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1.1 Introduction

1.1.1 Problem

To model complex data, one is confronted with two main questions:

• How to manage the complexity of the data to be processed?

• How to infer global properties from local models?

These questions lead to 3 types of problems: the representation of data (or how to obtain a
global model from a local model), the inference of the distributions (how to use the model),
and the learning of the models (what are the parameters of the models?).

1.1.2 Examples

• Image: consider a 100× 100 (pixels) monochromatic image. If each pixel is modelled
by a discrete random variable (so there are 10000 of them), then the image can be
modelled using a grid of the form:

• Bioinformatics: consider a long sequence of 10000 ADN bases. If each base of this
sequence is modelled by a discrete random variable (that, in general, can take values
in {A,C,G, T}), then the sequence can be modelled by a Markov chain:
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• Finance: consider the evolution of stock prices in discrete time, where we have values
at time n. It is reasonable to postulate that the change of price of a stock at time n
only depends only on its price (or the price of other stocks) at time n − 1. For only
two stocks, a possible simplified model is the following dependency graph:

• Speech processing: consider the syllables of a word and the way they are interpreted
by a human ear or by a computer. Each syllable can be represented by a random
sound. The objective is then to retrieve the word from the sequence of sounds heard
or recorded. In this case, we can use a hidden Markov model:

• Text: consider a text with 1000000 words. The text is modelled by a vector such that
each of its components equals to the number of times each keyword appears. This is
usually called the “bag of words” model. This model seems to be weak, as it does not
take the order of the words into account. However, it works quite well in practice. A
so-called naive Bayes classifier can be used for classification (for example spam vs non
spam).

It is clear that models which ignore the dependence among variables are too simple for
real-world problems. On the other hand, models in which every random variable is dependent
all or too many other ones are doomed both for statistical (lack of data) and computational
reasons. Therefore, in practice, one has to make suitable assumptions to design models with
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the right level of complexity, so that the models obtained are able to generalize well from a
statistical point of view and lead to tractable computations from an algorithmic perspective.

1.2 Basic notations and properties

In this section we recall some basic notations and properties of random variables.

Convention: Mathematically, the probability that a random variable X takes the value x
is denoted p(X = x). In this document, we simply write p(X) to denote a distribution over
the random variable X, or p(x) to denote the distribution evaluated for the particular value
x. It is similar for more variables.

Fundamental rules. For two random variables X, Y we have

• Sum rule:
p(X) =

∑
Y

p(X, Y ).

• Product rule:
p(X, Y ) = p(Y |X)p(X).

Independence. Two random variables X and Y are said to be independent if and only if

P (X, Y ) = P (X)P (Y ).

Conditional independence. Let X, Y, Z be random variables. We define X and Y to be
conditionally independent given Z if and only if

P (X, Y |Z) = P (X|Z)P (Y |Z).

Property: If X and Y are conditionally independent given Z, then

P (X|Y, Z) = P (X|Z).

Independent and identically distributed. A set of random variables is independent and
identically distributed (i.i.d.) if each random variable has the same probability distri-
bution as the others and all are mutually independent.

Bayes formula. For two random variables X, Y we have

P (X|Y ) =
P (Y |X)P (X)

P (Y )
.

(Note that Bayes formula is not a Bayesian formula in the sense of Bayesian statistics).
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1.3 Statistical models

Definition 1.1 (Statistical model) A (parametric) statistical model PΘ is a collection of
probability distributions (or a collection of probability density functions1) defined on the same
space and parameterized by parameters θ belonging to a set Θ ⊂ Rp. Formally:

PΘ = {pθ(·) | θ ∈ Θ}.

1.3.1 Bernoulli model

Consider a binary random variable X that can take the value 0 or 1. If p(X = 1) is
parametrized by θ ∈ [0, 1]: {

P(X = 1) = θ
P(X = 0) = 1− θ

then a probability distribution of the Bernoulli model can be written as

p(X = x; θ) = θx(1− θ)1−x (1.1)

and we can write
X ∼ Ber(θ). (1.2)

The Bernoulli model is the collection of these distributions for θ ∈ Θ = [0, 1].

