Kernels and representer theorems

{ Clear distinction between representation/algorithms

Algorithms

{ Two formulations (primal/dual)
{ Logistic or SVM?

Kernel design

{ Very large feature spaces with e cient kernel evaluations
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Why “;-norms lead to sparsity?

Minimize quadratic objective subjet to constraint
P, . .
kwki = ;Jwi] 6 T
{ coupledsoft thresolding

Geometric interpretation withp = 2




“1-norm regularization (linear setting)

Minimize with respect tdoadings/weightsw 2 RP:
X
(Y wTxi)  + kwky
i=1
Error on data + Regularization

Including a constant ternb? Penalizing or constraining?

Assumptions on loss:

{ convex anddi erentiable in the second variable
{ NB: with the square los$ basis pursuii(signal processing) (Chen
et al., 2001),Lasso(statistics/machine learning) (Tibshirani, 1996)



Nonsmooth optimization

Simple methods do not always work!

{ Coordinate/steepest descent might not converge to a local
minimum
{ Be careful!

Optimization algorithms
{ First order methods: good for large scale/low precision
{ Second order methods: good for small scale/high precision

Books: Boyd and Vandenberghe (2003Bonnans et al. (2003),
Nocedal and Wright (2006), Borwein and Lewis (2000)



Algorithms for “i-norms:
Gaussian hare vs. Laplacian tortoise



Two simple algorithms: one good, one (very) bad

Coordinate descent (Wu and Lange, 2008)

{ Globaly convergent here under reasonable assumptions!
{ very fast updates (thresholding)

Quadratic programming formulation for the square loss. mize

1 X XP

5 W X;)%+ (w'+w )stw=w" w;w" >0w >0
i=1 j=1

{ generic toolboxes ) very slow



Algorithm: Lars/Lasso for the square loss
(Efron et al., 2004)

Goal: Get all solutions for all possible values of the regddion
parameter

Property: the regularization path is piecewise linear
Simply need to nd break points and directions

Generalizable to many problems (Rosset and Zhu, 2007)



Lasso In action

Piecewise linear paths

When is it supposed to work?

{ Simulations with random Gaussians, regularization partane

estimated by cross-validation
{ sparsity Is expected or not



weights

Lasso In action

0.5
regularization parameter |

1

1.5



Comparing Lasso and other strategies for linear
regression and subset selection

Compared methods to reach the least-square solution (Hast al.,

2001)

P
{ Ridge regresslg)nmlnw 2 L i wxi)?+ skwks

{ Lasso miny 2 L, (Vi W’ X)?+ kwk,
{ Forward greedy
Initialization with empty set
Sequentially add the variable that best reduces the squass |

Each method builds a path of solutions from 0O ey s



test set error

Lasso In action

test set error

sparsity is expected

4 5
l0g,,(p)

sparsity is not expected
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Kernel learning with convex optimization

Kernel methods work...
...with the good kernel!

)  Why not learn the kernel directly from data?



Kernel learning with convex optimization

Kernel methods work...
...with the good kernel!

)  Why not learn the kernel directly from data?

Proposition (Lanckriet et al., 2004b; Bach et al., 2004a):

— - Pn 1 > 2
G(K) = min i "i(f7 (X)) + ZkfkK

— Pn >

= max o (1) 7 7K

IS a convexfunction of the Gram (a.k.a. kernel) matrix<

Theoretical learningbounds(Lanckriet et al., 2004Db)



MKL framework

Minimize with respect to the kernel matrik

Pn
G(K') = max =1 i( i) “K

2 RN 2

Optimization domain:

{ K positive semi-de nite in general : very large set!
{ The set of kernel matrices is a corje conic representation

P

{ Trace constraintsitr K = = 1L jtrK; =1

Optimization:

{ In most cases, representation in terms SDP, QCQPor SOCP
{ Optimization by generic toolbox is costly (Lanckriet et a2004b)



MKL - \reinterpretation” (Bach et al., 2004a)

P
Framework limited toK = = L, ;Kj, >0

Summing kernels is equivalent to concatenating featurecgsa

{ m \feature maps" ; : X 7'F;,] =1;:::;m.
{ Minimization with respect tof 2 F 0 'fm 2 F
{ Predictor: f(x)= f;7 1(X)+ +fm” m(X)
1(x)” 4
% ; ; &
X | i(x)> f; v 7 a(x)+ + 12 m(X)
& ; ; %
m(X)” fn

{ Which regularization?



