Formulaire de dérivation matricielle

Marc Weber

Ruocong Zhang

Octobre 2009

D'autres formules plus générales peuvent se trouvées ici :

- http://www.cs.toronto.edu/~roweis/notes/matrixid.pdf
- http://www.imm.dtu.dk/pubdb/views/edoc_download.php/3274/pdf/ imm3274.pdf

Proposition 1 Soit $v \in \mathbb{R}^k$ et $a \in \mathbb{R}^k$

$$\frac{\partial(v^T a)}{\partial v} = \frac{\partial(a^T v)}{\partial v} = a$$

Proposition 2 Soit un vecteur $v \in \mathbb{R}^k$ et une matrice $M \in \mathbb{R}^{k \times k}$:

$$\frac{\partial (v^T M v)}{\partial v} = (M + M^T)v$$

En particulier, si M est symétrique, $M^T=M$ et

$$\frac{\partial (v^T M v)}{\partial v} = 2Mv$$

Proposition 3 Soit $M \in \mathbb{R}^{k \times k}$:

$$\frac{\partial(\log(\det(M)))}{\partial M} = M^{-1}$$

Proposition 4 Soit $M \in \mathbb{R}^{k \times k}$ et $A \in \mathbb{R}^{k \times k}$ symétrique :

$$\frac{\partial (Tr(AM))}{\partial M} = A$$

Proposition 5 Soit un vecteur $v \in \mathbb{R}^k$ et une matrice $M \in \mathbb{R}^{k \times k}$:

$$\frac{\partial}{\partial v} \left(M v \right)^{\top} \left(M v \right) = 2 M^{\top} M v$$