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Introduction

Principal Component Analysis

e (Classic dimensionality reduction tool.

e Numerically cheap: O(n?) as it only requires computing a few dominant
eigenvectors.

Sparse PCA

e Get sparse factors capturing a maximum of variance.
e Numerically hard: combinatorial problem.

e Controlling the sparsity of the solution is also hard in practice.
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Clustering of the gene expression data in the PCA versus sparse PCA basis with
500 genes. The factors f on the left are dense and each use all 500 genes while
the sparse factors g1, g2 and g3 on the right involve 6, 4 and 4 genes respectively.

(Data: Iconix Pharmaceuticals)



Introduction

Principal Component Analysis. Given a (centered) data set A € R"*™

composed of m observations on n variables, we form the covariance matrix

C =ATA/(m — 1) and solve:

maximize z!Cux
subject to ||z|| =1,

in the variable x € R", i.e. we maximize the variance explained by the factor x.

Sparse Principal Component Analysis. We constrain the cardinality of the

factor x and solve: o
maximize x21Cx

subject to Card(x) =k
]} = 1,
in the variable x € R", where Card(x) is the number of nonzero coefficients in
the vector x and k£ > 0 is a parameter controlling sparsity.
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Algorithms

Existing methods. . .

e Cadima & Jolliffe (1995): the loadings with small absolute value are
thresholded to zero.

e SPCA Zou, Hastie & Tibshirani (2006), non-convex algo. based on a [;
penalized representation of PCA as a regression problem.

e A convex relaxation in d'Aspremont, El Ghaoui, Jordan & Lanckriet (2007).

e Non-convex optimization methods: SCoTLASS by Jolliffe, Trendafilov & Uddin
(2003) or Sriperumbudur, Torres & Lanckriet (2007).

e A greedy algorithm by Moghaddam, Weiss & Avidan (2006b).



Algorithms

Simplest solution: just sort variables according to variance, keep the k variables
with highest variance. Schur-Horn theorem: the diagonal of a matrix majorizes
its eigenvalues.

201
40
60

80

Variables

100

120

140

60 80 100 120 140

0 20 4

Cardinality

Other simple solution: Thresholding, compute the first factor = from regular
PCA and keep the k variables corresponding to the k largest coefficients.



Algorithms

Greedy search (see Moghaddam et al. (2006b)). Written on the square root here.

1. Preprocessing. Permute elements of X accordingly so that its diagonal is
decreasing. Compute the Cholesky decomposition ¥ = AT A. Initializate

[1 = {1} and r1 = a1/||a1H.

2. Compute
1 = argmax A\paz Z ajajr
i1y jerufi)
3. Set I 1 = I U {Zk}
. . T
4. Compute x4 as the dominant eigenvector of Zjelkﬂ a;a; .

5. Set k=k+ 1. If K <n go back to step 2.



Algorithms: complexity

Greedy Search

e lteration k of the greedy search requires computing (n — k) maximum
eigenvalues, hence has complexity O((n — k)k?) if we exploit the Gram

structure.
This means that computing a full path of solutions has complexity O(n?).

Approximate Greedy Search

e We can exploit the following first-order inequality:

Amaz Z a,ja? > Anax Zaja? + (af 1)?

JelU{:} JEI

where z; is the dominant eigenvector of > ., a;a; .

e \We only need to solve one maximum eigenvalue problem per iteration, with
cost O(k?). The complexity of computing a full path of solution is now O(n?).



Algorithms

Approximate greedy search.

1. Preprocessing. Permute elements of X accordingly so that its diagonal is
decreasing. Compute the Cholesky decomposition ¥ = A*' A. Initializate
[1 = {1} and r1 = a1/||a1H.

