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Introduction

» Task: dividing simultaneously g images in k different
segments

» When k = 2, this reduces to dividing images into foreground
and background regions.
» Our approach considers simultaneously the object recognition
and the segmentation problems

» Semi-supervised discriminative clustering

» Well-adapted to segmentation problems for 2 reasons :

» Re-use existing features for supervised classification
» Introduce spatial and local color-consistency constraints.



Prior work

» Rother et al. (2006), Hochbaum and Singh (2009)

» Identical or similar objects

» Goal: objects are different instances from same object class
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Problem Notations

» Input: g images.
» Each image i is reduced to a subsampled grid of n; pixels

» For the j-th pixel (among the Y 7_; nj pixels), we denote by :
» ¢/ € R3 its color,
» p/ € R? its position within the corresponding image,
» x/ an additional k-dimensional feature vector.



Problem Notations

» Input: g images.
» Each image i is reduced to a subsampled grid of n; pixels

» For the j-th pixel (among the Y 7_; nj pixels), we denote by :
» ¢ € R3 its color,
> p’ € R? its position within the corresponding image,
» x’/ an additional k-dimensional feature vector.

» Goal: find y = vector of size >.7_ n; such that

» y; = 1 if the i-th pixel is in the foreground
» -1 otherwise.



Problem Notations

— feature x, _ )
/ color ¢ spatial consistency
( position p, based on Ac and Ap




Local consistency and discriminative clustering

» Co-segmenting images relies on two tasks :
1. Within an image: maximize local spatial and appearance
consistency (normalized cuts)
2. Over all images: maximize the separability of two classes
between different images (semi-supervised SVMs)



Local consistency through Laplacian matrices

— feature x, _ )
/ color ¢ spatial consistency
position P based on Ac and Ap




Local consistency through Laplacian matrices
(Shi and Malik, 2000)

> Spatial consistency within an image i is enforced through a
similarity matrix W'
» W' is based on color features (¢/) and spatial position (p/)
» Similarity between two pixels / and m within an image i

Wi = exp(=Xp[lp" = P2 = Acllc™ = <'II7), (1)



Local consistency through Laplacian matrices

(Shi and Malik, 2000)
> Spatial consistency within an image i is enforced through a
similarity matrix W'

» W/ is based on color features (c/) and spatial position (p/)
» Similarity between two pixels / and m within an image i

Win, = exp(=Apllp™ = p'l* = Acllc™ = €'1%), (1)
» Concatenate all similarity matrices into a block-diagonal

matrix W (with W; on its diagonal)
» Normalized Laplacian matrix L = I, — D~Y2WD~1/2




Local consistency through Laplacian matrices
(Shi and Malik, 2000)

» Concatenate all similarity matrices into a block-diagonal
matrix W (with W; on its diagonal)

w3 L3

» Minimizing y " Ly segments all images independently



Discriminative clustering

» Generative clustering (e.g., K-means)
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Discriminative clustering

> Generative clustering (e.g., K-means)
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» Discriminative clustering (Xu et al., 2002, Bach and
Harchaoui, 2007)
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Discriminative clustering

» Discriminative clustering framework based on positive definite
kernels
» Histograms of features = kernel matrix K based on the
2_distance:

ul XI—X 2
K/mzexp< hz d/_|_: >, (2)
d

» Equivalent to mapping each of our n k-dimensional vectors x/,
j=1,...,ninto a high-dimensional Hilbert space F through
a feature map @, so that K, = ®(x™)Td(x)



Discriminative clustering

» Minimize with respect to both the predictor f and the labels y
(Xu et al., 2002):

1 ;
=D Uy £ () + Al (3)
j=1

where ¢ is a loss function.



Discriminative clustering

» Minimize with respect to both the predictor f and the labels y
(Xu et al., 2002):

1 ,
=Dy T O0) + Al ©)
j=1
where £ is a loss function.

