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Abstract

Sparse estimation methods are aimed at using or obtaining parsi-
monious representations of data or models. They were first dedi-
cated to linear variable selection but numerous extensions have now
emerged such as structured sparsity or kernel selection. It turns out
that many of the related estimation problems can be cast as convex
optimization problems by regularizing the empirical risk with appro-
priate nonsmooth norms. The goal of this monograph is to present
from a general perspective optimization tools and techniques dedi-
cated to such sparsity-inducing penalties. We cover proximal methods,
block-coordinate descent, reweighted �2-penalized techniques, working-
set and homotopy methods, as well as non-convex formulations and
extensions, and provide an extensive set of experiments to compare
various algorithms from a computational point of view.
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Introduction

The principle of parsimony is central to many areas of science: the
simplest explanation of a given phenomenon should be preferred over
more complicated ones. In the context of machine learning, it takes
the form of variable or feature selection, and it is commonly used in
two situations. First, to make the model or the prediction more inter-
pretable or computationally cheaper to use, i.e., even if the underlying
problem is not sparse, one looks for the best sparse approximation.
Second, sparsity can also be used given prior knowledge that the
model should be sparse.

For variable selection in linear models, parsimony may be directly
achieved by penalization of the empirical risk or the log-likelihood by
the cardinality of the support1 of the weight vector. However, this leads
to hard combinatorial problems (see, e.g., [96, 136]). A traditional con-
vex approximation of the problem is to replace the cardinality of the
support by the �1-norm. Estimators may then be obtained as solutions
of convex programs.

Casting sparse estimation as convex optimization problems has two
main benefits: First, it leads to efficient estimation algorithms — and

1 We call the set of non-zeros entries of a vector the support.
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this monograph focuses primarily on these. Second, it allows a fruit-
ful theoretical analysis answering fundamental questions related to
estimation consistency, prediction efficiency [19, 99] or model consis-
tency [145, 158]. In particular, when the sparse model is assumed to
be well-specified, regularization by the �1-norm is adapted to high-
dimensional problems, where the number of variables to learn from
may be exponential in the number of observations.

Reducing parsimony to finding the model of lowest cardinality turns
out to be limiting, and structured parsimony [15, 62, 64, 66] has emerged
as a natural extension, with applications to computer vision [32, 62, 70],
text processing [68], bioinformatics [64, 73] or audio processing [80].
Structured sparsity may be achieved by penalizing other functions than
the cardinality of the support or regularizing by other norms than the
�1-norm. In this monograph, we focus not only on norms which can be
written as linear combinations of norms on subsets of variables, but
we also consider traditional extensions such as multiple kernel learning
and spectral norms on matrices (see Sections 1.3 and 1.5). One main
objective of this monograph is to present methods which are adapted
to most sparsity-inducing norms with loss functions potentially beyond
least-squares.

Finally, similar tools are used in other communities such as sig-
nal processing. While the objectives and the problem set-ups are dif-
ferent, the resulting convex optimization problems are often similar,
and most of the techniques reviewed in this monograph also apply to
sparse estimation problems in signal processing. Moreover, we consider
in Section 7 non-convex formulations and extensions.

This monograph aims at providing a general overview of the main
optimization techniques that have emerged as most relevant and effi-
cient for methods of variable selection based on sparsity-inducing
norms. We survey and compare several algorithmic approaches as they
apply not only to the �1-norm, group norms, but also to norms inducing
structured sparsity and to general multiple kernel learning problems.
We complement these by a presentation of some greedy and nonconvex
methods. Our presentation is essentially based on existing literature,
but the process of constructing a general framework leads naturally to
new results, connections and points of view.
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This monograph is organized as follows:
Sections 1.1 and 1.2 introduce respectively the notations used

throughout the monograph and the optimization problem (1.1) which
is central to the learning framework that we will consider.

Section 1.3 gives an overview of common sparsity and structured
sparsity-inducing norms, with some of their properties and examples of
structures which they can encode.

Section 1.4 provides an essentially self-contained presentation of
concepts and tools from convex analysis that will be needed in the
rest of the monograph, and which are relevant to understand algo-
rithms for solving the main optimization problem (1.1). Specifically,
since sparsity-inducing norms are nondifferentiable convex functions,2

we introduce relevant elements of subgradient theory and Fenchel
duality — which are particularly well suited to formulate the optimal-
ity conditions associated to learning problems regularized with these
norms. We also introduce a general quadratic variational formulation
for a certain class of norms in Section 1.4.2; the part on subquadratic
norms is essentially relevant in view of sections on structured multiple
kernel learning and can safely be skipped in a first reading.

Section 1.5 introduces multiple kernel learning (MKL) and shows
that it can be interpreted as an extension of plain sparsity to reproduc-
ing kernel Hilbert spaces (RKHS), but formulated in the dual. This
connection is further exploited in Section 1.5.2, where it is shown
how structured counterparts of MKL can be associated with struc-
tured sparsity-inducing norms. These sections rely on Section 1.4.2.
All sections on MKL can be skipped in a first reading.

In Section 2, we discuss classical approaches to solving the opti-
mization problem arising from simple sparsity-inducing norms, such
as interior point methods and subgradient descent, and point at their
shortcomings in the context of machine learning.

Section 3 is devoted to a simple presentation of proximal methods.
After two short sections introducing the main concepts and algorithms,
the longer Section 3.3 focusses on the proximal operator and presents

2 Throughout this monograph, we refer to sparsity-inducing norms such as the �1-norm as
nonsmooth norms; note that all norms are nondifferentiable at zero, but some norms have
more nondifferentiability points (see more details in Section 1.3).
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algorithms to compute it for a variety of norms. Section 3.4 shows
how proximal methods for structured norms extend naturally to the
RKHS/MKL setting.

Section 4 presents block coordinate descent algorithms, which pro-
vide an efficient alternative to proximal method for separable norms
like the �1- and �1/�2-norms, and can be applied to MKL. This section
uses the concept of proximal operator introduced in Section 3.

Section 5 presents reweighted-�2 algorithms that are based on the
quadratic variational formulations introduced in Section 1.4.2. These
algorithms are particularly relevant for the least-squares loss, for which
they take the form of iterative reweighted least-squares algorithms
(IRLS). Section 5.2 presents a generally applicable quadratic varia-
tional formulation for general norms that extends the variational for-
mulation of Section 1.4.2.

Section 6 covers algorithmic schemes that take advantage computa-
tionally of the sparsity of the solution by extending the support of the
solution gradually. These schemes are particularly relevant to construct
approximate or exact regularization paths of solutions for a range of val-
ues of the regularization parameter. Specifically, Section 6.1 presents
working-set techniques, which are meta-algorithms that can be used
with the optimization schemes presented in all the previous sections.
Section 6.2 focuses on the homotopy algorithm, which can efficiently
construct the entire regularization path of the Lasso.

Section 7 presents nonconvex as well as Bayesian approaches that
provide alternatives to, or extensions of the convex methods that were
presented in the previous sections. More precisely, Section 7.1 presents
so-called greedy algorithms, that aim at solving the cardinality-
constrained problem and include matching pursuit, orthogonal match-
ing pursuit and forward selection; Section 7.2 presents continuous
optimization problems, in which the penalty is chosen to be closer to
the so-called �0-penalty (i.e., a penalization of the cardinality of the
model regardless of the amplitude of the coefficients) at the expense of
losing convexity, and corresponding optimization schemes. Section 7.3
discusses the application of sparse norms regularization to the problem
of matrix factorization, which is intrinsically nonconvex, but for which
the algorithms presented in the rest of this monograph are relevant.
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Finally, we discuss briefly in Section 7.4 Bayesian approaches to spar-
sity and the relations to sparsity-inducing norms.

Section 8 presents experiments comparing the performance of
the algorithms presented in Sections 2, 3, 4, 5, in terms of speed of
convergence of the algorithms. Precisely, Section 8.1 is devoted to
the �1-regularization case, and Sections 8.2 and 8.3 are respectively
covering the �1/�p-norms with disjoint groups and to more general
structured cases.

We discuss briefly methods and cases which were not covered in the
rest of the monograph in Section 9 and we conclude in Section 10.

Some of the material from this monograph is taken from an earlier
book chapter [12] and the dissertations of Rodolphe Jenatton [65] and
Julien Mairal [85].

1.1 Notation

Vectors are denoted by bold lower case letters and matrices by upper
case ones. We define for q ≥ 1 the �q-norm of a vector x in R

n as
‖x‖q := (

∑n
i=1 |xi|q)1/q, where xi denotes the ith coordinate of x,

and ‖x‖∞ := maxi=1,...,n |xi| = limq→∞ ‖x‖q. We also define the �0-
penalty as the number of nonzero elements in a vector3: ‖x‖0 :=
#{i s.t. xi �= 0} = limq→0+(

∑n
i=1 |xi|q). We consider the Frobenius

norm of a matrix X in R
m×n: ‖X‖F := (

∑m
i=1
∑n

j=1 X2
ij)

1/2, where Xij

denotes the entry of X at row i and column j. For an integer n > 0,
and for any subset J ⊆ {1, . . . ,n}, we denote by xJ the vector of size |J |
containing the entries of a vector x in R

n indexed by J , and by XJ the
matrix in R

m×|J | containing the |J | columns of a matrix X in R
m×n

indexed by J .

1.2 Loss Functions

We consider in this monograph convex optimization problems of the
form

min
w∈Rp

f(w) + λΩ(w), (1.1)

3 Note that it would be more proper to write ‖x‖0
0 instead of ‖x‖0 to be consistent with the

traditional notation ‖x‖q . However, for the sake of simplicity, we will keep this notation
unchanged in the rest of the monograph.
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where f :Rp→ R is a convex differentiable function and Ω:Rp→ R is a
sparsity-inducing — typically nonsmooth and non-Euclidean — norm.

In supervised learning, we predict outputs y in Y from obser-
vations x in X ; these observations are usually represented by
p-dimensional vectors with X = R

p. In this supervised setting,
f generally corresponds to the empirical risk of a loss func-
tion �:Y × R→ R+. More precisely, given n pairs of data points
{(x(i),y(i)) ∈ R

p×Y; i=1, . . . ,n}, we have for linear models4 f(w) :=
1
n

∑n
i=1 �(y

(i),w�x(i)). Typical examples of differentiable loss functions
are the square loss for least squares regression, i.e., �(y, ŷ) = 1

2(y − ŷ)2
with y in R, and the logistic loss �(y, ŷ) = log(1 + e−yŷ) for logistic
regression, with y in {−1,1}. Clearly, several loss functions of inter-
est are nondifferentiable, such as the hinge loss �(y, ŷ) = (1 − yŷ)+
or the absolute deviation loss �(y, ŷ) = |y − ŷ|, for which most of the
approaches we present in this monograph would not be applicable or
require appropriate modifications. Given the tutorial character of this
monograph, we restrict ourselves to smooth functions f , which we con-
sider is a reasonably broad setting, and we refer the interested reader
to appropriate references in Section 9. We refer the readers to [126] for
a more complete description of loss functions.

Penalty or constraint? Given our convex data-fitting term f(w),
we consider in this monograph adding a convex penalty λΩ(w). Within
such a convex optimization framework, this is essentially equivalent to
adding a constraint of the form Ω(w) ≤ µ. More precisely, under weak
assumptions on f and Ω (on top of convexity), from Lagrange multi-
plier theory (see [20], Section 4.3) w is a solution of the constrained
problem for a certain µ > 0 if and only if it is a solution of the penalized
problem for a certain λ ≥ 0. Thus, the two regularization paths, i.e.,
the set of solutions when λ and µ vary, are equivalent. However, there is
no direct mapping between corresponding values of λ and µ. Moreover,
in a machine learning context, where the parameters λ and µ have to
be selected, for example, through cross-validation, the penalized for-
mulation tends to be empirically easier to tune, as the performance is

4 In Section 1.5, we consider extensions to nonlinear predictors through multiple kernel
learning.
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usually quite robust to small changes in λ, while it is not robust to
small changes in µ. Finally, we could also replace the penalization with
a norm by a penalization with the squared norm. Indeed, following
the same reasoning as for the nonsquared norm, a penalty of the form
λΩ(w)2 is “equivalent” to a constraint of the form Ω(w)2 � µ, which
itself is equivalent to Ω(w) � µ1/2, and thus to a penalty of the form
λ′Ω(w)2, for λ′ �= λ. Thus, using a squared norm, as is often done in the
context of multiple kernel learning (see Section 1.5), does not change
the regularization properties of the formulation.

1.3 Sparsity-Inducing Norms

In this section, we present various norms as well as their main sparsity-
inducing effects. These effects may be illustrated geometrically through
the singularities of the corresponding unit balls (see Figure 1.4).

Sparsity through the �1-norm. When one knows a priori that the
solutions w� of problem (1.1) should have a few nonzero coefficients,
Ω is often chosen to be the �1-norm, i.e., Ω(w) =

∑p
j=1 |wj |. This leads

for instance to the Lasso [133] or basis pursuit [37] with the square loss
and to �1-regularized logistic regression (see, for instance, [75, 127])
with the logistic loss. Regularizing by the �1-norm is known to induce
sparsity in the sense that, a number of coefficients of w�, depending on
the strength of the regularization, will be exactly equal to zero.

�1/�q-norms. In some situations, the coefficients of w� are naturally
partitioned in subsets, or groups, of variables. This is typically the
case, when working with ordinal variables.5 It is then natural to select
or remove simultaneously all the variables forming a group. A regu-
larization norm exploiting explicitly this group structure, or �1-group
norm, can be shown to improve the prediction performance and/or
interpretability of the learned models [61, 83, 106, 116, 141, 156]. The

5 Ordinal variables are integer-valued variables encoding levels of a certain feature, such as
levels of severity of a certain symptom in a biomedical application, where the values do not
correspond to an intrinsic linear scale: in that case it is common to introduce a vector of
binary variables, each encoding a specific level of the symptom, that encodes collectively
this single feature.
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arguably simplest group norm is the so-called-�1/�2 norm:

Ω(w) :=
∑
g∈G

dg‖wg‖2, (1.2)

where G is a partition of {1, . . . ,p}, (dg)g∈G are some strictly positive
weights, and wg denotes the vector in R

|g| recording the coefficients
of w indexed by g in G. Without loss of generality we may assume all
weights (dg)g∈G to be equal to one (when G is a partition, we can rescale
the components of w appropriately). As defined in Equation (1.2), Ω
is known as a mixed �1/�2-norm. It behaves like an �1-norm on the
vector (‖wg‖2)g∈G in R

|G|, and therefore, Ω induces group sparsity. In
other words, each ‖wg‖2, and equivalently each wg, is encouraged to be
set to zero. On the other hand, within the groups g in G, the �2-norm
does not promote sparsity. Combined with the square loss, it leads to
the group Lasso formulation [141, 156]. Note that when G is the set of
singletons, we retrieve the �1-norm. More general mixed �1/�q-norms
for q > 1 are also used in the literature [157] (using q = 1 leads to a
weighted �1-norm with no group-sparsity effects):

Ω(w) =
∑
g∈G
‖wg‖q :=

∑
g∈G

dg

{∑
j∈g
|wj |q

}1/q

.

In practice though, the �1/�2- and �1/�∞-settings remain the most pop-
ular ones. Note that using �∞-norms may have the undesired effect to
favor solutions w with many components of equal magnitude (due to
the extra nondifferentiabilities away from zero). Grouped �1-norms are
typically used when extra-knowledge is available regarding an appro-
priate partition, in particular in the presence of categorical variables
with orthogonal encoding [116], for multi-task learning where joint vari-
able selection is desired [106], and for multiple kernel learning (see
Section 1.5).

Norms for overlapping groups: a direct formulation. In an
attempt to better encode structural links between variables at play
(e.g., spatial or hierarchical links related to the physics of the prob-
lem at hand), recent research has explored the setting where G in
Equation (1.2) can contain groups of variables that overlap [9, 64, 66,
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73, 121, 157]. In this case, if the groups span the entire set of variables,
Ω is still a norm, and it yields sparsity in the form of specific patterns
of variables. More precisely, the solutions w� of problem (1.1) can be
shown to have a set of zero coefficients, or simply zero pattern, that
corresponds to a union of some groups g in G [66]. This property makes
it possible to control the sparsity patterns of w� by appropriately defin-
ing the groups in G. Note that here the weights dg should not be taken
equal to one (see, e.g., [66] for more details). This form of structured
sparsity has notably proven to be useful in various contexts, which we
now illustrate through concrete examples:

— One-dimensional sequence: Given p variables organized
in a sequence, if we want to select only contiguous nonzero
patterns, we represent in Figure 1.1 the set of groups G to
consider. In this case, we have |G| = O(p). Imposing the con-
tiguity of the nonzero patterns is for instance relevant in the
context of time series, or for the diagnosis of tumors, based on
the profiles of arrayCGH [112]. Indeed, because of the specific
spatial organization of bacterial artificial chromosomes along
the genome, the set of discriminative features is expected to
have specific contiguous patterns.

— Two-dimensional grid: In the same way, assume now
that the p variables are organized on a two-dimensional
grid. If we want the possible nonzero patterns P to be the
set of all rectangles on this grid, the appropriate groups
G to consider can be shown (see [66]) to be those repre-
sented in Figure 1.2. In this setting, we have |G| = O(

√
p).

Fig. 1.1. (Left) The set of blue groups to penalize in order to select contiguous patterns in
a sequence. (Right) In red, an example of such a nonzero pattern with its corresponding
zero pattern (hatched area).
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Fig. 1.2. Vertical and horizontal groups: (Left) the set of blue and green groups to penalize
in order to select rectangles. (Right) In red, an example of nonzero pattern recovered in
this setting, with its corresponding zero pattern (hatched area).

Sparsity-inducing regularizations built upon such group
structures have resulted in good performances for back-
ground subtraction [62, 86, 88], topographic dictionary
learning [72, 88], wavelet-based denoising [111], and for face
recognition with corruption by occlusions [70].

— Hierarchical structure: A third interesting example
assumes that the variables have a hierarchical structure.
Specifically, we consider that the p variables correspond to
the nodes of a tree T (or a forest of trees). Moreover, we
assume that we want to select the variables according to a
certain order: a feature can be selected only if all its ancestors
in T are already selected. This hierarchical rule can be shown
to lead to the family of groups displayed on Figure 1.3.
This resulting penalty was first used in [157]; since then,
this group structure has led to numerous applications, for
instance, wavelet-based denoising [15, 62, 69, 157], hierarchi-
cal dictionary learning for both topic modeling and image
restoration [68, 69], log-linear models for the selection of
potential orders of interaction in a probabilistic graphical
model [121], bioinformatics, to exploit the tree structure of
gene networks for multi-task regression [73], and multi-scale
mining of fMRI data for the prediction of some cognitive
task [67]. More recently, this hierarchical penalty was proved
to be efficient for template selection in natural language pro-
cessing [92].

