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Problem set-up
Sampling with iterative algorithms

e Sampling from probability distribution p(z) = - exp(—f(x))

— high-dimensional and “complex”
— f given (without Z) or f estimated from i.i.d. data



Problem set-up
Sampling with iterative algorithms

e Sampling from probability distribution p(z) = - exp(—f(x))
— high-dimensional and “complex”
— f given (without Z) or f estimated from i.i.d. data

e Applications

— Image generation p(x)
— Conditional image generation p(x|y) < p(y|x)p(x)
— Protein discovery (Frey et al., 2024), etc.



Application to image generation
“Panda riding a bicycle in Paris”
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Application to image generation
“Darth vador riding a bicycle in the grand canyon”

https://stablediffusionweb.com/



Problem set-up
Sampling with iterative algorithms

e Sampling from probability distribution p(z) = - exp(—f(x))
— high-dimensional and “complex”
— f given (without Z) or f estimated from i.i.d. data

e Applications

— Image generation p(x)
— Conditional image generation p(x|y) < p(y|x)p(x)
— Protein discovery (Frey et al., 2024), etc.

e Main difficulty

— Multimodal distributions
— Curse of dimensionality
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Problem set-up
Sampling with iterative algorithms

e Sampling from probability distribution p(z) = - exp(—f(x))

— high-dimensional and “complex”
— f given (without Z) or f estimated from i.i.d. data

e Langevin algorithms
— Discretization of diffusion dX; = —V f(X;)dt + V2dB;:

Trr1 = Tk — YV f (1) + /27 - N(0, )

— (slow) convergence (see, e.g., Bakry et al., 2008)
— fast for smooth log-concave distributions (e.g., f convex)

(Dalalyan, 2017, Durmus and Moulines, 2017, Chewi, 2022, etc.)



From log-concave to non-log-concave
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Problem set-up
Sampling with iterative algorithms

e Sampling from probability distribution p(z) x exp(—f(x))
— high-dimensional and “complex”

— f given or f estimated from i.i.d. data

e Langevin algorithms
— Discretization of diffusion dX; = —V f(X;)dt + V2dBy:

Trr1 = Tk — YV f (1) + /27 - N(0, )

— (slow) convergence (see, e.g., Bakry et al., 2008)
— fast for smooth log-concave distributions (e.g., f convex)

(Dalalyan, 2017, Durmus and Moulines, 2017, Chewi, 2022, etc.)

e Going beyond log-concave distributions



A short introduction to denoising diffusion models
(Song and Ermon, 2019, Song et al., 2019)

[following expositions from Bortoli (2023) and Peyré (2023)]

e Forward flow

— Ornstein-Uhlenbeck process dX; = — X, dt + /2dB;

— started from p(x) < exp(—f(z)) at time t =0

— marginal distribution: X; = e *Xy + 1 —e=2t . N(0,1)
(explicit integration: X; = e 'Xg+ e 'Boau_q)




From data to standard Gaussian

t=1.33 t=1.42

t=1.58
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e Forward flow

— Ornstein-Uhlenbeck process dX; = — X, dt + /2dB;
— started from p(x) < exp(—f(z)) at time t =0
— marginal distribution: X; = e *Xy + 1 —e=2t . N(0,1)

e Backward flow

— For T large, X7 =~ N(0,I) = backward simulations
— Y, = Xp_, follows dY; = [Y; + 2V log ro_(Y;)]dt + /2d B,
with 7; the density of X;



A short introduction to denoising diffusion models
(Song and Ermon, 2019, Song et al., 2019)

[following expositions from Bortoli (2023) and Peyré (2023)]

e Forward flow

— Ornstein-Uhlenbeck process dX; = — X, dt + /2dB;
— started from p(x) < exp(—f(z)) at time t =0
— marginal distribution: X; = e *Xy + 1 —e=2t . N(0,1)

e Backward flow

— For T large, X7 =~ N(0,I) = backward simulations

— Y, = Xr_; follows dY; = [Y; + 2V log rr_:(Y;)]dt + /2d B,
with 7; the density of X;

