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Abstract

We consider the least-squares regression
problem and provide a detailed asymp-
totic analysis of the performance of aver-
aged constant-step-size stochastic gradient
descent. In the strongly-convex case, we pro-
vide an asymptotic expansion up to explicit
exponentially decaying terms. Our analy-
sis leads to new insights into stochastic ap-
proximation algorithms: (a) it gives a tighter
bound on the allowed step-size; (b) the gen-
eralization error may be divided into a vari-
ance term which is decaying as O(1/n), inde-
pendently of the step-size γ, and a bias term
that decays as O(1/γ2n2); (c) when allow-
ing non-uniform sampling of examples over a
dataset, the choice of a good sampling den-
sity depends on the trade-off between bias
and variance: when the variance term domi-
nates, optimal sampling densities do not lead
to much gain, while when the bias term dom-
inates, we can choose larger step-sizes that
lead to significant improvements.

1 Introduction

For large-scale supervised machine learning prob-
lems, optimization methods based on stochastic gra-
dient descent (SGD) lead to computationally effi-
cient algorithms that make a single or few passes
over the data (see, e.g., Bottou and Le Cun, 2005;
Bousquet and Bottou, 2008).

In recent years, for smooth problems, large step-sizes
together with some form of averaging, have emerged
as having optimal scaling in terms of number of ex-
amples, both with asymptotic (Polyak and Juditsky,
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1992) and non-asymptotic (Bach and Moulines, 2011)
results. However, these convergence rates (i.e., bounds
on generalization performance) in O(1/n) are only op-
timal in the limit of large samples, and in practice
where the asymptotic regime may not be reached, no-
tably because of the high-dimensionality of the data,
other non-dominant terms may come into play, which
is the main issue we are tackling in this paper.

We consider least-squares regression using constant-
step-size stochastic gradient descent, often referred
to as least-mean-squares in the non-averaged case
(Macchi, 1995; Bach and Moulines, 2013), where the
generalization error may be explicitly split into a bias
term that characterizes how fast initial conditions are
forgotten, and a variance term that is only impacted
by the noise present in the prediction problem. In this
paper, we first show that while the variance term is
asymptotically dominant, the bias term may play a
strong role, both in theory and in practice, that ex-
plains convergence behaviors typically seen in applica-
tions. We should emphasize that here bias is meant as
the error we would get in a noiseless setup rather than
its usual statistical meaning.

Another question that has emerged as important to
improve convergence is the use of special sampling dis-
tributions of examples (Nesterov, 2012; Needell et al.,
2013; Zhao and Zhang, 2014). From our theoretical re-
sults, we can optimize the first-order asymptotic terms
rather than traditional upper-bounds, casting a new
light on the potential gains (or lack thereof) of such
different sampling distributions.

More precisely, we make the following contributions:

– We provide in Section 2 a detailed asymptotic analy-
sis of the performance of averaged constant-step-size
SGD, with all terms up to exponentially decaying
ones. We also give in Section 2.1 a tighter bound
on the allowed step-size γ.

– In Section 2.4, the generalization error may be di-
vided into a variance term which is (up to first or-
der) decaying as O(1/n), independently of the step-
size γ, and a bias term that decays as O(1/γ2n2).
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– When allowing non-uniform sampling, the choice of
a good sampling density depends on the trade-off
between bias and variance: as shown in Section 3,
when the variance term dominates, optimal sam-
pling densities do not lead to much gain, while when
the bias term dominates, we can choose larger step-
sizes that lead to significant improvements.

1.1 Problem setup

Let X be a random variable with values in Rd and Y
another random variable with values in R. Through-
out this paper, ∥ ·∥ denotes the Euclidean norm on Rd.

We assume that E
[

∥X∥2
]

= E
[

XT X
]

is finite and we

denote by H = E
[

XXT
]

∈ Rd×d the second-order mo-
ment matrix of X . Throughout the paper, we assume
that H is invertible, or equivalently, in optimization
terms, that we are in the strongly convex case (see,
e.g., Nesterov, 2004). We denote by µ the smallest
eigenvalue of H , so that we have µ > 0. Note that
in our asymptotic results, the leading terms do not
depend explicitly on µ.

We wish to solve the following optimization problem:

min
w∈Rd

E

[

∥

∥XT w − Y
∥

∥

2
]

, (1.1)

from a stream of independent and identically dis-
tributed samples (Xi, Yi)i!0.

For any given w ∈ Rd, we denote by f(w) =

E

[

∥

∥XT w − Y
∥

∥

2
]

the expected generalization perfor-

mance; we denote by w∗ ∈ Rd the optimal solution (as
H is invertible, it is unique), and by f∗ = f(w∗) ∈ R

the value at the minimum. This set-up covers two
common situations:

(a) Single pass through the data, where each observa-
tion is seen once and considered as an i.i.d. sample,
which is the context we explicitly study in this pa-
per; note that then, our bounds are on the testing
error, i.e., on the expected error on unseen data.

(b) Multiple passes through a finite dataset, where
each sample (Xi, Yi) is selected uniformly at
random from the dataset; in this situation,
the training error is explicitly minimized,
a regularizer is often added and our bound
corresponds to training errors. Moreover,
dedicated algorithms (Schmidt et al., 2013;
Shalev-Shwartz and Zhang, 2013) have then better
convergence rates than stochastic gradient.

Averaged SGD with constant step-size. From a
starting point w0 ∈ Rd, at each iteration i ≥ 1, an
i.i.d. sample of (Xi, Yi) is obtained and the following

recursion is used:

wi = wi−1 − γXi(X
T
i wi − Yi),

w̄i =
1

i + 1

i
∑

k=0

wk =
1

i + 1
wi +

i

i + 1
w̄i−1,

where γ > 0 is a user-defined step-size. We denote by
εi = XT

i w∗ − Yi the residual. Note that by definition
of w∗, E [εiXi] = 0. If the vector X includes a con-
stant component (which is common in practice), then
this implies that εi and Xi are uncorrelated. However
in general they are not independent, unless the model
with independent homoscedastic noise is well-specified
(which implies in particular that E(Yi|Xi) = XT

i w∗).

We denote by fi = E [f(w̄i)] the expected (with re-
spect to the randomness of the data) value of the
generalization performance f at the averaged iter-
ate w̄i (with respect to time). It will be more con-
venient to work with the following centered estimates
ηi = wi − w∗ and η̄i = w̄i − w∗, for which one imme-
diately gets

ηi = (I − γXiX
T
i )ηi−1 + γεiXi,

which is the recursion that we study in this paper.

1.2 Related work

Stochastic gradient methods have been heavily stud-
ied. We mention in this section some of the works
which are relevant for the present paper.

Analysis of stochastic gradient algorithms.
Since the work of Nemirovski and Yudin (1983), it is
known that the optimal convergence rate depends in
general on the presence or absence of strong convexity,
with rates of O(1/nµ) for µ-strongly convex problems,
and O(1/

√
n) for non-strongly convex problems. Re-

cently, for specific smooth situations with the square or
logistic loss, these rates can be improved to O(1/n) in
both situations (Bach and Moulines, 2013). For least-
squares, this is achieved with constant-step-size SGD,
hence our main focus on this algorithm.