1.3.2 Binomial model

A binomial random variable Bin(θ,N) is defined as the value of the sum of n i.i.d. Bernoulli
r.v. with parameter θ. The distribution of a binomial random variable N is

P(N = k) =

(
n

k

)
θk(1− θ)n−k.

The set Θ is the same as for the Bernoulli model.

1.3.3 Multinomial model

Consider a discrete random variable C that can take one of K possible values {1, 2, . . . , K}.
The random variable C can be represented by a K-dimensional random variable X =
(X1, X2, . . . , XK)T for which the event {C = k} corresponds to the event

{Xk = 1 and Xl = 0,∀l 6= k}.
1In which case, they are all defined with respect to the same base measure, such as the Lebesgue measure

in Rd
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If we parametrize P(C = k) by a parameter πk ∈ [0, 1], then by definition we also have

P(Xk = 1) = πk ∀k = 1, 2, . . . , K,

with
∑K

k=1 πk = 1. The probability distribution over x = (x1, . . . , xk) can be written as

p(x;π) =
K∏
k=1

πxkk (1.3)

where π = (π1, π2, . . . , πK)T . We will denote M(1, π1, . . . , πK) such a discrete distribution.
The corresponding set of parameters is Θ = {π ∈ R+ |

∑K
k=1 π = 1}.

Now if we consider n independent observations of aM(1,π) multinomial random variable
X, and we denote by Nk the number of observations for which xk = 1, then the joint
distribution of N1, N2, . . . , NK is called a multinomial M(n,π) distribution. It takes the
form:

p(n1, n2, . . . , nK ;π, n) =
n!

n1!n2! . . . nK !

K∏
k=1

πnk
k (1.4)

and we can write
(N1, . . . , NK) ∼M(N, π1, π2, . . . , πK). (1.5)

The multinomialM(n,π) is to theM(1,π) distribution, as the binomial distribution is
to the Bernoulli distribution. In the rest of this course, when we will talk about multinomial
distributions, we will always refer to a M(1,π) distribution.

1.3.4 Gaussian models

The Gaussian distribution is also known as the normal distribution. In the case of a scalar
variable X, the Gaussian distribution can be written in the form

N (x; µ, σ2) =
1

(2πσ2)1/2
exp

(
−(x− µ)2

2σ2

)
(1.6)

where µ is the mean and σ2 is the variance. For a d-dimensional vector x, the multivariate
Gaussian distribution takes the form

N (x|µ,Σ) =
1

(2π)d/2
1

|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(1.7)

where µ is a d-dimensional vector, Σ is a d× d symmetric positive definite matrix , and |Σ|
denotes the determinant of Σ. It is a well-known property that the parameter µ is equal
to the expectation of X and that the matrix Σ is the covariance matrix of X, which means
that Σij = E[(Xi − µi)(Xj − µj)].
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1.4 Parameter estimation by maximum likelihood

1.4.1 Definition

Maximum likelihood estimation (MLE) is a method of estimating the parameters of a sta-
tistical model. Suppose we have a sample x1, x2, . . . , xn of n independent and identically
distributed observations, coming from a distribution p(x1, x2, . . . , xn; θ) where θ is an un-
known parameter (both xi and θ can be vectors). As the name suggests, the MLE finds the
parameter θ̂ under which the data x1, x2, . . . , xn are most likely:

θ̂ = argmax
θ

p(x1, x2, . . . , xn; θ) (1.8)

The probability on the right-hand side in the above equation can be seen as a function of θ
and can be denoted by L(θ):

L(θ) = p(x1, x2, . . . , xn; θ) (1.9)

This function is called the likelihood.
As x1, x2, . . . , xn are independent and identically distributed, we have

L(θ) =
n∏
i=1

p(xi; θ) (1.10)

In practice it is often more convenient to work with the logarithm of the likelihood function,
called the log-likelihood :

`(θ) = logL(θ) = log
n∏
i=1

p(xi; θ) (1.11)

=
n∑
i=1

log p(xi; θ) (1.12)

Next, we will apply this method for the models presented previously. We assume
that all the observations are independent and identically distributed in all of the
remainder of this lecture.

