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Introduction

Principal Component Analysis

• Classic dimensionality reduction tool.

• Numerically cheap: O(n2) as it only requires computing a few dominant
eigenvectors.

Sparse PCA

• Get sparse factors capturing a maximum of variance.

• Numerically hard: combinatorial problem.

• Controlling the sparsity of the solution is also hard in practice.
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Clustering of the gene expression data in the PCA versus sparse PCA basis with
500 genes. The factors f on the left are dense and each use all 500 genes while
the sparse factors g1, g2 and g3 on the right involve 6, 4 and 4 genes respectively.
(Data: Iconix Pharmaceuticals)
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Introduction

Principal Component Analysis. Given a (centered) data set A ∈ Rn×m

composed of m observations on n variables, we form the covariance matrix
C = ATA/(m − 1) and solve:

maximize xTCx
subject to ‖x‖ = 1,

in the variable x ∈ Rn, i.e. we maximize the variance explained by the factor x.

Sparse Principal Component Analysis. We constrain the cardinality of the
factor x and solve:

maximize xTCx
subject to Card(x) = k

‖x‖ = 1,

in the variable x ∈ Rn, where Card(x) is the number of nonzero coefficients in
the vector x and k > 0 is a parameter controlling sparsity.
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Algorithms

Existing methods. . .

• Cadima & Jolliffe (1995): the loadings with small absolute value are
thresholded to zero.

• SPCA Zou, Hastie & Tibshirani (2006), non-convex algo. based on a l1
penalized representation of PCA as a regression problem.

• A convex relaxation in d’Aspremont, El Ghaoui, Jordan & Lanckriet (2007).

• Non-convex optimization methods: SCoTLASS by Jolliffe, Trendafilov & Uddin
(2003) or Sriperumbudur, Torres & Lanckriet (2007).

• A greedy algorithm by Moghaddam, Weiss & Avidan (2006b).
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Algorithms

Simplest solution: just sort variables according to variance, keep the k variables
with highest variance. Schur-Horn theorem: the diagonal of a matrix majorizes
its eigenvalues.
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Other simple solution: Thresholding, compute the first factor x from regular
PCA and keep the k variables corresponding to the k largest coefficients.
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Algorithms

Greedy search (see Moghaddam et al. (2006b)). Written on the square root here.

1. Preprocessing. Permute elements of Σ accordingly so that its diagonal is
decreasing. Compute the Cholesky decomposition Σ = ATA. Initializate
I1 = {1} and x1 = a1/‖a1‖.

2. Compute

ik = argmax
i/∈Ik

λmax





∑

j∈Ik∪{i}

aja
T
j





3. Set Ik+1 = Ik ∪ {ik}.

4. Compute xk+1 as the dominant eigenvector of
∑

j∈Ik+1
aja

T
j .

5. Set k = k + 1. If k < n go back to step 2.
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Algorithms: complexity

Greedy Search

• Iteration k of the greedy search requires computing (n − k) maximum
eigenvalues, hence has complexity O((n − k)k2) if we exploit the Gram
structure.

• This means that computing a full path of solutions has complexity O(n4).

Approximate Greedy Search

• We can exploit the following first-order inequality:

λmax





∑

j∈Ik∪{i}

aja
T
j



 ≥ λmax





∑

j∈Ik

aja
T
j



+ (aT
i xk)

2

where xk is the dominant eigenvector of
∑

j∈Ik
aja

T
j .

• We only need to solve one maximum eigenvalue problem per iteration, with
cost O(k2). The complexity of computing a full path of solution is now O(n3).
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Algorithms

Approximate greedy search.

1. Preprocessing. Permute elements of Σ accordingly so that its diagonal is
decreasing. Compute the Cholesky decomposition Σ = ATA. Initializate
I1 = {1} and x1 = a1/‖a1‖.

2. Compute ik = argmaxi/∈Ik
(xT

k ai)
2

3. Set Ik+1 = Ik ∪ {ik}.

4. Compute xk+1 as the dominant eigenvector of
∑

j∈Ik+1
aja

T
j .

5. Set k = k + 1. If k < n go back to step 2.
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Algorithms: optimality

• We can write the sparse PCA problem in penalized form:

max
‖x‖≤1

xTCx − ρCard(x)

in the variable x ∈ Rn, where ρ > 0 is a parameter controlling sparsity.