Asymptotic analysis of stochastic gradient de-
scent. In this paper, we focus on finding asymptotic
equivalents of the generalization errors of SGD algo-
rithms (with explicit remainder terms). For decaying
step-sizes and general loss functions, this was partially
considered by Fabian (1968), who provides the limit-
ing distribution of iterates (from which the general-
ization performance can be derived), but only with-
out averaging. Moreover, the traditional analysis of
Polyak-Rupert averaging (Polyak and Juditsky, 1992;
Ruppert, 1988) also leads to asymptotic equivalents,
also for decaying step-sizes, but only the (asymptot-
ically dominant) variance terms are considered. See
also the recent analysis of Toulis et al. (2014).
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Non-uniform sampling. Non-uniform sampling,
that is using another distribution than the one given
by (X, Y ), has been already tackled from several points
of views; for example, in the active learning literature,
Kanamori and Shimodaira (2003) provide the optimal
sampling density to optimize the generalization error
(for an estimator obtained as the minimum of the em-
pirical least-squares risk), leading to distributions that
are the same than the one obtained in Section 3.3
(where the variance term dominates), for which the
actual gains are limited.

Moreover, in the context of stochastic gradient de-
scent methods, Needell et al. (2013); Zhao and Zhang
(2014) show that by optimizing the sampling density,
bounds on the convergence rates could be improved,
but the actual gains are hard to quantify. Our focus
on limits of convergence rates allows us to precisely
quantify the gains and obtain extra insights (at least
asymptotically).

2 Main results

We will present results about the convergence of the
algorithm which are derived from the exact compu-
tation of the second-order moment matrix, which we
refer to as the covariance matrix, E

[

η̄nη̄T
n

]

. Since we
consider a least-squares problem, we have

fn − f∗ = Tr
(

HE
[

η̄nη̄T
n

] )

.

We will distinguish two terms, which can be assimi-
lated to a variance/bias decomposition. The variance
term ∆variance can be defined as the covariance ma-
trix we would get starting from the solution (that is,
η0 = 0). On the other hand, the bias term ∆bias is
defined as the covariance matrix we would get if the
model was noiseless, that is Y = XT w∗ and ε = 0. It
thus characterizes the rate at which the initial condi-
tion is forgotten.

Each of these two terms leads to contribution to
fn − f∗, that is Tr

(

H∆variance
)

and Tr
(

H∆bias
)

. Un-
der extra assumptions that are discussed in the supple-
mentary material, such that when X and ε are inde-
pendent (i.e., well-specified model), the actual covari-
ance matrix is exactly the sum of the bias and variance
matrices, and thus

fn − f∗ = Tr
(

H∆variance
)

+ Tr
(

H∆bias
)

.

Moreover, even when this is not true, it has been noted
by Bach and Moulines (2013) that

fn − f∗ ≤ 2Tr
(

H∆variance
)

+ 2Tr
(

H∆bias
)

,

that is, the sum of the two terms is a factor of two
away from the exact generalization error.

2.1 Improved step-size

Let us denote by Md the vector space of d-by-d real
matrices. For any γ ≥ 0, we can define a linear oper-
ator T defined by, ∀M ∈ Md:

T M = HM + MH − γE
[

(XT MX)XXT
]

. (2.1)

The operator T can be seen as a symmetric d2 × d2

matrix and is central in our analysis, like in the work
of Murata (1998), who considered a simplified version
of non-averaged stochastic gradient. We also define
two contraction factors,

ρT = ∥I − γT ∥op and ρH = ∥I − γH∥op , (2.2)

as well as ρ = max(ρT , ρH), where ∥·∥op is defined
as the largest singular value. Note that in traditional
analyses of gradient methods, only ρH is considered.

Let us define γmax as the supremum of the set of γ > 0
verifying, ∀A ∈ S(Rd) (the set of symmetric matrices
of size d × d):

2Tr
(

AT HA
)

− γE
[

(XT AX)2
]

> 0, (2.3)

or equivalently as the supremum of γ > 0 such that T
is definite positive. One can actually show that we
necessarily have that

γmax ≤ 2/Tr (H), (2.4)

and the following lemma (see proof in the supplemen-
tary material):

Lemma 1. If 0 < γ < γmax then ρ < 1 so that both
I − γT and I − γH are contractive.

Note that we may rewrite γmax as

2

γmax
= sup

A∈S(Rd)

E
[

(XT AX)2
]

Tr (AT HA)
,

which can be computed explicitly by a generalized
eigenvalue problem once all second- and fourth-order
moments of X are known. This is to be contrasted
with the largest step-size γdet

max for deterministic gradi-
ent descent, which is such that

2

γdet
max

= sup
a∈Rd

aT Ha

aT a
.

One can observe that for any distribution on X , we
necessarily have γmax ≤ 2/Tr (H) ≤ γdet

max so that the
maximum stochastic step-size will always be smaller
than the deterministic, as one would expect.

Note also that the step-size provided by γmax is a
strict improvement (see supplementary material) on
the one proposed by Bach and Moulines (2013), which
is equal to the supremum of the set of γ > 0 such that
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E
[

XXT
]

− γE
[

(XT X)XXT
]

is positive semidefinite.
Our results also extend the result of Slock (1993), who
considered a very special set-up for inputs while ours
only relies only on fourth-order moments. We conjec-
ture that the bound given by γmax is tight, namely
that if γ is larger than γmax then there exists an initial
condition η0 such that the algorithm diverges.

2.2 Bias term

In this section, we provide an asymptotic expansion of
the bias term ∆bias. We introduce A(γ) some linear
operator over Md that is given in the supplementary
material, with an explicit remainder term.

Theorem 1 (Asymptotic covariance for noiseless
problem). Let E0 = η0ηT

0 . If 0 < γ < γmax and
∀i ≥ 1, εi = 0, then

∆bias = E
[

η̄nη̄T
n

]

=
1

n2γ2
A(γ)E0 + O

(ρn

n

)

. (2.5)

Using Lemma 1, we know that ρ < 1 so that (2.5)
converges as n−2. We can thus derive the rate of con-
vergence for Tr

(

H∆bias
)

, that will be of order n−2 as
well. Although the dependency of A(γ) is complex,
one can easily derive an equivalent when γ tends to
zero, and we have

lim
n→∞

n2Tr
(

H∆bias
)

∼
γ→0

γ−2ηT
0 H−1η0. (2.6)

2.3 Variance term

In this section, we provide an asymptotic expansion of
the variance term ∆variance. We introduce B(γ) and
C(γ) some linear operators over Md explicitly com-
puted in the supplementary material.

Theorem 2 (Asymptotic covariance for problem
started at the optimum). Let Σ0 = E

[

ε2XXT
]

and
let assume that η0 = 0. If 0 < γ < γmax then ∆variance

is equal to:

E
[

η̄nη̄T
n

]

=
1

n
B(γ)Σ0 − 1

γn2
C(γ)Σ0 + O

(ρn

n

)

. (2.7)

Unsurprisingly, the asymptotic behavior of the vari-
ance term is dominant over the bias one as it de-
creases only as n−1, which is the overall convergence
rate of this algorithm of least-mean-squares as noted
by Bach and Moulines (2013).

It is also possible to get a simpler equivalent when γ
goes to 0:

lim
n→∞

nTr
(

H∆variance
)

∼
γ→0

E
[

ε2XT H−1X
]

.