— Extensions: The possible choices for the sets of groups G
are not limited to the aforementioned examples. More
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Fig. 1.3. Left: example of a tree-structured set of groups G (dashed contours in red), cor-
responding to a tree T with p = 6 nodes represented by black circles. Right: example of
a sparsity pattern induced by the tree-structured norm corresponding to G; the groups
{2,4},{4} and {6} are set to zero, so that the corresponding nodes (in gray) that form
subtrees of T are removed. The remaining nonzero variables {1,3,5} form a rooted and
connected subtree of T . This sparsity pattern obeys the following equivalent rules: (i) if a
node is selected, the same goes for all its ancestors; (ii) if a node is not selected, then its
descendant are not selected.

complicated topologies can be considered, for instance, three-
dimensional spaces discretized in cubes or spherical volumes
discretized in slices; for instance, see [143] for an application
to neuroimaging that pursues this idea. Moreover, directed
acyclic graphs that extends the trees presented in Figure 1.3
have notably proven to be useful in the context of hierarchical
variable selection [9, 121, 157],

Norms for overlapping groups: a latent variable formula-
tion. The family of norms defined in Equation (1.2) is adapted to
intersection-closed sets of nonzero patterns. However, some applica-
tions exhibit structures that can be more naturally modelled by union-
closed families of supports. This idea was developed in [64, 105] where,
given a set of groups G, the following latent group Lasso norm was
proposed:

Ωunion(w) := min
v∈Rp×|G|

∑
g∈G

dg‖vg‖q, s.t.

{∑
g∈G vg = w,

∀g ∈ G, vgj = 0 if j /∈ g.

The idea is to introduce latent parameter vectors vg constrained each
to be supported on the corresponding group g, which should explain w
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linearly and which are themselves regularized by a usual �1/�q-norm.
Ωunion reduces to the usual �1/�q norm when groups are disjoint and
provides therefore a different generalization of the latter to the case
of overlapping groups than the norm considered in the previous para-
graphs. In fact, it is easy to see that solving Equation (1.1) with the
norm Ωunion is equivalent to solving

min
(vg∈R|g|)g∈G

1
n

n∑
i=1

�

(
y(i),

∑
g∈G

vgg
�x(i)

g

)
+ λ

∑
g∈G

dg‖vg‖q (1.3)

and setting w =
∑

g∈G vg. This last equation shows that using the norm
Ωunion can be interpreted as implicitly duplicating the variables belong-
ing to several groups and regularizing with a weighted �1/�q norm for
disjoint groups in the expanded space. It should be noted that a care-
ful choice of the weights is much more important in the situation of
overlapping groups than in the case of disjoint groups, as it influences
possible sparsity patterns [105].

This latent variable formulation pushes some of the vectors vg to
zero while keeping others with no zero components, hence leading
to a vector w with a support which is in general the union of the
selected groups. Interestingly, it can be seen as a convex relaxation
of a non-convex penalty encouraging similar sparsity patterns which
was introduced by [62]. Moreover, this norm can also be interpreted as
a particular case of the family of atomic norms, which were recently
introduced by [35].

Graph Lasso. One type of a priori knowledge commonly encountered
takes the form of graph defined on the set of input variables, which is
such that connected variables are more likely to be simultaneously rel-
evant or irrelevant; this type of prior is common in genomics where reg-
ulation, co-expression or interaction networks between genes (or their
expression level) used as predictors are often available. To favor the
selection of neighbors of a selected variable, it is possible to consider the
edges of the graph as groups in the previous formulation (see [64, 111]).

Patterns consisting of a small number of intervals. A quite similar
situation occurs, when one knows a priori—typically for variables form-
ing sequences (times series, strings, polymers)—that the support should
consist of a small number of connected subsequences. In that case,
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one can consider the sets of variables forming connected subsequences
(or connected subsequences of length at most k) as the overlapping
groups.

Multiple kernel learning. For most of the sparsity-inducing terms
described in this monograph, we may replace real variables and their
absolute values by pre-defined groups of variables with their Euclidean
norms (we have already seen such examples with �1/�2-norms), or more
generally, by members of reproducing kernel Hilbert spaces. As shown
in Section 1.5, most of the tools that we present in this monograph
are applicable to this case as well, through appropriate modifications
and borrowing of tools from kernel methods. These tools have applica-
tions in particular in multiple kernel learning. Note that this extension
requires tools from convex analysis presented in Section 1.4.

Trace norm. In learning problems on matrices, such as matrix com-
pletion, the rank plays a similar role to the cardinality of the support
for vectors. Indeed, the rank of a matrix M may be seen as the num-
ber of non-zero singular values of M. The rank of M however is not
a continuous function of M, and, following the convex relaxation of
the �0-pseudo-norm into the �1-norm, we may relax the rank of M into
the sum of its singular values, which happens to be a norm, and is
often referred to as the trace norm or nuclear norm of M, and which
we denote by ‖M‖∗. As shown in this monograph, many of the tools
designed for the �1-norm may be extended to the trace norm. Using the
trace norm as a convex surrogate for rank has many applications in con-
trol theory [48], matrix completion [1, 130], multi-task learning [109],
or multi-label classification [4], where low-rank priors are adapted.

Sparsity-inducing properties: A geometrical intuition.
Although we consider in Equation (1.1) a regularized formulation,
as already described in Section 1.2, we could equivalently focus on a
constrained problem, that is,

min
w∈Rp

f(w) such that Ω(w) ≤ µ, (1.4)

for some µ ∈ R+. The set of solutions of Equation (1.4) parameterized
by µ is the same as that of Equation (1.1), as described by some value
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of λµ depending on µ (e.g., see Section 3.2 in [20]). At optimality, the
gradient of f evaluated at any solution ŵ of (1.4) is known to belong to
the normal cone of B = {w ∈ R

p; Ω(w) ≤ µ} at ŵ [20]. In other words,
for sufficiently small values of µ, i.e., so that the constraint is active,
the level set of f for the value f(ŵ) is tangent to B.

As a consequence, the geometry of the ball B is directly related
to the properties of the solutions ŵ. If Ω is taken to be the �2-norm,
then the resulting ball B is the standard, isotropic, “round” ball that
does not favor any specific direction of the space. On the other hand,
when Ω is the �1-norm, B corresponds to a diamond-shaped pattern in
two dimensions, and to a pyramid in three dimensions. In particular, B
is anisotropic and exhibits some singular points due to the extra non-
smoothness of Ω. Moreover, these singular points are located along the
axis of R

p, so that if the level set of f happens to be tangent at one of
those points, sparse solutions are obtained. We display in Figure 1.4 the
balls B for the �1-, �2-norms, and two different grouped �1/�2-norms.

Extensions. The design of sparsity-inducing norms is an active field
of research and similar tools to the ones we present here can be derived
for other norms. As shown in Section 3, computing the proximal oper-
ator readily leads to efficient algorithms, and for the extensions we
present below, these operators can be efficiently computed.

In order to impose prior knowledge on the support of predictor, the
norms based on overlapping �1/�∞-norms can be shown to be convex
relaxations of submodular functions of the support, and further ties can
be made between convex optimization and combinatorial optimization
(see [10] for more details). Moreover, similar developments may be car-
ried through for norms which try to enforce that the predictors have
many equal components and that the resulting clusters have specific
shapes, e.g., contiguous in a pre-defined order, see some examples in
Section 3, and, e.g., [11, 33, 86, 134, 144] and references therein.

1.4 Optimization Tools

The tools used in this monograph are relatively basic and should
be accessible to a broad audience. Most of them can be found in
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Fig. 1.4. Comparison between different balls of sparsity-inducing norms in three dimensions.
The singular points appearing on these balls describe the sparsity-inducing behavior of the
underlying norms Ω.
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classical books on convex optimization [18, 20, 25, 104], but for
self-containedness, we present here a few of them related to nons-
mooth unconstrained optimization. In particular, these tools allow the
derivation of rigorous approximate optimality conditions based on dual-
ity gaps (instead of relying on weak stopping criteria based on small
changes or low-norm gradients).

Subgradients. Given a convex function g:Rp→ R and a vector w

in R
p, let us define the subdifferential of g at w as

∂g(w) := {z ∈ R
p | g(w) + z�(w′ − w) ≤ g(w′)

for all vectors w′ ∈ R
p}.

The elements of ∂g(w) are called the subgradients of g at w. Note that
all convex functions defined on R

p have non-empty subdifferentials at
every point. This definition admits a clear geometric interpretation:
any subgradient z in ∂g(w) defines an affine function w′ 
→ g(w) +
z�(w′ − w) which is tangent to the graph of the function g (because
of the convexity of g, it is a lower-bounding tangent). Moreover, there
is a bijection (one-to-one correspondence) between such “tangent affine
functions” and the subgradients, as illustrated in Figure 1.5.

Fig. 1.5. Red curves represent the graph of a smooth (left) and a nonsmooth (right) func-
tion f . Blue affine functions represent subgradients of the function f at a point w.
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Subdifferentials are useful for studying nonsmooth optimization
problems because of the following proposition (whose proof is straight-
forward from the definition):

Proposition 1.1 (Subgradients at Optimality).
For any convex function g:Rp→ R, a point w in R

p is a global minimum
of g if and only if the condition 0 ∈ ∂g(w) holds.

Note that the concept of subdifferential is mainly useful for nonsmooth
functions. If g is differentiable at w, the set ∂g(w) is indeed the
singleton {∇g(w)}, where ∇g(w) is the gradient of g at w, and the
condition 0 ∈ ∂g(w) reduces to the classical first-order optimality con-
dition ∇g(w) = 0. As a simple example, let us consider the following
optimization problem

min
w∈R

1
2
(x − w)2 + λ|w|.

Applying the previous proposition and noting that the subdifferential
∂| · | is {+1} for w > 0, {−1} for w < 0 and [−1,1] for w = 0, it is easy
to show that the unique solution admits a closed form called the soft-
thresholding operator, following a terminology introduced in [42]; it can
be written

w� =

{
0, if |x| ≤ λ
(1 − λ

|x|)x, otherwise, (1.5)

or equivalently w� = sign(x)(|x| − λ)+, where sign(x) is equal to 1 if
x > 0, −1 if x < 0 and 0 if x = 0. This operator is a core component
of many optimization techniques for sparse estimation, as we shall see
later. Its counterpart for nonconvex optimization problems is the hard-
thresholding operator. Both of them are presented in Figure 1.6. Note
that similar developments could be carried through using directional
derivatives instead of subgradients (see, e.g., [20]).

Dual norm and optimality conditions. The next concept we
introduce is the dual norm, which is important to study sparsity-
inducing regularizations [9, 66, 99]. It notably arises in the analysis
of estimation bounds [99], and in the design of working-set strategies
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Fig. 1.6. Soft- and hard-thresholding operators.

as will be shown in Section 6.1. The dual norm Ω∗ of the norm Ω is
defined for any vector z in R

p by

Ω∗(z) := max
w∈Rp

z�w such that Ω(w) ≤ 1. (1.6)

Moreover, the dual norm of Ω∗ is Ω itself, and as a consequence, the
formula above holds also if the roles of Ω and Ω∗ are exchanged. It is
easy to show that in the case of an �q-norm, q ∈ [1;+∞], the dual norm
is the �q′-norm, with q′ in [1;+∞] such that 1

q + 1
q′ = 1. In particular,

the �1- and �∞-norms are dual to each other, and the �2-norm is self-
dual (dual to itself).

The dual norm plays a direct role in computing optimality condi-
tions of sparse regularized problems. By applying Proposition 1.1 to
Equation (1.1), we obtain the following proposition:

Proposition 1.2 (Optimality conditions for Equation (1.1)).
Let us consider problem (1.1) where Ω is a norm on R

p. A vector w

in R
p is optimal if and only if − 1

λ∇f(w) ∈ ∂Ω(w) with

∂Ω(w) =

{
{z ∈ R

p; Ω∗(z) ≤ 1}, if w = 0,

{z ∈ R
p; Ω∗(z) = 1 and z�w = Ω(w)}, otherwise.

(1.7)
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Computing the subdifferential of a norm is a classical course exer-
cise [20] and its proof will be presented in the next section, in
Remark 1.1. As a consequence, the vector 0 is solution if and only
if Ω∗(∇f(0)

)
≤ λ. Note that this shows that for all λ larger than

Ω∗(∇f(0)
)
, w = 0 is a solution of the regularized optimization problem

(hence this value is the start of the non-trivial regularization path).
These general optimality conditions can be specialized to the Lasso

problem [133], also known as basis pursuit [37]:

min
w∈Rp

1
2n
‖y −Xw‖22 + λ‖w‖1, (1.8)

where y is in R
n, and X is a design matrix in R

n×p. With Equation (1.7)
in hand, we can now derive necessary and sufficient optimality condi-
tions:

Proposition 1.3 (Optimality conditions for the Lasso).
A vector w is a solution of the Lasso problem (1.8) if and only if

∀j = 1, . . . ,p,

{
|X�

j (y −Xw)| ≤ nλ, if wj = 0
X�
j (y −Xw) = nλsign(wj), if wj �= 0,

(1.9)

where Xj denotes the jth column of X, and wj the jth entry of w.

Proof. We apply Proposition 1.2. The condition − 1
λ∇f(w)∈∂‖w‖1

can be rewritten: X�(y −Xw)∈ nλ∂‖w‖1, which is equivalent to:
(i) if w =0, ‖X�(y −Xw)‖∞≤nλ (using the fact that the �∞-
norm is dual to the �1-norm); (ii) if w �=0, ‖X�(y −Xw)‖∞ =nλ

and w�X�(y −Xw)=nλ‖w‖1. It is then easy to check that these
conditions are equivalent to Equation (1.9).

As we will see in Section 6.2, it is possible to derive from these con-
ditions interesting properties of the Lasso, as well as efficient algorithms
for solving it. We have presented a useful duality tool for norms. More
generally, there exists a related concept for convex functions, which we
now introduce.
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1.4.1 Fenchel Conjugate and Duality Gaps

Let us denote by f∗ the Fenchel conjugate of f [115], defined by

f∗(z) := sup
w∈Rp

[z�w − f(w)].

Fenchel conjugates are particularly useful to derive dual problems and
duality gaps.6 Under mild conditions, the conjugate of the conjugate of
a convex function is itself, leading to the following representation of f
as a maximum of affine functions:

f(w) = sup
z∈Rp

[z�w − f∗(z)].

In the context of this tutorial, it is notably useful to specify the expres-
sion of the conjugate of a norm. Perhaps surprisingly and misleadingly,
the conjugate of a norm is not equal to its dual norm, but corresponds
instead to the indicator function of the unit ball of its dual norm. More
formally, let us introduce the indicator function ιΩ∗ such that ιΩ∗(z) is
equal to 0 if Ω∗(z) ≤ 1 and +∞ otherwise. Then, we have the follow-
ing well-known results, which appears in several text books (e.g., see
Example 3.26 in [25]):

Proposition 1.4(Fenchel conjugate of a norm). Let Ω be a norm
on R

p. The following equality holds for any z ∈ R
p

sup
w∈Rp

[z�w − Ω(w)] = ιΩ∗(w) =

{
0, if Ω∗(z) ≤ 1

+∞, otherwise.

Proof. On the one hand, assume that the dual norm of z is greater
than 1, that is, Ω∗(z) > 1. According to the definition of the dual norm
(see Equation (1.6)), and since the supremum is taken over the compact
set {w ∈ R

p; Ω(w) ≤ 1}, there exists a vector w in this ball such that
Ω∗(z) = z�w > 1. For any scalar t ≥ 0, consider v = tw and notice
that

z�v − Ω(v) = t[z�w − Ω(w)] ≥ t,

6 For many of our norms, conic duality tools would suffice (see, e.g., [25]).
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which shows that when Ω∗(z) > 1, the Fenchel conjugate is unbounded.
Now, assume that Ω∗(z) ≤ 1. By applying the generalized Cauchy–
Schwarz’s inequality, we obtain for any w

z�w − Ω(w) ≤ Ω∗(z)Ω(w) − Ω(w) ≤ 0.

Equality holds for w = 0, and the conclusion follows.

An important and useful duality result is the so-called Fenchel–
Young inequality (see [20]), which we will shortly illustrate geometri-
cally:

Proposition 1.5 (Fenchel–Young inequality). Let w be a vector
in R

p, f be a function on R
p, and z be a vector in the domain of f∗

(which we assume non-empty). We have then the following inequality

f(w) + f∗(z) ≥ w�z,

with equality if and only if z is in ∂f(w).

We can now illustrate geometrically the duality principle between a
function and its Fenchel conjugate in Figure 1.7.

Remark 1.1. With Proposition 1.4 in place, we can formally (and
easily) prove the relationship in Equation (1.7) that make explicit the
subdifferential of a norm. Based on Proposition 1.4, we indeed know
that the conjugate of Ω is ιΩ∗ . Applying the Fenchel–Young inequality
(Proposition 1.5), we have

z ∈ ∂Ω(w)⇔
[
z�w = Ω(w) + ιΩ∗(z)

]
,

which leads to the desired conclusion.

For many objective functions, the Fenchel conjugate admits closed
forms, and can therefore be computed efficiently [20]. Then, it is
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Fig. 1.7. For all z in R
p, we denote by P(z) the hyperplane with normal z and tangent to

the graph of the convex function f . (a) For any contact point between the graph of f and
an hyperplane P(z), we have that f(w) + f∗(z) = w�z and z is in ∂f(w) (the Fenchel–
Young inequality is an equality). (b) The graph of f is the convex envelope of the collection
of hyperplanes (P(z))z∈Rp .
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possible to derive a duality gap for problem (1.1) from standard Fenchel
duality arguments (see [20]), as shown in the following proposition:

Proposition 1.6 (Duality for Problem (1.1)). If f∗ and Ω∗

are respectively, the Fenchel conjugate of a convex and differentiable
function f and the dual norm of Ω, then we have

max
z∈Rp:Ω∗(z)≤λ

−f∗(z) ≤ min
w∈Rp

f(w) + λΩ(w). (1.10)

Moreover, equality holds as soon as the domain of f has non-empty
interior.

Proof. This result is a specific instance of Theorem 3.3.5 in [20]. In
particular, we use the fact that the conjugate of a norm Ω is the
indicator function ιΩ∗ of the unit ball of the dual norm Ω∗ (see
Proposition 1.4).

If w� is a solution of Equation (1.1), and w,z in R
p are such that

Ω∗(z) ≤ λ, this proposition implies that we have

f(w) + λΩ(w) ≥ f(w�) + λΩ(w�) ≥ −f∗(z). (1.11)

The difference between the left and right term of Equation (1.11) is
called a duality gap. It represents the difference between the value
of the primal objective function f(w) + λΩ(w) and a dual objective
function −f∗(z), where z is a dual variable. The proposition says that
the duality gap for a pair of optima w� and z� of the primal and dual
problem is equal to 0. When the optimal duality gap is zero one says
that strong duality holds. In our situation, the duality gap for the pair
of primal/dual problems in Equation (1.10), may be decomposed as the
sum of two non-negative terms (as the consequence of Fenchel–Young
inequality):

(f(w) + f∗(z) − w�z) + λ(Ω(w) + w�(z/λ) + ιΩ∗(z/λ)).

It is equal to zero if and only if the two terms are simultaneously equal
to zero.

Duality gaps are important in convex optimization because they
provide an upper bound on the difference between the current value of
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an objective function and the optimal value, which makes it possible
to set proper stopping criteria for iterative optimization algorithms.
Given a current iterate w, computing a duality gap requires choosing
a “good” value for z (and in particular a feasible one). Given that at
optimality, z(w�) =∇f(w�) is the unique solution to the dual problem,
a natural choice of dual variable is z = min

(
1, λ

Ω∗(∇f(w))

)
∇f(w), which

reduces to z(w�) at the optimum and therefore yields a zero duality
gap at optimality.