2. Compute i} = argmaxi@k(az;—gai)z
3. Set Iy 1 = I U {Zk}

T

4. Compute x4 as the dominant eigenvector of Zjelkﬂ a;a; .

5. Set k =k + 1. If K <n go back to step 2.
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Algorithms: optimality

e We can write the sparse PCA problem in penalized form:

T
max 2 Cx — p Card(xz
lx||<1 P (z)

in the variable z € R", where p > 0 is a parameter controlling sparsity.
e This problem is equivalent to solving:

n

max » ((a; z)* —p)+
ol =1 4=

in the variable x € R", where the matrix A is the Cholesky decomposition of
C, with C = AT A. We only keep variables for which (a z)* > p.
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Algorithms: optimality

e Sparse PCA equivalent to solving:

n

max ((aj 2)* = p)+
=1

in the variable x € R", where the matrix A is the Cholesky decomposition of

C. with C = AT A.

e This problem is also equivalent to solving:

n

max E (al Xa; —p)y
X0, Tr X=1, Rank(X)=1

1=1

in the variables X € S,,, where X = zx!. Note that the rank constraint can
be dropped.

13



Algorithms: optimality
The problem

n

T LR—
X0, T x=1 Z(ai Xai = p)+

=1
IS a convex maximization problem, hence is still hard. We can formulate a
semidefinite relaxation by writing it in the equivalent form:

maximize Y. Tr(X'/2aq;aT X1/%2 — pX)
subject to Tr(X)=1, X >0, Rank(X) =1,

in the variable X € S,,. If we drop the rank constraint, this becomes a convex
problem and using

Tr(XY2BXY?), = max Tr(PB)(= min Tr(YX)).
{02P=X} {Y=B, Y~=0}

we can get the following equivalent SDP:

maxXx. 2?21 T‘I‘(Psz)
st. Tr(X)=1, X =0, X = P, =0,

which is a semidefinite program in the variables X € S,,, P; € S,,.
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Algorithms: optimality - Primal/dual formulation

e Primal problem:

maxXx. Z?:l rI‘I‘(PzBZ)
st. Tr(X)=1, X>=0, X =P, =0,

which is a semidefinite program in the variables X € S,,, P, € S,,.

e Dual problem:
S.t. l/z i Bia 1/z >_- 07

e KKT conditions...
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Algorithms: optimality

e When the solution of this last SDP has rank one, it also produces a globally
optimal solution for the sparse PCA problem.

e |n practice, this semidefinite program but we can use it to test the optimality
of the solutions computed by the approximate greedy method.

e When the SDP has a rank one, the KKT optimality conditions for the
semidefinite relaxation are given by:

( (Z?:l Vi) X :TAmQaX (Z?:l Vi) X
xTYia::{ (a;z)*—pifiel

_/\

Oifee €
| Yi= By, Y0,

e This is a (large) semidefinite feasibility problem, but a good guess for Y; often
turns out to be sufficient.
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Algorithms: optimality

Optimality: sufficient conditions Given a sparsity pattern I, setting x to be
the largest eigenvector of ) ., a;a; . If there is a parameter p; such that:

max(a; x)? < pr < min(a; x)*.

¢l 1€l
and
BiCI?iI?TBi
)\max (Z CCTBZ'CIZ' + Z E) S o
el relc¢
where

. ieln

Y; = max {07 0 (ai ai = p) } (I - z2T)a;al (I — z27T)

(p — (a x)?) (T = mT)azHQ

Then the vector z such that z = argmaxy, . |.|=11 2 2%, which is formed by
padding zeros to the dominant eigenvector of the submatrix X7 1 is a global
solution to the sparse PCA problem for p = p;y.
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Optimality: why bother?

Compressed sensing. Following Candes & Tao (2005) (see also Donoho &
Tanner (2005)), recover a signal f € R"™ from corrupted measurements:

y=Af+e

where A € R™*" is a coding matrix and e € R™ is an unknown vector of errors
with low cardinality.

This is equivalent to solving the following (combinatorial) problem:

minimize  ||x||o
subject to Fx = Fly

where ||z]|o = Card(z) and F' € RP*"™ is a matrix such that F'A = 0.
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Compressed sensing: restricted isometry

Candes & Tao (2005): given a matrix F' € RP*™ and an integer S such that
0 < 5 < m, we define its restricted isometry constant dg as the smallest

number such that for any subset I C [1,m] of cardinality at most S we have:

(1= ds)llell* < | Frell” < (14 ds)|ell®,

for all ¢ € Rl where F} is the submatrix of F' formed by keeping only the
columns of F'in the set I.
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Compressed sensing: perfect recovery

The following result then holds.