If we further assume that the noise ε is independent
of X , then we recover the usual

lim
n→∞

nTr
(

H∆variance
)

∼
γ∼0

dσ2,

where σ2 = E
[

ε2
]

, which is the Cramer-Rao bound
for such a problem (obtained from computing the gen-
eralization performance, which depends only on the
usual estimation covariance matrix). It is also inter-
esting to notice that this is the exact same result as
the one obtained by Polyak and Juditsky (1992) with
a decreasing step-size.

Finally, note that if γ is small, the term in 1
γn2 C(γ)Σ0

is always positive so that there is no risk of it exploding
for small values of γ (unlike for the bias term).

2.4 Comparing both terms

As seen above with an asymptotic expansion around
γ = 0, for n sufficiently large, the bias and variance
terms are of order:

Tr
(

H∆bias
)

∼ 1

γ2n2
ηT

0 H−1η0

Tr
(

H∆variance
)

∼ 1

n
E

[

ε2XT H−1X
]

.

The different behaviors of the bias and variance terms
lead to two regimes, one in (γn)−2 and one in n−1 that
can clearly be observed on synthetic data. On real
world data, one will often observe a mixture of the
two, depending on the step-size and the difficulty of
the problem. Experimental results on both synthetic
and real world data will be presented in Section 4.

3 Optimal sampling

Changing the sampling density for (X, Y ) may be in-
teresting in several situations, in particular (a) in pres-
ence of outliers (i.e., points with large norms) and (b)
classification problems with asymmetric costs.

3.1 Impact of sampling

Using the two previous theorems, we can now try to
optimize the sampling distribution to increase perfor-
mance. We will sample from a distribution q instead
of the given distribution p. Since we wish to keep
the same objective function, we will use importance
weights c(X, Y ), so that if we denote by Ep [A] the ex-
pectation of a random variable A under the probability
distribution given by p over A we have

Ep

[

|XT w − Y |2
]

= Eq

[

c(X, Y )|XT w − Y |2
]

.

First, one can notice that, from a practical point of
view, we must restrict ourselves to q that are abso-
lutely continuous with respect to p as one cannot in-
vent samples. In order to be able to define c we also
need p to be absolutely continuous with respect to q,
so that c = dp

dq
. Besides, c−1 is defined as c−1 = dq

dp
.

A key consequence of using least-squares is that for
a given (q, c) pair, we only have to sample using q
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and scale X , Y and ε = XT w∗ − Y by
√

c(X, Y ).
Thus we can use the two previous theorems for X ′ =
√

c(X, Y )X and Y ′ =
√

c(X, Y )Y and sampling X, Y
according to q.

As of now, we will assume that almost surely X ̸= 0.
Indeed, when Xi = 0, we perform no update so that
we can just ignore such points.

One can notice that for any A, B ∈ {X, Y, ε}, tak-
ing A′ =

√

c(X, Y )A (same for B), Eq [A′B′] =
Eq [c(X, Y )AB] = Ep [AB], and thus all second-order
moments are unchanged under resampling. This is the
case for the matrix H = Ep

[

XXT
]

= Eq

[

X ′X ′T
]

.

However, for terms of order 4 like T , E
[

(XT X)XXT
]

or Σ0, an extra c appears and we have for instance

Eq

[

(X ′T X ′)X ′X ′T
]

= Ep

[

p(X, Y )

q(X, Y )
(XT X)XXT

]

.

It means that while H will not be changed, T is im-
pacted in non trivial ways, as is T −1. This makes it
tricky to truely optimize sampling for any γ. However,
when assuming γ small, it is possible to optimize the
limit we obtained for γ → 0 (see Sections 3.3 and 3.4).
The experiments we ran (see Section 4) seem to con-
firm that this is a valid assumption for values of γ as
high as γmax/2.

3.2 Asymmetric binary classification

As a motivation for this work, we will present one prac-
tical application of resampling which is binary classi-
fication with highly asymmetric classes. Assume we
have Y ∈ {−1, 1} and that P {Y = 1} and P {Y = −1}
are highly unbalanced, as it can be the case in var-
ious domains, such as ad click prediction or object
detection, etc. Then, it can be useful in practice
to give more weight the less frequent class (see, e.g.,
Perronnin et al., 2012, and references therein). This is
equivalent to multiplying both X and Y by some con-
stant

√
cY . A common choice is for instance to take

cy = 1/P {Y = y} which will give the same importance
in the loss to both classes.

However, these weights will make the gradients from
the less frequent class huge compared to the usual up-
dates. This is likely to impact the convergence of the
algorithm. In that case it is easy to notice that tak-
ing taking c(x, y) = 1/cy will leave the gradients un-
changed but will favor sampling examples from the less
frequent class.

3.3 Optimal sampling for the variance term

Let assume that we are only interested in the long
term performance for our algorithm. Ultimately the

variance term will be driving the performance and we
need to optimize it.

Exactly optimizing the sampling for this case in uneasy
as it impacts both Σ0 and the terms B(γ) and C(γ) in
Theorem 2, in a non trivial way. However, if we assume
a small step-size γ, then we just have to minimize

Eq

[

ε′2X ′T H−1X ′
]

= Ep

[

c(X, Y )ε2XT H−1X
]

,

under the constraint that Ep

[

c−1(X, Y )
]

= 1 so that q
is a distribution. Using the Cauchy-Schwarz inequal-
ity, we have that

Ep

[

c(X, Y )ε2XT H−1X
]

= Ep

[

c(X, Y )ε2XT H−1X
]

Ep

[

c−1(X, Y )
]

≥
(

Ep

[

|ε|
√

XT H−1X
] )2

.

When X ̸= 0 almost surely, then this lower-bound is
achieved for

c−1(X, Y ) =
|ε|

√
XT H−1X

Ep

[

|ε|
√

XT H−1X
] .

Prior knowledge of H and ε is required, or just H when
the noise is independent, which can be impractical.

In that case, we obtain

lim
n→∞

nTr
(

H∆variance
)

=
(

E

[

|ε|
√

XT H−1X
])2

.

One can notice that this is the exact same optimal
sampling as the one obtained in the active learning
set-up by Kanamori and Shimodaira (2003).

Again, it is possible to slightly simplify this expression
when ε and X are independent, as we obtain

lim
n→∞

nTr
(

H∆variance
)

= σ2
(

E

[√
XT H−1X

])2
,

with σ2 = E
[

ε2
]

. At this point it is important to
realize that the gain we have here is of the order of

E

[√
XT X

]2
/ E

[

XT X
]

. (3.1)

During our experimentations on usual datasets, we
have observed that this factor was always between 1/2
and 1 and thus there is little to be gained when opti-
mizing the variance term.

3.4 Optimal sampling for the bias term

Although asymptotically the variance term will be the
largest one, it is possible that initially the bias one is
non negligible and it can be interesting to optimize for
it. This is all the more possible as it depends much
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more on the step-size γ and if γ is too small, the bias
term can stay larger than the variance term for many
iterations.

If we assume γ small, then we can approximate the bias
term by the expression given by (2.6), that is, propor-
tional to 1/(γ2n2). In this case, it is clear that we want
to increase γmax and, because second-order moments
are not impacted by resampling, it has no effect other
than changing γmax. Numerical experiments tends to
show that increasing γ is beneficial even for γ close to
γmax

2 . Beyond this limit, the approximation (2.6) is no
longer sustainable and besides, exponentially decreas-
ing terms can start to grow quite large.