Note that in most formulations that we will consider, the function f
is of the form f(w) = ψ(Xw) with ψ:Rn→ R and X ∈ R

n×p a design
matrix. Indeed, this corresponds to linear prediction on R

p, given n

observations xi, i = 1, . . . ,n, and the predictions Xw = (w�xi)i=1,...,n.
Typically, the Fenchel conjugate of ψ is easy to compute7 while the
design matrix X makes it hard8 to compute f∗. In that case, Equa-
tion (1.1) can be rewritten as

min
w∈Rp,u∈Rn

ψ(u) + λ Ω(w), s.t. u = Xw, (1.12)

and equivalently as the optimization of the Lagrangian

min
w∈Rp,u∈Rn

max
α∈Rn

ψ(u) + λΩ(w) + λα�(Xw − u),

min
w∈Rp,u∈Rn

max
α∈Rn

(ψ(u) − λα�u) + λ(Ω(w) + α�Xw), (1.13)

which is obtained by introducing the Lagrange multiplier α for the
constraint u = Xw. The corresponding Fenchel dual9 is then

max
α∈Rn

−ψ∗(λα) such that Ω∗(X�α) ≤ 1, (1.14)

which does not require any inversion of X�X (which would be required
for computing the Fenchel conjugate of f). Thus, given a candi-
date w, we consider α = min

(
1, λ

Ω∗(X�∇ψ(Xw))

)
∇ψ(Xw), and can get

7 For the least-squares loss with output vector y ∈ R
n, we have ψ(u) = 1

2‖y − u‖2
2 and

ψ∗(β) = 1
2‖β‖2

2 + β�y. For the logistic loss, we have ψ(u) =
∑n

i=1 log(1 + exp(−yiui))
and ψ∗(β) =

∑n
i=1(1 + βiyi) log(1 + βiyi) − βiyi log(−βiyi) if ∀i, −βiyi ∈ [0,1] and

+∞ otherwise.
8 It would require to compute the pseudo-inverse of X.
9 Fenchel conjugacy naturally extends to this case; see Theorem 3.3.5 in [20] for more details.
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an upper bound on optimality using primal (1.12) and dual (1.14)
problems. Concrete examples of such duality gaps for various sparse
regularized problems are presented in Appendix D of [85], and are
implemented in the open-source software SPAMS,10 which we have used
in the experimental section of this monograph.

1.4.2 Quadratic Variational Formulation of Norms

Several variational formulations are associated with norms, the most
natural one being the one that results directly from (1.6) applied to
the dual norm:

Ω(w) = max
z∈Rp

w�z s.t. Ω∗(z) ≤ 1.

However, another type of variational form is quite useful, especially for
sparsity-inducing norms; among other purposes, as it is obtained by
a variational upper-bound (as opposed to a lower-bound in the equa-
tion above), it leads to a general algorithmic scheme for learning prob-
lems regularized with this norm, in which the difficulties associated
with optimizing the loss and that of optimizing the norm are partially
decoupled. We present it in Section 5. We introduce this variational
form first for the �1- and �1/�2-norms and subsequently generalize it to
norms that we call subquadratic norms.

The case of the �1- and �1/�2-norms. The two basic variational
identities we use are, for a,b > 0,

2ab = inf
η∈R

∗
+

η−1a2 + η b2, (1.15)

where the infimum is attained at η = a/b, and, for a ∈ R
p
+,(

p∑
i=1

ai

)2

= inf
η∈(R∗

+)p

p∑
i=1

a2
i

ηi
s.t.

p∑
i=1

ηi = 1. (1.16)

The last identity is a direct consequence of the Cauchy–Schwarz
inequality:

p∑
i=1

ai =
p∑
i=1

ai√
ηi
· √ηi ≤

(
p∑
i=1

a2
i

ηi

)1/2( p∑
i=1

ηi

)1/2

. (1.17)

10 http://www.di.ens.fr/willow/SPAMS/.



1.4 Optimization Tools 27

The infima in the previous expressions can be replaced by a minimiza-
tion if the function q:R × R+→ R+ with q(x,y) = x2

y is extended in
(0,0) using the convention “0/0=0”, since the resulting function11 is a
proper closed convex function. We will use this convention implicitly
from now on. The minimum is then attained when equality holds in
the Cauchy–Schwarz inequality, that is for

√
ηi ∝ ai/

√
ηi, which leads

to ηi = ai
‖a‖1

if a �= 0 and 0 else.
Introducing the simplex �p = {η ∈ R

p
+ |
∑p

i=1 ηi = 1}, we apply
these variational forms to the �1- and �1/�2-norms (with nonoverlapping
groups) with ‖w‖�1/�2 =

∑
g∈G ‖wg‖2 and |G| = m, so that we obtain

directly:

‖w‖1 = min
η∈R

p
+

1
2

p∑
i=1

[
w2
i

ηi
+ ηi

]
, ‖w‖21 = min

η∈�p

p∑
i=1

w2
i

ηi
,

‖w‖�1/�2 = min
η∈R

m
+

1
2

∑
g∈G

[
‖wg‖22

ηg
+ ηg

]
, ‖w‖2�1/�2 = min

η∈�m

∑
g∈G

‖wg‖22
ηg

.

Quadratic variational forms for subquadratic norms. The vari-
ational form of the �1-norm admits a natural generalization for certain
norms that we call subquadratic norms. Before we introduce them, we
review a few useful properties of norms. In this section, we will denote
|w| the vector (|w1|, . . . , |wp|).

Definition 1.1 (Absolute and monotonic norm). We say that:

• A norm Ω is absolute if for all v ∈ R
p, Ω(v) = Ω(|v|).

• A norm Ω is monotonic if for all v,w ∈ R
p s.t. |vi| ≤

|wi|, i = 1, . . . ,p, it holds that Ω(v) ≤ Ω(w).

These definitions are in fact equivalent (see, e.g., [16]):

Proposition 1.7. A norm is monotonic if and only if it is absolute.

11 This extension is in fact the function q̃: (x,y) 
→ min
{
t ∈ R+ |

[
t x
x y

]
� 0

}
.
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Proof. If Ω is monotonic, the fact that
∣∣v∣∣ = ∣∣|v|∣∣ implies Ω(v) = Ω(|v|)

so that Ω is absolute.
If Ω is absolute, we first show that Ω∗ is absolute. Indeed,

Ω∗(κ) = max
w∈Rp, Ω(|w|)≤1

w�κ = max
w∈Rp, Ω(|w|)≤1

|w|�|κ| = Ω∗(|κ|).

Then if |v| ≤ |w|, since Ω∗(κ) = Ω∗(|κ|),

Ω(v) = max
κ∈Rp, Ω∗(|κ|)≤1

|v|�|κ| ≤ max
κ∈Rp, Ω∗(|κ|)≤1

|w|�|κ| = Ω(w),

which shows that Ω is monotonic.

We now introduce a family of norms, which have recently been
studied in [93].

Definition 1.2(H-norm). Let H be a compact convex subset of R
p
+,

such that H ∩ (R∗
+)p �= ∅, we say that ΩH is an H-norm if ΩH(w) =

minη∈H
∑p

i=1
w2

i
ηi

.

The next proposition shows that ΩH is indeed a norm and characterizes
its dual norm.

Proposition 1.8. ΩH is a norm and Ω∗
H(κ)2 = maxη∈H

∑p
i=1 ηiκ

2
i .

Proof. First, since H contains at least one element whose components
are all strictly positive, Ω is finite on R

p. Symmetry, nonnegativity and
homogeneity of ΩH are straightforward from the definitions. Definite-
ness results from the fact that H is bounded. ΩH is convex, since it is
obtained by minimization of η in a jointly convex formulation. Thus
ΩH is a norm. Finally,

1
2
Ω∗
H(κ)2 = max

w∈Rp
w�κ − 1

2
ΩH(w)2

= max
w∈Rp

max
η∈H

w�κ − 1
2
w�Diag(η)−1w.

The form of the dual norm follows by maximizing w.r.t. w.
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We finally introduce the family of norms that we call subquadratic.

Definition 1.3(Subquadratic norm). Let Ω and Ω∗ a pair of abso-
lute dual norms. Let Ω̄∗ be the function defined as Ω̄∗: κ 
→ [Ω∗(|κ|1/2)]2
where we use the notation |κ|1/2 = (|κ1|1/2, . . . , |κp|1/2)�. We say that
Ω is subquadratic if Ω̄∗ is convex.

With this definition, we have:

Lemma 1.9. If Ω is subquadratic, then Ω̄∗ is a norm, and denoting Ω̄
the dual norm of the latter, we have:

Ω(w) =
1
2

min
η∈R

p
+

∑
i

w2
i

ηi
+ Ω̄(η)

Ω(w)2 = min
η∈H

∑
i

w2
i

ηi
where H = {η ∈ R

p
+ | Ω̄(η) ≤ 1}.

Proof. Note that by construction, Ω̄∗ is homogeneous, symmetric and
definite (Ω̄∗(κ) = 0⇒ κ = 0). If Ω̄∗ is convex then Ω̄∗(1

2(v + u)) ≤
1
2

(
Ω̄∗(v) + Ω̄∗(u)

)
, which by homogeneity shows that Ω̄∗ also satis-

fies the triangle inequality. Together, these properties show that Ω̄∗ is
a norm. To prove the first identity we have, applying (1.15), and since
Ω is absolute,

Ω(w) = max
κ∈R

p
+

κ�|w|, s.t. Ω∗(κ) ≤ 1

= max
κ∈R

p
+

p∑
i=1

κ
1/2
i |wi|, s.t. Ω∗(κ1/2)2 ≤ 1

= max
κ∈R

p
+

min
η∈R

p
+

1
2

p∑
i=1

w2
i

ηi
+ κ�η, s.t. Ω̄∗(κ) ≤ 1

= min
η∈R

p
+

max
κ∈R

p
+

1
2

p∑
i=1

w2
i

ηi
+ κ�η, s.t. Ω̄∗(κ) ≤ 1,

which proves the first variational formulation (note that we can switch
the order of the max and min operations because strong duality holds,
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which is due to the non-emptiness of the unit ball of the dual norm).
The second one follows similarly by applying (1.16) instead of (1.15).

Ω(w)2 = max
κ∈R

p
+

(
p∑
i=1

κ
1/2
i |wi|

)2

, s.t. Ω∗(κ1/2)2 ≤ 1

= max
κ∈R

p
+

min
η̃∈R

p
+

p∑
i=1

κiw
2
i

η̃i
, s.t.

p∑
i=1

η̃i = 1, Ω̄∗(κ) ≤ 1

= max
κ∈R

p
+

min
η∈R

p
+

p∑
i=1

w2
i

ηi
, s.t. η�κ = 1, Ω̄∗(κ) ≤ 1.

Thus, given a subquadratic norm, we may define a convex set H,
namely the intersection of the unit ball of Ω̄ with the positive orthant
R
p
+, such that Ω(w)2 = minη∈H

∑p
i=1

w2
i

ηi
, i.e., a subquadratic norm

is an H-norm. We now show that these two properties are in fact
equivalent.

Proposition 1.10. Ω is subquadratic if and only if it is an H-norm.

Proof. The previous lemma shows that subquadratic norms are
H-norms. Conversely, let ΩH be an H-norm. By construction, ΩH is
absolute, and as a result of Proposition 1.8, Ω̄∗

H(w) =
(
Ω∗
H(|w|1/2)

)2 =
maxη∈H

∑
iηi|wi|, which shows that Ω̄∗

H is a convex function, as a
maximum of convex functions.

It should be noted that the set H leading to a given H-norm ΩH

is not unique; in particular H is not necessarily the intersection of the
unit ball of a norm with the positive orthant. Indeed, for the �1-norm,
we can take H to be the unit simplex.

Proposition 1.11. Given a convex compact set H, let ΩH be the
associated H-norm and Ω̄H as defined in Lemma 1.9. Define the mir-
ror image of H as the set Mirr(H) = {v ∈ R

p | |v| ∈ H} and denote
the convex hull of a set S by Conv(S). Then the unit ball of Ω̄H is
Conv(Mirr(H)).
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Proof. By construction:

Ω̄∗
H(κ) = Ω∗

H(|κ|1/2)2 = max
η∈H

η�|κ|

= max
|w|∈H

w�κ = max
w∈Conv(Mirr(H))

w�κ,

since the maximum of a convex function over a convex set is attained
at its extreme points. But C = Conv(Mirr(H)) is by construction a
centrally symmetric convex set, which is bounded and closed like H,
and whose interior contains 0 since H contains at least one point whose
components are strictly positive. This implies by Theorem 15.2 in [115]
that C is the unit ball of a norm (namely x 
→ inf{λ ∈ R+ | x ∈ λC}),
which by duality has to be the unit ball of Ω̄H .

This proposition combined with the result of Lemma 1.9 therefore
shows that if Conv(Mirr(H)) = Conv(Mirr(H ′)) then H and H ′ define
the same norm.

Several instances of the general variational form we considered in
this section have appeared in the literature [70, 109, 110]. For norms
that are not subquadratic, it is often the case that their dual norm
is itself subquadratic, in which case symmetric variational forms can
be obtained [2]. Finally, we show in Section 5 that all norms admit
a quadratic variational form provided the bilinear form considered is
allowed to be non-diagonal.

1.5 Multiple Kernel Learning

A seemingly unrelated problem in machine learning, the problem of
multiple kernel learning is in fact intimately connected with sparsity-
inducing norms by duality. It actually corresponds to the most natu-
ral extension of sparsity to reproducing kernel Hilbert spaces. We will
show that for a large class of norms and, among them, many sparsity-
inducing norms, there exists for each of them a corresponding multiple
kernel learning scheme, and, vice-versa, each multiple kernel learning
scheme defines a new norm.

The problem of kernel learning is a priori quite unrelated with par-
simony. It emerges as a consequence of a convexity property of the
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so-called “kernel trick”, which we now describe. Consider a learning
problem with f(w) = ψ(Xw). As seen before, this corresponds to lin-
ear predictions of the form Xw = (w�xi)i=1,...,n. Assume that this
learning problem is this time regularized by the square of the norm
Ω (as shown in Section 1.2, this does not change the regularization
properties), so the we have the following optimization problem:

min
w∈Rp

f(w) +
λ

2
Ω(w)2. (1.18)

As in Equation (1.12) we can introduce the linear constraint

min
u∈Rn,w∈Rp

ψ(u) +
λ

2
Ω(w)2, s.t. u = Xw, (1.19)

and reformulate the problem as the saddle point problem

min
u∈Rn,w∈Rp

max
α∈Rn

ψ(u) +
λ

2
Ω(w)2 − λα�(u −Xw). (1.20)

Since the primal problem (1.19) is a convex problem with feasible linear
constraints, it satisfies Slater’s qualification conditions and the order
of maximization and minimization can be exchanged:

max
α∈Rn

min
u∈Rn,w∈Rp

(ψ(u) − λα�u) + λ

(
1
2
Ω(w)2 + α�Xw

)
. (1.21)

Now, the minimization in u and w can be performed indepen-
dently. One property of norms is that the Fenchel conjugate of w 
→
1
2Ω(w)2 is κ 
→ 1

2Ω∗(κ)2; this can be easily verified by finding the
vector w achieving equality in the sequence of inequalities κ�w ≤
Ω(w)Ω∗(κ) ≤ 1

2

[
Ω(w)2 + Ω∗(κ)2

]
. As a consequence, the dual opti-

mization problem is

max
α∈Rn

−ψ∗(λα) − λ

2
Ω∗(X�α)2. (1.22)

If Ω is the Euclidean norm (i.e., the �2-norm) then the previous problem
is simply

G(K) := max
α∈Rn

−ψ∗(λα) − λ

2
α�Kα with K = XX�. (1.23)

Focussing on this last case, a few remarks are crucial:

(1) The dual problem depends on the design X only through the
kernel matrix K = XX� ∈ R

n×n.
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(2) G is a convex function of K (as a maximum of linear
functions).

(3) The solutions w� and α� to the primal and dual problems
satisfy w� = X�α� =

∑n
i=1 α�

ixi.
(4) The exact same duality result applies for the generalization

to w,xi ∈ H for H a Hilbert space.

The first remark suggests a way to solve learning problems that are
non-linear in the inputs xi: in particular consider a non-linear map-
ping φ which maps xi to a high-dimensional φ(xi) ∈ H with H = R

d

for d� p or possibly an infinite dimensional Hilbert space. Then
consider the problem (1.18) with now f(w) = ψ

(
(〈w,φ(xi)〉)i=1,...,n

)
,

which is typically of the form of an empirical risk f(w) =
1
n

∑n
i=1 �(y

(i),〈w,φ(xi)〉). It becomes high-dimensional to solve in the
primal, while it is simply solved in the dual by choosing a kernel
matrix with entries Ki,j = 〈φ(xi),φ(xj)〉, which is advantageous as
soon as n2 ≤ d; this is the so-called “kernel trick” (see more details
in [122, 126]).

In particular, if we consider functions h ∈ H where H is a reproduc-
ing kernel Hilbert space (RKHS) with reproducing kernel K then

min
h∈H

ψ
(
(h(xi))i=1,...,n

)
+
λ

2
‖h‖2H (1.24)

is solved by solving Equation (1.23) with Ki,j = K(xi,xj). When
applied to the mapping φ:x 
→K(x, ·), the third remark above
yields a specific version of the representer theorem of Kimmeldorf
and Wahba [74]12 stating that h�(·) =

∑n
i=1 α�

iK(xi, ·). In this case,
the predictions may be written equivalently as h(xi) or 〈w,φ(xi)〉,
i = 1, . . . ,n.

As shown in [77], the fact that G is a convex function of K suggests
the possibility of optimizing the objective with respect to the choice of
the kernel itself by solving a problem of the form minK∈KG(K) where
K is a convex set of kernel matrices.

In particular, given a finite set of kernel functions (Ki)1≤i≤p it is
natural to consider to find the best linear combination of kernels, which

12 Note that this provides a proof of the representer theorem for convex losses only and that
the parameters α are obtained through a dual maximization problem.
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requires to add a positive definiteness constraint on the kernel, leading
to a semi-definite program [77]:

min
η∈Rp

G

(
p∑
i=1

ηiKi

)
, s.t.

p∑
i=1

ηiKi � 0, tr

(
p∑
i=1

ηiKi

)
≤ 1.

(1.25)
Assuming that the kernels have equal trace, the two constraints of the
previous program are avoided by considering convex combinations of
kernels, which leads to a quadratically constrained quadratic program
(QCQP) [78]:

min
η∈R

p
+

G

(
p∑
i=1

ηiKi

)
, s.t.

p∑
i=1

ηi = 1. (1.26)

We now present a reformulation of Equation (1.26) using sparsity-
inducing norms (see [7, 13, 110] for more details).

1.5.1 From �1/�2-Regularization to MKL

As we presented it above, MKL arises from optimizing the objective
of a learning problem w.r.t. to a convex combination of kernels, in the
context of plain �2- or Hilbert norm regularization, which seems a pri-
ori unrelated to sparsity. We will show in this section that, in fact, the
primal problem corresponding exactly to MKL (i.e., Equation 1.26) is
an �1/�2-regularized problem (with the �1/�2-norm defined in Equa-
tion (1.2)), in the sense that its dual is the MKL problem for the set
of kernels associated with each of the groups of variables. The proof to
establish the relation between the two relies on the variational formu-
lation presented in Section 1.4.2.