Regularization for multiple kernels

Summing kernels is equivalent to concatenating featurecgsa

{ Predictor: f (x)= 17 1(X)+ +fn” mX)

P
Regularization by jm:1 kf; k? is equivalent to usindK =



Regularization for multiple kernels

Summing kernels is equivalent to concatenating featurecgsa

{ Predictor: f (x)=f17 (X)+ +fn” mX)
P
Regularization by ., kf;k* is equivalent to usin& = ., K;

P
Reqgularization by jm:1 kf; k should impose sparsity at the group
level

Main questions when regularizing by block “!-norm:

1. Equivalence with previous formulations
2. Algorithms
3. Analysis of sparsity inducing properti¢gBach, 2008c)



MKL - equivalence with general kernel learning
(Bach et al., 2004a)

Block “t-norm problem:

P
inzl'i(ff 1(Xi) + + 2 m(X))+ = (kf 1k + +kfmk)2
Proposition: It is equivalence to minimize with respect to the

optimal value G(K ( )) of the supervised learning problem (Bach
et al., 2004a)

Kernel weights obtained from optimality conditions and Ltagge
multipliers

Single optimization problem for learning both weights and
classi er



Algorithms for MKL

(very) costly optimization with SDP, QCQP ou SOCP

{ n> 1,000 10,000 m > 100not possible
{ \loose" required precisior) rst order methods

Dual coordinate ascent (SMO) with smoothing (Bach et al., @)
Optimization of G(K') by cutting planes (Sonnenburg et al., 2006)

Optimization of G(K) with steepest descent with smoothing
(Rakotomamonjy et al., 2008)

Regularization path (Bach et al., 2004b)



Applications

Several applications

{ Bioinformatics (Lanckriet et al., 2004a)
{ Speech processing (Longworth and Gales, 2008)
{ Image annotation (Harchaoui and Bach, 2007; Varma and Ray,

2007; Bosch et al., 2008)

Two potential uses

{ Fusion of heterogeneous data sources

{ Learning hyperparameters
{ Sparsity in non-linear settings



Performance on Corell4 (Harchaoui and Bach, 2007)

Corell4: 1400 natural images withl4 classes



Performance on Corell4 (Harchaoui and Bach, 2007)
Error rates

Performance comparison on Corell4

012}
Histogram kernels ) 011 = _
Walk kernels W) - O
5 0.09} . -
Tree-walk kernelsTW) 8 008! N H
A -
_ 0.07} '
Weighted tree-walks — :
(WTW ) 0.06¢ -
0.05 o
MKL (M) H W W WTW M

Kernels



Caltech101 database (Fei-Fei et al., 2006)



Kernel combination for Caltechl101 (varma and Ray, 2007)

Classi cation accuracies

1- NN SVM (1vs. 1)| SVM (1 vs. rest)
Shape GB1 39.67 1.02|57.33 094 |62.98 0.70
Shape GB2 45,23 0.96|59.30 1.00 |61.53 0.57
Self Similarity 40.09 0.98|55.10 1.05 |60.83 0.84
PHOG 180 32.01 0.89(48.83 0.78 |49.93 0.52
PHOG 360 31.17 0.98|50.63 0.88 |52.44 0.85
PHOWColour 32.79 0.92(40.84 0.78 |43.44 1.46
PHOWGray 42.08 0.81|52.83 1.00 |57.00 0.30
MKL Block 1! 77.72 094 | 83.78 0.39
(Varma and Ray, 2007) 81.54 1.08 | 89.56 0.59

See also Bosch et al. (2008)




Part |1l - Qutline

1. Losses for particular machine learning tasks

Classi cation, regression, etc...

2. Reqgularization by Hilbert norms (kernel methods)

Kernels and representer theorem
Convex duality and optimization
Kernel design

3. Regularization by sparsity-inducing norms

“1-norm regularization
Multiple kernel learning
Theoretical results
Other extensions



Learning on matrices

Example 1:matrix completion

{ Given a matrixM 2 R" P and a subset of observed entries,
estimate all entries

{ Many applications: graph learning, collaborative Itegn(Breese
et al., 1998; Heckerman et al., 2000; Salakhutdinov et aD0Z2)

Example 2:multi-task learning (Obozinski et al., 2007; Pontil et al., 2007)

{ Common features fom learning problemg m di erent weights,
e, W =(wyg;:::;wpn)2RP T

{ Numerous applications

Example 3:image denoising (Elad and Aharon, 2006; Mairal et al., 2008)

{ Simultaneously denoise all patches of a given image



Three natural types of sparsity for matrices M 2 R" P

1. A lot of zero elements

does not use the matrix structure!

2. A small rank

M =UV” whereU2 R" MandV 2 R" ™ m small
Trace norm

VT




Three natural types of sparsity for matrices M 2 R" P

1. A lot of zero elements

does not use the matrix structure!

