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Summary

A classification method based on textural information for
metallic surfaces displaying complex random patterns is
proposed. Because these kinds of textures show fluctuations
at a small scale and some uniformity at a larger scale,
a probabilistic approach is followed, considering textural
variations as realizations of random functions. Taking into
account information of pixel neighbourhoods, the texture for
each pixel is described at different scales. By means of statistical
learning, the most relevant textural descriptors are selected
for each application. The performance of this approach is
established on a real data set of steel surfaces.

Introduction

Texture description in image processing may have different
objectives: extraction of characteristics of the scene, defect
detection, surface inspection, image classification. For defect
inspection on materials displaying complex patterns but
appearing visually periodic on a larger scale, automated
softwares are very successful by their ability to make
fast accurate and repetitive measurements (Bennamoun &
Bodnarova, 2003; Murino et al., 2004; Mak et al., 2005).
A variety of statistical techniques were investigated, such as
histogram-based texture analysis techniques corresponding to
the use of co-occurrence matrices (Iivarinen, 2000; Latif-Amet
et al., 2000), structural approach (Chen & Jain, 1988), texture
modelling (Cohen et al., 1991), filtering approach (Meylani
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et al., 1996; Kumar & Pang, 2002) and wavelet transformation
of images (Lambert & Bock, 1997; Karras & Mertzios, 2002;
Serdaroglu et al., 2006). However, on materials displaying
complex patterns that are random in appearance (i.e. not
periodic), detecting subtle local defects turns out to be difficult
(Xie & Mirmehdi, 2005). This kind of textured surfaces shows
fluctuations at a small scale and some uniformity at a larger
scale. To handle it, we rely on a probabilistic approach,
considering textural variations as realizations of random
functions. A theoretical way to characterize them is to evaluate
their Choquet capacity, that describes their properties on
sets of compact support. Therefore, we describe the texture
for each pixel of images accounting for information in its
neighbourhood at different scales, and thus follow the texton
approach of Malik et al. (1999).

For textural description, we applied both linear filtering,
relying on curvelet transformations, and nonlinear filtering
by morphological transformations of images. To compare
their performance, statistical learning is used on documented
databases. It is based on linear discriminant analysis and
allows us to evaluate the textural descriptors performance
for the considered application.

Following a first validation of this approach on synthetical
random texture images (Cord et al., 2007), we present here
applications on a real data set of scrapping metallic surface
images. We propose an approach for detecting small textural
anomalies drowned in a textural background.

This paper is organized as follows: in Section ‘Materials
and methods’, the textural descriptors are proposed and the
statistical learning tools are introduced, in Section ‘Metallic
surface application’, an application on a real data set is
presented, in Section ‘Results on metallic surfaces at the image
level’, the application results are extented to a 800 images
database.
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Materials and methods

Pixel texture description

The presence of fluctuations at a small scale suggests the use
of a probabilistic approach to characterize random textures.
Therefore, from a theoretical point of view, a random texture
is completely known from its Choquet capacity.

In defect detection studies, image descriptors are generally
evaluated on small images extracted from larger ones (Xie &
Mirmehdi, 2005). Here, we exploit the theoretical approach
to characterize textural properties and calculate them for each
pixel, taking into account local properties of its neighbourhood
at varying scales.

Theoretical approach of random textures. In this framework, we
consider textures as realizations of random functions (RF).
Morphological and probabilistic information on RF is obtained
by means of lower semi continuous (l.s.c.) test functions g
with a compact support K in Rn: it can be shown (Matheron,
1969, 1975; Jeulin, 1992, 2000 ) that an upper semi-
continuous RF Z(x) with real values and defined in Rn is
completely characterized by the Choquet capacity functional
T(g) , defined, for all l.s.c. functions g and for all compact
supports K, by

T (g) = P{x ∈ D Z (g)} = 1 − P{x ∈ D Z (g)c} (1)

where P is the probability of the event {} and

D Z (g)c = {x, Z (x + y) < g(y), ∀ y ∈ K }. (2)

DZ(g)c is the complementary set of DZ(g) in Rn. Note that in
Jeulin (1992) an extension to multivariate RF Z i(x) (like colour
images, or more generally multispectral images) is given.