— Simulate the backward SDE using “only” the densities of X,

Yk+1 = Yk + YUk + 29V 1og re_yx(yx) + /27 - N(O, 1)



Denoising score matching

e Score functions after adding noise Vlogr:(z) = VT:L‘ ()

— with r; density of X; = e ' X+ V1 —e—2t - N(0, I)
— equivalent to density of Xo+elv/1 — e=2t.N(0,1) = Xo+0-N(0,1)




Denoising score matching

e Score functions after adding noise Vlogr:(z) = Vrzt(x)

— with r; density of X; = e ' X+ V1 —e—2t - N(0, I)
— equivalent to density of Xo+elv/1 — e=2t.N(0,1) = Xo+0-N(0,1)

e Empirical Bayes (Robbins, 1956, Miyasawa, 1961)

— Notation: ¢, density of Y = X + o - N(0, )

— Key result: E[X|Y] =Y + 0%V log¢,(Y)

— Used within sampling procedure by Saremi and Hyvarinen (2019)
— Proof by integration by parts

— No need to know the normalization constant



Denoising score matching

e Score functions after adding noise Vlogr:(z) = Vrzt(x)

— with r; density of X; = e ' X+ V1 —e—2t - N(0, I)
— equivalent to density of Xo+elv/1 — e=2t.N(0,1) = Xo+0-N(0,1)

e Empirical Bayes (Robbins, 1956, Miyasawa, 1961)

— Notation: ¢, density of Y = X + o - N(0, )

— Key result: E[X|Y] =Y + 0%V log¢,(Y)

— Used within sampling procedure by Saremi and Hyvarinen (2019)
e Denoising score matching (Hyvarinen, 2005, Vincent, 2011)

— Estimate the density of the noisy variable y by minimizing

1 n
- > ||@i — yi — 0°Vlog go (ys]0)

1=1

I



A short introduction to denoising diffusion models
(Song and Ermon, 2019, Song et al., 2019)

e Learning score functions of noisy samples at various scales

— Denolsing score matching

e Denoising diffusion models

— Start from T’ large, yo = X7, and discretize the backward SDE

Yk+1 = Yk + YUk + 27€"*V log ¢o, (yre'™®) + /27 - N(0, 1)

— with t, =T — ’yk, and O = @T_’Yk\/l — e 2T+2vk



From data to standard Gaussian

t=1.33 t=1.42

t=1.58




A short introduction to denoising diffusion models
(Song and Ermon, 2019, Song et al., 2019)

e Learning score functions of noisy samples at various scales

— Denolsing score matching

e Denoising diffusion models

— Start from T’ large, yo = X7, and discretize the backward SDE

Yk+1 = Uk + VYk + 27V log ¢, (yxe™) + /2y - N(0, 1)

— with t, =T — ’yk, and O = @T_’Yk\/l — e 2T+2vk

e Alternative view (Saremi, Park, B., 2023)

— Diffusion freel



Sampling from a single measurement
(Saremi and Hyvarinen, 2019)

e Algorithm

1. Learn score at single scale 0: Y = X + o - N(0, 1)
2. Sample Y using Langevin diffusions (“walk™)
3. Denoise Y (“jumpn)



Sampling from a single measurement
(Saremi and Hyvarinen, 2019)

e Algorithm

1. Learn score at single scale 0: Y = X + o - N(0, I)
2. Sample Y using Langevin diffusions (“walk™)
3. Denoise Y (“jump”)

e Comparison to diffusions

— More stable, easier to run (single hyperparameter)
— o Is too large: Denoising is too “fuzzy”
— o is too small: Sampling is difficult



Sampling from a single measurement
(Saremi and Hyvarinen, 2019)

Noisy digits (c=1)