The maximum step-size is given by the tighter condi-
tion from Section 2.1, that is, ∀A ∈ S(Rd),

2Tr
(

AT HA
)

− γE
[

(XT AX)2
]

> 0, (3.2)

which implies that

γmax ≤ 2/E
[

XT X
]

, (3.3)

using (2.4). As this upper bound on γmax only depends
on moments of order 2, and that those moments are
not changed by resampling, (3.3) is an upper bound on
any γmax for a given optimization problem, no matter
how we resample. It turns out it can be achieved by
the resampling given by

c−1
∗ (X, Y ) = XT X/ Ep

[

XT X
]

a.s,

which, unlike the variance term, does not require the
knowledge of H . To show that, one can first prove
that H − γE

[

(XT X)XXT
]

≻ 0 implies (3.2), as we
already noted in Section 2.1. Then, computing H −
γE

[

(X ′T X ′)X ′X ′T
]

, one obtains

H − γEq

[

c∗(X, Y )2(XT X)XXT
]

= 2H − γEp

[

Ep

[

XT X
]

XT X
(XT X)XXT

]

= H(2 − γEp

[

XT X
]

),

which is positive definite as soon as γ < 2
Tr(H) . This

means that using the resampling defined by c∗, we have
γmax = 2

E[XT X] which is thus not improvable.

If γ(0)
max is the maximum step-size before resampling

and γ(1)
max is the maximum step-size after resampling,

then the gain for fn − f∗ is a factor
(

γ(0)
max/γ(1)

max
)2

.
It is computationally expensive to evaluate for large
problems, but from our experiments where we take
the largest non-diverging step-sizes (see Section 4) it
was common to observe gain factors of 1/100 or 1/400
while the gain for the variance term was limited to 1/2.

Unlike the variance term, the resampling in itself here
has an impact only through a larger step-size. Resam-
pling while keeping the same step-size will often lead
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uniform, step=0.05

Figure 1: Convergence on Yahoo dataset without
weights.
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Figure 2: Convergence on Yahoo dataset with weights.

to almost identical performances for the bias term. It
is interesting to note that when H = I, this sampling
will exactly have no impact at all on the variance term,
and when H ̸= I, it will only impact it marginally.

Link with other algorithms. When using this re-
sampling and γ = 1/E

[

XT X
]

, the update becomes

wi = wi−1 − Xi

XT
i Xi

(

XT
i wi−1 − Yi

)

, (3.4)

where Xi is sampled from q∗. This is very similar to
normalized least mean squares (NLMS) by Bershad
(1986), i.e., we first normalize X (and Y by the same
factor), and then we run the usual stochastic gradi-
ent descent with a step-size of 1. However, while
NLMS does not optimize the same overall objective
function, we remember the norm of X in c∗ and sam-
ple large ones more often and keep the same overall
objective function. One can also notice some links
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Figure 3: Convergence on Sido dataset without
weights.
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Figure 4: Convergence on Sido dataset with weights.

with implicit stochastic gradient descent (ISGD) by
Toulis et al. (2014), where the update rule is

wi = wi−1 − γiXi

1 + γiXT
i Xi

(

XT
i wi−1 − Yi

)

, (3.5)

which is similar to NLMS and (3.4) when γi is large.
As γi is a decreasing step-size for ISGD, during the
early iterations, ISGD will behave like NLMS before
switching to a regular stochastic gradient descent as γi

goes to 0 (thus allowing convergence to the global op-
timum). However, the decaying step-size will prevent
the fast decay of the bias terms.

4 Experiments

Yahoo and Sido datasets. We have tried to ob-
serve evidence of our predictions into two unbalanced
datasets, “yahoo” and “sido”. The “yahoo” dataset1

1webscope.sandbox.yahoo.com/

is composed of millions of triple (ads, context, click)
from the Yahoo front page where click is 1 if the user
clicked on the given ad in the given context (composed
of 136 Boolean features) and 0 otherwise. It is very
unbalanced, as the click rate is low. For this experi-
ment we only looked at the rows corresponding to a
specific ad (107355 rows), with a click rate of 0.03%.
We used it both with and without weights in order to
give the same importance to both clicks and non clicks
as explained in Section 3.2. In all our experiments,
we report the average performance over 50 runs (error
bars are not plotted as the relative error is always less
than 0.2%).

On Figures 1 and 2, we compared the incidence of the
step-size and the resampling of performance. When
using weights, the maximum step-size happens to be
divided by ten, but when resampling proportionally to
XT X , we recover almost the same step-size as with-
out weights. Moreover, without weights (Figure 1),
the lowest step-size performs best, which tends to in-
dicate that the variance term is dominant. However,
with weights (Figure 2), one can observe the more pro-
nounced dependency in γ, which show that the bias
term became non negligible. Comparable results, but
obtained on the “sido” dataset2 are given in Figures 3
and 4. This dataset is composed of 12678 points with
4932 features. The less frequent class represents 3.6%
of the points.

We did not plot the graphs obtained when sampling
proportionally to

√
XT H−1X as they are mostly the

same as without resampling. If we were to achieve
the regime where the variance is completely dominant,
the error would be at best be divided by two for the
“yahoo” dataset and would be almost the same for
“sido” (divided by 1.02). These potential gains were
computed directly using the expression (3.1).

Synthetic data and bias-variance decomposi-
tion. We also observed exactly the bias and variance
terms on synthetic data. The data consist in an infinite
stream of points X sampled from a normal distribu-
tion with covariance matrix H , so that the eigenvalues
of H are (1

i
)1≤i≤25. Y is given by Y = XT w∗ + ε for

a fixed w∗ ∈ R25 and ε ∼ N (0, 1). On Figures 5 and 6
one can see the decomposition of the error between
variance and bias terms (Figure 5) as well as the sum
of both the variance and bias error (Figure 6). We see
that both the variance and bias curves quickly reach
their asymptotic regime with a slope of −1 for the vari-
ance in log/log space and −2 for the bias as expected.
We ran the algorithm with two step-sizes, one being
ten times larger than the other. We observe the ratio
of 100 as expected between the two bias curves and al-

2www.causality.inf.ethz.ch/data/SIDO.html

webscope.sandbox.yahoo.com/
www.causality.inf.ethz.ch/data/SIDO.html
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Figure 6: Convergence on synthetic data.

most no difference at all for the variance ones, except
for the first iterations.

One can also see the effect of the step-size γ at a fixed
number of iterations on Figure 7. Due to the sym-
metry between n and γ in the expression of the bias
term, one can notice the resemblance at first between
this curve and the one obtained when plotting fn − f∗

against n. However, when the step-size is large, we get
sooner into the regime where the variance dominates.
At this point we observe almost no influence of the
step-size on fn − f∗. When getting closer to the max-
imum step-size, convergence becomes very slow as ρ
becomes close to 1. The variance term increases at
first with γ because for γ = 0, one has by definition
fn = f∗. The predicted flat part is only achieved for
γ sufficiently large so that the exponentially decaying
terms are negligible. For all the experiments on syn-
thetic data, we used 300 independent runs to obtain
statistically significant results.