As particular cases, when the compact set K is a point x and
g(x) = z (g(y) = +∞, for y �= x), the cumulative distribution
function is obtained from 1 − T (g) = P{Z (x) < z}. When
using the two points {x, x + h} and the function defined by
g(x) = z1 and g(x + h) = z2, we can derive the bivariate
distribution F (z1, z2, h) = P{Z (x) < z1, Z (x + h) < z2}. More
generally, for a function defined on n points, we recover the
multivariate spatial distribution of the RF. Using g(x) = z for
x ∈ K and g(x) = +∞ for x �∈ K , we obtain the distribution
function of Z (x) after a change of support according to the
supremum over any compact set K. This corresponds to the
morphological grey-level dilation of Z by K (Serra, 1982,
chapter XII). In addition to dilation and erosion, we use in
this study openings and closings applied to grey-level images.
The opening, obtained by an erosion followed by a dilation
by a given structuring element, preserves bright parts of the
image which can contain the structuring element, whereas the
closing operation (dilation followed by an erosion) preserves
dark parts. Applying a succession of openings (respectively
closings) by structuring elements of increasing sizes makes
disappear one by one the characteristics of the image.

To address the problem of segmentation of pixels from
texture properties and of textural anomaly detection, a
classification of pixels must be performed. This requires a local
characterization, that can be made in different ways:
1. As described earlier, transform the grey-level image by

opening or closing by Ki, and generate a multimodal
image from the collection of Ki. It corresponds to filters,
such as granulometries, as already proposed by Sivakumar
& Goutsias (1997); Aubert et al. (2000); Fricout &
Jeulin (2004). These morphological operations, which
are the basis to the probabilistic characterization of
random functions through the Choquet capacity are good
candidates as texture descriptors. In this study, different
structuring elements are chosen: squares, vertical and
horizontal segments. The structuring elements sizes are
[2, 4, 8, 16, 32] × 2 + 1 pixels, that are adapted to
our application. For a given type of structuring element
and the list of sizes, all opening and closing images are
evaluated. The descriptor is obtained by calculating the
difference between the open images at sizes n and n +
1 as well as between the closed images at sizes n + 1
and n. Therefore, each pixel is described by a vector with
30 morphological components, where 30 = number of
sizes (5) × number of structuring elements (3) × number
of operations (opening/closing).

2. Consider a neighbourhood B(x) of each pixel, and use a local
estimate of T(g) inside B(x). From the estimates, generate a
multimodal image from the collection of gi. It uses a local
estimate in B of the Choquet capacity and requires the
appropriate choice of B. This approach developed in Cord
et al. (2007), will not be used here.

3. An alternative approach to the Choquet capacity and to the
dilations/erosions, is to use measures μi with a compact
support Ki and estimate μi(Z ), generating a multimodal
image from the collection of Ki. This approach is less
general than the morphological approach, because it is
limited to linear operators. Particular cases are given by
various types of linear filters, like multiscale convolution by
Gaussian kernels, wavelets, curvelets, . . .. The application
of this approach is presented in Section ‘Linear filtering
using curvelets’.

Linear filtering using curvelets. The curvelet transform is a
higher-dimensional generalization of the wavelet transform,
designed to represent images at different scales and different
angles (Candes & Donoho, 1999). The use of this tool to
characterize the texture in an image is recent (Elad et al.,
2005). Curvelets have very interesting properties in the
context of object detection, in particular curved singularities
can be well approximated with very few coefficients. This
makes the curvelet coefficients for pixels belonging to a
particular object very specific.