We indeed have, assuming that G is a partition of {1, . . . ,p}, with
|G| = m, and �m denoting the simplex in R

m,

min
w∈Rp

ψ(Xw) +
λ

2

∑
g∈G
‖wg‖2

2

= min
w∈Rp,η∈�m

ψ(Xw) +
λ

2

∑
g∈G

‖wg‖22
ηg
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= min
w̃∈Rp,η∈�m

ψ

∑
g∈G

η1/2
g Xgw̃g

 +
λ

2

∑
g∈G
‖w̃g‖22

= min
w̃∈Rp,η∈�m

ψ(X̃w̃) +
λ

2
‖w̃‖22, s.t. X̃ = [η1/2

g1 Xg1 , . . . ,η
1/2
gm

Xgm ]

= min
η∈�m

max
α∈Rn

−ψ∗(λα) − λ

2
α�

∑
g∈G

ηgKg

α

= min
η∈�m

G

∑
g∈G

ηgKg

 ,
where the third line results from the change of variable w̃gη

1/2
g = wg,

and the last step from the definition of G in Equation (1.23).
Note that �1-regularization corresponds to the special case where

groups are singletons and where Ki = xix
�
i is a rank-one kernel matrix.

In other words, MKL with rank-one kernel matrices (i.e., feature spaces
of dimension one) is equivalent to �1-regularization (and thus simpler
algorithms can be brought to bear in this situation).

We have shown that learning convex combinations of kernels
through Equation (1.26) turns out to be equivalent to an �1/�2-norm
penalized problems. In other words, learning a linear combination∑m

i=1 ηiKi of kernel matrices, subject to η belonging to the simplex�m

is equivalent to penalizing the empirical risk with an �1-norm applied
to norms of predictors ‖wg‖2. This link between the �1-norm and the
simplex may be extended to other norms, among others to the sub-
quadratic norms introduced in Section 1.4.2.

1.5.2 Structured Multiple Kernel Learning

In the relation established between �1/�2-regularization and MKL in
the previous section, the vector of weights η for the different kernels
corresponded to the vector of optimal variational parameters defining
the norm. A natural way to extend MKL is, instead of considering
a convex combination of kernels, to consider a linear combination of
the same kernels, but with positive weights satisfying a different set of
constraints than the simplex constraints. Given the relation between
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kernel weights and the variational form of a norm, we will be able to
show that, for norms that have a variational form as in Lemma 1.8, we
can generalize the correspondence between the �1/�2-norm and MKL
to a correspondence between other structured norms and structured
MKL schemes.

Using the same line of proof as in the previous section, and given
an H-norm (or equivalently a subquadratic norm) ΩH as defined in
Definition 1.2, we have:

min
w∈Rp

ψ(Xw) +
λ

2
ΩH(w)2

= min
w∈Rp,η∈H

ψ(Xw) +
λ

2

p∑
i=1

w2
i

ηi

= min
w̃∈Rp,η∈H

ψ

(
p∑
i=1

η
1/2
i Xiw̃i

)
+
λ

2

p∑
i=1

w̃2
i

= min
w̃∈Rp,η∈H

ψ(X̃w̃) +
λ

2
‖w̃‖22, s.t. X̃ = [η1/2

1 X1, . . . ,η
1/2
p Xp]

= min
η∈H

max
α∈Rn

−ψ∗(λα) − λ

2
α�
(

p∑
i=1

ηiKi

)
α

= min
η∈H

G

(
p∑
i=1

ηiKi

)
. (1.27)

This results shows that the regularization with the norm ΩH in the
primal is equivalent to a multiple kernel learning formulation in which
the kernel weights are constrained to belong to the convex set H, which
defines ΩH variationally. Note that we have assumed that H ⊂ R

p
+,

so that formulations such as (1.25), where positive semidefiniteness of∑p
i=1 ηiKi has to be added as a constraint, are not included.
Given the relationship of MKL to the problem of learning a func-

tion in a reproducing kernel Hilbert space, the previous result suggests
a natural extension of structured sparsity to the RKHS settings. Indeed
let, h = (h1, . . . ,hp) ∈ B :=H1 × ·· · × Hp, where Hi are RKHSs. It is
easy to verify that Λ:h 
→ ΩH

(
(‖h1‖H1 , . . . ,‖hp‖Hp)) is a convex func-

tion, using the variational formulation of ΩH , and since it is also
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non-negative definite and homogeneous, it is a norm.13 Moreover, the
learning problem obtained by summing the predictions from the differ-
ent RKHSs, i.e.,

min
h∈B

ψ((h1(xi) + · · · + hp(xi))i=1,...,n) +
λ

2
ΩH((‖h1‖H1 , . . . ,‖hp‖Hp))

2

(1.28)
is equivalent, by the above derivation, to the MKL problem
minη∈HG(

∑p
i=1 ηiKi) with [Ki]j,j′ = Ki(xj ,xj′) for Ki the reproduc-

ing kernel of Hi. See Section 3.4 for more details.
This means that, for most of the structured sparsity-inducing norms

that we have considered in Section 1.3, we may replace individual vari-
ables by whole Hilbert spaces. For example, tree-structured sparsity
(and its extension to directed acyclic graphs) was explored in [9] where
each node of the graph was an RKHS, with an application to nonlinear
variable selection.

13 As we show in Section 3.4, it is actually sufficient to assume that Ω is monotonic for Λ
to be a norm.



2
Generic Methods

The problem defined in Equation (1.1) is convex, as soon as both the
loss f and the regularizer Ω are convex functions. In this section, we
consider optimization strategies which are essentially blind to prob-
lem structure. The first of these techniques is subgradient descent (see,
e.g., [18]), which is widely applicable, has low running time complexity
per iterations, but has a slow convergence rate. As opposed to proximal
methods presented in Section 3.1, it does not use problem structure.
At the other end of the spectrum, the second strategy is to consider
reformulations such as linear programs (LP), quadratic programs (QP)
or more generally, second-order cone programming (SOCP) or semidef-
inite programming (SDP) problems (see, e.g., [25]). The latter strategy
is usually only possible with the square loss and makes use of general-
purpose optimization toolboxes. Moreover, these toolboxes are only
adapted to small-scale problems and usually lead to solution with very
high precision (low duality gap), while simpler iterative methods can be
applied to large-scale problems but only leads to solution with low or
medium precision, which is sufficient in most applications to machine
learning (see [22] for a detailed discussion).
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Subgradient descent. For all convex unconstrained problems, sub-
gradient descent can be used as soon as one subgradient can be com-
puted efficiently. In our setting, this is possible when a subgradient of
the loss f , and a subgradient of the regularizer Ω can be computed. This
is true for all the norms that we have considered. The corresponding
algorithm consists of the following iterations:

wt+1 = wt −
α

tβ
(s + λs′), where s ∈ ∂f(wt), s′ ∈ ∂Ω(wt),

with α a well-chosen positive parameter and β typically 1 or 1/2.
Under certain conditions, these updates are globally convergent. More
precisely, we have, from [100], F (wt) − minw∈Rp F (w) = O( log t√

t
) for

Lipschitz-continuous function and β = 1/2. However, the convergence
is in practice slow (i.e., many iterations are needed), and the solutions
obtained are usually not sparse. This is to be contrasted with the prox-
imal methods presented in the next section which are less generic but
more adapted to sparse problems, with in particular convergence rates
in O(1/t) and O(1/t2).

Reformulation as LP, QP, SOCP, SDP. For all the sparsity-
inducing norms we consider in this monograph the corresponding
regularized least-square problem can be represented by standard
mathematical programming problems, all of them being SDPs, and
often simpler (e.g., QP). For example, for the �1-norm regularized
least-square regression, we can reformulate minw∈Rp

1
2n‖y −Xw‖22 +

λΩ(w) as

min
w+,w−∈R

p
+

1
2n
‖y −Xw+ + Xw−‖22 + λ(1�w+ + 1�w−),

which is a quadratic program. Grouped norms with combina-
tions of �2-norms leads to an SOCP, i.e., minw∈Rp

1
2n‖y −Xw‖22 +

λ
∑

g∈G dg‖wg‖2 may be formulated as

min
w∈Rp, (tg)g∈G∈R

|G|
+

1
2n
‖y −Xw‖22 + λ

∑
g∈G

dgtg, s.t ∀g ∈ G, ‖wg‖2 ≤ tg.

Other problems can be similarly cast (for the trace norm, see [8, 48]).
General-purpose toolboxes can then be used, to get solutions with high
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precision (low duality gap). However, in the context of machine learn-
ing, this is inefficient for two reasons: (1) these toolboxes are generic
and blind to problem structure and tend to be too slow, or cannot even
run because of memory problems, (2) as outlined in [22], high precision
is not necessary for machine learning problems, and a duality gap of
the order of machine precision (which would be a typical result from
such toolboxes) is not necessary.

We present in the following sections methods that are adapted to
problems regularized by sparsity-inducing norms.



3
Proximal Methods

This section reviews a class of techniques referred to as proximal
methods, where the nonsmooth component of the objective (1.1) will
only be involved in the computations through an associated proximal
operator, which we formally define subsequently.

The presentation that we make of proximal methods in this section
is deliberately simplified, and to be rigorous the methods that we will
refer to as proximal methods in this section are known as forward–
backward splitting methods. We refer the interested reader to Section 9
for a broader view and references.

3.1 Principle of Proximal Methods

Proximal methods (i.e., forward-backward splitting methods) are
specifically tailored to optimize an objective of the form (1.1), i.e.,
which can be written as the sum of a generic smooth differentiable
function f with Lipschitz-continuous gradient, and a nondifferentiable
function λΩ.

They have drawn increasing attention in the machine learning com-
munity, especially because of their convergence rates and their ability to

41
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deal with large nonsmooth convex problems (e.g., [17, 38, 102, 151]).
Proximal methods can be described as follows: at each iteration the
function f is linearized around the current point and a problem of the
form

min
w∈Rp

f(wt) + ∇f(wt)�(w − wt) + λΩ(w) +
L

2
‖w − wt‖22 (3.1)

is solved. The quadratic term, called proximal term, keeps the update
in a neighborhood of the current iterate wt where f is close to its
linear approximation; L>0 is a parameter, which should essentially be
an upper bound on the Lipschitz constant of ∇f and is typically set
with a line-search. This problem can be rewritten as

min
w∈Rp

1
2

∥∥∥∥w − (wt − 1
L
∇f(wt)

)∥∥∥∥2

2
+
λ

L
Ω(w). (3.2)

It should be noted that when the nonsmooth term Ω is not present,
the solution of the previous proximal problem, also known as the back-
ward or implicit step, just yields the standard gradient update rule
wt+1← wt − 1

L∇f(wt). Furthermore, if Ω is the indicator function of
a set ιC , i.e., defined by ιC(x) = 0 for x ∈ C and ιC(x) = +∞ otherwise,
then solving (3.2) yields the projected gradient update with projection
on the set C. This suggests that the solution of the proximal problem
provides an interesting generalization of gradient updates, and moti-
vates the introduction of the notion of a proximal operator associated
with the regularization term λΩ.

The proximal operator, which we will denote ProxµΩ, was defined in
[94] as the function that maps a vector u ∈ R

p to the unique1 solution of

min
w∈Rp

1
2
‖u − w‖22 + µΩ(w). (3.3)

This operator is clearly central to proximal methods since their main
step consists in computing Prox λ

L
Ω

(
wt − 1

L∇f(wt)
)
.

In Section 3.3, we present analytical forms of proximal operators
associated with simple norms and algorithms to compute them in some
more elaborate cases. Note that the proximal term in Equation (3.1)

1 Since the objective is strongly convex.
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could be replaced by any Bregman divergences (see, e.g., [139]), which
may be useful in settings where extra constraints (such as non-
negativity) are added to the problem.

3.2 Algorithms

The basic proximal algorithm uses the solution of problem (3.2) as
the next update wt+1; however fast variants such as the accelerated
algorithm presented in [102] or FISTA [17] maintain two variables and
use them to combine at marginal extra computational cost the solution
of (3.2) with information about previous steps. Often, an upper bound
on the Lipschitz constant of ∇f is not known, and even if it is,2 it
is often better to obtain a local estimate. A suitable value for L can
be obtained by iteratively increasing L by a constant factor until the
condition

f(w�
L) ≤ f(wt) + ∇f(wt)�(w�

L − wt) +
L

2
‖w�

L − wt‖22 (3.4)

is met, where w�
L denotes the solution of (3.3).

For functions f whose gradients are Lipschitz-continuous, the basic
proximal algorithm has a global convergence rate in O(1

t ) where t is
the number of iterations of the algorithm. Accelerated algorithms like
FISTA can be shown to have global convergence rate — on the objective
function — in O( 1

t2
), which has been proved to be optimal for the class

of first-order techniques [100].
Note that, unlike for the simple proximal scheme, we cannot guar-

antee that the sequence of iterates generated by the accelerated version
is itself convergent [38].

Perhaps more importantly, both basic (ISTA) and accelerated [102]
proximal methods are adaptive in the sense that if f is strongly
convex — and the problem is therefore better conditioned — the con-
vergence is actually linear (i.e., with rates in O(Ct) for some constant
C < 1; see [102]). Finally, it should be noted that accelerated schemes
are not necessarily descent algorithms, in the sense that the objective

2 For problems common in machine learning where f(w) = ψ(Xw) and ψ is twice differen-
tiable, then L may be chosen to be the largest eigenvalue of 1

n
X�X times the supremum

over u ∈ R
n of the largest eigenvalue of the Hessian of ψ at u.
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does not necessarily decrease at each iteration in spite of the global
convergence properties.

3.3 Computing the Proximal Operator

Computing the proximal operator efficiently and exactly allows to
attain the fast convergence rates of proximal methods.3 We therefore
focus here on properties of this operator and on its computation for sev-
eral sparsity-inducing norms. For a complete study of the properties of
the proximal operator, we refer the interested reader to [39].

Dual proximal operator. In the case where Ω is a norm, by Fenchel
duality, the following problem is dual (see Proposition 1.6) to prob-
lem (3.2):

max
v∈Rp

−1
2
[
‖v − u‖22 − ‖u‖2

]
such that Ω∗(v) ≤ µ. (3.5)

Lemma 3.1(Relation to dual proximal operator). Let ProxµΩ be
the proximal operator associated with the regularization µΩ, where Ω
is a norm, and Proj{Ω∗(·)≤µ} be the projector on the ball of radius µ of
the dual norm Ω∗. Then Proj{Ω∗(·)≤µ} is the proximal operator for the
dual problem (3.5) and, denoting the identity Id, these two operators
satisfy the relation

ProxµΩ = Id − Proj{Ω∗(·)≤µ}. (3.6)

Proof. By Proposition 1.6, if w� is optimal for (3.3) and v� is optimal
for (3.5), we have4 −v� =∇f(w�) = w� − u. Since v� is the projection
of u on the ball of radius µ of the norm Ω∗, the result follows.

This lemma shows that the proximal operator can always be com-
puted as the residual of a Euclidean projection onto a convex set. More
general results appear in [39].
3 Note, however, that fast convergence rates can also be achieved while solving approxi-
mately the proximal problem, as long as the precision of the approximation iteratively
increases with an appropriate rate (see [120] for more details).

4 The dual variable from Fenchel duality is −v in this case.
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�1-norm regularization. Using optimality conditions for (3.5) and
then (3.6) or subgradient condition (1.7) applied to (3.3), it is easy to
check that Proj{‖·‖∞≤µ} and Proxµ‖·‖1 respectively satisfy:

[
Proj{‖·‖∞≤µ}(u)

]
j
= min

(
1, µ

|uj |

)
uj ,

and [
Proxµ‖·‖1(u)

]
j
=
(

1 − µ

|uj |

)
+

uj = sign(uj)(|uj | − µ)+,

for j ∈ {1, . . . ,p}, with (x)+ := max(x,0). Note that Proxµ‖·‖1 is compo-
nentwise the soft-thresholding operator of [42] presented in Section 1.4.

�1-norm constraint. Sometimes, the �1-norm is used as a hard con-
straint and, in that case, the optimization problem is

min
w
f(w) such that ‖w‖1 ≤ C.

This problem can still be viewed as an instance of (1.1), with Ω defined
by Ω(u) = 0 if ‖u‖1 ≤ C and Ω(u) = +∞ otherwise. Proximal methods
thus apply and the corresponding proximal operator is the projection
on the �1-ball, itself an instance of a quadratic continuous knapsack
problem for which efficient pivot algorithms with linear complexity have
been proposed [27, 84]. Note that when penalizing by the dual norm of
the �1-norm, i.e., the �∞-norm, the proximal operator is also equivalent
to the projection onto an �1-ball.

�22-regularization (ridge regression). This regularization function
does not induce sparsity and is therefore slightly off topic here. It is
nonetheless widely used and it is worth mentioning its proximal oper-
ator, which is a scaling operator:

Proxµ
2 ‖.‖2

2
[u] =

1
1 + µ

u.

�1 + �22-regularization (Elastic-net [159]). This regularization
function combines the �1-norm and the classical squared �2-penalty. For
a vector w in R

p, it can be written Ω(w) = ‖w‖1 + γ
2‖w‖22, where γ > 0

is an additional parameter. It is not a norm, but the proximal operator
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can be obtained in closed form:

Proxµ(‖.‖1+ γ
2 ‖.‖2

2) = Proxµγ
2 ‖.‖2

2
◦ Proxµ‖.‖1 =

1
µγ + 1

Proxµ‖.‖1 .

Similarly to the �1-norm, when Ω is used as a constraint instead of a
penalty, the proximal operator can be obtained in linear time using
pivot algorithms (see [86], Appendix B.2).

1D-total variation. Originally introduced in the image process-
ing community [117], the total-variation penalty encourages piece-
wise constant signals. It can be found in the statistics literature
under the name of “fused lasso” [134]. For one-dimensional signals,
it can be seen as the �1-norm of finite differences for a vector w

in R
p: ΩTV-1D(w) :=

∑p−1
i=1 |wi+1 − wi|. Even though no closed form

is available for ProxµΩTV-1D , it can be easily obtained using a modifi-
cation of the homotopy algorithm presented later in this monograph
in Section 6.2 (see [57, 58]). Similarly, it is possible to combine this
penalty with the �1- and squared �2-penalties and efficiently com-
pute ProxΩTV-1D+γ1‖.‖1+ γ2

2 ‖.‖2
2

or use such a regularization function in a
constrained formulation (see [86], Appendix B.2).

Anisotropic 2D-total variation. The regularization function
above can be extended to more than one dimension. For a two
dimensional-signal W in R

p×l this penalty is defined as ΩTV-2D(W ) :=∑p−1
i=1
∑l−1

j=1 |Wi+1,j −Wi,j | + |Wi,j+1 −Wi,j |. Interestingly, it has
been shown in [34] that the corresponding proximal operator can be
obtained by solving a parametric maximum flow problem.

�1/�q-norm (“group Lasso”). If G is a partition of {1, . . . ,p}, the
dual norm of the �1/�q-norm is the �∞/�q′ norm, with 1

q + 1
q′ =1. It is

easy to show that the orthogonal projection on a unit �∞/�q′ ball is
obtained by projecting separately each subvector ug on a unit �q′-ball
in R

|g|. For the �1/�2-norm Ω:w 
→
∑

g∈G ‖wg‖2 we have

[ProxµΩ(u)]g =
(
1 − λ

‖ug‖2

)
+
ug, g ∈ G. (3.7)

This is shown easily by considering that the subgradient of the �2-norm
is ∂‖w‖2 =

{
w

‖w‖2

}
if w �= 0 or ∂‖w‖2 = {z | ‖z‖2 ≤ 1} if w = 0 and

by applying the result of Equation (1.7).
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For the �1/�∞-norm, whose dual norm is the �∞/�1-norm, an effi-
cient algorithm to compute the proximal operator is based on Equa-
tion (3.6). Indeed this equation indicates that the proximal operator
can be computed on each group g as the residual of a projection on an
�1-norm ball in R

|g|; the latter is done efficiently with the previously
mentioned linear-time algorithms.