10−4 10−3 10−2 10−1 100
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101

Step size

f 5
0

,0
0

0
−

f
∗

bias
variance

total

Figure 7: Impact of step-size on error, with its
bias/variance decomposition.

5 Conclusion

In this paper, we have provided a tighter analysis of av-
eraged constant-step-size SGD for least-squares, lead-
ing to a better understanding of the convergence of
the algorithm at different stages, in particular regard-
ing how the initial condition is forgotten.

We were able to deduce different sampling schemes
depending on what regime we are in. Sampling pro-
portionally to

√
XT H−1X is always asymptotically

the best method. The potential gain is however lim-
ited most of the time. Besides, for datasets that are
more “difficult”, that is with moments that increases
quickly, forgetting the initial condition can happen ar-
bitrary slow due to the strong dependency in the step-
size. If this is the case, then sampling proportionally
to XT X will allow us to take a much larger step-size
which will then lead to a smaller error.

Our work can be extended in several ways: for simplic-
ity we have focused on least-squares problems where
the bias/variance decomposition is explicit. It would
be interesting to see how these results can be ex-
tended to other smooth losses such as logistic regres-
sion (with the proper use of Fisher information matri-
ces), where constant-step size SGD does not converge
to the global optimum (Nedic and Bertsekas, 2000;
Bach and Moulines, 2013). Moreover, we have only
provided results in expectations and a precise study of
higher-order moments would give a better understand-
ing of additional potential effects of resampling.
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We give hereafter the proofs for the different results in the main paper. Unless oth-
erwise specified, references are to the present Appendix. We first give a more thorough
definition of the space in which our operators live. We then proceed to a proof of
Lemma 1. Finally we detail the computation that allowed us to derive both theorems
in the main paper.

1 Linear algebra prerequisites

Throughout our results we will use the following notations and results. These are necessary to
provide explicit expressions for the constants in the asymptotic expansions.

For any real vector space V of finite dimension d, let M(V ) be the space of linear operators
over V which is isomorphic to the space of d-by-d matrices, with the usual results that composition
becomes matrix multiplication. As a consequence we will use the same notation for the space of
matrices and the space of endomorphisms.

We denote by I = M(M(Rd)) the space of endomorphisms on the space of matrices over Rd.
One can index the rows and columns of a matrix M ∈ I by a pair (i, j) where 1 ≤ i ≤ d and
1 ≤ j ≤ d. We will often denote by M(i,j),(k,l) an element of this matrix on matrices. In the
following we will drop the domain of i, j, k, l, i′, j′ which is implicitly {1, 2, . . . , d}. Explicitly, if
A ∈ M(Rd) and M ∈ I, then MA is defined through:

∀(i, j)(MA)i,j =
d
∑

i′=1,j′=1

M(i,j),(i′,j′)Ai′,j′

We will mostly make no distinction between A as a vector in M(Rd) on which elements in I
can operate and A as a matrix in M(Rd). Then MA can be either usual matrix multiplication
if M, A ∈ M(Rd) or M, A ∈ I or application of M to A if M ∈ I and A ∈ M(Rd). However, if
M ∈ I and A ∈ M(Rd), then AM does not make sense. For P ∈ I, and any (i, j), we will define
Pi,j the matrix in M(Rd) with coefficient (i′, j′) given by P(i,j),(i′,j′).

For any V ∈ S(Rd) (the set of symmetric matrices of size d), we will denote ∥V ∥op the operator
norm of V or equivalently its eigenvalue with the largest absolute value. For any M ∈ I so that
S(Rd) is stable under M , we will take ∥M∥op the operator norm of M restricted to S(Rd), defined

with respect to the Frobenius norm on S(Rd), that is

∥M∥op = sup
V ∈S(Rd),∥V ∥F =1

∥MV ∥F .

1



Equivalentely, it is given by the largest absolute value of the eigenvalues of M .
Finally, we will look more precisely at three elements of I. For any given A ∈ M(Rd), one can

define AL (resp. AR) so that AL is the matrix in I representing left multiplication (resp. right
multiplication) by A. The coefficient of AL and AR are given by

∀(i, j), (k, l), (AL)(i,j),(k,l) = δj,lAi,k

∀(i, j), (k, l), (AR)(i,j),(k,l) = δi,kAj,l.

If A is symmetric, then AL and AH are both symmetric operators, and AL + AH is stable on
the subspace of symmetric matrices, that we have denoted S(Rd).

Let X be a random variable in Rd, we consider the linear operator M on M(Rd) defined by,

∀A ∈ M(Rd), MA = E
[

(XT AX)XXT
]

,

then, the coefficients of the associated matrix are given by

∀(i, j, k, l), M(i,j),(k,l) = E

[

X(i)X(j)X(k)X(l)
]

,

where X(i) denote the i-th component of the vector X . The matrix M is clearly symmetric. One
can also prove that it is stable on S(Rd).

We then define T = HL + HR − γM with HL, HR and M as defined above for the random
variable X defined in our setup. It is immediately stable over S(Rd). We will denote µT the
smallest eigenvalue of T .

2 Proof of Lemma 1

Here is a more complete version of Lemma 1 in the paper.

Lemma 1. Using the notations and assumptions of Section (1.1) of the original paper, define γmax

as the supremum of γ > 0 such that

∀A ∈ S(Rd), 2Tr
(

AT HA
)

− γE
[

(XT AX)2
]

> 0. (2.1)

If 0 < γ < γmax then T is positive definite and ρ < 1. More precisely, in dimension d ! 2, we have

⎧

⎨

⎩

ρ ≤ 1 − 2γ

(

1 −
γ

γmax

)

µ if 1 > γ
γmax

≥ 1
2

ρ ≤ 1 − γµ otherwise.
(2.2)

In dimension d = 1, we have

ρ ≤ max

(

|1 − γµ| , 1 − 2γ

(

1 −
γ

γmax

)

µ

)

.

Otherwise, if γ > γmax, then ρ > 1.

In order to prove it, we will first need some preliminary results.

2.1 Some Lemmas

Lemma 2. Let A ∈ S(Rd) be any symmetric matrix, then

∀x ∈ R
d, (xT Ax)2 ≤ Tr

(

(xT x)AxxT A
)

.

Proof. Using Cauchy-Schwarz inequality, one has

(xT Ax)2 = [xT (Ax)]2 ≤ (Ax)T (Ax)(xT x)

= xT AAx(xT x) = Tr
(

(xT x)AxxT A
)

.

The following lemma is the proof of equation (2.4) in the original paper.

2



Lemma 3. Let H ∈ S(Rd) be a positive semi-definite matrix. If γ > 0 is so that

∀A ∈ S(Rd), 2Tr
(

AT HA
)

− γE
[

(XT AX)2
]

> 0

then

γ <
2

Tr (H)
.

Proof. Let A ∈ S(Rd), 2Tr
(

AT HA
)

− γE
[

(XT AX)2
]

> 0 implies that with Jensen’s inequality,

2Tr
(

AT HA
)

− γTr (AH)2 = 2Tr
(

AT HA
)

− γTr
(

AE
[

XXT
])2

= 2Tr
(

AT HA
)

− γE
[

XT AX
]2

> 0.