The curvelet filter bank is in essence a set of bandpass filters
with range and orientation selective properties. Typically, we
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apply a linear filtering of each 100 × 100 neighbourhood
of every pixel by curvelets with different frequencies and
orientations. The filter bank is decomposed into four sets of
frequencies containing, respectively, 1, 8, 16 and 1 filters of
varied orientations from the smallest frequency to the largest
one. The features used are the magnitudes of each of the
26 filters results.

Synthesis of pixel texture description. To minimize border effects
on descriptor calculation, images were extended by neutral
values for the corresponding feature (max for the erosion, min
for the dilation and mean for the linear filtering).

Combining linear and nonlinear filtering for textural
properties description provides us with a three-dimensional
data set having two spatial dimensions and a descriptor
dimension. Each pixel is then described by a vector. This allows
us to follow the texton approach of Malik et al. (1999).

The calculation is evaluated using an image sizing 256 ×
256 on a PC intel CPU 3.4 GHz with 1 GB of RAM
running Matlab 7.1. The morphological descriptors having
30 dimensions are calculated in 0.58 s. The 26 curvelets are
calculated in 2.4 s. The optimization of the calculation time is
not an issue in this paper, and we focus on the following on
prediction performance.

Statistical learning

From a practical point of view, using pixel texture descriptions
provides us with a large amount of descriptors for each pixel
of each image in the database. We deliberately use a large
number of descriptors, that are automatically selected for each
application by statistical learning. In this way, the approach is
generic and the pattern and orientations that are chosen are
problem dependent. This approach was successfully applied to
the classification of images in the standard case when there is
a single texture per field of view (Aubert et al., 2000; Fricout
& Jeulin, 2004).

The statistical learning approach described here could be
decomposed in three steps.
1. A dimensional reduction of the set of independent variables

by principal component analysis.
2. A supervised learning using linear discriminant analysis.
3. A variable selection based on forward selection.

This approach will help us to know which set of descriptors
can best determine the pixel classes and what classification
rule should be applied to best separate the groups of pixels.

Principal component analysis (PCA) is a vector space transform
often used to reduce multidimensional data sets to lower
dimensions. PCA is defined as an orthogonal linear
transformation that maximize the variance of the projected
data. In our applications, PCA is used for dimensionality
reduction in a data set by retaining those characteristics of the
data set that contribute most to its variance, by keeping lower-
order principal components and ignoring higher-order ones.

A fixed percentage of the variance, typically 99% is conserved
to minimize the possible correlation existing between textural
descriptors.

Linear discriminant analysis (LDA) The purpose of linear
discriminant analysis is to classify objects (here, pixels) into
one of two or more groups based on a set of features that
describe the objects (here, textural properties). It assumes
that the groups can be separated by a linear combination
of features. It is a supervised learning method, meaning that
some object, that has an identified label, should be extracted
from the database. More details may be found in Hastie et al.
(2001). Other methods, as SVM, could be used to produce this
classification, but at the expense of a higher computational
cost.

The applied method is a combination of a PCA followed by
an LDA on selected axis (that represent 99% of the global
variance). It produces new variables, as linear combinations
of the initial features that maximizes the ratio of between-class
variance to the within-class variance.

Cross-validation is the statistical practice of partitioning data
(pixels in the present case) into subsets such that the analysis is
initially performed on all except one subsets, whereas the last
subset is retained for subsequent use in validating the initial
analysis. In this work, the original data is partitioned into
five subsets. Of the five subsets, a single subset is retained as
validation data for testing the model, and the remaining four
subsets are used as training data. The cross-validation process
is then repeated five times, with each of the five subsets used
exactly once as validation data. We calculate both the mean of
the five results to produce an estimation of the learning error,
and the standard deviation to evaluate the expected precision
of this error.

Variable selection is made using the classical approach named
forward selection (Guyon & Elisseeff, 2003). It is a method to
find an efficient combination of variables by starting with a
single variable, and progressively incorporating variables into
larger and larger subsets. The method starts by first selecting
the variable which results in the lowest classification error.
Next, this variable is used to test all combinations with the
remaining variables to find the best pair of variables. In all
further steps, additional variables are added until all variables
are used up. It is then possible to select the best subset of
variables corresponding to the step where the error reaches a
minimum. Note that the forward selection does not necessarily
find the best combination of variables (out of all possible
combinations). However, it will result in a combination which
comes close to the optimum solution.