• This problem is equivalent to solving:

max
‖x‖=1

n
∑

i=1

((aT
i x)2 − ρ)+

in the variable x ∈ Rn, where the matrix A is the Cholesky decomposition of
C, with C = ATA. We only keep variables for which (aT

i x)2 ≥ ρ.
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Algorithms: optimality

• Sparse PCA equivalent to solving:

max
‖x‖=1

n
∑

i=1

((aT
i x)2 − ρ)+

in the variable x ∈ Rn, where the matrix A is the Cholesky decomposition of
C, with C = ATA.

• This problem is also equivalent to solving:

max
X�0, Tr X=1, Rank(X)=1

n
∑

i=1

(aT
i Xai − ρ)+

in the variables X ∈ Sn, where X = xxT . Note that the rank constraint can
be dropped.

13



Algorithms: optimality

The problem

max
X�0, Tr X=1

n
∑

i=1

(aT
i Xai − ρ)+

is a convex maximization problem, hence is still hard. We can formulate a
semidefinite relaxation by writing it in the equivalent form:

maximize
∑n

i=1 Tr(X1/2aia
T
i X1/2 − ρX)+

subject to Tr(X) = 1, X � 0, Rank(X) = 1,

in the variable X ∈ Sn. If we drop the rank constraint, this becomes a convex
problem and using

Tr(X1/2BX1/2)+ = max
{0�P�X}

Tr(PB)(= min
{Y �B, Y �0}

Tr(Y X)).

we can get the following equivalent SDP:

max.
∑n

i=1 Tr(PiBi)
s.t. Tr(X) = 1, X � 0, X � Pi � 0,

which is a semidefinite program in the variables X ∈ Sn, Pi ∈ Sn.
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Algorithms: optimality - Primal/dual formulation

• Primal problem:

max.
∑n

i=1 Tr(PiBi)
s.t. Tr(X) = 1, X � 0, X � Pi � 0,

which is a semidefinite program in the variables X ∈ Sn, Pi ∈ Sn.

• Dual problem:
min. λmax(

∑n
i=1 Yi)

s.t. Yi � Bi, Yi � 0,

• KKT conditions...
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Algorithms: optimality

• When the solution of this last SDP has rank one, it also produces a globally
optimal solution for the sparse PCA problem.

• In practice, this semidefinite program but we can use it to test the optimality
of the solutions computed by the approximate greedy method.

• When the SDP has a rank one, the KKT optimality conditions for the
semidefinite relaxation are given by:















(
∑n

i=1 Yi) X = λmax (
∑n

i=1 Yi)X

xTYix =

{

(aT
i x)2 − ρ if i ∈ I

0 if i ∈ Ic

Yi � Bi, Yi � 0.

• This is a (large) semidefinite feasibility problem, but a good guess for Yi often
turns out to be sufficient.
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Algorithms: optimality

Optimality: sufficient conditions. Given a sparsity pattern I, setting x to be
the largest eigenvector of

∑

i∈I aia
T
i . If there is a parameter ρI such that:

max
i/∈I

(aT
i x)2 ≤ ρI ≤ min

i∈I
(aT

i x)2.

and

λmax

(

∑

i∈I

BixxTBi

xTBix
+
∑

i∈Ic

Yi

)

≤ σ

where

Yi = max

{

0, ρ
(aT

i ai − ρ)

(ρ − (aT
i x)2)

}

(I − xxT )aia
T
i (I − xxT )

‖(I− xxT )ai‖2
, i ∈ Ic.

Then the vector z such that z = argmax{zIc=0, ‖z‖=1} zTΣz, which is formed by
padding zeros to the dominant eigenvector of the submatrix ΣI,I is a global
solution to the sparse PCA problem for ρ = ρI.
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Optimality: why bother?

Compressed sensing. Following Candès & Tao (2005) (see also Donoho &
Tanner (2005)), recover a signal f ∈ Rn from corrupted measurements:

y = Af + e,

where A ∈ Rm×n is a coding matrix and e ∈ Rm is an unknown vector of errors
with low cardinality.

This is equivalent to solving the following (combinatorial) problem:

minimize ‖x‖0

subject to Fx = Fy

where ‖x‖0 = Card(x) and F ∈ Rp×m is a matrix such that FA = 0.
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Compressed sensing: restricted isometry

Candès & Tao (2005): given a matrix F ∈ Rp×m and an integer S such that
0 < S ≤ m, we define its restricted isometry constant δS as the smallest
number such that for any subset I ⊂ [1,m] of cardinality at most S we have:

(1 − δS)‖c‖2 ≤ ‖FIc‖
2 ≤ (1 + δS)‖c‖2,

for all c ∈ R|I|, where FI is the submatrix of F formed by keeping only the
columns of F in the set I.
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Compressed sensing: perfect recovery

The following result then holds.

