
Master M2 MVA 2013/2014 - Graphical models
Take Home Exam

Due on Wednesday December 18th, 2013.

You are requested to work on this take home exam alone, without
exchanging information with other students.

If you intend to turn in this exam as a pdf file, please name the file

MVA DM3 <your name>.pdf

1 Inference in Gaussian graphical models

We consider an unoriented Gaussian graphical model with canonical parameters deno-
ted η ∈ Rn for the loading vector and Λ ∈ Rn×n for the precision matrix. We consider
the model in which each scalar component of the Gaussian model is associated with
a different node and we assume that the graphical model is a tree G = (V,E). The
goal of this exercise is to derive the form of a belief propagation algorithm to compute
the marginal distributions on each of the individual nodes. As seen in class, the sum-
product algorithm requires to exchange messages between nodes which take the form
of potential-functions. In the case of discrete graphical models these messages are
essentially vectors but in the case of Gaussian variables these potentials are functions
from R to R.

1. Show that, although, at an abstract level, the sum-product algorithm consists
in exchanging messages Ms→t that are exponentials of quadratic functions, in
practice, it is sufficient for node s to send to another node t a message which
consists of two scalars λs→t and ηs→t. Give the form of the recursion which
allows to compute the messages λs→t and ηs→t sent from node s to node t given
the messages received by s from other nodes and the canonical parameters ηs,
Λss and Λst.

2. Show that upon termination of the belief propagation algorithm, it is imme-
diate to compute from the exchanged messages the quantities µ = E[X] and
(E[XsXt]){s,t}∈E.

3. What is the complexity of the belief propagation algorithm here ? What would
be, for a general multivariate Gaussian distribution, the complexity of the com-
putation of µ from Λ and η as a function of n ? What is in fact the complexity
of the computation of µ from Λ and η when the graph is a tree ? Comment on
this result.

4. Let A ∈ Rn×n a positive definite matrix such that for all s 6= t and (s, t) /∈ E
we have Ast = 0 ; let b ∈ Rn. Deduce from the previous results an efficient
algorithm to solve the linear system Ax = b. What is its complexity ?
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2 Learning the structure of a tree graphical model

The goal of this exercise is to derive an algorithm to learn from i.i.d. data the structure
of a graphical model constrained to be a tree.

1. Let X be a discrete random variable over the finite set X .
Denote by η(x) = p(X = x) the vector of parameters. Given an i.i.d. sample
from the data (xn)n=1,...,N , let p̂(x) be the empirical distribution of the data

defined by p̂(x) = 1
N

∑N
n=1 δ(x

n = x). Define the empirical entropy of X based
on the sample as

Ĥ(X) = −
∑
x∈X

p̂(x) log p̂(x).

Show that the maximal value of the log-likelihood maxη
∑N

n=1 log p(xn|η) (at-
tained for the maximum likelihood estimator) can be expressed as a function of

Ĥ(X) and N .

2. For two discrete random variables X and Y taking values respectively in X and
Y , we denote the joint entropy and the conditional entropy respectively by

H(X, Y ) = −
∑
(x,y)

p(x, y) log p(x, y) and H(X|Y ) = −
∑
(x,y)

p(x, y) log p(x|y).

Show that H(X) +H(Y |X) = H(X, Y ).

3. Let (xn, yn), n = 1, . . . , N be a sample of size N for this pair of variables. Given
the maximum likelihood estimator of the joint distribution p̂(x, y) we define the
estimates of the joint entropy and the conditional entropy respectively as

Ĥ(X, Y ) = −
∑
(x,y)

p̂(x, y) log p̂(x, y) and Ĥ(X|Y ) = −
∑
(x,y)

p̂(x, y) log p̂(x|y).

Express the maximal value of the conditional log-likelihood max
η

N∑
n=1

log p(yn|xn, η)

as a function of N , Ĥ(X, Y ), Ĥ(X) and Ĥ(Y ).

4. We now consider P discrete random variables X1, . . . , XP taking values res-
pectively in the finite sets X1, . . . ,XP . Given an i.i.d. sample of this vector of
variables, (xnp ), p = 1, . . . , P , n = 1, . . . , N , we denote by p̂(x1, . . . , xP ) the
empirical distribution defined by

p̂(x1, . . . , xP ) =
1

N

N∑
n=1

δ(xn1 = x1) · · · δ(xnP = xP ).

This joint distribution induces the distributions p̂(xp, xq) et p̂(xq) via margina-
lization.
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Consider a spanning tree of the complete graph on P vertices, and given an
orientation of the tree (without v-structure), consider the corresponding graphi-
cal model, i.e. consisting of distributions that factorize as a product of conditio-
nals according to the directed tree. Give the exact form of these distributions.
What are the parameters ? For a node p, we denote its parent πp, if it exists.
Show that, once maximized with respect to its parameters, the log-likelihood
for a given tree `(T ) can be expressed as a function of N and of all the marginal

empirical entropies Ĥ(Xp) and Ĥ(Xp, Xπp).