Metallic surface application

In automatic surface inspection, the conventional method of
detection/classification relies on two steps. First, fast real-
time algorithms pull out ‘objects’ of interest. Then powerful
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classification calculations adequately reject pseudo-defects
and sort the pertinent defects in appropriate families. However,
on materials displaying complex patterns that are random
in appearance, detecting subtle local defects or describing
textural variation turns out to be a rather difficult task.

The main idea of this application is to detect defects on
this kind of materials. For this purpose, we calculate for each
pixel of the image if its belonging to a defect or not (Section
‘Metallic surface application’). Then we implicitly gather the
defect pixels to reinforce the detection (Section ‘Results on
metallic surfaces at the image level’).

Then, we propose to describe pixels textures using the
advanced descriptors presented earlier and demonstrate their
potential in the evaluation of light defect detection in strongly
textured surfaces.

The study was made possible thanks to the ‘digital coil
recording’ feature equipping VAI MT SAS systems, permitting
the uncompressed recording of the video stream of an entire
coil as a full image, when desired. Large amounts of images
were thus processed with this aim.

Training database extraction. For this application, we use a
database containing 800 images of scraping steel surface
factory, provided by VAI MT SAS. Those images typically have
a size of 240 × 296 pixels, with a 1 mm scale resolution, and all
of them contain different defects on a nonuniform background
showing fluctuations of texture. Our objective is to distinguish
standard steel surface, versus defects.

Among the 800 images, we randomly pick 50 of them for
the training of the system. The rest will be used to validate the
results at the very end. On these 50 images,
1. all the defect pixels are manually localized, and
2. we measure all the 56 texture descriptors that are described

in Sections ‘Theoretical approach of random textures’
and ‘Linear filtering using curvelets’ (30 morphological
granulometries and 26 curvelets linear filtering).

The number of images for the training is sufficient because
the objects that are classified during the learning procedure are
pixels. Many of them can be extracted from these 50 images.
Indeed, we randomly select 100 000 pixels belonging to the
defect class and 100 000 pixels outside, corresponding to the
background. All the descriptor vectors of those pixels are
placed in a database, that is used in the following learning
procedure to evaluate and select variables.

Classification using all the descriptors. The first step of the
analysis is meant to evaluate the efficiency of both the
descriptors and the learning procedure in the task of classifying
pixels between the two classes ‘defect’’ versus ‘background’.
We run the learning procedure combining PCA and LDA
with a cross-validation step as described in Section ‘Statistical
learning’. The use of the cross-validation is essential to
evaluate the performance of the learning procedure. Without
it, our performance would be too optimistic because of
potential overfitting. The histogram of the pixels descriptors

Fig. 1. Projection of the test data on the first linear discriminant axis
for one subset of the cross-validation. The x-axis is the coordinate of the
projection on the first linear discriminant axis. The y-axis is the proportion
of pixels. The background data are plotted in black. The defect data are
plotted in white.

projection on the first discriminant axis for one subset of the
cross-validation is presented in Fig. 1. All other subsets are
very similar.

In this figure, the separation between the two classes looks
good. It is confirmed by the evaluation of the following
statistical criteria for the test data:
1. The accuracy (number of pixels correctly classified/total

number of pixels) is 94.4% (with a standard deviation of
0.2%).

2. The sensitivity (percentage of defect pixels classified as
defect) is 96.3% (0.3%).

3. The specificity (percentage of normal pixels classified as
normal) is 92.5% (0.3%).

4. The positive predictive value (percentage of classified as
defect pixels who are correctly classified) is 92.8% (0.2%).

5. The negative predictive value (percentage of classified as
normal pixels who are correctly classified) is 96.2% (0.2%).