�1/�2-norm constraint. When the �1/�2-norm is used as a constraint
of the form Ω(w) ≤ C, computing the proximal operator amounts to
perform an orthogonal projection onto the �1/�2-ball of radius C. It is
easy to show that such a problem can be recast as an orthogonal
projection onto the simplex [142]. We know for instance that there
exists a parameter µ ≥ 0 such that the solution w� of the projection
is ProxµΩ[u] whose form is given in Equation (3.7). As a consequence,
there exists scalars zg ≥ 0 such that w�

g = zg

‖ug‖2
ug (where to simplify

but without loss of generality we assume all the ug to be non-zero).
By optimizing over the scalars zg, one can equivalently rewrite the
projection as

min
(zg)g∈G∈R

|G|
+

1
2

∑
g∈G

(‖ug‖2 − zg)2 s.t.
∑
g∈G

zg ≤ C,

which is a Euclidean projection of the vector [‖ug‖2]g∈G in R
|G| onto a

simplex.5 The optimization problem above is then solved in linear time
using the previously mentioned pivot algorithms [27, 84].

We have shown how to compute the proximal operator of group-
norms when the groups form a partition. In general, the case where
groups overlap is more complicated because the regularization is no
longer separable. Nonetheless, in some cases it is still possible to com-
pute efficiently the proximal operator.

Hierarchical �1/�q-norms. Hierarchical norms were proposed in
[157]. Following [68], we focus on the case of a norm Ω:w 
→∑

g∈G ‖wg‖q, with q ∈ {2,∞}, where the set of groups G is tree-
structured, meaning that two groups are either disjoint or one is
included in the other. Let � be a total order such that g1 � g2 if

5 This result also follows from Lemma 3.3 applied to the computation of the proximal
operator of the �∞/�2-norm which is dually related to the projection on the �1/�2-norm.
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and only if either g1 ⊂ g2 or g1 ∩ g2 = ∅.6 Then, if g1 � ·· · � gm with
m = |G|, and if we define Πg as (a) the proximal operator wg 
→
Proxµ‖·‖q

(wg) on the subspace corresponding to group g and (b) the
identity on the orthogonal, it can be shown [68] that:

ProxµΩ = Πgm ◦ · · · ◦ Πg1 . (3.8)

In other words, the proximal operator associated with the norm can
be obtained as the composition of the proximal operators associated
with individual groups provided that the ordering of the groups is well
chosen. Note that this result does not hold for q /∈ {1,2,∞} (see [68] for
more details). In terms of complexity, ProxµΩ can be computed in O(p)
operations when q = 2 and O(pd) when q =∞, where d is the depth of
the tree.

Combined �1 + �1/�q-norm (“sparse group Lasso”), with q ∈
{2,∞}. The possibility of combining an �1/�q-norm that takes advan-
tage of sparsity at the group level with an �1-norm that induces sparsity
within the groups is quite natural [49, 129]. Such regularizations are
in fact a special case of the hierarchical �1/�q-norms presented above
and the corresponding proximal operator is therefore readily computed
by applying first the proximal operator associated with the �1-norm
(soft-thresholding) and the one associated with the �1/�q-norm (group
soft-thresholding).

Overlapping �1/�∞-norms. When the groups overlap but do not
have a tree structure, computing the proximal operator has proven to
be more difficult, but it can still be done efficiently when q =∞. Indeed,
as shown in [87], there exists a dual relation between such an operator
and a quadratic min-cost flow problem on a particular graph, which
can be tackled using network flow optimization techniques. Moreover,
it may be extended to more general situations where structured sparsity
is expressed through submodular functions [10].

Trace norm and spectral functions. The proximal operator for
the trace norm, i.e., the unique minimizer of 1

2‖M −N‖2F + µ‖M‖∗

6 For a tree-structured G such an order exists.
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for a fixed matrix M , may be obtained by computing a singular value
decomposition of N and then replacing the singular values by their
soft-thresholded versions [29]. This result can be easily extended to
the case of spectral functions. Assume that the penalty Ω is of the
form Ω(M) = ψ(s) where s is a vector carrying the singular val-
ues of M and ψ a convex function which is invariant by permu-
tation of the variables (see, e.g., [20]). Then, it can be shown that
ProxµΩ[N ] = U Diag(Proxµψ[s])V �, where U Diag(s)V � is a singular
value decomposition of N .

3.4 Proximal Methods for Structured MKL

In this section we show how proximal methods can be applied to solve
multiple kernel learning problems. More precisely, we follow [95] who
showed, in the context of plain MKL that proximal algorithms are
applicable in an RKHS. We extend and present here this idea to the
general case of structured MKL, showing that the proximal operator
for the structured RKHS norm may be obtained from the proximal
operator of the corresponding subquadratic norms.

Given a collection of reproducing kernel Hilbert spaces H1, . . . ,Hp,
we consider the Cartesian product B :=H1 × ·· · × Hp, equipped with
the norm ‖h‖B := (‖h1‖2H1

+ · · · + ‖hp‖2Hp
)1/2, where h = (h1, . . . ,hp)

with hi ∈ Hi.
The set B is a Hilbert space, in which gradients and subgradients

are well defined and in which we can extend some algorithms that we
considered in the Euclidean case easily.

In the following, we will consider a monotonic norm as defined in
Definition 1.1. This is motivated by the fact that a monotonic norm
may be composed with norms of elements of Hilbert spaces to defines
a norm on B:

Lemma 3.2. Let Ω be a monotonic norm on R
p with dual norm

Ω∗, then Λ: h 
→ Ω
(
(‖h1‖H1 , . . . ,‖hp‖Hp)

)
is a norm on B whose dual

norm is Λ∗: g 
→ Ω∗((‖g1‖H1 , . . . ,‖gp‖Hp)
)
. Moreover the subgradient

of Λ is ∂Λ(h) = A(h) with A(h) := {(u1s1, . . . ,upsp) | u ∈ B(h), si ∈
∂‖ · ‖Hi(hi)} with B(h) := ∂Ω

(
(‖h1‖H1 , . . . ,‖hp‖Hp)

)
.
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Proof. It is clear that Λ is symmetric, nonnegative definite and homo-
geneous. The triangle inequality results from the fact that Ω is mono-
tonic. Indeed the latter property implies that Λ(h + g) = Ω

(
(‖hi +

gi‖Hi)1≤i≤p
)
≤ Ω

(
(‖hi‖Hi + ‖gi‖Hi)1≤i≤p

)
and the result follows from

applying the triangle inequality for Ω.
Moreover, we have the generalized Cauchy–Schwarz inequality:

〈h,g〉B =
∑
i

〈hi,gi〉Hi ≤
∑
i

‖hi‖Hi‖gi‖Hi ≤ Λ(h) Λ∗(g),

and it is easy to check that equality is attained if and only if g ∈ A(h).
This simultaneously shows that Λ(h) = maxg∈B, Λ∗(g)≤1〈h,g〉B (as a
consequence of Proposition 1.4) and that ∂Λ(h) = A(h) (by Propo-
sition 1.2).

We consider now a learning problem of the form:

min
h=(h1,...,hp)∈B

f(h1, . . . ,hp) + λΛ(h), (3.9)

with, typically, following Section 1.5, f(h) = 1
n

∑n
i=1 �(y

(i),h(xi)). The
structured MKL case corresponds more specifically to the case where
f(h) = 1

n

∑n
i=1 �

(
y(i),h1(xi) + · · · + hp(xi)

)
. Note that the problem we

consider here is regularized with Λ and not Λ2 as opposed to the for-
mulations (1.24) and (1.28) considered in Section 1.5.

To apply the proximal methods introduced in this section using
‖ · ‖B as the proximal term requires one to be able to solve the proximal
problem:

min
h∈B

1
2
‖h − g‖2B + µΛ(h). (3.10)

The following lemma shows that if we know how to compute
the proximal operator of Ω for an �2 proximity term in R

p, we can
readily compute the proximal operator of Λ for the proximity defined
by the Hilbert norm on B. Indeed, to obtain the image of h by the
proximal operator associated with Λ, it suffices to apply the proximal
operator of Ω to the vector of norms (‖h1‖H1 , . . . ,‖hp‖Hp) which yields
a vector (y1, . . . ,yp), and to scale in each space Hi, the function hi
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by yi/‖hi‖Hi . Precisely:

Lemma 3.3. ProxµΛ(g) = (y1s1, . . . ,ypsp) where si = 0 if gi = 0,

si =
gi
‖gi‖Hi

if gi �= 0 and y = ProxµΩ
(
(‖gi‖Hi)1≤i≤p

)
.

Proof. To lighten the notations, we write ‖hi‖ for ‖hi‖Hi if hi ∈ Hi.
The optimality condition for problem (3.10) is h − g ∈ −µ∂Λ so that we
have hi = gi − µsiui, with u ∈ B(h), si ∈ ∂‖ · ‖Hi(hi). The last equa-
tion implies that hi,gi and si are colinear. If gi = 0 then the fact
that Ω is monotonic implies that hi = si = 0. If on the other hand,
gi �= 0 we have hi = gi (1 − µui

‖gi‖)+ and thus ‖hi‖ = (‖gi‖ − µui)+ and
hi = si ‖hi‖, but by the optimality conditions of the proximal problem
defining yi we have yi = (‖gi‖ − µui)+, which shows the result.

This result shows how to compute the proximal operator at an
abstract level. For the algorithm to be practical, we need to show that
the corresponding computation can be performed by manipulating a
finite number of parameters.

Fortunately, we can appeal to a representer theorem to that end,
which leads to the following lemma:

Lemma 3.4. Assume that for all i, gi =
∑n

j=1 αijKi(xj , ·). Then the
solution of problem (3.10) is of the form hi =

∑n
j=1 βijKi(xj , ·). Let y =

ProxµΩ
(
(
√

α�
k Kkαk)1≤k≤p

)
. Then if αi �= 0, βi = yi√

α�
i Kiαi

αi and

otherwise βi = 0.

Proof. We first show that a representer theorem holds. For each i let h//

i

be the component of hi in the span of Ki(xj , ·)1≤j≤n and h⊥
i = hi − h//

i .
We can rewrite the objective of problem (3.10) as7

1
2

p∑
i=1

[
‖h//

i ‖2 + ‖h⊥
i ‖2 − 2〈h//

i ,gi〉Hi + ‖gi‖2
]

+ µΩ
(
(‖h//

i + h⊥
i ‖)1≤i≤p

)
,

7 We denote again ‖hi‖ for ‖hi‖Hi
, when the RHKS norm used is implied by the argument.
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from which, given that Ω is assumed monotonic, it is clear that set-
ting h⊥

i = 0 for all i can only decrease the objective. To conclude,
the form of the solution in β results from the fact that ‖gi‖2Hi

=∑
1≤j,j′≤nαijαij′〈Ki(xj , ·),Ki(xj′ , ·)〉Hi and 〈Ki(xj , ·),Ki(xj′ , ·)〉Hi =

Ki(xj ,xj′) by the reproducing property, and by identification (note
that if the kernel matrix Ki is not invertible the solution might not be
unique in βi).

Finally, in the last lemma we assumed that the function gi in
the proximal problem could be represented as a linear combination
of the Ki(xj , ·). Since gi is typically of the form hti − 1

L
∂
∂hi
f(ht1, . . . ,h

t
p),

when, as in Equation 3.2, we apply the gradient operator after a
gradient step then the result follows by linearity if the gradient is in the
span of the Ki(xj , ·). The following lemma shows that this is indeed
the case:

Lemma 3.5. For f(h) = 1
n

∑n
j=1 �(y

(j),h1(xj), . . . ,hp(xj)) then

∂

∂hi
f(h) =

n∑
j=1

αijKi(xj , ·) for αij =
1
n
∂i�(y(j),h1(xj), . . . ,hp(xj)),

where ∂i� denote the partial derivative of � w.r.t. to its (i + 1)th scalar
component.

Proof. This result follows from the rules of composition of differentia-
tion applied to the functions

(h1, . . . ,hp) 
→ �
(
y(j), 〈h1,K1(xj , ·)〉H1 , . . . , 〈hp,Kp(xj , ·)〉Hp

)
,

and the fact that, since hi 
→ 〈hi,Ki(xj , ·)〉Hi is linear, its gradient in
the RKHS Hi is just Ki(xj , ·).



4
(Block) Coordinate Descent Algorithms

Coordinate descent algorithms solving �1-regularized learning problems
go back to [51]. They optimize (exactly or approximately) the objective
function with respect to one variable at a time while all others are kept
fixed. Note that, in general, coordinate descent algorithms are not nec-
essarily convergent for non-smooth optimization (cf. [18], p. 636); they
are however applicable in this setting because of a separability property
of the nonsmooth regularizer we consider (see end of Section 4.1).

4.1 Coordinate Descent for �1-Regularization

We consider first the following special case of the one-dimensional
�1-regularized problem:

min
w∈R

1
2
(w − w0)2 + λ|w|. (4.1)

As shown in (1.5), the minimizer w� can be obtained by soft-
thresholding :

w� = Proxλ |·|(w0) :=
(

1 − λ

|w0|

)
+
w0. (4.2)

53
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Lasso case. In the case of the square loss, the minimization with
respect to a single coordinate can be written as

min
wj∈R

∇jf(wt)(wj − wt
j) +

1
2
∇2
jj f(wt)(wj − wt

j)
2 + λ|wj |,

with ∇jf(w) = 1
nX�

j (Xw − y) and ∇2
jjf(w) = 1

nX�
j Xj independent

of w. Since the above equation is of the form (4.1), it can be solved in
closed form:

w�
j = Prox λ

∇2
jj

f
|·|
(
wt
j − ∇jf(wt

j)/∇2
jjf
)
. (4.3)

In other words, w�
j is obtained by solving the unregularized problem

with respect to coordinate j and soft-thresholding the solution.
This is the update proposed in the shooting algorithm of Fu [51],

which cycles through all variables in a fixed order.1 Other cycling
schemes are possible (see, e.g., [103]).

An efficient implementation is obtained if the quantity Xwt − y or
even better ∇f(wt) = 1

nX�Xwt − 1
nX�y is kept updated.2

Smooth loss. For more general smooth losses, like the logistic loss,
the optimization with respect to a single variable cannot be solved in
closed form. It is possible to solve it numerically using a sequence of
modified Newton steps as proposed in [127]. We present here a fast
algorithm of Tseng and Yun [140] based on solving just a quadratic
approximation of f with an inexact line search at each iteration.

Let Lt > 0 be a parameter and let w�
j be the solution of

min
wj∈R

∇jf(wt)(wj − wt
j) +

1
2
Lt (wj − wt

j)
2 + λ|wj |,

Given d = w�
j − wt

j where w�
j is the solution of (4.3), the algorithm

of Tseng and Yun performs a line search to choose the largest step of

1 Coordinate descent with a cyclic order is sometimes called a Gauss–Seidel procedure.
2 In the former case, at each iteration, Xw − y can be updated in O(n) operations if wj

changes and ∇jt+1f(w) can always be updated in O(n) operations. The complexity of
one cycle is therefore O(pn). However a better complexity is obtained in the latter case,
provided the matrix X�X is precomputed (with complexity O(p2n)). Indeed ∇f(wt) is
updated in O(p) iterations only if wj does not stay at 0. Otherwise, if wj stays at 0 the
step costs O(1); the complexity of one cycle is therefore O(ps) where s is the number of
nonzero variables at the end of the cycle.
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the form αd with α = α0β
k and α0 > 0,β ∈ (0,1), k ∈ N, such that the

following modified Armijo condition is satisfied:

F (wt + αdej) − F (wt) ≤ σα
(
∇jf(w)d + γLtd2 + |wt

j + d| − |wt
j |
)
,

where F (w) := f(w) + λΩ(w), and 0 ≤ γ ≤ 1 and σ < 1 are parame-
ters of the algorithm.

Tseng and Yun [140] show that under mild conditions on f the
algorithm is convergent and, under further assumptions, asymptot-
ically linear. In particular, if f is of the form 1

n

∑n
i=1 �(y

(i),w�x(i))
with �(y(i), ·) a twice continuously differentiable convex function with
strictly positive curvature, the algorithm is asymptotically linear for
Lt =∇2

jjf(wt
j). We refer the reader to Section 4.2 and to [140, 150] for

results under much milder conditions. It should be noted that the algo-
rithm generalizes to other separable regularizations than the �1-norm.

Variants of coordinate descent algorithms have also been considered
in [53, 76, 152]. Generalizations based on the Gauss–Southwell rule have
been considered in [140].

Convergence of coordinate descent algorithms. In general,
coordinate descent algorithms are not convergent for non-smooth objec-
tives. Therefore, using such schemes always requires a convergence
analysis. In the context of the �1-norm regularized smooth objective,
the non-differentiability is separable (i.e., is a sum of non-differentiable
terms that depend on single variables), and this is sufficient for con-
vergence [18, 140]. In terms of convergence rates, coordinate descent
behaves in a similar way to first-order methods such as proximal meth-
ods, i.e., if the objective function is strongly convex [103, 140], then the
convergence is linear, while it is slower if the problem is not strongly
convex, e.g., in the learning context, if there are strong correlations
between input variables [124].

4.2 Block-Coordinate Descent for �1/�q-Regularization

When Ω(w) is the �1/�q-norm with groups g ∈ G forming a partition
of {1, . . . ,p}, the previous methods are generalized by block-coordinate
descent (BCD) algorithms, which have been the focus of recent work by
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Tseng and Yun [140] and Wright [150]. These algorithms do not attempt
to solve exactly a reduced problem on a block of coordinates but rather
optimize a surrogate of F in which the function f is substituted by a
quadratic approximation.

Specifically, the BCD scheme of [140] solves at each iteration a prob-
lem of the form:

min
wg∈R|g|

∇gf(wt)�(wg − wt
g) +

1
2
(wg − wt

g)
�Ht(wg − wt

g) + λ‖wg‖q,

(4.4)
where the positive semi-definite matrix Ht ∈ R

|g|×|g| is a parameter.
Note that this may correspond to a richer quadratic approximation
around wt

g than the proximal terms used in Section 3. However, in
practice, the above problem is solved in closed form if Ht = LtI|g| for
some scalar Lt and q ∈ {2,∞}.3 In particular for q = 2, the solution w�

g

is obtained by group-soft-thresholding :

w�
g = Prox λ

Lt ‖·‖2

(
wt
g −

1
Lt
∇gf(wt

g)
)
,

with

Proxµ‖·‖2(w) =
(
1 − µ

‖w‖2

)
+
w.