1.4.2 MLE for the Bernoulli model

Consider n observations x1, x2, . . . , xn of a binary random variable X following a Bernoulli
distribution Ber(θ). From (1.12) and (1.1) we have

`(θ) =
n∑
i=1

log p(xi; θ)

=
n∑
i=1

log θxi(1− θ)1−xi

= N log(θ) + (n−N) log(1− θ)
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where N =
∑n

i=1 xi.
As `(θ) is strictly concave, it has a unique maximizer, and since the function is in addition
differentiable, its maximizer θ̂ is the zero of its gradient ∇`(θ):

∇`(θ) =
∂

∂θ
`(θ) =

N

θ
− n−N

1− θ
.

It is easy to show that ∇`(θ) = 0⇐⇒ θ = N
n

. Therefore we have

θ̂ =
N

n
=
x1 + x2 + · · ·+ xn

n
. (1.13)

1.4.3 MLE for the multinomial model

Consider N observations X1, X2, . . . , XN of a discrete random variable X following a multi-
nomial distribution M(1,π), where π = (π1, π2, . . . , πK)T . We denote xi (i = 1, 2, . . . , N)
the K-dimensional vectors of 0s and 1s representing Xi, as presented in Section 1.3.3.
From (1.12) and (1.3) we have

`(π) =
N∑
i=1

log p(xi; π)

=
N∑
i=1

log

(
K∏
k=1

πxikk

)

=
N∑
i=1

K∑
k=1

xik log πk

=
K∑
k=1

nk log πk

where nk =
∑N

i=1 xik (nk is therefore the number of observations of xk = 1).

We need to maximize this quantity subject to the constraint
∑K

k=1 πk = 1.

Brief review on Lagrange duality

Lagrangian. Consider the following convex optimization problem:

min
x∈X

f(x), subject to Ax = b (1.14)

where f is a convex function, X ⊂ Rp is a convex set included in the domain2 of f ,
A ∈ Rn×p,b ∈ Rn.
The Lagrangian associated with this optimization problem is defined as

L(x,λ) = f(x) + λT (Ax− b) (1.15)

2The domain of a function is the set on which the function is finite.
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The vector λ ∈ Rn is called the Lagrange multiplier vector.

Lagrange dual function. The Lagrange dual function is defined as

g(λ) = min
x
L(x,λ) (1.16)

The problem of maximizing g(λ) with respect to λ is known as the Lagrange dual
problem.

Max-min inequality. For any f : Rn × Rm and any w ∈ Rn and z ∈ Rm, we have

f(w, z) ≤ max
z∈Z

f(w, z) =⇒ min
w∈W

f(w, z) ≤ min
w∈W

max
z∈Z

f(w, z) (1.17)

=⇒ max
z∈Z

min
w∈W

f(w, z) ≤ min
w∈W

max
z∈Z

f(w, z). (1.18)

The last inequality is known as the max-min inequality.

Duality. It is easy to show that

max
λ

L(x,λ) =

{
f(x) if Ax = b

+∞ otherwise.

Which gives us
min
x
f(x) = min

x
max

λ
L(x,λ) (1.19)

Now from (1.16), (1.18) and (1.19) we have

max
λ

g(λ) = max
λ

min
x
L(x,λ) ≤ min

x
max

λ
L(x,λ) = min

x
f(x) (1.20)

This inequality says that the optimal value d∗ of the Lagrange dual problem always
lower-bounds the optimal value p∗ of the original problem. This property is called the
weak duality. If the equality d∗ = p∗ holds, then we say that the strong duality holds.
Strong duality means that the order of the minimization over x and the maximization
over λ can be switched without affecting the result.

Slater’s constraint qualification lemma. If there exists an x in the relative interior of
X ∩{Ax = b} then strong duality holds. (Note that by definition X is included in the
domain of f so that if x ∈ X then f(x) <∞.)