There was no significant difference between the
performances on the training and the test data. This indicates
that the learning procedure does not overfit the data, and that
the number of selected pixel in the database (100 000 per
class) is sufficient compared to the number of descriptors (56).
It thus confirms that the choice of extracting only 50 images
for the 800 available images is relevant.

The accuracy of 94.4% shows that the descriptors we
propose are valid for the classification task. The small
classification error may be explained by the fact that our pixel
database is not perfect. Indeed, pixels located near a defect
border may not be easy to classify.

Relying on these results, we consider the possibility of
obtaining such a score using only a subset of variables.
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Fig. 2. Classification test error versus number of selected variables. The
error bars correspond to error standard deviation.

Variable selection. Using forward selection of variables as
detailed in Section ‘Statistical learning’, we calculate the mean
test error and its standard deviation as a function of the number
of remaining variables in Fig. 2.

It shows that the error decreases as the number of variables
increases and reaches a minimum for 20 selected variables.
The standard deviation keeps a very low level whatever the
number of selected variables. It assures us of the stability

of the learning procedure. Keeping the selected subset of 20
descriptors leads to a classifier as efficient as having the whole
set of descriptors.

Those 20 variables, sorted as function of their classification
power, are presented in Table 1 with the associated
classification error and standard deviation.

From this Table, it appears that curvelet linear filters are
the best descriptors for the classification task in the present
application. Indeed, the curvelets are the three first selected
variables and they represent 13 of the 20 selected variables.
We found both low- and high-frequency filters. It confirms the
relevance of those descriptors for the presented application, in
particular the choice of filter frequencies.

However, the curvelets are not sufficient by themselves.
Indeed, a quick test shows that keeping only theses descriptors
leads to an error of 11.4%. It appears that the morphological
granulometry cooperates well with the curvelets. The
structuring elements corresponding to the selected descriptor
presents a good representation of the available ones, both in
terms of forms (Horizontal lines, vertical lines and square) and
sizes (65, 33, 17, 9 and 5 pixels).

In our approach, the relevant descriptors are selected for
the current application by statistical learning. In this way, the
method is generic and the pattern and orientations of the filters
that are chosen are problem dependent.

Threshold setting. On the selected subset of descriptors, we
calculate the projection matrix that corresponds to a linear
combination of the 20 selected descriptors. To find a mapping

Table 1. Classification test error with respect to the selected variables (cf. Fig. 2).

Descriptor Error (%) SD (× 0.01)

1 Curvelet low-frequency angle from vertical of 112.5◦ 24.9 0.316
2 Curvelet high-frequency angle from vertical of 78.75◦ 20.64 0.151
3 Curvelet low-frequency angle from vertical of 135◦ 17.59 0.054
4 Opening with horizontal line of size 65 14.6 0.105
5 Closing with square of size 33 12.99 0.192
6 Curvelet high-frequency angle from vertical of 90◦ 11.65 0.175
7 Curvelet high-frequency angle from vertical of 123.75◦ 10.42 0.153
8 Closing with square of size 65 9.53 0.211
9 Curvelet low-frequency angle from vertical of 45◦ 8.69 0.165
10 Curvelet high-frequency angle from vertical of 0◦ 7.83 0.094
11 Closing with square of size 17 7.47 0.148
12 Opening with square of size 65 7.10 0.109
13 Curvelet low-frequency angle from vertical of 22.5◦ 6.71 0.104
14 Curvelet high-frequency angle from vertical of 157.5◦ 6.53 0.097
15 Curvelet high-frequency angle from vertical of 67.5◦ 6.33 0.245
16 Curvelet high-frequency angle from vertical of 112.5◦ 6.19 0.117
17 Curvelet high-frequency angle from vertical of 135◦ 6.04 0.099
18 Opening with vertical line of size 5 5.89 0.098
19 Closing with square of size 9 5.79 0.103
20 Curvelet low-frequency angle from vertical of 90◦ 5.66 0.095
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Fig. 3. ROC curve for the metallic defect detection. The black point
corresponds to the selected threshold.

of defects on a global image, we project every pixels on the first
discriminant axis. We need to find a threshold over which a
pixel is considered as a defect.