» Square loss function: £(a, b) = (a — b)?, solution f in closed
form (Bach and Harchaoui, 2007)

1 :
g(y) = min = > 6(y;, £TO()) + MlIfIP = (A ")
j=1

where A = \(/ — L11T)(nA\ef + K)7L(1 — 1117).
» Linear in Y = yy ' € R"™*"



Discriminative semi-supervised clustering
Diffrac (Bach and Harchaoui, 2007)

» Minimize with respect to the labels y:
1 ¢ .
gly) =min—> Uy;, f (<)) + Al f|* = tr(Ayy )
j=1

where A= A\e(I — 211T)(nAel + K)~2(1 — L11T).
» Linear in Y = yy ' € R"™*"



Discriminative semi-supervised clustering
Diffrac (Bach and Harchaoui, 2007)

» Minimize with respect to the labels y:

1 :
gly) =min—> Uy;, f (<)) + Al f|* = tr(Ayy )
j=1
where A= A\e(I — 211T)(nAel + K)~2(1 — L11T).
» Linear in Y = yy ' € R"™*"
» Adding supervision on Y (positive and negative constraints)

» Semi-supervised method that is applicable to

» High supervision (close to regular supervised learning)
» Low supervision (close to clustering)



Diffrac - Semi-supervised classification

» Equivalence matrices Y allow simple inclusion of prior
knowledge (Xu et al., 2004, De Bie and Cristianini, 2006)

» “must-link” constraints (positive constraints): Yj =1
» “must-not-link” constraints (negative constraints): Y; = —1

» Diffrac “works” with any amount of supervision
» Comparison with LDS (Chapelle & Zien, 2004)
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Cluster size constraints
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» Putting all pixels into a single class leads to perfect separation

» Constrain the number of elements in each class (Xu et al.,
2002)



Cluster size constraints
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» Putting all pixels into a single class leads to perfect separation
» Constrain the number of elements in each class (Xu et al.,
2002)
» Multiple images:
» constrain the number of elements of each class in each image

to be upper bounded by A; and lower bounded by ).
» Denote d; € R" the indicator vector of the i-th image



Problem formulation

» Combining:
» spatial consistency through Laplacian matrix L
» discriminative cost through matrix A and cluster size
constraints

. T E
yelotay” A+ 5Ly

subject to Vi, Aol < (yy! +117)8; < M1

» Combinatorial optimization problem

» Convex relaxation with semi-definite programming (Goemans
and Williamson, 1995)



Optimization - Convex Relaxation

. H T
tr((A+ =L ,
ey, AT )

subject to Vi, Aol < (yy' +117)8; < M\ 1.

> Reparameterize problem with Y = yy T
> Y referred to as the equivalence matrix

» Yj = 1if points i and j belong to the same cluster
» Y = —1if points / and j do not belong to the same cluster

» Y is symmetric, positive semidefinite, with diagonal equal to
one, and unit rank.



Optimization - Convex Relaxation

» Denote by £ the elliptope, i.e., the convex set defined by:
E={YeR™ Y=Y dag(Y)=1, Y =0},
» Reformulated optimization problem :

cwelrgtr( (A—I— L))
subject to Vi, A1<(Y+11 )0i < A\l

rank(Y) =

» Rank constraint is not convex

» Convex relaxation by removing the rank constraint



Optimization

: p
\rpengtr(Y(A—i- ;L)),

subject to Vi, Aol < (Y 4+ 117)6; < M1

» SDP: semidefinite program (Boyd and Vandenberghe, 2002)
» General purpose toolboxes would solve this problem in O(n")

» Bach and Harchaoui (2007) considers a partial dualization
technique that scales up to thousands of data points.

» To gain another order of magnitude: optimization through
low-rank matrices (Journée et al, 2008)



Efficient low-rank optimization (Journée et al, 2008)

» Replace constraints by penalization = optimization of a
convex function f(Y') on the elliptope &.

» Empirically: global solution has low rank r

» Property: a local minimum of f(Y) over the rank constrained
elliptope
Eq={Y € & rank(Y) = d}

is a global minimum of f(Y) over &, if d > r.