Note that all the above notions and results are stated for the problem (1.14) only. For a
more general problem and more details about Lagrange duality, please refer to [9] (chapter
5).
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Back to our problem

We need to minimize

f(π) = −`(π) = −
K∑
k=1

nk log πk (1.21)

subject to the constraint 1Tπ = 1.
The Lagrangian of this problem is

L(π, λ) = −
K∑
k=1

nk log πk + λ

(
K∑
k=1

πk − 1

)
(1.22)

Clearly, as nk ≥ 0 (k = 1, 2, . . . , K), f is convex and this problem is a convex optimization
problem. Moreover, it is trivial that there exist π1, π2, . . . , πK such that πk > 0 (k =
1, 2, . . . , K) and

∑K
k=1 πk = 1, so by Slater’s constraint qualification, the problem has strong

duality property. Therefore, we have

min
π
f(π) = max

λ
min
π
L(π, λ) (1.23)

As L(π, λ) is convex with respect to π, to find minπ L(π, λ), it suffices to take derivatives
with respect to πk. This yields

∂L

∂πk
= −nk

πk
+ λ = 0, k = 1, 2, . . . , K.

or
πk =

nk
λ
, k = 1, 2, . . . , K. (1.24)

Substituting these into the constraint
∑K

k=1 πk = 1 we get
∑K

k=1 nk = λ, yielding λ = N .
From this and (1.24) we get finally

π̂k =
nk
N
, k = 1, 2, . . . , K. (1.25)

Remark: π̂k is the fraction of the N observations for which xk = 1.

1.4.4 MLE for the univariate Gaussian model

Consider n observations x1, x2, . . . , xn of a random variable X following a Gaussian distri-
bution N (µ, σ2). From (1.12) and (1.6) we have

`(µ, σ2) =
n∑
i=1

log p(xi; µ, σ
2)

=
n∑
i=1

log

[
1

(2πσ2)1/2
exp

(
−(xi − µ)2

2σ2

)]
= −n

2
log(2π)− n

2
log(σ2)− 1

2

n∑
i=1

(xi − µ)2

σ2
.
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We need to maximize this quantity with respect to µ and σ2. By taking derivative with
respect to µ and then σ2, it is easy to obtain that the pair (µ̂, σ̂2), defined by

µ̂ =
1

n

n∑
i=1

xi (1.26)

σ̂2 =
1

n

n∑
i=1

(xi − µ̂)2 (1.27)

is the only stationary point of the likelihood. One can actually check (for example computing
the Hessian w.r.t. (µ, σ2) that this actually a maximum. We will have a confirmation of this
in the lecture on exponential families.

1.4.5 MLE for the multivariate Gaussian model

Let X ∈ Rd be a Gaussian random vector, with mean vector µ ∈ Rd and a covariance matrix
Σ ∈ Rd×d (positive definite):

p(x | µ,Σ) =
1

(2π)
k
2

1√
det Σ

exp

(
− (x− µ)>Σ−1 (x− µ)

2

)

Let x1, . . . , xn be a i.i.d. sample. The log-likelihood is given by:

` (µ,Σ) = log p (x1, . . . , xn; µ,Σ)

= log
n∏
i=1

p (xi | µ,Σ)

= −

(
nd

2
log(2π) +

n

2
log (det Σ) +

1

2

n∑
i=1

(xi − µ)>Σ−1 (xi − µ)

)

In this case, one should be careful that these log-likelihoods are not concave with respect to
the pair of parameters (µ,Σ). They are concave w.r.t. µ when Σ is fixed but they are not
even concave with respect to Σ when µ is fixed.

1.4.6 Digression: review on differentials

Differentiable function. A function f is differentiable at x ∈ Rd if there exists a linear
form df such that:

f(x+ h)− f(x) = df(h) + o(||h||)

Since Rd is a Hilbert space, we know that there exists g ∈ Rd such that dfx(h) = 〈g, h〉. We
call g the gradient of f : g = ∇f(x).
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Example 1 : if f 7→ a>x+ b then we have :

f(x+ h)− f(x) = a>h

and thus
∇f(x) = a.

Example 2 : if f 7→ 1
2
x>Ax then we have :

f(x+ h)− f(x) =
1

2
(x+ h)TA(x+ h)− 1

2
x>Ax

=
1

2

(
x>Ah+ h>Ax

)
+ o (||h||)

The gradient is then :

∇f(x) =
1

2

(
Ax+ A>x

)
Let us first differentiate ` (µ,Σ) w.r.t. µ.