2. A small rank

M = UV~ whereU 2 R"™ MandV 2 R" ™, m small
Trace norm (Srebro et al., 2005; Fazel et al., 2001; Bach, 2008d)

3. A decomposition into sparse (but large) matrix redundant
dictionaries

M =UV” whereU 2 R" MandV 2 R"™ ™, U sparse
Dictionary learning (Elad and Aharon, 2006; Mairal et al., 2008)



Trace norm (Srebro et al., 2005; Bach, 2008d)

Singular value decompositiomvl 2 R" P can always be decomposed
into M = UDiag(s)V~, whereU 2 R" M andV 2 R" ™ have
orthonormal columns and is a positive vector (of singular values)

0 norm of singular values = rank
"1 norm of singular values = trace norm

Similar properties than the-norm

{ Convexity
{ Solutions of penalized problem have low rank
{ Algorithms



Dictionary learning
(Elad and Aharon, 2006; Mairal et al., 2008)

GivenX 2 R"™ P j.e., n vectors inRP, nd

{ m set ofdecomposition coecients U =2 R" ™
{ such thatU is splgrseand small reconstruction erron.e.,
kX UVZkZ = kX(i;:) U(; )V K3 is small

NB: Opposite view, I.e., not sparse in term of ranks, spars¢erms
of decomposition coe cients

Minimize with respect toJ andV, such thatkV (:;1)k, =1,

1 > 1,2 X\l
KX UV7KE + kU(i; ki

=l
{ non convex, alternate minimization



Dictionary learning - Denoising (Mairal et al., 2008)

Dictionary

Original Noisy Denoised



Dictionary learning - Inpainting (Mairal et al., 2008)

Original Missing pixels Denoised



Theory: model consistency of the Lasso

Sparsity-inducing norms often used heuristically

1.I.d. andw Is sparse, do we get back the correct pattern of zeros?

Intuitive answer: yesf and ony if some consistency condition on
the generating covariance matrices is satis ed (Zhao and 2006;
Yuan and Lin, 2007; Zou, 2006; Wainwright, 2006)

K 35 jysignwy)ks 6 1
wheredJ = indices of relevant variablesy = true loading vector

What if condition not satis ed?

{ Adaptive versiongZou, 2006) or resampling methodgach, 2008a)



High-dimensional setting
If consistency condition Is satis ed, the Lasso Is indeedsistent as
long aslog(p) n

A lot of on-going work (Meinshausen and Yu, 2008; Wainwright
2006; Lounici, 2008)



High-dimensional setting (Lounici, 2008)

Assumptions

{yi=w’Xx;+";," iid. normal with mean zero and variance
{ Q= X>X=n with unit diagonal and cross-terms less tha
{ Theorem : if kwky 6 s, and A > 872, then
l
1=2"
|ng 6 1 1 A2=8

P kW wky 6 5A —— D

1=2
Get the correct sparsity pattern imin; w,e0 JWj] > C "’%

Can have a lot of irrelevant variables!



High-dimensional setting

If consistency condition Is satis ed, the Lasso Is indeedsistent as
long aslog(p) n

A lot of on-going work (Meinshausen and Yu, 2008; Wainwright
2006; Lounici, 2008)

Link with compressed sensingaraniuk, 2007; Candes and Wakin, 2008)

{ Goal of compressed sensing: recover a signal RP from only n
measurementy = Xw 2 R"

{ Assumptions: the signal ik-sparsek p

{ Algorithm: min,,»re kwk; such thaty = Xw

{ X Is not given but may be chosen (deterministic or random)!



Summary - sparsity-inducing norms

Sparsity through non Euclidean norms

Alternative approaches to sparsity

{ greedy approaches - Bayesian approaches

Important (often non treated) question: when does sparsitgtually
help?

Current research directions

{ Algorithms, algorithms, algorithms!
{ Structured norm for structured situations (variables arsually not
created equal)) hierarchical Lasso or MKL (Zhao et al., 2008;

Bach, 2008b)



Conclusion - Course Outline

1. Theory

Probabllistic model and universal consistency
Local averaging methods
Empirical risk minimization

2. Algorithms

Losses for particular machine learning tasks
Regularization by Hilbert norms (kernel methods)
{ Algorithms

{ Kernel design

Regularization by sparsity-inducing norms

{ "1-norm regularization

{ Multiple kernel learning
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Code

SVM and other supervised learning techniques
www.shogun-toolbox.org
http://gaelle.loosli.fr/research/tools/simplesvm.ht ml
http://www.kyb.tuebingen.mpg.de/bs/people/spider/ma In.html

“1l.penalization: Matlab/C/R codes available from
www.dsp.ece.rice.edu/cs

Multiple kernel learning:
asl.insa-rouen.fr/enseignants/ ~arakotom/code/mklindex.html
www.stat.berkeley.edu/ ~gobo/SKMsmo.tar



Conclusion - Interesting problems

Kernel design for computer vision

{ Bene ts of \kernelizing" existing representations
{ Combining kernels

Sparsity and computer vision

{ Going beyond image denoising

Large numbers of classes

{ Theoretical and algorithmic challenges

Structured output