Efficient low-rank optimization (Journée et al, 2008)

» Replace constraints by penalization = optimization of a
convex function f(Y') on the elliptope &.

» Empirically: global solution has low rank r
» Property: a local minimum of f(Y) over the rank constrained
elliptope
Eq={Y € & rank(Y) = d}
is a global minimum of f(Y) over &, if d > r.
» Adaptive procedure to automatically find r

» Manifold-based trust-region method for a given d (Absil et al.,
2008)



Low-rank optimization (Journée et al., 2008)

» Final (combinatorial) goal: minimize f(Y') over the rank-one
constrained elliptope &1 = {Y € &, rank(Y) = 1}

» Convex relaxation: minimize f(Y') over the unconstrained
elliptope &
» Subproblems: minimize f(Y') over the rank-d constrained
elliptope £ = {Y € &, rank(Y) = d} for d > 2
» It is a Riemanian manifold for d > 2
» If d is large enough, there is no local minima
» Find a local minimum with trust-region method
» Adaptive procedure:
Start with d =2
Find local minimum over &4 = {Y € &, rank(Y) = d}
Check global optimality condition
Stop or augment d

vV vy vVvYy



Preclustering

» Cost function f uses a full n x n matrix A+ (u/n)L
= memory issues
» To reduce the total number of pixels

» superpixels obtained from an oversegmentation of our images
(watershed, Meyer, 2001)



Rounding

» In order to retrieve y € {—1,1} from our relaxed solution Y,
we compute the largest eigenvector e € R"” of Y.

» Final clustering is y = sign(e).
» Other techniques could be used (e.g., randomized rounding)

» Additional post-processing to remove some artefacts



Method overview (co-segmentation on two bear images)

» From left to right: input images, over-segmentations, scores
obtained by our algorithm and co-segmentations.



Results

Results on two different problems :

» Simple problems: images with foreground objects which are
identical or very similar in appearance and with few images to
co-segment

» Hard problems: images whose foreground objects exhibit
higher appearance variations and with more images to
co-segment (up to 30).



Results - similar objects




Results - similar objects




Results - similar objects




Results - similar classes - Faces




Results - similar classes - Cows




Results - similar classes - Horses




Results - similar classes - Cats
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Results - similar classes - Bikes




Results - similar classes - Planes




Comparison with MN-cut (Cour, Bénézit, and Shi, 2005)

» Segmentation accuracies on the Weizman horses and MSRC
databases.

class # cosegm. independent Ncut uniform

Cars (front) 6 87.65+0.1 89.6 +0.1 514 +1.8 64.0+0.1
Cars (back) 6 85.1 £0.2 837 405 541408 71.3+0.2

Face 30 84.3 +£0.7 724413 67.7+£12 604 +0.7
Cow 30 81.6 £1.4 735+1.8 60.1 £26 66.3 1.7
Horse 30 80.1 £0.7 775+19 50.1 £09 68.6=+1.9
Cat 24 744 £28 713 +1.3 59.8+20 59.2+20

Plane 30 73.8+09 625 +19 51.9+05 75.9 2.0
Bike 30 63.3+£0.5 61.1+04 60.7+26 59.0+0.6




Comparing co-segmentation with independent
segmentations

» From left to right: original image, multiscale normalized cut,
our algorithm on a single image, our algorithm on 30 images.



Conclusion

» Co-segmentation through semi-supervised discriminative
clustering

1. Within an image: maximize local spatial and appearance
consistency (normalized cuts)

2. Over all images: maximize the separability of two classes
between different images (semi-supervised SVMs)



Conclusion

» Co-segmentation through semi-supervised discriminative
clustering

1. Within an image: maximize local spatial and appearance
consistency (normalized cuts)
2. Over all images: maximize the separability of two classes
between different images (semi-supervised SVMs)
» Future work
» Add negative images
More than 2 classes
Feature selection
Scale up to hundred of thousands
Change the loss function
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