Then, let (ui)i ∈ Rd×d an orthogonal basis that diagonalizes H and λi the eigenvalues associated
with each eigenvector. Then, taking A =

∑

i uiu
T
i , we get

2Tr
(

AT HA
)

− γTr (AH)2 = 2Tr

⎛

⎝

∑

i,j

uiu
T
i HujuT

j

⎞

⎠− γ

(

∑

i

uT
i Hui

)2

= 2

(

∑

i

λi

)

− γ

(

∑

i

λi

)2

≥ 0,

so that

γ <
2

∑

i λi
=

2

Tr (H)
.

Lemma 4. Let γ > 0, we can define T = HL + HR − γM as in Section 1. If γ < 2
Tr(H) , then

I − γT ≻ −I.

and if we are in dimension 1,
I − γT ≽ 0

Proof. The Lemma is equivalent to ∀A ∈ S(Rd), A ̸= 0 ⇒ ⟨A, (2I − γT )A⟩ > 0.
If we are in dimension d = 1, then we have I − γT = 1 − 2γh + γm2 where h = E

[

X2
]

and
m = E

[

X4
]

≥ h2 so that I − γT ≥ (1 − γh)2 ≥ 0.
Let now assume we are in dimension two or more. Let A ∈ S(Rd) with A ̸= 0. Let P ∈ Rd×d

be an orthogonal matrix such that P HP −1 = D where D is diagonal with eigenvalues ordered in
decreasing order, with λi = Di,i and λ1 = L. We will denote U = P AP −1 = P AP T .

⟨A, (2I − γT )A⟩ = Tr
(

AT (2I − γT )A
)

= 2Tr
(

AT A
)

− 2γTr
(

AT HA
)

+ γ2
E

[

(

XT AX
)2
]

≥ 2Tr
(

AT A
)

− 2γTr
(

AT HA
)

+ γ2
E
[(

XT AX
)]2

= 2Tr
(

AT A
)

− 2γTr
(

AT HA
)

+ γ2Tr (AH)2

= 2Tr
(

UT U
)

− 2γTr
(

UT DU
)

+ γ2Tr (UD)2

=
d
∑

i,j=1

2U2
i,j − 2γU2

i,jλi + γ2Ui,iUj,jλiλj

=

⎛

⎝

∑

i̸=j

2U2
i,j(2 − γ(λi + λj))

⎞

⎠+
d
∑

i=1

2U2
i,i − 2γU2

i,iλi + γ2

(

d
∑

i=1

Ui,iλi

)2

.

The first sum immediately defines a definite positive form over the subspace generated by
(Ui,j)i̸=j as γ < 2

λi+λj
for all i ̸= j. The second part also defines a bilinear form over the or-

thogonal subspace generated by (Ui,i)1≤i≤d. 2I − γT is definite positive if and only if those two
forms are definite positive. We will introduce xi = Ui,i so that the second form is given by xT Gx

3



where G = 2I − 2γDiag(Λ) + γ2ΛΛT , with Λ = (λi)1≤i≤d and Diag(Λ) the diagonal matrix with
values from Λ on the diagonal.

We can decompose G as

G =

(

B γ2λ1CT

γ2λ1C D

)

,

with B = 2 − 2γλ1 + γ2λ1, C = (λi)2≤i≤d and D = 2I − 2γDiag(C) + γ2CCT . Using the Schur
completement condition for positive definiteness, we have that G ≻ 0 if and only if D ≻ 0 and
B − γ4λ2

1CT D−1C > 0. We immediately have that D ≻ 0 as I − γDiag(C) ≻ 0, indeed, for all
d ≥ i ≥ 2, we have that γλi < 1.

Let us introduce E = 2I − 2γDiag(C), then we have

D−1 = E−1 −
γ2

1 + γ2CT E−1C
E−1CCT E−1.

We will assume that
∑d

i=2 λi < λ1, otherwise one trivially has that γλ1 < 1 and G ≻ 0. Let us
denote

q = CT E−1C

=
d
∑

i=2

λ2
i

2(1 − λiγ)

≤
(
∑d

i=2 λi)2

2(1 − γ
∑d

i=2 λi)

=
l2

2(1 − γl)
,

where l =
∑d

i=2 λi. We will take l = λ1α so that 0 < α < 1. We have

B − γ4λ2
1CT D−1C = γ2λ2

1 + 2 − 2λ1γ − γ4λ2
1

(

q −
γ2q2

1 + γ2q

)

=
γ2λ2

1

1 + γ2q
− 2λ1γ + 2

≥
γ2λ2

1

1 + γ2 l2

2(1−γl)

− 2λ1γ + 2.

Denoting y = γλ1, we get

B − γ4λ2
1CT D−1C =

2y2(1 − yα)

2 − 2yα + α2y2
− 2y + 2.

Using standard analysis tools, one can show that the last quantity is positive for 0 < y < 2
1+α

and
0 < α < 1. As a conclusion, G is definite positive and so is 2I − γT .

Lemma 5. Let γ > 0, we can define T = HL + HR − γM which is symmetric and is stable over
S(Rd).

If

∀A ∈ S(Rd), 2Tr
(

AT HA
)

− γE
[

(XT AX)2
]

> 0,

or (this second assumption implies the first one)

E
[

XXT
]

− γE
[

XT XXXT
]

≻ 0,

then

• ∥I − γH∥
op

< 1 ,

• T ≻ 0 ,

• ∥I − γT ∥
op

< 1.
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Proof. We should first notice that using Lemma 3, we necessarely have

γ <
2

Tr (H)
. (2.3)

We first need, I − γH ≺ I which is always true as long as H is invertible (i.e. H is positive).
Then we need I − γH ≻ −I, or γH ≺ 2I, which means γ < 2

L where L is H largest eigenvalue.
However this is implied by (2.3).

Now, we need I − γT ≺ I, i.e., T ≻ 0 (this will also prove T invertible). This is equivalent to

∀A ∈ S(Rd), A ̸= 0 ⇒ ⟨A, T A⟩ > 0

Let us compute this term for A ∈ S(Rd) with A ̸= 0

⟨A, T A⟩ = Tr
(

AT (T A)
)

= Tr
(

AT AH + AT HA − γAT
E
[

XXT AXXT
])

= 2Tr
(

AT HA
)

− E
[

(XT AX)2
]

and we can stop here if we have first assumption

≥ Tr
(

AT
(

2H − γE
[

XT XXXT
])

A
)

using Lemma 2

A sufficient condition here is that K = 2H − γE
[

XT XXXT
]

≻ 0. Indeed, let I = Ker(A)⊥

be the orthogonal space of the kernel of A, which is stable under A as A is symmetric, so we can
define A′ the restriction of A to I which is invertible. It is of dimension greater than 1 as A is
not 0. K defines on I a bilinear symmetric definite positive application K ′. Then, Tr

(

AT KA
)

=
Tr
(

A′T K ′A′
)

> 0 because A′T K ′A′ is also symmetric definite positive.
Finally, we want I − γT ≻ −I. Using Lemma 4, this is a direct consequence of (2.3).

2.2 Proof of Lemma 1

Let assume 0 < γ < γmax. Lemma 5 already tells us that our operators have good properties as
we have ρ < 1 and T ≻ 0. We will now get a finer result in order to have an explicit bound on ρ
depending on γ.

As we will be using different values for γ we will explicitely mark the dependency in γ for T by
writing T (γ). We will only consider 0 < γ < γmax so that T (γ) is positive. We will denote by
LT (γ) the largest eigenvalue of T (γ) and by µT (γ) its smallest. We then have

ρT (γ) = max(1 − γµT (γ), γLT (γ) − 1).