In the case of general smooth losses, the descent direction is given by
d = w�

g − wt
g with w�

g as above. The next point is of the form wt + αd,
where α is a stepsize of the form α = α0β

k, with α0 > 0, 0 < β < 1,
k ∈ N. The parameter k is chosen large enough to satisfy the following
modified Armijo condition

F (wt + αd) − F (wt)

≤ σα
(
∇gf(w)�d + γd�Htd + ‖wt

g + d‖q − ‖wt
g‖q
)
,

for parameters 0 ≤ γ ≤ 1 and σ < 1.
If f is convex continuously differentiable, lower bounded on R

p and
F has a unique minimizer, provided that there exists τ, τ̄ fixed constants
such that for all t, τ �Ht � τ̄ , the results of Tseng and Yun show

3 More generally for q ≥ 1 and Ht = LtI|g|, it can be solved efficiently coordinate-wise using
bisection algorithms.
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that the algorithm converges (see Theorem 4.1 in [140] for broader
conditions). Wright [150] proposes a variant of the algorithm, in which
the line-search on α is replaced by a line search on the parameter Lt,
similar to the line-search strategies used in proximal methods.

4.3 Block-coordinate Descent for MKL

Finally, block-coordinate descent algorithms are also applicable to clas-
sical multiple kernel learning. We consider the same setting and nota-
tion as in Section 3.4 and we consider specifically the optimization
problem:

min
h∈B

f(h1, . . . ,hp) + λ

p∑
i=1

‖hi‖Hi .

A block-coordinate algorithm can be applied by considering each RKHS
Hi as one “block”; this type of algorithm was considered in [113]. Apply-
ing the Lemmas 3.4 and 3.5 of Section 3.4, we know that hi can be
represented as hi =

∑n
j=1 αijKi(xj , ·).

The algorithm then consists in performing successively group soft-
thresholding in each RKHS Hi. This can be done by working directly
with the dual parameters αi, with a corresponding proximal operator
in the dual simply formulated as:

Proxµ‖·‖Ki
(αi) =

(
1 − µ

‖αi‖Ki

)
+
αi.

with ‖α‖2K = α�Kα. The precise equations would be obtained by ker-
nelizing Equation (4.4) (which requires kernelizing the computation of
the gradient and the Hessian as in Lemma 3.5). We leave the details to
the reader.



5
Reweighted-�2 Algorithms

Approximating a nonsmooth or constrained optimization problem by
a series of smooth unconstrained problems is common in optimiza-
tion (see, e.g., [25, 101, 104]). In the context of objective functions
regularized by sparsity-inducing norms, it is natural to consider varia-
tional formulations of these norms in terms of squared �2-norms, since
many efficient methods are available to solve �2-regularized problems
(e.g., linear system solvers for least-squares regression).

5.1 Variational Formulations for Grouped �1-norms

In this section, we show on our motivating example of sums of �2-norms
of subsets how such formulations arise (see, e.g., [41, 55, 70, 109, 110]).
The variational formulation we have presented in Section 1.4.2 allows
us to consider the following function H(w,η) defined as

H(w,η) = f(w) +
λ

2

p∑
j=1

{ ∑
g∈G,j∈g

η−1
g

}
w2
j +

λ

2

∑
g∈G

ηg.

It is jointly convex in (w,η); the minimization with respect to η can
be done in closed form, and the optimum is equal to F (w) = f(w) +
λΩ(w); as for the minimization with respect to w, it is an �2-regularized
problem.
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Unfortunately, the alternating minimization algorithm that is
immediately suggested is not convergent in general, because the func-
tion H is not continuous (in particular around η which has zero coor-
dinates). In order to make the algorithm convergent, two strategies are
commonly used:

— Smoothing: we can add a term of the form ε
2
∑

g∈G η−1
g ,

which yields a joint cost function with compact level sets
on the set of positive numbers. Alternating minimization
algorithms are then convergent (as a consequence of general
results on block coordinate descent), and have two differ-
ent iterations: (1) minimization with respect to η in closed
form, through ηg =

√
‖wg‖22 + ε, and (2) minimization with

respect to w, which is an �2-regularized problem, which can
be, for example, solved in closed form for the square loss.
Note however, that the second problem does not need to be
exactly optimized at all iterations.

— First order method in η: while the joint cost function
H(η,w) is not continuous, the function I(η) = minw∈Rp

H(w,η) is continuous, and under general assumptions, con-
tinuously differentiable, and is thus amenable to first-order
methods (e.g., proximal methods, gradient descent). When
the groups in G do not overlap, one sufficient condition is
that the function f(w) is of the form f(w) = ψ(Xw) for
X ∈ R

n×p any matrix (typically the design matrix) and ψ a
strongly convex function on R

n. This strategy is particularly
interesting when evaluating I(η) is computationally cheap.

In theory, the alternating scheme consisting of optimizing alter-
nately over η and w can be used to solve learning problems regu-
larized with any norms: on top of the subquadratic norms defined
in Section 1.4.2, we indeed show in the next section that any norm
admits a quadratic variational formulation (potentially defined from a
non-diagonal symmetric positive matrix). To illustrate the principle of
�2-reweighted algorithms, we first consider the special case of multiple
kernel learning; in Section 5.2, we consider the case of the trace norm.
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Structured MKL. Reweighted-�2 algorithms are fairly natural for
norms which admit a diagonal variational formulation (see Lemma 1.8
and [93]) and for the corresponding multiple kernel learning problem.
We consider the structured multiple learning problem presented in
Section 1.5.2.

The alternating scheme applied to Equation (1.27) then takes the
following form: for η fixed, one has to solve a single kernel learning
problem with the kernelK =

∑
iηiKi; the corresponding solution in the

product of RKHSsH1 × ·· · × Hp (see Section 3.4) is of the form h(x) =
h1(x) + · · · + hp(x) with hi(x) = ηi

∑n
j=1 αjKi(xj , ·). Since ‖hi‖2Hi

=
η2
iα

�Kiα, for fixed α, the update in η then takes the form:

ηt+1← argmin
η∈H

p∑
i=1

(ηti)
2αt�Kiα

t + ε

ηi
.

Note that these updates produce a non-increasing sequence of values of
the primal objective. Moreover, this MKL optimization scheme uses a
potentially much more compact parameterization than proximal meth-
ods since in addition to the variational parameter η ∈ R

p a single vector
of parameters α ∈ R

n is needed as opposed to up to one such vector for
each kernel in the case of proximal methods. MKL problems can also
be tackled using first order methods in η described above: we refer the
reader to [110] for an example in the case of classical MKL.

5.2 Quadratic Variational Formulation for General Norms

We now investigate a general variational formulation of norms that nat-
urally leads to a sequence of reweighted �2-regularized problems. The
formulation is based on approximating the unit ball of a norm Ω with
enclosing ellipsoids. See Figure 5.1. The following proposition shows
that all norms may be expressed as a minimum of Euclidean norms:

Proposition 5.1. Let Ω:Rp→ R be a norm on R
p, then there exists

a function g defined on the cone of positive semi-definite matrices S+
p ,

such that g is convex, strictly positive except at zero, positively homo-
geneous and such that for all w ∈ R

p,

Ω(w) = min
Λ∈S+

p , g(Λ)�1

√
w�Λ−1w =

1
2

min
Λ∈S+

p

{
w�Λ−1w + g(Λ)

}
. (5.1)
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Fig. 5.1. Example of a sparsity-inducing ball in two dimensions, with enclosing ellipsoids.
Left: ellipsoids with general axis for the �1-norm; middle: ellipsoids with horizontal and
vertical axis for the �1-norm; right: ellipsoids for another polyhedral norm.

Proof. Let Ω∗ be the dual norm of Ω, defined as Ω∗(s) =
maxΩ(w)�1 w�s [25]. Let g be the function defined through g(Λ) =
maxΩ∗(s)�1 s�Λs. This function is well-defined as the maximum of
a continuous function over a compact set; moreover, as a maximum
of linear functions, it is convex and positive homogeneous. Also, for
nonzero Λ, the quadratic form s 
→ s�Λs is not identically zero around
s = 0, hence the strict positivity of g.

Let w ∈ R
p and Λ ∈ S+

p ; there exists s such that Ω∗(s) = 1 and
w�s = Ω(w). We then have

Ω(w)2 = (w�s)2 � (w�Λ−1w)(s�Λs) � g(Λ)(w�Λ−1w).

This shows that Ω(w) � minΛ∈S+
p , g(Λ)�1

√
w�Λ−1w. Proving the

other direction can be done using the following limiting argu-
ment. Given w0 ∈ R

p, consider Λ(ε) = (1 − ε)w0w
�
0 + ε(w�

0 w0)I. We
have w�

0 Λ(ε)−1w0 = 1 and g(Λ(ε))→ g(w0w
�
0 ) = Ω(w0)2. Thus, for

Λ̃(ε) = Λ(ε)/g(Λ(ε)), we have that
√

w�
0 Λ̃(ε)−1w0 tends to Ω(w0),

thus Ω(w0) must be no smaller than the minimum over all Λ. The
right-hand side of Equation (5.1) can be obtained by optimizing over
the scale of Λ.

Note that while the proof provides a closed-form expression for a
candidate function g, it is not unique, as can be seen in the following
examples. The domain of g (matrices so that g is finite) may be reduced
(in particular to diagonal matrices for the �1-norm and more generally
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the sub-quadratic norms defined in Section 1.4.2):

— For the �1-norm: using the candidate from the proof, we have
g(Λ) = max‖s‖∞≤1 s�Λs, but we could use g(Λ) = TrΛ if Λ
is diagonal and +∞ otherwise.

— For subquadratic norms (Section 1.4.2), we can take g(Λ) to
be +∞ for non-diagonal Λ, and either equal to the gauge
function of the set H, i.e. the function s 
→ inf{ν ∈ R+ | s ∈
νH}, or equal to the function Ω̄ defined in Lemma 1.9, both
applied to the diagonal of Λ.

— For the �2-norm: g(Λ) = λmax(Λ) but we could of course use
g(Λ) = 1 if Λ = I and +∞ otherwise.

— For the trace norm: w is assumed to be of the form w =
vect(W ) and the trace norm of W is regularized. The trace
norm admits the variational form (see [6]):

‖W ‖∗ =
1
2

inf
D�0

tr(W �D−1W + D), s.t. D � 0. (5.2)

But tr(W �D−1W ) = w�(I ⊗D)−1w, which shows that the regu-
larization by the trace norm takes the form of Equation (5.1) in which
we can choose g(Λ) equal to tr(D) if Λ = I ⊗D for some D � 0 and
+∞ otherwise.

The solution of the above optimization problem is given by D� =
(WW �)1/2 which can be computed via a singular value decomposition
of W . The reweighted-�2 algorithm to solve

min
W ∈Rp×k

f(W ) + λ‖W ‖∗

therefore consists of iterating between the two updates (see, e.g., [6] for
more details):

W ← argmin
W

f(W ) +
λ

2
Tr(W �D−1W ) and

D← (WW � + εIk)1/2,

where ε is a smoothing parameter that arises from adding a term
ελ
2 Tr(D−1) to Equation (5.2) and prevents the matrix from becom-
ing singular.



6
Working-Set and Homotopy Methods

In this section, we consider methods that explicitly take into account
the fact that the solutions are sparse, namely working set methods and
homotopy methods.

6.1 Working-Set Techniques

Working-set algorithms address optimization problems by solving an
increasing sequence of small subproblems of (1.1), which we recall can
be written as

min
w∈Rp

f(w) + λΩ(w),

where f is a convex smooth function and Ω a sparsity-inducing norm.
The working set, which we denote by J , refers to the subset of variables
involved in the optimization of these subproblems.

Working-set algorithms proceed as follows: after computing a solu-
tion to the problem restricted to the variables in J (while setting the
variables in Jc to zero), global optimality is checked to determine
whether the algorithm has to continue. If this is the case, new vari-
ables enter the working set J according to a strategy that has to be
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defined. Note that we only consider forward algorithms, i.e., where the
working set grows monotonically. In other words, there are no backward
steps where variables would be allowed to leave the set J . Provided this
assumption is met, it is easy to see that these procedures stop in a finite
number of iterations.

This class of algorithms is typically applied to linear programming
and quadratic programming problems (see, e.g., [104]), and here takes
specific advantage of sparsity from a computational point of view [9,
66, 79, 106, 116, 121, 132], since the subproblems that need to be solved
are typically much smaller than the original one.

Working-set algorithms require three ingredients:
• Inner-loop solver: At each iteration of the working-set algo-

rithm, problem (1.1) has to be solved on J , i.e., subject to the addi-
tional equality constraint that wj = 0 for all j in Jc:

min
w∈Rp

f(w) + λΩ(w), such that wJc = 0. (6.1)

The computation can be performed by any of the methods presented
in this monograph. Working-set algorithms should therefore be viewed
as “meta-algorithms”. Since solutions for successive working sets are
typically close to each other the approach is efficient if the method
chosen can use warm-restarts.
• Computing the optimality conditions: Given a solution w�

of problem (6.1), it is then necessary to check whether w� is also a
solution for the original problem (1.1). This test relies on the duality
gaps of problems (6.1) and (1.1). In particular, if w� is a solution of
problem (6.1), it follows from Proposition 1.6 in Section 1.4 that

f(w�) + λΩ(w�) + f∗(∇f(w�)) = 0.

In fact, the Lagrangian parameter associated with the equality con-
straint ensures the feasibility of the dual variable formed from the
gradient of f at w�. In turn, this guarantees that the duality gap of
problem (6.1) vanishes. The candidate w� is now a solution of the
full problem (1.1), i.e., without the equality constraint wJc = 0, if and
only if

Ω∗(∇f(w�)) ≤ λ. (6.2)
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Condition (6.2) points out that the dual norm Ω∗ is a key quantity
to monitor the progress of the working-set algorithm [66]. In simple
settings, for instance when Ω is the �1-norm, checking condition (6.2)
can be easily computed since Ω∗ is just the �∞-norm. In this case,
condition (6.2) becomes

|[∇f(w�)]j | ≤ λ, for all j in {1, . . . ,p}.

Note that by using the optimality of problem (6.1), the components of
the gradient of f indexed by J are already guaranteed to be no greater
than λ.
• Strategy for the growth of the working set: If condition (6.2)

is not satisfied for the current working set J , some inactive variables
in Jc have to become active. This point raises the questions of how
many and how these variables should be chosen. First, depending on
the structure of Ω, a single or a group of inactive variables have to be
considered to enter the working set. Furthermore, one natural way to
proceed is to look at the variables that violate condition (6.2) most. In
the example of �1-regularized least squares regression with normalized
predictors, this strategy amounts to selecting the inactive variable that
has the highest correlation with the current residual.

The working-set algorithms we have described so far aim at solv-
ing problem (1.1) for a fixed value of the regularization parameter λ.
However, for specific types of loss and regularization functions, the set
of solutions of problem (1.1) can be obtained efficiently for all possible
values of λ, which is the topic of the next section.

6.2 Homotopy Methods

We present in this section an active-set1 method for solving the Lasso
problem of Equation (1.8). We recall the Lasso formulation:

min
w∈Rp

1
2n
‖y −Xw‖22 + λ‖w‖1, (6.3)

where y is in R
n, and X is a design matrix in R

n×p. Even though
generic working-set methods introduced above could be used to solve

1 Active-set and working-set methods are very similar; they differ in that active-set methods
allow (or sometimes require) variables returning to zero to exit the set.
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this formulation (see, e.g., [79]), a specific property of the �1-norm
associated with a quadratic loss makes it possible to address it more
efficiently.

Under mild assumptions (which we will detail later), the solution
of Equation (6.3) is unique, and we denote it by w�(λ) for a given
regularization parameter λ > 0. We use the name regularization path
to denote the function λ 
→ w�(λ) that associates to a regularization
parameter λ the corresponding solution. We will show that this func-
tion is piecewise linear, a behavior illustrated in Figure 6.1, where the
entries of w�(λ) for a particular instance of the Lasso are represented
as functions of λ.

An efficient algorithm can thus be constructed by choosing a partic-
ular value of λ, for which finding this solution is trivial, and by follow-
ing the piecewise affine path, computing the directions of the current
affine parts, and the points where the direction changes (also known
as kinks). This piecewise linearity was first discovered and exploited in
[90] in the context of portfolio selection, revisited in [108] describing
a homotopy algorithm, and studied in [44] with the LARS algorithm.2
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Fig. 6.1. The weights w�(λ) are represented as functions of the regularization parameter λ.
When λ increases, more and more coefficients are set to zero. These functions are all piece-
wise affine. Note that some variables (here one) may enter and leave the regularization path.

2 Even though the basic version of LARS is a bit different from the procedure we have
just described, it is closely related, and indeed a simple modification makes it possible to
obtain the full regularization path of Equation (1.8).
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Similar ideas also appear early in the optimization literature: Finding
the full regularization path of the Lasso is in fact a particular instance
of a parametric quadratic programming problem, for which path follow-
ing algorithms have been developed [114].

Let us show how to construct the path. From the optimality
conditions we have presented in Equation (1.9), denoting by J :=
{j; |X�

j (y −Xw�)| = nλ} the set of active variables, and defining the
vector t in {−1;0;1}p as t := sign

(
X�(y −Xw�)

)
, we have the fol-

lowing closed-form expression{
w�
J(λ) = (X�

J XJ)
−1(X�

J y − nλtJ)

w�
Jc(λ) = 0,

where we have assumed the matrix X�
J XJ to be invertible (which is

a sufficient condition to guarantee the uniqueness of w�). This is an
important point: if one knows in advance the set J and the signs tJ ,
then w�(λ) admits a simple closed-form. Moreover, when J and tJ
are fixed, the function λ 
→ (X�

J XJ)
−1(X�

J y − nλtJ) is affine in λ.
With this observation in hand, we can now present the main steps of
the path-following algorithm. It basically starts from a trivial solution
of the regularization path, follows the path by exploiting this formula,
updating J and tJ whenever needed so that optimality conditions (1.9)
remain satisfied. This procedure requires some assumptions — namely
that (a) the matrix X�

J XJ is always invertible, and (b) that updating
J along the path consists of adding or removing from this set a single
variable at the same time. Concretely, we proceed as follows:

(1) Set λ to 1
n‖X�y‖∞ for which it is easy to show from Equa-

tion (1.9) that w�(λ) = 0 (trivial solution on the regulariza-
tion path).

(2) Set J := {j; |X�
j y| = nλ}.

(3) Follow the regularization path by decreasing the value of λ,
with the formula w�

J(λ) = (X�
J XJ)

−1(X�
J y − nλtJ) keep-

ing w�
Jc = 0, until one of the following events (kink) occurs

• There exists j in Jc such that |X�
j (y −Xw�)| = nλ.

Then, add j to the set J .
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• There exists j in J such that a non-zero coefficient
w�
j hits zero. Then, remove j from J .

We assume that only one of such events can occur at the
same time (b). It is also easy to show that the value of λ
corresponding to the next event can be obtained in closed
form such that one can “jump” from a kink to another.

(4) Go back to 3.

Let us now briefly discuss assumptions (a) and (b). When the
matrix X�

J XJ is not invertible, the regularization path is non-unique,
and the algorithm fails. This can easily be fixed by addressing instead
a slightly modified formulation. It is possible to consider instead
the elastic-net formulation [159] that uses Ω(w) = λ‖w‖1 + γ

2‖w‖22.
Indeed, it amounts to replacing the matrix X�

J XJ by X�
J XJ + nγI,

which is positive definite and therefore always invertible, and to apply
the same algorithm. The second assumption (b) can be unsatisfied in
practice because of the machine precision. To the best of our knowl-
edge, the algorithm will fail in such cases, but we consider this scenario
unlikely with real data, though possible when the Lasso/basis pur-
suit is used multiple times such as in dictionary learning, presented in
Section 7.3. In such situations, a proper use of optimality conditions
can detect such problems and more stable algorithms such as proximal
methods may then be used.