The Receiver Operating Characteristics (ROC) curve (Egan,
1975), plotted in Fig. 3, is produced on the 200 000 pixels
from the database by varying the threshold corresponding to
the limit between background and defect.

In our application, we need to minimize the false detection
rate. Indeed, we only need to find some pixels in a global
defect to produce an alert. Then we seek on the ROC curve
the threshold that corresponds to a false detection rate of 1%.
It leads to a high missed detection rate of 35%, in terms of
pixels. However, as it is presented in the following, it mainly
corresponds to pixels located on defects borders.

Results on metallic surfaces at the image level

In this section, we translate the detection from the pixel scale to
the image scale, by implicitly gathering detected defect pixels.
Because a defect is composed of numerous pixels, using this
information enhances the statistical results. The method was
evaluated on available images. The process of any incoming
image is the following:
1. Calculation of the 20 selected descriptors.
2. Projection on the first discriminant axis.
3. Application of the threshold, determined using the ROC

curve.
We applied this process on the 800 available images. Some

results are presented in Fig. 4. The two top rows illustrate the
variability of defects that can be detected by our approach.
On the third row, the thinnest part of the defect is missed, but
there is still a detection on its larger part. On the last row,
the defect located at the center of the image is too thin to be
detected.

All images contain both defect and background. The
classified images were all manually scanned to evaluate the
following results. First, with the selected threshold, there is not
a single false detection (meaning a detection occurring outside
the defects in an image). It corresponds to a specificity and a
positive predictive value of 100%. Only 20 images present a
partially missed defect, as shown in the third row in Fig. 4.
Four images present a totally missed defect, as shown in the
last row in Fig. 4. It then corresponds to a sensitivity of 99.5%, a
negative predictive value of 97% and an accuracy of 98.5%. It
shows that defects are well located by the approach, whatever
their shape and structure. A complementary description of
this shape and structure could be used to determine the defect
category.

As a conclusion on this example, the pixel texture
description allows us to characterize pixel neighbourhood
properties and to distinguish defects and a standard textured
background. We could extend this study by testing some
other texture descriptors, or applying some post-processing
on detected area to improve the results.

Discussion and conclusion

The methodology presented in this paper is slightly different
from typical classification tasks on images. The originality is to
describe all pixels of each image by some local descriptors and
to use the learning process at the pixel scale. In this way, we
have access to an quasi-unlimited number of samples to train
and test the statistical model. The gathering of the classified
pixel enhance the detection at the final step.

Morphological image transformations and curvelets provide
efficient descriptors for pixels classification according to
the local texture. In the tested application, they allow to
point out the textural variations existing in images, and to
discriminate between specific characteristics. We could add
some other descriptors, as wedge or wavelet for instance,
to generalize the approach and may be to improve the
results. However, the complementarity of linear (cuvelets) and
nonlinear (morphological) filtering presented here leads to a
satisfactory performance on the considered example.

We deliberately use a very large number of descriptors,
which could be selected for each application by statistical
learning. In this way, the approach is generic and the pattern
and orientations that are chosen are problem dependent.
Indeed, the pertinence of a subset of image transformations
for texture classification depends on the application, and can
be ascertained from statistical learning techniques. Then, the
method could be applied to a large set of problems relying on
pattern recognition in random textured images.

Other learning approaches could be used in the same kind
of study, as SVM, LARS/Lasso for instance. We deliberately
choose to use the combination of simple tools as PCA and LDA
because they are easy to handle, fast to compute and produce
satisfactory results for our application.
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Fig. 4. Examples of defect detection. On the left, the original image. In the middle, the projection on the first LDA axis. On the right, the detection after
applying the threshold. From top to bottom, two good detections, a partially missed defect and a totally missed defect.