One should also notice that the smallest eigenvalue of HL + HR is 2µ and the largest 2L.
We have T (γmax) ≽ 0 using Lemma 5. For any 0 < γ < γmax we can define α = γ

γmax
. Then we

have

T (γ) = (1 − α)(HL + HR) + α(HL + HR) − αγmaxM

= (1 − α)(HL + HR) + αT (γmax)

≽ (1 − α)(HL + HR)

≽ 2(1 − α)µ,

so that µT (γ) ≥ 2(1 − α)µ.
Using Lemma 4 we have that T (γmax) ≼ 2I

γmax
so that we obtain

T (γ) = (1 − α)(HL + HR) + αT (γmax)

≼ 2(1 − α)L +
2α

γmax
.

As a consequence if we take

a(γ) = 1 − 2αγmax(1 − α)µ

b(γ) = 2(1 − α)αγmaxL + 2α2 − 1

we have ρT (γ) = max(a(γ), b(γ)). Besides, if we are in dimension d = 2 or more,

a(γ) − b(γ) = 2 − 2αγmax(L + µ)(1 − α) − 2α2

≥ 2 − 4α(1 − α) − 2α2 as γmax(L + µ) ≤ 2

= 2 + 2α2 − 4α

≥ 0,
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so that,

ρT (γ) ≤ 1 − 2γµ(1 −
γ

γmax
).

In dimension d = 1, the same result holds as we have 1 − γT ≥ 1 − 2γH + γ2H2 ≥ 0 so that
γLT (γ) − 1 ≤ 0.

We can now look as ρH which is given by ρH = max(1 − γµ, γL − 1).
Let assume we are in dimension 2 or more, then we have 1−γµ ≥ γL−1 so that ρH = 1−γµ. In

dimension 1, we have ρH = |1 − γµ|. Comparing ρH and ρT we obtain the result of this Lemma.
Finally, if γ > γmax, then T has a negative eigenvalue and so ρT > 1 and ρ > 1.

3 Proof of the theorems

We will first give a more complete version of both theorems.

Theorem 1 (Asymptotic covariance of the bias). Let E0 = E
[

η0ηT
0

]

(or just η0ηT
0 if the starting

point is not randomized). If 0 < γ < γmax and ∀i ≥ 1, εi = 0, then

E
[

η̄nη̄T
n

]

=
1

n2γ2

(

H−1
L + H−1

R − γI
) (

T −1E0

)

+ O

(

ρn

n

)

.

Theorem 2 (Asymptotic covariance of the variance). Let Σ0 = E
[

ε2XXT
]

and let assume that
η0 = 0. If 0 < γ < γmax

E
[

η̄nη̄T
n

]

=
1

n
(H−1

L + H−1
R − γI)T −1Σ0 −

1

γn2

(

H−1
L + H−1

R − γI
)

(I − γT )T −2Σ0 + O

(

ρn

n

)

.

3.1 Complete expression of the covariance matrix

Let us recall that we have the update rule

ηi = (I − γXiX
T
i )ηi + γεiXi. (3.1)

We can then introduce the following matrices

Mk,j =

(

j
∏

i=k+1

(

I − γXiX
T
i

)

)T

∈ Rd×d,

and by iterating over (3.1) we obtain,

ηn = γ

n
∑

k=1

Mk,nXkεk + M0,nη0.

We have

η̄n =
γ

n

n−1
∑

j=0

j
∑

k=1

Mk,jXkεk +
1

n

n−1
∑

j=0

M0,jη0

=
γ

n

n−1
∑

k=1

⎛

⎝

n−1
∑

j=k

Mk,j

⎞

⎠Xkεk +
1

n

n−1
∑

j=0

M0,jη0.

One can already see the decomposition between the variance and bias term, one depending only
on η0 and the other on ε.

If we assume that εk is independent of Xk, then we can immediately see that when computing
E
[

η̄nη̄T
n

]

, cross-terms between bias and variance will be zero as they will contain only one εk. If
that is not true, then extra cross-terms will appear and there is no longer a simple bias/variance
decomposition. Let us look at one of the cross terms,

γ

n2
E
[

Mk,jXkεkηT
0 M0,p

]

.

If p < k, then one can immediately notice that Xkεk will be independant from the rest so that
the term will be 0, as it is always true that E [εX ] = 0. If not, Xk will also appear in M0,p as a
factor I − γXkXT

k so that the term can be expressed as G(E
[

XkεkηT
0 XkXT

k

]

) where G is a linear
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operator obtained using the independance of the other Xi and εi for i ̸= k. As a consequence, we
can recover a simple decomposition as soon as

∀ 1 ≤ i, j, k ≤ d,E
[

X(i)X(j)X(k)ε
]

= 0,

where X(i) is the i-th component of X .
In any case, because of Minkowski’s inequality as noted in Bach and Moulines (2013), we always

have that

f total
n − f ! ≤ 2(fbias

n − f ! ) + 2(fvariance
n − f ! ),

so that we are never too far from the true error when assuming X and ε independant.

3.2 Proof for the bias term

First, let us assume that εk = 0 a.s. Then we have

η̄n =
1

n

n" 1
∑

j=0

M0,jη0,

and

E
[

η̄nη̄T
n

]

=
1

n2

n" 1
∑

i=0

n" 1
∑

j=0

E
[

M0,iη0ηT
0 MT

0,j

]

=
1

n2

n" 1
∑

i=0

⎛

⎝E

⎡

⎣M0,iη0ηT
0 MT

0,i +
n" 1
∑

j=i+1

M0,iη0ηT
0 MT

0,iM
T
i,j +

i" 1
∑

j=0

Mj,iM0,jη0ηT
0 MT

0,j

⎤

⎦

⎞

⎠

=
1

n2

n" 1
∑

i=0

(

E
[

M0,iη0ηT
0 MT

0,i

]

+
n" 1
∑

j=i+1

E
[

M0,iη0ηT
0 MT

0,i

]

(I − γH)j" i

+
i" 1
∑

j=0

(I − γH)i" j
E
[

MT
0,jη0ηT

0 M0,j

]

)

because of independence assumptions,

=
1

n2

n" 1
∑

i=0

⎛

⎝E
[

M0,iη0ηT
0 MT

0,i

]

+
n" 1
∑

j=i+1

E
[

M0,iη0ηT
0 MT

0,i

]

(I − γH)j" i

⎞

⎠

+
1

n2

n" 1
∑

j=0

⎛

⎝

n" 1
∑

i=j+1

(I − γH)i" j
E
[

MT
0,jη0ηT

0 M0,j

]

⎞

⎠

=
1

n2

n" 1
∑

i=0

(

E
[

M0,iη0ηT
0 MT

0,i

]

+
n" 1
∑

j=i+1

(

E
[

M0,iη0ηT
0 MT

0,i

]

(I − γH)j" i + (I − γH)j" i
E
[

M0,iη0ηT
0 MT

0,i

])

)

by exchanging the role of i and j in the last equation,

=
1

n2

n" 1
∑

i=0

(

E
[

M0,iη0ηT
0 MT

0,i

]

+ E
[

M0,iη0ηT
0 MT

0,i

] (

(I − γH) − (I − γH)n" i
)

(γH)" 1

+ (γH)" 1
(

(I − γH) − (I − γH)n" i
)

E
[

M0,iη0ηT
0 MT

0,i

]

)

.