The complexity of the above procedure depends on the number of
kinks of the regularization path (which is also the number of itera-
tions of the algorithm). Even though it is possible to build examples
where this number is large, we often observe in practice that the event
where one variable gets out of the active set is rare. The complexity
also depends on the implementation. By maintaining the computations
of X�

j (y −Xw�) and a Cholesky decomposition of (X�
J XJ)

−1, it is
possible to obtain an implementation in O(psn + ps2 + s3) operations,
where s is the sparsity of the solution when the algorithm is stopped
(which we approximately consider as equal to the number of itera-
tions). The product psn corresponds to the computation of the matri-
ces X�

J XJ , ps
2 to the updates of the correlations X�

j (y −Xw�) along
the path, and s3 to the Cholesky decomposition.
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Sparsity and Nonconvex Optimization

In this section, we consider alternative approaches to sparse modelling,
which are not based in convex optimization, but often use convex opti-
mization problems in inner loops.

7.1 Greedy Algorithms

We consider the �0-constrained signal decomposition problem

min
w∈Rp

1
2n
‖y −Xw‖22, s.t. ‖w‖0 ≤ s, (7.1)

where s is the desired number of non-zero coefficients of the solution,
and we assume for simplicity that the columns of X have unit norm.
Even though this problem can be shown to be NP-hard [96], greedy
procedures can provide an approximate solution. Under some assump-
tions on the matrix X, they can also be shown to have some optimality
guarantees [136].

Several variants of these algorithms with different names have
been developed both by the statistics and signal processing commu-
nities. In a nutshell, they are known as forward selection techniques
in statistics (see [146]), and matching pursuit algorithms in signal
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processing [89]. All of these approaches start with a null vector w,
and iteratively add non-zero variables to w until the threshold s is
reached.

The algorithm dubbed matching pursuit, was introduced in the
1990s in [89], and can be seen as a non-cyclic coordinate descent proce-
dure for minimizing Equation (7.1). It selects at each step the column
xı̂ that is the most correlated with the residual according to the formula

ı̂← argmin
i∈{1,...,p}

|r�xi|,

where r denotes the residual y −Xw. Then, the residual is projected
on xı̂ and the entry wı̂ is updated according to

wı̂← wı̂ + r�xı̂

r← r − (r�xı̂)xı̂.

Such a simple procedure is guaranteed to decrease the objective func-
tion at each iteration, but is not to converge in a finite number of steps
(the same variable can be selected several times during the process).
Note that such a scheme also appears in statistics in boosting proce-
dures [50].

Orthogonal matching pursuit [89] was proposed as a major variant
of matching pursuit that ensures the residual of the decomposition to
be always orthogonal to all previously selected columns of X. Such tech-
nique existed in fact in the statistics literature under the name forward
selection [146], and a particular implementation exploiting a QR matrix
factorization also appears in [96]. More precisely, the algorithm is an
active set procedure, which sequentially adds one variable at a time
to the active set, which we denote by J . It provides an approximate
solution of Equation (7.1) for every value s′ ≤ s, and stops when the
desired level of sparsity is reached. Thus, it builds a regularization path,
and shares many similarities with the homotopy algorithm for solving
the Lasso [44], even though the two algorithms address different opti-
mization problems. These similarities are also very strong in terms of
implementation: identical tricks as those described in Section 6.2 for
the homotopy algorithm can be used, and in fact both algorithms have
roughly the same complexity (if most variables do not leave the path
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once they have entered it). At each iteration, one has to choose which
new predictor should enter the active set J . A possible choice is to
look for the column of X most correlated with the residual as in the
matching pursuit algorithm, but another criterion is to select the one
that helps most reducing the objective function

ı̂← argmin
i∈Jc

min
w′∈R|J|+1

1
2n
‖y −XJ∪{i}w

′‖22.

whereas this choice seem at first sight computationally expensive since
it requires solving |Jc| least-squares problems, the solution can in fact
be obtained efficiently using a Cholesky matrix decomposition of the
matrix X�

J XJ and basic linear algebra, which we will not detail here
for simplicity reasons (see [40] for more details).

After this step, the active set is updated J ← J ∪ {ı̂}, and the cor-
responding residual r and coefficients w are

w← (X�
J XJ)−1X�

J y,

r← (I −XJ(X�
J XJ)−1X�

J )y,

where r is the residual of the orthogonal projection of y onto the linear
subspace spanned by the columns of XJ . It is worth noticing that one
does not need to compute these two quantities in practice, but only
updating the Cholesky decomposition of (X�

J XJ)−1 and computing
directly X�r, via simple linear algebra relations.

For simplicity, we have chosen to present matching pursuit algo-
rithms for solving the �0-sparse approximation problem, but they admit
several variants (see [98] for example), or extensions when the regular-
ization is more complex than the �0-penalty or for other loss functions
than the square loss. For instance, they are used in the context of
non-convex group-sparsity in [137], or with structured sparsity formu-
lations [15, 62].

We also remark that other possibilities than greedy methods exist
for optimizing Equation (7.1). One can notably use the algorithm ISTA
(i.e., the non-accelerated proximal method) presented in Section 3 when
the function f is convex and its gradient Lipschitz continuous. Under
this assumption, it is easy to see that ISTA can iteratively decrease
the value of the nonconvex objective function. Such proximal gradient
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algorithms when Ω is the �0-penalty often appear under the name of
iterative hard-thresholding methods [59].

7.2 Reweighted-�1 Algorithms with DC-Programming

We focus in this section on optimization schemes for a certain type of
nonconvex regularization functions. More precisely, we consider prob-
lem (1.1) when Ω is a nonconvex separable penalty that can be written
as Ω(w) :=

∑p
i=1 ζ(|wi|), where w is in R

p, and ζ : R+→ R+ is a con-
cave nondecreasing differentiable function. In other words, we address

min
w∈Rp

f(w) + λ

p∑
i=1

ζ(|wi|), (7.2)

where f is a convex smooth function. Examples of such penalties
include variants of the �q-penalties for q < 1 defined as ζ: t 
→ (|t| + ε)q,
log-penalties ζ: t 
→ log(|t| + ε), where ε > 0 makes the function ζ dif-
ferentiable at 0. Other nonconvex regularization functions have been
proposed in the statistics community, such as the SCAD penalty [47].

The main motivation for using such penalties is that they induce
more sparsity than the �1-norm, while they can be optimized with
continuous optimization as opposed to greedy methods. The unit
balls corresponding to the �q-pseudo-norms and norms are illustrated
in Figure 7.1, for several values of q. When q decreases, the �q-ball
approaches in a sense the �0-ball, which allows to induce sparsity more
aggressively.

Even though the optimization problem (7.2) is not convex and not
smooth, it is possible to iteratively decrease the value of the objective
function by solving a sequence of convex problems. Algorithmic schemes

Fig. 7.1. Unit balls in 2D corresponding to �q-penalties.
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of this form appear early in the optimization literature in a more gen-
eral framework for minimizing the difference of two convex functions
(or equivalently the sum of a convex and a concave function), which is
called DC programming (see [52] and references therein). Even though
the objective function of Equation (7.2) is not exactly a difference of
convex functions (it is only the case on R

p
+), the core idea of DC pro-

gramming can be applied. We note that these algorithms were recently
revisited under the particular form of reweighted-�1 algorithms [30].
The idea is relatively simple. We denote by g:Rp→ R the objective
function which can be written as g(w) := f(w) + λ

∑p
i=1 ζ(|wi|) for a

vector w in R
p. This optimization scheme consists in minimizing, at

iteration k of the algorithm, a convex upper bound of the objective func-
tion g, which is tangent to the graph of g at the current estimate wk.

A surrogate function with these properties is obtained easily by
exploiting the concavity of the functions ζ on R+, which always lie
below their tangents, as illustrated in Figure 7.2. The iterative scheme
can then be written as:

wk+1← argmin
w∈Rp

f(w) + λ

p∑
i=1

ζ ′(|wk
i |)|wi|,

which is a reweighted-�1 sparse decomposition problem [30]. To
initialize the algorithm, the first step is usually a simple Lasso, with no

Fig. 7.2. Functions and their surrogates involved in the reweighted-�1 optimization scheme
in the one dimensional case (p = 1). The function ζ can be written here as ζ(|w|) = log(|w| +
ε) for a scalar w in R, and the function f is quadratic. The graph of the nonconvex functions
are represented in red and their convex “tangent” surrogates in blue.
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weights. In practice, the effect of the weights ζ ′(|wk
i |) is to push to zero

the smallest non-zero coefficients from iteration k − 1, and two or three
iterations are usually enough to obtain the desired sparsifying effect.
Linearizing iteratively concave functions to obtain convex surrogates is
the main idea of DC programming, which readily applies here to the
functions w 
→ ζ(|w|).

For simplicity we have presented these reweighted-�1 algorithms
when Ω is separable. We note however that these optimization schemes
are far more general and readily apply to nonconvex versions of most
of the penalties we have considered in this monograph. For example,
when the penalty Ω has the form

Ω(w) =
∑
g∈G

ζ(‖wg‖),

where ζ is concave and differentiable on R+, G is a set of (possibly over-
lapping) groups of variables and ‖.‖ is any norm. The idea is then simi-
lar, iteratively linearizing for each group g the functions ζ around ‖wg‖
and minimizing the resulting convex surrogate (see an application to
structured sparse principal component analysis in [70]).

Finally, another possible approach to solve optimization problems
regularized by nonconvex penalties of the type presented in this section
is to use the reweighted-�2 algorithms of Section 5 based on quadratic
variational forms of such penalties (see, e.g., [70]).

7.3 Sparse Matrix Factorization and Dictionary Learning

Sparse linear models for regression in statistics and machine learning
assume a linear relation y ≈Xw, where y in R

n is a vector of obser-
vations, X in R

n×p is a design matrix whose rows can be interpreted
as features, and w is a weight vector in R

p. Similar models are used
in the signal processing literature, where y is a signal approximated
by a linear combination of columns of X, which are called dictionary
elements, or basis element when X is orthogonal.

Whereas a lot of attention has been devoted to cases where X is
fixed and pre-defined, another line of work considered the problem of
learning X from training data. In the context of sparse linear models,
this problem was first introduced in the neuroscience community by
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Olshausen and Field [107] to model the spatial receptive fields of simple
cells in the mammalian visual cortex. Concretely, given a training set
of q signals Y = [y1, . . . ,yq] in R

n×q, one would like to find a dictionary
matrix X in R

n×p and a coefficient matrix W = [w1, . . . ,wq] in R
p×q

such that each signal yi admits a sparse approximation Xwi. In other
words, we want to learn a dictionary X and a sparse matrix W such
that Y ≈XW .

A natural formulation is the following non-convex matrix factoriza-
tion problem:

min
X∈X ,W ∈Rn×q

1
q

q∑
i=1

1
2
‖yi −Xwi‖22 + λΩ(wi), (7.3)

where Ω is a sparsity-inducing penalty function, and X ⊆ R
n×p is a con-

vex set, which is typically the set of matrices whose columns have �2-
norm less than or equal to 1. Without any sparse prior (i.e., for λ = 0),
the solution of this factorization problem is obtained through princi-
pal component analysis (PCA) (see, e.g., [28] and references therein).
However, when λ > 0, the solution of Equation (7.3) has a different
behavior, and may be used as an alternative to PCA for unsupervised
learning.

A successful application of this approach is when the vectors yi are
small natural image patches, for example, of size n = 10 × 10 pixels.
A typical setting is to have an overcomplete dictionary — that is, the
number of dictionary elements can be greater than the signal dimension
but small compared to the number of training signals, for example p =
200 and q = 100,000. For this sort of data, dictionary learning finds
linear subspaces of small dimension where the patches live, leading to
effective applications in image processing [45]. Examples of a dictionary
for image patches is given in Figure 7.3.

In terms of optimization, Equation (7.3) is nonconvex and no known
algorithm has a guarantee of providing a global optimum in general,
whatever the choice of penalty Ω is. A typical approach to find a
local minimum is to use a block-coordinate scheme, which optimizes
X and W in turn, while keeping the other one fixed [46]. Other alter-
natives include the K-SVD algorithm [3] (when Ω is the �0-penalty), and
online learning techniques [86, 107] that have proven to be particularly
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Fig. 7.3. Left: Example of dictionary with p = 256 elements, learned on a database of natu-
ral 12 × 12 image patches when Ω is the �1-norm. Right: Dictionary with p = 400 elements,
learned with a structured sparsity-inducing penalty Ω (see [88]).

efficient when the number of signals q is large.1 Convex relaxations of
dictionary learning have also been proposed in [14, 26].

7.4 Bayesian Methods

While the focus of this monograph is on frequentist approaches to
sparsity, and particularly on approaches that minimize a regularized
empirical risk, there naturally exist several Bayesian2 approaches to
sparsity.

As a first remark, regularized optimization can be viewed as solving
a maximum a posteriori (MAP) estimation problem if the loss � (cf.
Section 1.2) defining f can be interpreted as a log-likelihood and the
norm as certain log-prior. Typically, the �1-norm can for instance be
interpreted as the logarithm of a product of independent Laplace priors
on the loading vectors w (see, e.g., [123]). However, the Laplace distri-
bution is actually not a sparse prior, in the sense that it is a continuous

1 Such efficient algorithms are freely available in the open-source software package SPAMS
http://www.di.ens.fr/willow/SPAMS/.

2 Bayesian methods can of course not be reduced to nonconvex optimization, but given
that they are often characterized by multimodality and that corresponding variational
formulations are typically nonconvex, we conveniently discuss them here.
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distribution whose samples are thus nonzero almost surely. Besides the
fact that MAP estimation is generally not considered as a Bayesian
method (the fundamental principle of Bayesian method is to integrate
over the uncertainty and avoid point estimates), evidence in the liter-
ature suggests that MAP is not a good principle to yield estimators
that are adapted to the corresponding prior. In particular, the Lasso
does in fact not provide a good algorithm to estimate vectors whose
coefficients follow a Laplace distribution [56]!

To obtain exact zeros in a Bayesian setting, one must use so called
“spike and slab” priors [63]. Inference with such priors leads to noncon-
vex optimization problems, and sampling methods, while also simple
to implement, do not come with any guarantees, in particular in high-
dimensional settings.

In reality, while obtaining exact zeros can be valuable from a compu-
tational point of view, it is a priori not necessary to obtain theoretical
guarantees associated with sparse methods. In fact, sparsity should be
understood as the requirement or expectation that a few coefficients
are significantly larger than most of the rest, an idea which is some-
how formalized as compressibility in the compressed sensing literature,
and which inspires automatic relevance determination methods (ARD)
and the use of heavy-tail priors among Bayesian approaches [97, 148].
Using heavy-tailed prior distribution on wi allows to obtain posterior
estimates with many small values and a few large values, this effect
being stronger when the tails are heavier, in particular with Student’s
t-distribution. Heavy-tailed distributions and ARD are very related
since these prior distributions can be expressed as scaled mixture of
Gaussians [5, 31]. This is of interest computationally, in particular for
variational methods.

Variable selection is also obtained in a Bayesian setting by optimiz-
ing the marginal likelihood of the data over the hyper-parameters, that
is using empirical Bayes estimation; in that context iterative methods
based on DC programming may be efficiently used [147].

It should be noted that the heavy-tail prior formulation points to an
interesting connection between sparsity and the notion of robustness in
statistics, in which a sparse subset of the data is allowed to take large
values. This is also suggested by works such as [149, 154].



8
Quantitative Evaluation

To illustrate and compare the methods presented in this monograph,
we consider in this section three benchmarks. These benchmarks are
chosen to be representative of problems regularized with sparsity-
inducing norms, involving different norms and different loss functions.
To make comparisons that are as fair as possible, each algorithm is
implemented in C/C++, using efficient BLAS and LAPACK libraries for
basic linear algebra operations. Most of these implementations have
been made available in the open-source software SPAMS.1 All subse-
quent simulations are run on a single core of a 3.07 GHz CPU, with
8 GB of memory. In addition, we take into account several criteria
which strongly influence the convergence speed of the algorithms. In
particular, we consider

(a) different problem scales,
(b) different levels of correlations between input variables,
(c) different strengths of regularization.

We also show the influence of the required precision by monitoring the
time of computation as a function of the objective function.

1 http://www.di.ens.fr/willow/SPAMS/.

78
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For the convenience of the reader, we list here the algorithms com-
pared and the acronyms we use to refer to them throughout this
section: the homotopy/LARS algorithm (LARS), coordinate-descent
(CD), reweighted-�2 schemes (Re-�2), simple proximal method (ISTA)
and its accelerated version (FISTA). Note that all methods except the
working set methods are very simple to implement as each iteration
is straightforward (for proximal methods such as FISTA or ISTA, as
long as the proximal operator may be computed efficiently). On the
contrary, as detailed in Section 6.2, homotopy methods require some
care in order to achieve the performance we report in this section.

We also include in the comparisons generic algorithms such as a sub-
gradient descent algorithm (SG), and a commercial software2 for cone
(CP), quadratic (QP) and second-order cone programming (SOCP)
problems.

8.1 Speed Benchmarks for Lasso

We first present a large benchmark evaluating the performance of var-
ious optimization methods for solving the Lasso.

We perform small-scale (n = 200,p = 200) and medium-scale (n =
2000,p = 10,000) experiments. We generate design matrices as follows.
For the scenario with low correlations, all entries of X are indepen-
dently drawn from a Gaussian distributionN (0,1/n), which is a setting
often used to evaluate optimization algorithms in the literature. For
the scenario with large correlations, we draw the rows of the matrix X

from a multivariate Gaussian distribution for which the average abso-
lute value of the correlation between two different columns is eight times
the one of the scenario with low correlations. Test data vectors are taken
of the form y = Xw + n where w are randomly generated, with two
levels of sparsity to be used with the two different levels of regulariza-
tion; n is a noise vector whose entries are i.i.d. samples from a Gaussian
distribution N (0,0.01‖Xw‖22/n). In the low regularization setting the
sparsity of the vectors w is s = 0.5min(n,p), and, in the high regular-
ization one, s = 0.01min(n,p), corresponding to fairly sparse vectors.

2 Mosek, available at http://www.mosek.com/.
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For SG, we take the step size to be equal to a/(k + b), where k is the
iteration number, and (a,b) are the best3 parameters selected on a log-
arithmic grid (a,b) ∈ {103, . . . ,10} × {102,103,104}; we proceeded this
way not to disadvantage SG by an arbitrary choice of stepsize.

To sum up, we make a comparison for eight different conditions
(2 scales × 2 levels of correlation × 2 levels of regularization). All
results are reported on Figures 8.1, 8.2, by averaging 5 runs for each
experiment. Interestingly, we observe that the relative performance of
the different methods change significantly with the scenario.

Our conclusions for the different methods are as follows:

• LARS/homotopy methods: For the small-scale problem,
LARS outperforms all other methods for almost every sce-
nario and precision regime. It is therefore definitely the right
choice for the small-scale setting. Unlike first-order meth-
ods, its performance does not depend on the correlation of
the design matrix X, but rather on the sparsity s of the
solution. In our larger scale setting, it has been competi-
tive either when the solution is very sparse (high regulariza-
tion), or when there is high correlation in X (in that case,
other methods do not perform as well). More importantly, the
homotopy algorithm gives an exact solution and computes
the regularization path.