Proposition 1. Candés & Tao (2005). Suppose that the restricted isometry
constants of a matrix F' € RP*™ satisfy :

05 + 025 + 035 < 1 (1)

for some integer S such that 0 < S < m, then if x is an optimal solution of the
convex program:

minimize  ||x||1

subject to Fx = Fy

such that Card(x) < S then x is also an optimal solution of the combinatorial

problem:
minimize  ||z||o
subject to Fzx = Fly.
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Compressed sensing: restricted isometry

The restricted isometry constant dg in condition ([II) can be computed by solving
the following sparse PCA problem:

(1+65) = max. 2! (FIF)x
s. t. Card(x) <S
|z| =1,

in the variable £ € R™ and another sparse PCA problem on al — F'''F to get the
other inequality.

e Candés & Tao (2005) obtain an asymptotic proof that some random matrices
satisfy the restricted isometry condition with overwhelming probability (i.e.
exponentially small probability of failure)

e When they hold, the optimality conditions and upper bounds for sparse PCA
allow us to prove (deterministically and with polynomial complexity) that a
finite dimensional matrix satisfies the restricted isometry condition.
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Optimality: Subset selection for least-squares

We consider p data points in R™, in a data matrix X € RP*", and real numbers
y € RP. We consider the problem:

s(k) = _min ly — Xwl||?.
weR , Card w<k

Given the sparsity pattern u € {0,1}", solution in closed form.

Proposition: u € {0,1}" is optimal for subset selection if and only if u is
optimal for the sparse PCA problem on the matrix

Xyy' X — (v X (u)(X (w)" X (u) ' X (u)'y) XX

Sparse PCA allows to give deterministic sufficient conditions for optimality.

To be compared on necessary and sufficient statistical consistency
condition (Zhao & Yu (2006)):

1 X7 X (X[ Xp) ™ tsign(wr)]|oo < 1

(2)
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Numerical Results

Artificial data. We generate a matrix U of size 150 with uniformly distributed
coefficients in [0,1]. We let v € R'™" be a sparse vector with:

1 If 2 <50
V; = 1/(i —50) if 50 <7 < 100
0 otherwise

We form a test matrix
Y =UTU + ovv?,

where o is the signal-to-noise ratio.

Gene expression data. We run the approximate greedy algorithm on two gene
expression data sets, one on colon cancer from Alon, Barkai, Notterman, Gish,
Ybarra, Mack & Levine (1999), the other on lymphoma from Alizadeh, Eisen,
Davis, Ma, Lossos & Rosenwald (2000). We only keep the 500 genes with largest
variance.
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Numerical Results - Artificial data
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ROC curves for sorting, thresholding, fully greedy solutions and approximate
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Numerical Results - Artificial data
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Variance versus cardinality tradeoff curves for ¢ = 10 (bottom), ¢ = 50 and
o = 100 (top). Optimal points are in bold.
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Numerical Results - Gene expression data
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Variance versus cardinality tradeoff curve for two gene expression data sets,
lymphoma (top) and colon cancer (bottom). Optimal points are in bold.
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Numerical Results - Subset selection on a noisy sparse vector
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Backward greedy algorithm and Lasso. Probability of achieved (red dotted
line) and provable (black solid line) optimality versus noise for greedy selection
against Lasso (green large dots). Left: Lasso consistency condition satisfied (Zhao
& Yu (2006)). Right: consistency condition not satisfied.

28



Conclusion & Extensions

Sparse PCA in practice, if your problem has. . .

e A million variables: can’'t even form a covariance matrix. Sort variables
according to variance and keep a few thousand.

e A few thousand variables (more if Gram format): approximate greedy
method described here.

e A few hundred variables: use DSPCA, SPCA, full greedy search, etc.
Of course, these techniques can be combined.
Discussion - Extensions. . .

e Large SDP to obtain certificated of optimality of a combinatorial problem

e Efficient solvers for the semidefinite relaxation (exploiting low rank,
randomization, etc.). (We have never solved it for n > 10!)

e Find better matrices with restricted isometry property.
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