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Problem set-up

Sampling with iterative algorithms

• Sampling from probability distribution p(x) = 1
Z exp(−f(x))

– high-dimensional and “complex”

– f given (without Z) or f estimated from i.i.d. data
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Sampling with iterative algorithms

• Sampling from probability distribution p(x) = 1
Z exp(−f(x))

– high-dimensional and “complex”

– f given (without Z) or f estimated from i.i.d. data

• Applications

– Image generation p(x)

– Conditional image generation p(x|y) ∝ p(y|x)p(x)
– Protein discovery (Frey et al., 2024), etc.



Application to image generation

“Panda riding a bicycle in Paris”

https://stablediffusionweb.com/



Application to image generation

“Darth vador riding a bicycle in the grand canyon”

https://stablediffusionweb.com/



Problem set-up

Sampling with iterative algorithms

• Sampling from probability distribution p(x) = 1
Z exp(−f(x))

– high-dimensional and “complex”

– f given (without Z) or f estimated from i.i.d. data

• Applications

– Image generation p(x)

– Conditional image generation p(x|y) ∝ p(y|x)p(x)
– Protein discovery (Frey et al., 2024), etc.

• Main difficulty

– Multimodal distributions

– Curse of dimensionality
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Problem set-up

Sampling with iterative algorithms

• Sampling from probability distribution p(x) = 1
Z exp(−f(x))

– high-dimensional and “complex”

– f given (without Z) or f estimated from i.i.d. data

• Langevin algorithms

– Discretization of diffusion dXt = −∇f(Xt)dt+
√
2dBt:

xk+1 = xk − γ∇f(xk) +
√

2γ ·N(0, I)

– (slow) convergence (see, e.g., Bakry et al., 2008)

– fast for smooth log-concave distributions (e.g., f convex)

(Dalalyan, 2017, Durmus and Moulines, 2017, Chewi, 2022, etc.)
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From log-concave to non-log-concave



From log-concave to non-log-concave



Problem set-up

Sampling with iterative algorithms

• Sampling from probability distribution p(x) ∝ exp(−f(x))

– high-dimensional and “complex”

– f given or f estimated from i.i.d. data

• Langevin algorithms

– Discretization of diffusion dXt = −∇f(Xt)dt+
√
2dBt:

xk+1 = xk − γ∇f(xk) +
√

2γ ·N(0, I)

– (slow) convergence (see, e.g., Bakry et al., 2008)

– fast for smooth log-concave distributions (e.g., f convex)

(Dalalyan, 2017, Durmus and Moulines, 2017, Chewi, 2022, etc.)

• Going beyond log-concave distributions



A short introduction to denoising diffusion models

(Song and Ermon, 2019, Song et al., 2019)

[following expositions from Bortoli (2023) and Peyré (2023)]

• Forward flow

– Ornstein-Uhlenbeck process dXt = −Xtdt+
√
2dBt

– started from p(x) ∝ exp(−f(x)) at time t = 0

– marginal distribution: Xt = e−tX0 +
√
1− e−2t ·N(0, I)

(explicit integration: Xt = e−tX0 + e−tBe2t−1)



From data to standard Gaussian
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√
2dBt

with rt the density of Xt



A short introduction to denoising diffusion models

(Song and Ermon, 2019, Song et al., 2019)

[following expositions from Bortoli (2023) and Peyré (2023)]

• Forward flow

– Ornstein-Uhlenbeck process dXt = −Xtdt+
√
2dBt

– started from p(x) ∝ exp(−f(x)) at time t = 0

– marginal distribution: Xt = e−tX0 +
√
1− e−2t ·N(0, I)

• Backward flow

– For T large, XT ≈ N(0, I) ⇒ backward simulations

– Yt = XT−t follows dYt = [Yt + 2∇ log rT−t(Yt)]dt+
√
2dBt

with rt the density of Xt

– Simulate the backward SDE using “only” the densities of Xt

yk+1 = yk + γyk + 2γ∇ log rT−γk(yk) +
√

2γ ·N(0, I)



Denoising score matching

• Score functions after adding noise ∇ log rt(x) =
∇rt
rt

(x)

– with rt density of Xt = e−tX0 +
√
1− e−2t ·N(0, I)

– equivalent to density ofX0+et
√
1− e−2t·N(0, I) = X0+σ·N(0, I)
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• Empirical Bayes (Robbins, 1956, Miyasawa, 1961)

– Notation: qσ density of Y = X + σ ·N(0, I)

– Key result: E
[

X|Y ] = Y + σ2∇ log qσ(Y )

– Used within sampling procedure by Saremi and Hyvärinen (2019)

– Proof by integration by parts

– No need to know the normalization constant



Denoising score matching

• Score functions after adding noise ∇ log rt(x) =
∇rt
rt

(x)

– with rt density of Xt = e−tX0 +
√
1− e−2t ·N(0, I)

– equivalent to density ofX0+et
√
1− e−2t·N(0, I) = X0+σ·N(0, I)