We need to differentiate :

µ 7→ (xi − µ)>Σ−1(xi − µ)

Which is equal to f ◦ g where :

f : Rd → R
y 7→ y>Σ−1y

and

g : Rd → Rd

µ 7→ µ− xi

Reminder : Composition of differentials

d(f ◦ g) = dfg(x) (dgx(h))

= dfg(x) ◦ dgx(h)
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The differential of f is : dfy(h) = 〈∇f(y), h〉 = 〈1
2

(
Σ−1y + (Σ−1)

>
y
)
, h〉 = 〈Σ−1y, h〉

as Σ−1 is symmetric.

The function ` : µ 7→ (xi − µ)Σ−1(xi − µ). We have :

d`µ(h) = 〈Σ−1(µ− xi), h〉

We deduce the gradient of ` :

∇`(µ) = Σ−1(µ− xi)

1.4.7 Back to the MLE for the multivariate Gaussian

Remember that the function we want to differentiate is :

` (µ,Σ) = −

(
nd

2
log(2π) +

n

2
log (det Σ) +

1

2

n∑
i=1

(xi − µ)>Σ−1 (xi − µ)

)
According to the results above, we have :

∇µ`
(
µ,Σ−1

)
=

n∑
i=1

Σ−1(µ− xi)

= Σ−1

(
nµ−

n∑
i=1

xi

)
= Σ−1 (nµ− nx)

where x = 1
n

∑n
i=1 xi

The gradient is equal to 0 iff :

µ̂ =
1

n

n∑
i=1

xi

Let us now differentiate ` w.r.t. Σ−1. Let A = Σ−1. We have :

` (µ,Σ) = −

(
nd

2
log(2π)− n

2
log (detA) +

1

2

n∑
i=1

(xi − µ)>A (xi − µ)

)
The last term is a real number, so it equal to its trace. Thus :
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` (µ,Σ) = −

(
nd

2
log(2π)− n

2
log (detA) +

1

2

n∑
i=1

Trace
(
(xi − µ)>A(xi − µ)

))

= −
(
nd

2
log(2π)− n

2
log(detA) +

n

2
Trace(AΣ̃)

)
where

Σ̃ =
1

n

n∑
i=1

(xi − µ)(xi − µ)>

is the empirical covariance matrix.

Let f : A 7→ n
2
Trace

(
AΣ̃
)

.

We have :

f(A+H)− f(A) =
n

2
Trace

(
HΣ̃

)
The gradient of the last term of ` is then :

∇f(A) =
n

2
Σ̃

and :

dfA(H) = 〈∇f(A), H〉
= Trace

(
∇f(A)>H

)
Let us focus on the second term. We have :

log (det(A+H)) = log
(
|A

1
2

(
I + A−

1
2HA−

1
2

)
A−

1
2 |
)

= log (|A|) + log
(

det(I + H̃)
)

where H̃ =
(
A−

1
2

)
HA−

1
2 .

Let g : A 7→ log (det(A)) where A = I + H̃.

We have :
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log
(

det(I + H̃)
)
− log (det(I)) =

d∑
i=1

log(1 + λj)

'
d∑
i=1

λj + o
(
||H̃||

)
= Trace

(
H̃
)

+ o
(
||H̃||

)
H̃ is symmetric, so it can be written as :

H̃ = UΛU>

where U is an orthogonal matrix and Λ = diag(λ1, ..., λd).

d (log (detA(H))) = Trace
(
A−

1
2HA−

1
2

)
= Trace(HA−1)

We deduce the gradient of log (det(A)):

∇ log (det(A)) = A−1

And the gradient of ` w.r.t. A is :

∇A(`) = −n
2
A−1 +

n

2
Σ̃

It is equal to zero iff :

Σ̂ = Σ̃

when Σ̃ is invertible.
Finally we have shown that the pair

µ̂ = x̄ =
1

n

n∑
i=1

xi andΣ̂ =
1

n

n∑
i=1

(xi − x̄)(xi − x̄)>

is the only stationary point of the likelihood. One can actually check (for example computing
the Hessian w.r.t. (µ,Σ) that this actually a maximum. We will have a confirmation of this
in the lecture on exponential families.
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