Walk-jump sampling (o=1)
E65555555555555555%33%2333%3%233333338323a32
233999989991 111111117777777706bblblbb666000
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494948080235 Ff8eeec e t1112222222222222222
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2222222222203 4444444444400 00009099999999

Walk-jump sampling (c=1/2)
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Sampling from a single measurement
(Saremi, Srivastava, B., 2023)
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Empirical Bayes with multiple measurements

e Empirical Bayes (Robbins, 1956, Miyasawa, 1961)

— Notation: ¢, density of Y = X + ¢ - N(0, )
— Key result: E[X|Y] =Y + 0%V log ¢, (Y)



Empirical Bayes with multiple measurements

e Empirical Bayes (Robbins, 1956, Miyasawa, 1961)
— Notation: ¢, density of Y = X + ¢ - N(0, )
— Key result: E[X|Y] =Y + 0%V log ¢, (Y)

e Multiple measurements: YV, =X +¢;,,1=1,...,m

— Posterior mean: E|X|Y7,...,Y,,] = Yy, + %QV 10g 45 /i (Y1:m)
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— Notation: ¢, density of Y = X + ¢ - N(0, )
— Key result: E[X|Y] =Y + 0%V log ¢, (Y)

e Multiple measurements: YV, =X +¢;,,1=1,...,m

— Posterior mean: E|X|Y7,...,Y,,] = Yy, + %QV 10g 45 /i (Y1:m)
with Yl:m — % ZZI Y;
— Increased concentration around the mean (S., P. and B., 2023)
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Empirical Bayes with multiple measurements

e Empirical Bayes (Robbins, 1956, Miyasawa, 1961)

— Notation: ¢, density of Y = X + ¢ - N(0, )
— Key result: E[X|Y] =Y + 0%V log ¢, (Y)

e Multiple measurements: YV, =X +¢;,,1=1,...,m

— Posterior mean: E|X|Y7,...,Y,,] = Yy, + %QV 10g 45 /i (Y1:m)
with Yl:m — % ZZI Y;
— Increased concentration around the mean (S., P. and B., 2023)

o o4d
Wa(law of X, law of E[X|Y7,...,Y,,])” < —
™m

— Improved results with “strong” priors

e Idea #1 (Saremi and Srivastava, 2022)
— Sampling X by sampling Y7,...,Y,, and then Empirical Bayes



ultimeasurement generative models
(Saremi and Srivastava, 2022)

X U1 2 3 4

x|y17°°°7y’m

till hard to sample from (y{,...,ym




Idea #2: Sequential denoising (S., P. and B., 2023)

e Multiple measurements: YV, =X +¢;,,1=1,...,m

e Algorithm

— Sample y; from Y;
— Iteratively sample y; from Y;|y1,...,y;—1, fori=1,....m



Idea #2: Sequential denoising (S., P. and B., 2023)

e Multiple measurements: YV, =X +¢;,,1=1,...,m

e Algorithm

— Sample y; from Y;

— Iteratively sample y; from Y;|y1,...,y;—1, fori=1,....m
e Sampling steps using Langevin algorithms

— Overall non-Markovian
— Each sampling step Markovian



First step

log p(y )




p(x)
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Idea #2: Sequential denoising (S., P. and B., 2023)

e Multiple measurements: YV, =X +¢;,,1=1,...,m

e Algorithm

— Sample y; from Y;
— Iteratively sample y; from Y;|y1,...,y;—1, fori=1,....m



Idea #2: Sequential denoising (S., P. and B., 2023)

e Multiple measurements: YV, =X +¢;,,1=1,...,m

e Algorithm

— Sample y; from Y;

— Iteratively sample y; from Y;|y1,...,y;—1, fori=1,....m
e Sampling steps using Langevin algorithms

— Feasibility:
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Idea #2: Sequential denoising (S., P. and B., 2023)

e Multiple measurements: YV, =X +¢;,,1=1,...,m

e Algorithm

— Sample y; from Y;