Proposition 1. Candès & Tao (2005). Suppose that the restricted isometry
constants of a matrix F ∈ Rp×m satisfy :

δS + δ2S + δ3S < 1 (1)

for some integer S such that 0 < S ≤ m, then if x is an optimal solution of the
convex program:

minimize ‖x‖1

subject to Fx = Fy

such that Card(x) ≤ S then x is also an optimal solution of the combinatorial
problem:

minimize ‖x‖0

subject to Fx = Fy.
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Compressed sensing: restricted isometry

The restricted isometry constant δS in condition (1) can be computed by solving
the following sparse PCA problem:

(1 + δS) = max. xT (FTF )x
s. t. Card(x) ≤ S

‖x‖ = 1,

in the variable x ∈ Rm and another sparse PCA problem on αI− FTF to get the
other inequality.

• Candès & Tao (2005) obtain an asymptotic proof that some random matrices
satisfy the restricted isometry condition with overwhelming probability (i.e.
exponentially small probability of failure)

• When they hold, the optimality conditions and upper bounds for sparse PCA
allow us to prove (deterministically and with polynomial complexity) that a
finite dimensional matrix satisfies the restricted isometry condition.
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Optimality: Subset selection for least-squares

We consider p data points in Rn, in a data matrix X ∈ Rp×n, and real numbers
y ∈ Rp. We consider the problem:

s(k) = min
w∈Rn

, Card w≤k

‖y − Xw‖2. (2)

• Given the sparsity pattern u ∈ {0, 1}n, solution in closed form.

• Proposition: u ∈ {0, 1}n is optimal for subset selection if and only if u is
optimal for the sparse PCA problem on the matrix

XTyyTX −
(

yTX(u)(X(u)TX(u))−1X(u)Ty
)

XTX

• Sparse PCA allows to give deterministic sufficient conditions for optimality.

• To be compared on necessary and sufficient statistical consistency
condition (Zhao & Yu (2006)):

‖XT
IcXI(X

T
I XI)

−1sign(wI)‖∞ 6 1
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Numerical Results

Artificial data. We generate a matrix U of size 150 with uniformly distributed
coefficients in [0, 1]. We let v ∈ R150 be a sparse vector with:

vi =







1 if i ≤ 50
1/(i − 50) if 50 < i ≤ 100
0 otherwise

We form a test matrix
Σ = UTU + σvvT ,

where σ is the signal-to-noise ratio.

Gene expression data. We run the approximate greedy algorithm on two gene
expression data sets, one on colon cancer from Alon, Barkai, Notterman, Gish,
Ybarra, Mack & Levine (1999), the other on lymphoma from Alizadeh, Eisen,
Davis, Ma, Lossos & Rosenwald (2000). We only keep the 500 genes with largest
variance.

24



Numerical Results - Artificial data
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ROC curves for sorting, thresholding, fully greedy solutions and approximate
greedy solutions for σ = 2.
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Numerical Results - Artificial data
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Variance versus cardinality tradeoff curves for σ = 10 (bottom), σ = 50 and
σ = 100 (top). Optimal points are in bold.
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Numerical Results - Gene expression data
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Variance versus cardinality tradeoff curve for two gene expression data sets,
lymphoma (top) and colon cancer (bottom). Optimal points are in bold.
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Numerical Results - Subset selection on a noisy sparse vector
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Backward greedy algorithm and Lasso. Probability of achieved (red dotted
line) and provable (black solid line) optimality versus noise for greedy selection
against Lasso (green large dots). Left: Lasso consistency condition satisfied (Zhao
& Yu (2006)). Right: consistency condition not satisfied.
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Conclusion & Extensions

Sparse PCA in practice, if your problem has. . .

• A million variables: can’t even form a covariance matrix. Sort variables
according to variance and keep a few thousand.

• A few thousand variables (more if Gram format): approximate greedy
method described here.

• A few hundred variables: use DSPCA, SPCA, full greedy search, etc.

Of course, these techniques can be combined.

Discussion - Extensions. . .

• Large SDP to obtain certificated of optimality of a combinatorial problem

• Efficient solvers for the semidefinite relaxation (exploiting low rank,
randomization, etc.). (We have never solved it for n > 10!)

• Find better matrices with restricted isometry property.
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