5. For all pairs (p, q), the empirical mutual information is the quantity Î(Xp, Xq) =

−Ĥ(Xp, Xq)+ Ĥ(Xp)+ Ĥ(Xq). Express it as a Kullback-Leibler divergence and
show that it is non-negative.

6. Express `(T ) as a function of the entropies Ĥ(Xp) and of the empirical mutual
informations only.

7. Based on this expression of `(T ), we now consider the problem of maximizing
`(T ) with respect to the choice of the tree T . Recognize that this maximization
problem corresponds to a classical problem in graph theory and describe an
algorithm to learn the structure of the tree having maximal likelihood.

8. Assuming that |X1| = . . . = |XP | = K what is the complexity of the algorithm
as a function of K, P and N ?

3 HMM - Implementation

We consider the same training data as in the previous homework, provided as the
“EMGaussienne.dat” file (and we will test on the corresponding testing data from
the “EMGaussienne.test” file), but this time we use an HMM model to account for
the possible temporal structure of the data. The data are of the form ut = (xt, yt)
where ut = (xt, yt) ∈ R2, for t = 1, . . . , T . The goal of this exercise is to implement the
probabilistic inference algorithm and the EM algorithm to learn parameters as well
as the Viterbi algorithm. It is recommended to make use of the code of the previous
homework.

We consider the following HMM model : the chain (qt) has K = 4 possible states,
with an initial probability distribution π ∈ R4 and a probability transition matrix
A ∈ R4×4, and conditionally on the current states we have observations obtained from
Gaussian emission probabilities ut|qt = i ∼ N (µi,Σi).

1. Implement the recursions α et β seen in class (and that can be found in the
polycopié as well) to compute p(qt|u1, . . . , uT ) and p(qt, qt+1|u1, . . . , uT ).

2. Using the same parameters for the means and covariance matrix of the 4 Gaus-
sians as the ones obtained in the previous homework, taking a uniform initial
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probability distribution π, and setting A to be the matrix with diagonal coef-
ficients Aii = 1

2
and off-diagonal coefficients Aij = 1

6
for all (i, j) ∈ {1, . . . , 4}2,

compute αt and βt for all t on the test data (“EMGaussienne.test” file) and com-
pute p(qt|u1, . . . , uT ). Finally, represent p(qt|u1, . . . , uT ) for each of the 4 states
as a function of time for the 100 first datapoints in the file. Note that only the
100 first points should be plotted by that filtering should be done with all the
data (i.e. T = 500). This will be the same for the subsequent questions. (In
Matlab the command subplot might be handy to make long horizontal plots.)

3. Derive the estimation equations of the EM algorithm.

4. Implement the EM algorithm to learn the parameters of the model (π,A, µk,Σk, k =
1 . . . , 4). The means and covariances could be initialized with the ones ob-
tained in the previous homework. Learn the model from the training data
in“EMGaussienne.dat”.

5. Plot the log-likelihood on the train data “EMGaussienne.dat” and on the test
data “EMGaussienne.test” as a function of the iterations of the algorithm. Com-
ment.

6. Return in a table the values of the log-likelihoods of the Gaussian mixture
models and of the HMM on the train and on the test data. Compare these
values. Does it make sense to make this comparison ? Conclude. Compare these
log-likelihoods as well with the log-likelihoods obtained for the different models
in the previous homework.

7. Implement Viterbi decoding (aka MAP inference) to estimate the most likely
sequence of states, i.e. arg maxq p(q1, . . . , qT |y1, . . . , yT ).

For the set of parameters learned with the EM algorithm, compute the most
likely sequence of states with the Viterbi algorithm and represent the data in 2D
with the cluster centers and with markers of different colors for the datapoints
belonging to different classes.

8. For the datapoints in the test file “EMGaussienne.test”, compute the marginal
probability p(qt|u1, . . . , uT ) for each point to be in state {1, 2, 3, 4} for the para-
meters learned on the training set. For each state plot the probability of being
in that state as a function of time for the 100 first points (i.e., as a function of
the datapoint index in the file).

9. For each of these same 100 points, compute their most likely state according
to the marginal probability computed in the previous question. Make a plot
representing the most likely state in {1, 2, 3, 4} as function of time for these 100
points.

10. Run Viterbi on the test data. Compare the most likely sequence of states ob-
tained for the 100 first data points with the sequence of states obtained in the
previous question. Make a similar plot. Comment.

11. In this problem the number of states was known. How would you choose the
number of states if you did not know it ?
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