— Iteratively sample y; from Y;|y1,...,y;—1, fori=1,....m
e Sampling steps using Langevin algorithms

— Feasibility:

17 o _
Vi 108 p(Ym|y1, -+ s Ym—1) = — [y1:m—ym+EV log qa/m(ykm)}

e Main benefit

— If o large enough, only log-concave distributions to sample from

o

— If m large enough, NG Is small enough to obtain clean samples



More and more log-concave

e Single measurement: Y = X + o - N(0,])

— Enough Gaussian blurring leads to unimodality (Loog et al., 2001)
— Enough Gaussian blurring leads to log-concavity
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(e.g., for Gaussian mixtures: if 0% > diameter of means)



More and more log-concave

e Single measurement: Y = X + o - N(0,])

— Enough Gaussian blurring leads to unimodality (Loog et al., 2001)
— Enough Gaussian blurring leads to log-concavity
— “Proof” (see paper for quantitative statements)

5 1 1

V4logq(y) = —;[I - ﬁcov(X\Y — y)}

e Multiple measurements: Y, =X +0-N(0,1), i1 =1,...,m

1 1

Ve 1ogp(yml|y1,- - - Ym—1) = _ﬁ{l - ECOV(X‘?”’ e ,ym)}

— Conditioning reduces uncertainty (on average)
— See precise statements in paper for Gaussian mixtures



Synthetic experiments

e Mixtures of two Gaussians

— covariance matrices 721, Ay =6-(1,...,1) € R¢

Mixture of Gaussians ~ Mixture of Gaussians
’ —— d=2
2.0} —_—— =4
—— d=8
157 —e— d=16
o d=32
1.0} d=64
“““““ X~ px
0.5 ]
—
ooOC e
0 10 20 30 40 50 60

— SMS (sequential multimeasurement sampling)
— JMS (joint multimeasurement sampling)



Discussion

e Sampling from score functions of smoothed densities

— Similar steps to denoising diffusion models

— Clear initialization: o large enough to obtain log-concavity

— m large enough to obtain good quality samples

— Two hyperparameters: noise o and number of measurements m



Discussion

e Sampling from score functions of smoothed densities

— Similar steps to denoising diffusion models

— Clear initialization: o large enough to obtain log-concavity

— m large enough to obtain good quality samples

— Two hyperparameters: noise o and number of measurements m

e Extensions

— Application to image generation

— Link with stochastic localization (Montanari, 2023)

— Theoretical analysis of running time (see Chen et al., 2023)
— Beyond Gaussians and Euclidean geometry

— Conditional sampling

— Rigorous empirical evaluation



Link with stochastic localization (Montanari, 2023)

e Define Z; = tX + B; with X data and B; Brownian motion
— Fact 1: Marginal distribution of %Zt = X + N(O, %I)
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— Fact 2: dZt = E[X‘Zt]dt + dBt
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— Fact 3: E[X|Z;] = :Z; +;Vlogq,, ;(321)

— Sample Z; for t large by discretizing the diffusion



Link with stochastic localization (Montanari, 2023)

e Define Z; = tX + B; with X data and B; Brownian motion

— Fact 1: Marginal distribution of 2Z; = X + N(0, 1)
— Fact 2: dZ; = E| X |Z;]dt + dB;

— Fact 3: E[X|Z;] = :Z; +;Vlogq,, ;(321)

— Sample Z; for t large by discretizing the diffusion

s — Lit— Brs — B —
e Define Y, — ké (k—1)5 _ X 4 ké (k—1)6
0 0
— Brownian motion has independent increments
Brs — B._
ko . (k—1)6 N N(O,(S_lf)
— Recover multiple measurements with 0 = ﬁ
@ @ @ @ @ @ @ @ @ >
1 2 m t
0 2 2 o2

o o
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