• Empirical Bayes (Robbins, 1956, Miyasawa, 1961)

– Notation: qσ density of Y = X + σ ·N(0, I)

– Key result: E
[

X|Y ] = Y + σ2∇ log qσ(Y )

– Used within sampling procedure by Saremi and Hyvärinen (2019)

• Denoising score matching (Hyvärinen, 2005, Vincent, 2011)

– Estimate the density of the noisy variable y by minimizing

1

n

n
∑

i=1

∥

∥xi − yi − σ2∇ log qσ(yi|θ)
∥

∥

2



A short introduction to denoising diffusion models

(Song and Ermon, 2019, Song et al., 2019)

• Learning score functions of noisy samples at various scales

– Denoising score matching

• Denoising diffusion models

– Start from T large, y0 = XT , and discretize the backward SDE

yk+1 = yk + γyk + 2γetk∇ log qσk
(yke

tk) +
√

2γ ·N(0, I)

– with tk = T − γk, and σk = eT−γk
√
1− e−2T+2γk



From data to standard Gaussian



A short introduction to denoising diffusion models

(Song and Ermon, 2019, Song et al., 2019)

• Learning score functions of noisy samples at various scales

– Denoising score matching

• Denoising diffusion models

– Start from T large, y0 = XT , and discretize the backward SDE

yk+1 = yk + γyk + 2γetk∇ log qσk
(yke

tk) +
√

2γ ·N(0, I)

– with tk = T − γk, and σk = eT−γk
√
1− e−2T+2γk

• Alternative view (Saremi, Park, B., 2023)

– Diffusion free!



Sampling from a single measurement

(Saremi and Hyvärinen, 2019)

• Algorithm

1. Learn score at single scale σ: Y = X + σ ·N(0, I)

2. Sample Y using Langevin diffusions (“walk”)

3. Denoise Y (“jump”)



Sampling from a single measurement

(Saremi and Hyvärinen, 2019)

• Algorithm

1. Learn score at single scale σ: Y = X + σ ·N(0, I)

2. Sample Y using Langevin diffusions (“walk”)

3. Denoise Y (“jump”)

• Comparison to diffusions

– More stable, easier to run (single hyperparameter)

– σ is too large: Denoising is too “fuzzy”

– σ is too small: Sampling is difficult



Sampling from a single measurement

(Saremi and Hyvärinen, 2019)

Noisy digits (σ=1)

Walk-jump sampling (σ=1)

Walk-jump sampling (σ=1/2)



Sampling from a single measurement

(Saremi, Srivastava, B., 2023)



Empirical Bayes with multiple measurements

• Empirical Bayes (Robbins, 1956, Miyasawa, 1961)

– Notation: qσ density of Y = X + σ ·N(0, I)

– Key result: E
[

X|Y ] = Y + σ2∇ log qσ(Y )
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• Empirical Bayes (Robbins, 1956, Miyasawa, 1961)

– Notation: qσ density of Y = X + σ ·N(0, I)

– Key result: E
[

X|Y ] = Y + σ2∇ log qσ(Y )

• Multiple measurements: Yi = X + εi, i = 1, . . . ,m

– Posterior mean: E
[

X|Y1, . . . , Ym] = Ȳ1:m + σ2

m∇ log qσ/
√
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with Ȳ1:m = 1
m

∑m
i=1 Yi
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• Empirical Bayes (Robbins, 1956, Miyasawa, 1961)

– Notation: qσ density of Y = X + σ ·N(0, I)

– Key result: E
[

X|Y ] = Y + σ2∇ log qσ(Y )

• Multiple measurements: Yi = X + εi, i = 1, . . . ,m

– Posterior mean: E
[

X|Y1, . . . , Ym] = Ȳ1:m + σ2

m∇ log qσ/
√
m(Ȳ1:m)

with Ȳ1:m = 1
m

∑m
i=1 Yi

– Increased concentration around the mean (S., P. and B., 2023)

W2

(

law of X, law of E[X|Y1, . . . , Ym]
)2

6
σ2d

m
– Improved results with “strong” priors



Empirical Bayes with multiple measurements

• Empirical Bayes (Robbins, 1956, Miyasawa, 1961)

– Notation: qσ density of Y = X + σ ·N(0, I)

– Key result: E
[

X|Y ] = Y + σ2∇ log qσ(Y )

• Multiple measurements: Yi = X + εi, i = 1, . . . ,m

– Posterior mean: E
[

X|Y1, . . . , Ym] = Ȳ1:m + σ2

m∇ log qσ/
√
m(Ȳ1:m)

with Ȳ1:m = 1
m

∑m
i=1 Yi

– Increased concentration around the mean (S., P. and B., 2023)

W2

(

law of X, law of E[X|Y1, . . . , Ym]
)2

6
σ2d

m
– Improved results with “strong” priors

• Idea #1 (Saremi and Srivastava, 2022)