C© 2010 The Authors
Journal compilation C© 2010 The Royal Microscopical Society, Journal of Microscopy, 239, 159–166



1 6 6 A . C O R D F . B A C H A N D D . J E U L I N

Acknowledgements

The authors are grateful to Siemens VAI MT SAS (France) for
the steel plate images. This study was supported by Siemens
VAI MT SAS (France). The authors are very grateful to the
reviewers for their valuable reviews and careful reading of
earlier versions, which helped improving this paper.

References

Aubert, A., Jeulin, D. & Hashimoto, R. (2000) Surface texture classification
from morphological transformations. In Proceedings of the ISMM’2000,
Mathematical Morphology and its Applications to Image and Signal
Processing (ed. by IJ. Goutsias, L. Vincent & D.S. Bloomberg), pp. 253–
252. Kluwer Academic Publishers, Palo Alto, USA.

Bennamoun, M. & Bodnarova, A. (2003) Digital image processing
techniques for automatic textile quality control. Syst. Anal. Model. Simul.
43(11), 1581–1614.

Candes, E.J. & Donoho, D.L. (1999) Curvelets – a surprisingly effective
non-adaptive representation for objects with edges. In Curve and Surface
Fitting, vol. P879110 (ed. by A. Cohen, C. Rabut & L.L. Schumaker),
pp. 1–16. Vanderbilt University Press, Nashville, TN, Saint-Malo
Proceedings.

Chen, J. & Jain, K. (1988) A structural approach to identify defects
in textured images. In Proceedings of IEEE International Conference on
Systems, Man, and Cybernetics, vol. 1, pp. 29–32. IEEE, Beijing.

Cohen, F., Fan, Z. & Attali, S. (1991) Automated inspection of textile
fabrics using textural models. IEEE TPAMI 13(8), 803–808.

Cord, A., Jeulin, D. & Bach, F. (2007) Segmentation of random textures
by morphological and linear operators. In Mathematical Morphology and
its Applications to Signal Processing (ed. by G. Bannon, e.a.e.), pp. 397–
398.

Egan, J.P. (1975) Signal Detection Theory and ROC Analysis. Series in
Cognitition and Perception, Academic Press, New York.

Elad, M., Starck, J., Donoho, D. & Querre, P. (2005) Simultaneous cartoon
and texture image inpainting using morphological component analysis
(mca). ACHA 19, 340–358.

Fricout, G. & Jeulin, D. (2004) Analisis de imagen y morfologia matematica
para la caracterizacion en linea del aspecto de las superficies pintadas.
Pinturas y Acabados XLVI(292), 6–13.

Guyon, I. & Elisseeff, A. (2003) An introduction to variable and feature
selection. J. Mach. Learn. Res. 3, 1157–1182.

Hastie, T., Tibshirani, R. & Friedman, J. (2001) The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer Series in
Statistics, Springer.

Iivarinen, J. (2000) Surface defect detection with histogram-based texture
features. In Intelligent Robots and Computer Vision XIX: Algorithms,
Techniques, and Active Vision, vol. 4197, pp. 140–145. SPIE, Boston,
MA, USA.

Jeulin, D. (1992) Multivariate random image models. Acta Stereologica 11,
59–66.

Jeulin, D. (2000) Random texture models for materials structures. Stat.
Comp. 10, 121–131.

Karras, D.A. & Mertzios, B.G. (2002) Improved defect detection using novel
wavelet feature extraction involving principal component analysis and
neural network techniques. In Australian Joint Conference on Artificial
Intelligence, pp. 638–647. Springer-Verlag, London, UK.

Kumar, A. & Pang, G. (2002) Defect detection in textured materials using
Gabor filters. Indus. Appl. 38(2), 425–440.

Lambert, G. & Bock, F. (1997) Wavelet methods for texture defect
detection. In Proceedings of the 1997 International Conference on Image
Processing, vol. 3, pp. 201–204. IEEE Computer Society, Washington,
DC, USA.
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