We only used the fact that Xi and Xj are independent as soon as i ̸= j, so that we can condition
on X1, . . . Xi to obtain M1,i(I − γH)j" i. Now we need to express E

[

(I − γXiX
T
i )A(I − γXiX

T
i )
]

for A some matrix that is independent of Xi. Using the notation we introduced, we have immedi-
ately that

E
[

(I − γXiX
T
i )A(I − γXiX

T
i )
]

= A − γAH − γHA + γ2
E
[

XT AXXXT
]

= (I − γHR − γHL + γ2M)A

= (I − γT )A.
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Then we have, with Fi−1 the σ field generated by X1, . . . , Xi−1,

E
[

M0,iη0ηT
0 MT

0,i

]

= E
[

E
[

M0,iη0ηT
0 MT

0,i|Fi−1

]]

= E
[

E
[

(I − γXiX
T
i )M0,i−1η0ηT

0 MT
0,i−1(I − γXiX

T
i )|Fi−1

]]

= E
[

(I − γT )M0,i−1η0ηT
0 M0,i−1

]

= (I − γT )E
[

M0,i−1η0ηT
0 M0,i−1

]

.

and by iterating this process, we obtain

E
[

η̄nη̄T
n

]

=
1

n2

n−1
∑

i=0

(I − γT )iE0

+
(

(I − γT )iE0

) (

(I − γH) − (I − γH)n−i
)

(γH)−1

+ (γH)−1
(

(I − γH) − (I − γH)n−i
) (

(I − γT )iE0

)

=
1

n2

n−1
∑

i=0

(

I +
[

(I − γH)L − (I − γH)n−i
L

]

(γHL)−1

+
[

(I − γH)R − (I − γH)n−i
R

]

(γHR)−1

)

(I − γT )iE0.

Let us define

An = −
1

n2

n−1
∑

i=0

(

(γHR)−1(I − γH)n−i
R + (γHL)−1(I − γH)n−i

L

) (

(I − γT )iE0

)

∥An∥F ≤
2d

nγµ
ρn ∥E0∥F ,

which is decaying exponentially. We now have

E
[

η̄nη̄T
n

]

=
1

n2

n−1
∑

i=0

(

I + (I − γHL)(γHL)−1 + (I − γHR)(γHR)−1
)

(I − γT )iE0 + An

=
1

γ2n2

(

H−1
L + H−1

R − γI
)

T −1 (I − (I − γT )n) E0 + An.

Again, we have some exponential terms, that we will regroup in Bn with

Bn = −
1

γ2n2

(

H−1
L + H−1

R − γI
)

T −1(I − γT )nE0

∥Bn∥F ≤
d

n2γ2µT
ρn

T

(

2

µ
− γ

)

∥E0∥F ,

and we have

E
[

η̄nη̄T
n

]

=
1

n2γ2

(

H−1
L + H−1

R − γI
)

T −1E0 + An + Bn.

We can bound An + Bn by

∥An + Bn∥F ≤
dρn ∥E0∥F

γn

(

2

µ
+

1

µT nγ

(

2

µ
− γ

))

,

which completes the first assertion of Theorem 1.

3.3 Proof for the variance term

Let assume now that η0 = 0, then we have

η̄n =
γ

n

n−1
∑

k=1

⎛

⎝

n−1
∑

j=k

Mk,j

⎞

⎠Xkεk,
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and

E
[

η̄nη̄T
n

]

=
γ2

n2
E

⎡

⎣

n−1
∑

k,l=1

⎛

⎝

n−1
∑

j=k

Mk,j

⎞

⎠XkεkεlX
T
l

⎛

⎝

n−1
∑

p=l

MT
l,p

⎞

⎠

⎤

⎦

=
γ2

n2
E

⎡

⎣

n−1
∑

k=1

⎛

⎝

n−1
∑

j=k

Mk,j

⎞

⎠XkεkεkXT
k

⎛

⎝

n−1
∑

p=k

MT
k,p

⎞

⎠

⎤

⎦ .

Indeed, we can remove terms where k ̸= l: if we have for instance l < k, then Xlεl will be
independent from the rest of the terms and as E [Xlεl] = 0, the term will be 0.

By using mostly the same method as for the bias term, we obtain that

E
[

η̄nη̄T
n

]

=
γ2

n2

n−1
∑

k=1

n−1
∑

j=k

(I − γT )j−k Σ0

+
(

(I − γH) − (I − γH)n−j
)

(γH)−1
(

(I − γT )j−k Σ0

)

+
(

(I − γT )j−k Σ0

)

(

(I − γH) − (I − γH)n−j
)

(γH)−1

=
γ2

n2

n−1
∑

j=1

j
∑

k=1

(I − γT )j−k Σ0

+
(

(I − γH) − (I − γH)n−j
)

(γH)−1
(

(I − γT )j−k Σ0

)

+
(

(I − γT )j−k Σ0

)

(

(I − γH) − (I − γH)n−j
)

(γH)−1

=
γ2

n2

n−1
∑

j=1

(

I − (I − γT )j
)

(γT )−1Σ0

+
(

(I − γH) − (I − γH)n−j
)

(γH)−1
(

I − (I − γT )j
)

(γT )−1Σ0

+
(

I − (I − γT )j
)

(γT )−1Σ0

(

(I − γH) − (I − γH)n−j
)

(γH)−1.

As for the bias, we can bound some terms:

Cn =
γ2

n2

n−1
∑

j=1

(

(I − γH)n−j
L (γHL)−1 + (I − γH)n−j

R (γHR)−1
)

(I − γT )j(γT )−1Σ0

∥Cn∥F ≤
2d

nµµT
ρn ∥Σ0∥F .

Now we have,

E
[

η̄nη̄T
n

]

=
1

n2

n−1
∑

j=1

(

H−1
L + H−1

R − γI
) (

I − (I − γT )j
)

T −1Σ0 + Cn

=
1

n

(

H−1
L + H−1

R − γI
)

T −1Σ0 + Dn + Cn,

where Dn is defined by

Dn = −
1

n2

n−1
∑

j=1

(

H−1
L + H−1

R − γI
)

(I − γT )jT −1Σ0

= −
1

γn2

(

H−1
L + H−1

R − γI
)

(I − γT )T −2Σ0 + D′
n.

D′
n are again exponentially decreasing terms:

D′
n =

1

γn2

(

H−1
L + H−1

R − γI
)

(I − γT )nT −2Σ0

∥D′
n∥F ≤

d

γ2µ2
T n

(

2

µ
− γ

)

ρn
T ∥Σ0∥F ,
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so that we have

E
[

η̄nη̄T
n

]

=
1

n

(

H−1
L + H−1

R ! γI
)

T −1! 0 !
1

γn2

(

H−1
L + H−1

R ! γI
)

(I ! γT )T −2! 0 + Cn + D′
n.

(3.2)

We can bound Cn + D′
n by

"Cn + D′
n" F #

dρn " ! 0" F

n

(

1

nγµ2
T

(

2

µ
! γ

)

+
2

µµT

)

.

This concludes the proof of Theorem 2.
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