• Proximal methods (ISTA, FISTA): FISTA outperforms
ISTA in all scenarios but one. Both methods are close for
high regularization or low correlation, but FISTA is signifi-
cantly better for high correlation or/and low regularization.
These methods are almost always outperformed by LARS
in the small-scale setting, except for low precision and low
correlation.
Both methods suffer from correlated features, which is consis-
tent with the fact that their convergence rate depends on the
correlation between input variables (convergence as a geo-
metric sequence when the correlation matrix is invertible,

3 “The best step size” is understood here as being the step size leading to the smallest
objective function after 500 iterations.
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Fig. 8.1. Benchmark for solving the Lasso for the small-scale experiment (n = 200, p = 200),
for the two levels of correlation and two levels of regularization, and eight optimization
methods (see main text for details). The curves represent the relative value of the objective
function as a function of the computational time in second on a log10 / log10 scale.

and as the inverse of a degree-two polynomial otherwise).
They are well adapted to large-scale settings, with low or
medium correlation.
• Coordinate descent (CD): The theoretical analysis of

these methods suggest that they behave in a similar way to
proximal methods [103, 124]. However, empirically, we have
observed that the behavior of CD often consists of a first
“warm-up” stage followed by a fast convergence phase.
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Fig. 8.2. Benchmark for solving the Lasso for the medium-scale experiment n = 2,000,
p = 10,000, for the two levels of correlation and two levels of regularization, and eight
optimization methods (see main text for details). The curves represent the relative value of
the objective function as a function of the computational time in second on a log10 / log10
scale.

Its performance in the small-scale setting is competitive (even
though always behind LARS), but less efficient in the large-
scale one. For a reason we cannot explain, it suffers less than
proximal methods from correlated features.

• Reweighted-�2: This method was outperformed in all our
experiments by other dedicated methods.4 Note that we

4 Note that the reweighted-�2 scheme requires solving iteratively large-scale linear system
that are badly conditioned. Our implementation uses LAPACK Cholesky decompositions,
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considered only the smoothed alternating scheme of Section 5
and not first order methods in η such as that of [110]. A more
exhaustive comparison should include these as well.

• Generic Methods (SG, QP, CP): As expected, generic
methods are not adapted for solving the Lasso and are always
outperformed by dedicated ones such as LARS.

Among the methods that we have presented, some require an initial
overhead computation of the Gram matrix X�X: this is the case for
coordinate descent and reweighted-�2 methods. We took into account
this overhead time in all figures, which explains the behavior of the cor-
responding convergence curves. Like homotopy methods, these methods
could also benefit from an offline pre-computation of X�X and would
therefore be more competitive if the solutions corresponding to several
values of the regularization parameter have to be computed.

We have considered in the above experiments the case of the square
loss. Obviously, some of the conclusions drawn above would not be valid
for other smooth losses. On the one hand, the LARS is no longer appli-
cable; on the other hand, proximal methods are clearly still available
and coordinate descent schemes, which were dominated by the LARS
in our experiments, turn out to be very good contenders in that setting
as we illustrate in the next Section.

8.2 Group-Sparsity for Multi-Task Learning

For �1-regularized least-squares regression, homotopy methods have
appeared in the previous section as one of the best techniques, in almost
all the experimental conditions.

This second speed benchmark explores a setting where this homo-
topy approach cannot be applied anymore. In particular, we consider a
multi-class classification problem in the context of cancer diagnosis. We
address this problem from a multi-task viewpoint [106]. To this end, we
take the regularizer to be �1/�2- and �1/�∞-norms, with (nonoverlap-
ping) groups of variables penalizing features across all classes [82, 106].

but a better performance might be obtained using a pre-conditioned conjugate gradient,
especially in the very large scale setting.
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As a data-fitting term, we now choose a simple “1-vs-all” logistic loss
function.

We focus on two multi-class classification problems in the “small n,
large p” setting, based on two datasets5 of gene expressions. The
medium-scale dataset contains n = 83 observations, p = 2308 variables
and 4 classes, while the large-scale one contains n = 308 samples,
p = 15,009 variables and 26 classes. Both datasets exhibit highly cor-
related features.

In addition to ISTA, FISTA, and SG, we consider here the block
coordinate-descent (BCD) from [140] presented in Section 4. We also
consider a working-set strategy on top of BCD, that optimizes over the
full set of features (including the non-active ones) only once every four
iterations. As further discussed in Section 4, it is worth mentioning
that the multi-task setting is well suited for the method of [140] since
an appropriate approximation of the Hessian can be easily computed.

All the results are reported in Figures 8.3 and 8.4. As expected in
the light of the benchmark for the Lasso, BCD appears as the best
option, regardless of the sparsity/scale conditions.

8.3 Structured Sparsity

In this second series of experiments, the optimization techniques of the
previous sections are further evaluated when applied to other types of
loss and sparsity-inducing functions. Instead of the �1-norm previously
studied, we focus on the particular hierarchical �1/�2-norm Ω intro-
duced in Section 3.

From an optimization standpoint, although Ω shares some similar-
ities with the �1-norm (e.g., the convexity and the nonsmoothness), it
differs in that it cannot be decomposed into independent parts (because
of the overlapping structure of G). Coordinate descent schemes hinge
on this property and as a result, cannot be straightforwardly applied
in this case.

5 The two datasets we use are SRBCT and 14 Tumors, which are freely available at
http://www.gems-system.org/.
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Fig. 8.3. Medium- and large-scale multi-class classification problems with an �1/�2-
regularization, for three optimization methods (see details about the datasets and the meth-
ods in the main text). Three levels of regularization are considered. The curves represent
the relative value of the objective function as a function of the computation time in second
on a log10 / log10 scale. In the highly regularized setting, the tuning of the step-size for
the subgradient turned out to be difficult, which explains the behavior of SG in the first
iteration.

8.3.1 Denoising of Natural Image Patches

In this first benchmark, we consider a least-squares regression problem
regularized by Ω that arises in the context of the denoising of natural
image patches [68]. In particular, based on a hierarchical set of features
that accounts for different types of edge orientations and frequencies in
natural images, we seek to reconstruct noisy 16× 16-patches. Although
the problem involves a small number of variables (namely p = 151),
it has to be solved repeatedly for thousands of patches, at moder-
ate precision. It is therefore crucial to be able to solve this problem
efficiently.
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Fig. 8.4. Medium- and large-scale multi-class classification problems with an �1/�∞-
regularization for three optimization methods (see details about the datasets and the meth-
ods in the main text). Three levels of regularization are considered. The curves represent
the relative value of the objective function as a function of the computation time in second
on a log10 / log10 scale. In the highly regularized setting, the tuning of the step-size for
the subgradient turned out to be difficult, which explains the behavior of SG in the first
iterations.

The algorithms that take part in the comparisons are ISTA, FISTA,
Re-�2, SG, and SOCP. All results are reported in Figure 8.5, by aver-
aging 5 runs.

We can draw several conclusions from the simulations. First, we
observe that across all levels of sparsity, the accelerated proximal
scheme performs better, or similarly, than the other approaches. In
addition, as opposed to FISTA, ISTA seems to suffer in nonsparse sce-
narios. In the least sparse setting, the reweighted-�2 scheme matches
the performance of FISTA. However this scheme does not yield truly
sparse solutions, and would therefore require a subsequent thresholding
operation, which can be difficult to motivate in a principled way. As
expected, the generic techniques such as SG and SOCP do not compete
with the dedicated algorithms.
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Fig. 8.5. Benchmark for solving a least-squares regression problem regularized by the hierar-
chical norm Ω. The experiment is small scale, n = 256,p = 151, and shows the performances
of five optimization methods (see main text for details) for three levels of regularization.
The curves represent the relative value of the objective function as a function of the com-
putational time in second on a log10 / log10 scale.

8.3.2 Multi-class Classification of Cancer Diagnosis

This benchmark focuses on multi-class classification of cancer diagnosis
and reuses the two datasets from the multi-task problem of Section 8.2.
Inspired by [73], we build a tree-structured set of groups of features G
by applying Ward’s hierarchical clustering [71] on the gene expressions.
The norm Ω built that way aims at capturing the hierarchical structure
of gene expression networks [73]. For more details about this construc-
tion, see [67] in the context of neuroimaging. The resulting datasets
with tree-structured sets of features contain p = 4615 and p = 30,017
variables, for respectively the medium- and large-scale datasets.

Instead of the square loss function, we consider the multinomial
logistic loss function, which is better suited for multi-class classifica-
tion problems. As a direct consequence, the algorithms whose applica-
bility crucially depends on the choice of the loss function are removed
from the benchmark. This is for instance the case for reweighted-�2
schemes that have closed-form updates available only with the square
loss (see Section 5). Importantly, the choice of the multinomial logistic
loss function requires one to optimize over a matrix with dimensions
p times the number of classes (i.e., a total of 4615 × 4 ≈ 18,000 and
30,017 × 26 ≈ 780,000 variables). Also, for lack of scalability, generic
interior point solvers could not be considered here. To summarize, the
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Fig. 8.6. Medium- and large-scale multi-class classification problems for three optimization
methods (see details about the datasets and the methods in the main text). Three levels
of regularization are considered. The curves represent the relative value of the objective
function as a function of the computation time in second on a log10 / log10 scale. In the
highly regularized setting, the tuning of the step-size for the subgradient turned out to be
difficult, which explains the behavior of SG in the first iterations.

following comparisons involve ISTA, FISTA, and SG; for subgradient
descent, we set the step size either to a/(k + b) or to a/(

√
k + b) (in

which case we refer to it in figure legends respectively as SG and SGsqrt),
where k is the iteration number, and (a,b) are best parameters selected
on a logarithmic grid. . . .

All the results are reported in Figure 8.6. The benchmark especially
points out that the accelerated proximal scheme performs overall better
than the two other methods. Again, it is important to note that both
proximal algorithms yield sparse solutions, which is not the case for SG.
More generally, this experiment illustrates the flexibility of proximal
algorithms with respect to the choice of the loss function.
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8.3.3 General Overlapping Groups of Variables

We consider a structured sparse decomposition problem with overlap-
ping groups of �∞-norms, and compare the proximal gradient algorithm
FISTA [17] consider the proximal operator presented in Section 3.3
(referred to as ProxFlow [87]). Since, the norm we use is a sum of sev-
eral simple terms, we can bring to bear other optimization techniques
which are dedicated to this situation, namely proximal splitting method
known as alternating direction method of multipliers (ADMM) (see,
e.g., [24, 38]). We consider two variants, (ADMM) and (Lin-ADMM) —
see more details in [88].

We consider a design matrix X in R
n×p built from overcomplete

dictionaries of discrete cosine transforms (DCT), which are naturally
organized on one- or two-dimensional grids and display local correla-
tions. The following families of groups G using this spatial informa-
tion are thus considered: (1) every contiguous sequence of length 3
for the one-dimensional case, and (2) every 3× 3-square in the two-
dimensional setting. We generate vectors y in R

n according to the lin-
ear model y = Xw0 + ε, where ε ∼ N (0,0.01‖Xw0‖22). The vector w0

has about 20% nonzero components, randomly selected, while respect-
ing the structure of G, and uniformly generated in [−1,1].

In our experiments, the regularization parameter λ is chosen to
achieve the same level of sparsity (20%). For SG, ADMM and Lin-
ADMM, some parameters are optimized to provide the lowest value
of the objective function after 1000 iterations of the respective algo-
rithms. For SG, we take the step size to be equal to a/(k + b),
where k is the iteration number, and (a,b) are the pair of parameters
selected in {10−3, . . . ,10}×{102,103,104}. The parameter γ for ADMM
is selected in {10−2, . . . ,102}. The parameters (γ,δ) for Lin-ADMM are
selected in {10−2, . . . ,102} × {10−1, . . . ,108}. For interior point meth-
ods, since problem (1.1) can be cast either as a quadratic (QP)
or as a conic program (CP), we show in Figure 8.7 the results for
both formulations. On three problems of different sizes, with (n,p) ∈
{(100,103),(1024,104),(1024,105)}, our algorithms ProxFlow, ADMM
and Lin-ADMM compare favorably with the other methods, (see
Figure 8.7), except for ADMM in the large-scale setting which yields
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Fig. 8.7. Speed comparisons: distance to the optimal primal value versus CPU time (log–log
scale). Due to the computational burden, QP and CP could not be run on every problem.

an objective function value similar to that of SG after 104 seconds.
Among ProxFlow, ADMM and Lin-ADMM, ProxFlow is consistently
better than Lin-ADMM, which is itself better than ADMM. Note that
for the small scale problem, the performance of ProxFlow and Lin-
ADMM is similar. In addition, note that QP, CP, SG, ADMM and
Lin-ADMM do not obtain sparse solutions, whereas ProxFlow does.

8.4 General Comments

We conclude this section by a couple of general remarks on the exper-
iments that we presented. First, the use of proximal methods is often
advocated because of their optimal worst case complexities in O( 1

t2
)

(where t is the number of iterations). In practice, in our experiments,
these and several other methods exhibit empirically convergence rates
that are at least linear, if not better, which suggests that the adaptivity
of the method (e.g., its ability to take advantage of local curvature)
might be more crucial to its practical success. Second, our experiments
concentrated on regimes that are of interest for sparse methods in
machine learning where typically p is larger than n and where it is
possible to find good sparse solutions. The setting where n is much
larger than p was out of scope here, but would be worth a separate
study, and should involve methods from stochastic optimization. Also,
even though it might make sense from an optimization viewpoint, we
did not consider problems with low levels of sparsity, that is with more
dense solution vectors, since it would be a more difficult regime for
many of the algorithms that we presented (namely LARS, CD or prox-
imal methods).



9
Extensions

We obviously could not cover exhaustively the literature on algorithms
for sparse methods in this monograh.

Surveys and comparisons of algorithms for sparse methods have
been proposed in [118] and [155]. These articles present quite a few
algorithms, but focus essentially on �1-regularization and unfortunately
do not consider proximal methods. Also, it is not clear that the met-
rics used to compare the performance of various algorithms is the most
relevant to machine learning; in particular, we present the full conver-
gence curves that we believe are more informative than the ordering of
algorithms at fixed precision.

Beyond the material presented here, there a few topics that we did
not develop and that are worth mentioning.

In the section on proximal methods, we presented the proximal
methods called forward–backward splitting methods. We applied them
to objectives which are the sum of two terms: a differentiable func-
tion with Lipschitz-continuous gradients and a norm. More generally
these methods apply to the sum of two semi-lower continuous (l.s.c.),
proper, convex functions with non-empty domain, and where one ele-
ment is assumed differentiable with Lipschitz-continuous gradient [38].

91
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The proximal operator itself dates back to [94] and proximal methods
themselves date back to [81, 91]. As of today, they have been extended
to various settings [36, 38, 39, 138]. In particular, instances of prox-
imal methods are still applicable if the smoothness assumptions that
we made on the loss are relaxed. For example, the Douglas–Rachford
splitting algorithm applies as soon as the objective function to min-
imize is only assumed l.s.c. proper convex, without any smoothness
properties (although a l.s.c. convex function is continuous inside of its
domain). The augmented Lagrangian techniques (see [24, 38, 54] and
numerous references therein) and more precisely their variants known
as alternating-direction methods of multipliers are related to proximal
methods via duality. These methods are in particular applicable to
cases where several regularizations and constraints are mixed [88, 135].

For certain combination of losses and regularizations, dedicated
methods have been proposed. This is the case for linear regression with
the least absolute deviation (LAD) loss (also called �1-loss) with an �1-
norm regularizer, which leads to a linear program [152]. This is also the
case for algorithms designed for classical multiple kernel learning when
the regularizer is the squared norm [110, 128, 131]; these methods are
therefore not exactly comparable to the MKL algorithms presented in
this monograph which apply to objective regularized by the unsquared
norm (except for reweighted �2-schemes, based on variational formula-
tions for the squared norm).

In the context of proximal methods, the metric used to define the
proximal operator can be modified by judicious rescaling operations, in
order to fit better the geometry of the data [43]. Moreover, they can be
mixed with Newton and quasi-Newton methods, for further acceleration
(see, e.g., [119]).

Finally, from a broader outlook, our — a priori determinis-
tic — optimization problem (1.1) may also be tackled with stochas-
tic optimization approaches, which has been the focus of much recent
research [21, 23, 43, 60, 125, 153].
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Conclusions

We have tried to provide in this monograph a unified view of spar-
sity and structured sparsity as it can emerge when convex analysis
and convex optimization are used as the conceptual basis to formalize
respectively problems and algorithms. In that regard, we did not aim at
exhaustivity and other paradigms are likely to provide complementary
views.

With convexity as a requirement however, using non-smooth norms
as regularizers is arguably the most natural way to encode sparsity
constraints. A main difficulty associated with these norms is that they
are intrinsically non-differentiable; they are however fortunately also
structured, so that a few concepts can be leveraged to manipulate and
solve problems regularized with them. To summarize:

— Fenchel–Legendre duality and the dual norm allow to com-
pute subgradients, duality gaps and are also key to exploit
sparsity algorithmically via working set methods. More triv-
ially, duality also provides an alternative formulation to the
initial problem which is sometimes more tractable.
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— The proximal operator, when it can be computed efficiently
(exactly or approximately), allows one to treat the optimiza-
tion problem as if it were a smooth problem.

— Quadratic variational formulations provide an alternative
way to decouple the difficulties associated with the loss and
the nondifferentiability of the norm.

Leveraging these different tools led us to present and compare
four families of algorithms for sparse methods: proximal methods,
block-coordinate descent algorithms, reweighted-�2 schemes and the
LARS/homotopy algorithms that are representative of the state of the
art. The properties of these methods can be summarized as follows:

— Proximal methods provide efficient and scalable algorithms
that are applicable to a wide family of loss functions, that
are simple to implement, compatible with many sparsity-
inducing norms and often competitive with the other
methods considered.

— For the square loss, the homotopy method remains the fastest
algorithm for (a) small and medium scale problems, since
its complexity depends essentially on the size of the active
sets, (b) cases with very correlated designs. It computes the
whole path up to a certain sparsity level. Its main drawback
is that it is difficult to implement efficiently, and it is sub-
ject to numerical instabilities. On the other hand, coordinate
descent and proximal algorithms are trivial to implement.

— For smooth losses, block-coordinate descent provides one
of the fastest algorithms but it is limited to separable
regularizers.

— For the square-loss and possibly sophisticated sparsity
inducing regularizers, reweighted-�2 schemes provide generic
algorithms, that are still pretty competitive compared to sub-
gradient and interior point methods. For general losses, these
methods currently require to solve iteratively �2-regularized
problems and it would be desirable to relax this constraint.
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Of course, many learning problems are by essence nonconvex and
several approaches to inducing (sometimes more aggressively) sparsity
are also nonconvex. Beyond providing an overview of these methods to
the reader as a complement to the convex formulations, we have tried
to suggest that faced with nonconvex nondifferentiable and therefore
potentially quite hard problems to solve, a good strategy is to try and
reduce the problem to solving iteratively convex problems, since more
stable algorithms are available and progress can be monitored with
duality gaps.

Last but not least, duality suggests strongly that multiple kernel
learning is in a sense the dual view to sparsity, and provides a natural
way, via the “kernel trick”, to extend sparsity to reproducing kernel
Hilbert spaces. We have therefore illustrated throughout the text that
rather than being a vague connection, this duality can be exploited
both conceptually, leading to the idea of structured MKL, and algo-
rithmically to kernelize all of the algorithms we considered so as to
apply them in the MKL and RKHS settings.
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