– Sampling X by sampling Y1, . . . , Ym and then Empirical Bayes



Multimeasurement generative models

(Saremi and Srivastava, 2022)

x y1 y2 y3 y4 ȳ1:m

E[x|y1, . . . , ym]

• Still hard to sample from (y1, . . . , ym)



Idea #2: Sequential denoising (S., P. and B., 2023)

• Multiple measurements: Yi = X + εi, i = 1, . . . ,m

• Algorithm

– Sample y1 from Y1

– Iteratively sample yi from Yi|y1, . . . , yi−1, for i = 1, . . . ,m



Idea #2: Sequential denoising (S., P. and B., 2023)

• Multiple measurements: Yi = X + εi, i = 1, . . . ,m

• Algorithm

– Sample y1 from Y1

– Iteratively sample yi from Yi|y1, . . . , yi−1, for i = 1, . . . ,m

• Sampling steps using Langevin algorithms

– Overall non-Markovian

– Each sampling step Markovian



First step

-log p(x) -log p(y
1
)

Langevin p(x) Langevin p(y
1
)



m = 2



m = 8



m = 32



m = 64
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m(ȳ1:m)

]



Idea #2: Sequential denoising (S., P. and B., 2023)

• Multiple measurements: Yi = X + εi, i = 1, . . . ,m

• Algorithm

– Sample y1 from Y1

– Iteratively sample yi from Yi|y1, . . . , yi−1, for i = 1, . . . ,m

• Sampling steps using Langevin algorithms

– Feasibility:

∇ym log p(ym|y1, . . . , ym−1) =
1

σ2

[

ȳ1:m−ym+
σ2

m
∇ log qσ/

√
m(ȳ1:m)

]

• Main benefit

– If σ large enough, only log-concave distributions to sample from

– If m large enough, σ√
m

is small enough to obtain clean samples



More and more log-concave

• Single measurement: Y = X + σ ·N(0, I)

– Enough Gaussian blurring leads to unimodality (Loog et al., 2001)

– Enough Gaussian blurring leads to log-concavity
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– Enough Gaussian blurring leads to unimodality (Loog et al., 2001)

– Enough Gaussian blurring leads to log-concavity

– “Proof” (see paper for quantitative statements)

∇2 log q(y) = − 1

σ2

[

I − 1

σ2
cov(X|Y = y)

]

(e.g., for Gaussian mixtures: if σ2 > diameter of means)



More and more log-concave

• Single measurement: Y = X + σ ·N(0, I)

– Enough Gaussian blurring leads to unimodality (Loog et al., 2001)

– Enough Gaussian blurring leads to log-concavity

– “Proof” (see paper for quantitative statements)

∇2 log q(y) = − 1

σ2

[

I − 1

σ2
cov(X|Y = y)

]

• Multiple measurements: Yi = X + σ ·N(0, I), i = 1, . . . ,m

∇2
ym log p(ym|y1, . . . , ym−1) = − 1

σ2

[

I − 1

σ2
cov(X|y1, . . . , ym)

]

– Conditioning reduces uncertainty (on average)

– See precise statements in paper for Gaussian mixtures



Synthetic experiments

• Mixtures of two Gaussians

– covariance matrices τ2I, ∆µ = 6 · (1, . . . , 1) ∈ R
d

– SMS (sequential multimeasurement sampling)

– JMS (joint multimeasurement sampling)



Discussion

• Sampling from score functions of smoothed densities

– Similar steps to denoising diffusion models

– Clear initialization: σ large enough to obtain log-concavity

– m large enough to obtain good quality samples

– Two hyperparameters: noise σ and number of measurements m



Discussion

• Sampling from score functions of smoothed densities

– Similar steps to denoising diffusion models

– Clear initialization: σ large enough to obtain log-concavity

– m large enough to obtain good quality samples

– Two hyperparameters: noise σ and number of measurements m

• Extensions

– Application to image generation

– Link with stochastic localization (Montanari, 2023)

– Theoretical analysis of running time (see Chen et al., 2023)

– Beyond Gaussians and Euclidean geometry

– Conditional sampling

– Rigorous empirical evaluation
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• Define Zt = tX +Bt with X data and Bt Brownian motion

– Fact 1: Marginal distribution of 1
tZt = X +N(0, 1tI)
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Link with stochastic localization (Montanari, 2023)

• Define Zt = tX +Bt with X data and Bt Brownian motion

– Fact 1: Marginal distribution of 1
tZt = X +N(0, 1tI)

– Fact 2: dZt = E[X|Zt]dt+ dBt

– Fact 3: E[X|Zt] =
1
tZt +

1
t∇ log q1/

√
t

(

1
tZt

)

– Sample Zt for t large by discretizing the diffusion

• Define Yk =
Zkδ − Z(k−1)δ

δ
= X +

Bkδ −B(k−1)δ

δ

– Brownian motion has independent increments

Bkδ −B(k−1)δ

δ
∼ N(0, δ−1I)

– Recover multiple measurements with δ = 1
σ2

tm

σ
2

0 1

σ
2

2

σ
2
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