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Problem set-up
Sampling with iterative algorithms

e Sampling from probability distribution p(z) x exp(—f(x))
— high-dimensional and “complex”

— f given or f estimated from i.i.d. data

e Langevin algorithms
— Discretization of diffusion dX; = —V f(X;)dt + V2dBy:

Tpe1 = =YV (z) + /27 - N(0, 1)

— (slow) convergence (see, e.g., Bakry et al., 2008)
— fast for smooth log-concave distributions

(Dalalyan, 2014, Durmus and Moulines, 2017, Chewi, 2022, etc.)

e Going beyond log-concave distributions



A short introduction to denoising diffusion models
(Song and Ermon, 2019, Song et al., 2019)
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e Forward flow

— Ornstein-Uhlenbeck process dX; = — X, dt + /2dB;
— started from p(x) < exp(—f(z)) at time t =0
— marginal distribution: X; = e *Xy + 1 —e=2t . N(0,1)
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[following expositions from Bortoli (2023) and Peyré (2023)]

e Forward flow

— Ornstein-Uhlenbeck process dX; = — X, dt + /2dB;
— started from p(x) < exp(—f(z)) at time t =0
— marginal distribution: X; = e *Xy + 1 —e=2t . N(0,1)

e Backward flow

— For T large, X7 =~ N(0,I) = backward simulations

— Y, = Xr_; follows dY; = [Y; + 2V log rr_:(Y;)]dt + /2d B,
with 7; the density of X;

— Simulate the backward SDE using “only” the densities of X,

Ukrt = b + Uk + 20V () + /27 - N0, T)
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— with ¢; density of X; = e ' Xy + 1 —e=2t-N(0, )
— equivalent to density of Xo+e'v/1 — e=2t.N(0,1) = Xo+0-N(0,1)
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Denoising score matching

e Empirical Bayes (Robbins, 1956, Miyasawa, 1961)

— Notation: ¢, density of Y = X + o - N(0, )
— Key result: E[X|Y] =Y + 0%V log¢,(Y)
— Used within sampling procedure by Saremi and Hyvarinen (2019)

e Score matching (Hyvarinen, 2005)
— Fitting ¢ to p, by mininimizing /p(x)HVlogp(x)—Vlog q(x)||*dx

e Denoising score matching (Hyvarinen, 2005, Vincent, 2011)

— Estimate the density of the noisy variable y by minimizing

1 mn
= > lzi —yi — o*Viog g, ()
1=1
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A short introduction to denoising diffusion models
(Song and Ermon, 2019, Song et al., 2019)

[following expositions from Bortoli (2023) and Peyré (2023)]

e Learning score functions of noisy samples at various scales

— Denoising score matching

e Denoising diffusion models

— Start from T’ large, yo = X7, and discretize the backward SDE

Yk+1 = Yk + YUk + 27V 1og g, (yre'™) + /27 - N(0, 1)

— with tp, =T — ’yk, and o, = @T_’Yk\/l — e 2T+2vk

e Alternative view (Saremi, Park, B., 2023)
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e Empirical Bayes (Robbins, 1956, Miyasawa, 1961)

— Notation: ¢, density of Y = X + ¢ - N(0, )
— Key result: E[X|Y] =Y + 0%V log ¢, (Y)

e Multiple measurements: YV, =X +¢;,,1=1,...,m

— Posterior mean: E|X|Y7,...,Y,,] = Yy, + %QV 10g 45 /i (Y1:m)
with Yl:m — % ZZI Y;
— Increased concentration around the mean (S., P. and B., 2023)

> o4d
Wa( law of X, law of E[X|Y7,...,Y,,])” < —
m

— Improved results with “strong’ priors

e Idea #1 (Saremi and Srivastava, 2022)
— Sampling X by sampling Y7,...,Y,, and then Empirical Bayes



ultimeasurement generative models
(Saremi and Srivastava, 2022)

X U1 2 3 4

x|y17°°°7y’m

till hard to sample from (y{,...,ym
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Idea #2: Sequential denoising (S., P. and B., 2023)

e Multiple measurements: YV, =X +¢;,,1=1,...,m

e Algorithm

— Sample y; from Y;

— Iteratively sample y; from Y;|y1,...,y;—1, fori=1,....m
e Sampling steps using Langevin algorithms

— Overall non-Markovian
— Each sampling step Markovian
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e Multiple measurements: YV, =X +¢;,,1=1,...,m

e Algorithm

— Sample y; from Y;

— Iteratively sample y; from Y;|y1,...,y;—1, fori=1,....m
e Sampling steps using Langevin algorithms
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17 o* _
Vi 108 p(Yml|y1s - s Ym—1) = — [y1:m—ym+EV log qa/m(yum)}



Idea #2: Sequential denoising (S., P. and B., 2023)

e Multiple measurements: YV, =X +¢;,,1=1,...,m

e Algorithm

— Sample y; from Y;

— Iteratively sample y; from Y;|y1,...,y;—1, fori=1,....m
e Sampling steps using Langevin algorithms

— Feasibility:

17 o _
Vi 108 p(Ym|y1, -+ s Ym—1) = — [y1:m—ym+EV log qa/m(ykm)}

e Main benefit

— If o large enough, only log-concave distributions to sample from

o

— If m large enough, NG Is small enough to obtain clean samples



More and more log-concave

e Single measurement: Y = X + o - N(0,])

— Enough Gaussian blurring leads to unimodality (Loog et al., 2001)
— Enough Gaussian blurring leads to log-concavity
— “Proof” (see paper for quantitative statements)
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More and more log-concave

e Single measurement: Y = X + o - N(0,])

— Enough Gaussian blurring leads to unimodality (Loog et al., 2001)
— Enough Gaussian blurring leads to log-concavity
— “Proof” (see paper for quantitative statements)

5 1 1

V4logq(y) = —;[I - ﬁcov(X\Y — y)}

e Multiple measurements: Y, =X +0-N(0,1), i1 =1,...,m

1 1

Ve 1ogp(yml|y1,- - - Ym—1) = _ﬁ{l - ECOV(X‘?”’ e ,ym)}

— Conditioning reduces uncertainty (on average)
— See precise statements in paper



Synthetic experiments

e Mixtures of two Gaussians

— covariance matrices oI, Au=6-(1,...,1) € R?

Mixture of Gaussians
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Discussion

e Sampling from score functions of smoothed densities

— Similar steps to denoising diffusion models

— Clear initialization: o large enough to obtain log-concavity

— m large enough to obtain good quality samples

— Only two hyperparameters: noise level o and number of
measurements m



Discussion

e Sampling from score functions of smoothed densities

— Similar steps to denoising diffusion models

— Clear initialization: o large enough to obtain log-concavity

— m large enough to obtain good quality samples

— Only two hyperparameters: noise level o and number of
measurements m

e Extensions
— Application to image generation
— Theoretical analysis (see Conforti et al., 2023)

e Preprint

— Saeed Saremi, Ji Won Park, Francis Bach. Chain of Log-Concave
Markov Chains. arXiv:2305.19473, 2023.
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