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Accelerated Gossip in Networks of Given Dimension Using Jacobi Polynomial
Iterations\ast 

Rapha\"el Berthier\dagger , Francis Bach\dagger , and Pierre Gaillard\dagger 

Abstract. Consider a network of agents connected by communication links, where each agent holds a real
value. The gossip problem consists in estimating the average of the values diffused in the network
in a distributed manner. We develop a method for solving the gossip problem that depends only on
the spectral dimension of the network, that is, in the communication network set-up, the dimension
of the space in which the agents live. This contrasts with previous work that required the spectral
gap of the network as a parameter, or suffered from slow mixing. Our method shows an important
improvement over existing algorithms in the nonasymptotic regime, i.e., when the values are far
from being fully mixed in the network. Our approach stems from a polynomial-based point of
view on gossip algorithms, as well as an approximation of the spectral measure of the graphs with
a Jacobi measure. We show the power of the approach with simulations on various graphs, and
with performance guarantees on graphs of known spectral dimension, such as grids and random
percolation bonds. An extension of this work to distributed Laplacian solvers is discussed. As a
side result, we also use the polynomial-based point of view to show the convergence of the message
passing algorithm for gossip of Moallemi and Van Roy on regular graphs. The explicit computation
of the rate of the convergence shows that message passing has a slow rate of convergence on graphs
with small spectral gap.
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1. Introduction. The averaging problem, or gossip problem, is a fundamental primitive of
distributed algorithms. Given a network composed of agents and undirected communication
links between them, we assign to each agent v a real value \xi v, called an observation. The goal
is to design an iterative communication procedure allowing each agent to know the average of
the initial observations in the network as quickly as possible.

The landmark paper [6] suggests the natural following protocol to solve the averaging
problem: at each iteration, each agent replaces his current observation by some average of the
observations of its neighbors in the network. We will refer to this method in the following
by the term simple gossip. More precisely, we are given a weight matrix W = (Wv,w)v,w\in V ,
called the gossip matrix, indexed by the vertices v \in V of the network graph, satisfying the
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property that Wv,w is nonzero only if v \sim w, that is v and w are connected in the graph.
Then the simple gossip iteration writes

x0v = \xi v , xt+1
v =

\sum 
w:w\sim v

Wv,wx
t
w , t \geqslant 0 .(1.1)

The paper [6] proves the linear convergence of the observations to their average.
However, the rate of the linear convergence was shown to worsen significantly in many

networks of interest as the size of the network increases. More precisely, define the diameter
D of the network as the largest number of communication links needed to connect any two
agents. While, obviously, D steps of averaging are needed for any gossip method to spread
information in the network, the simple gossip method may require up to \Theta (D2) communication
steps to estimate the average, as for instance on the line graph, the two-dimensional grid, or the
random geometric graph (see [8] or [6, section IV.A]). To reach the O(D) bound, a diverse set
of ideas were proposed, including second-order recursions [7, 25], message passing algorithms
[18], lifted Markov chain techniques [28], methods using Chebychev polynomial iterations
[2, 27], inspiration arising from advection-diffusion processes [26], and geographic gossip [10],
a method that uses the knowledge of the location of the agents on a field. To the best
of our knowledge, all of these accelerated methods assume that the agents hold additional
information about the network graph, such as its spectral gap. For instance, second-order
methods typically take the form (see [7])

(1.2)

x0v = \xi v , x1v =
\sum 

w:w\sim v

Wv,wx
0
w ,

xt+1
v = \omega 

\sum 
w:w\sim v

Wv,wx
t
w + (1 - \omega )xt - 1

v , t \geqslant 1 ,

where \omega is some simple function of the spectral gap \gamma , that is the distance between the
largest and the second largest eigenvalues of W . This iteration obtains optimal asymptotic
convergence on many graphs, with a relaxation time of the linear convergence on the order of
1/

\surd 
\gamma as \gamma \rightarrow 0.
In this paper, we develop a gossip method based not on the spectral gap \gamma but on the

density of eigenvalues of W near the upper edge of the spectrum. Looking at the upper part
of the spectrum at a broader scale allows us to improve the local averaging of the gossip
algorithm in the regime t < 1/

\surd 
\gamma . This improvement is worthwhile as the spectral gap \gamma 

can get arbitrarily small in large graphs. For instance, in the case of the line graph or the
two-dimensional grid, the relaxation time 1/

\surd 
\gamma is of the order of the diameter D of the graph.

Thus the regime t < 1/
\surd 
\gamma can be relevant for applications.

Remarkably, the spectral density of W near the upper edge can be described by a very
natural parameter: the spectral dimension d. The network is of spectral dimension d if the
number of eigenvalues of W in [1 - \Lambda , 1] is of the order of \Lambda d/2 for small \Lambda (\gamma \ll \Lambda \ll 1); see
section 5.3 for rigorous definitions. We will see with examples that this definition coincides
with our intuition of the dimension of the graph, which is the dimension of the manifold on
which the agents live. For instance, the grid with nodes \BbbZ d where the nodes at distance 1 are
connected is a graph of dimension d. Thus the parameter d is much easier to know than the
spectral gap \gamma .
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In real-world situations, the practitioner reasonably knows if the network on which she
implements the gossip method is of finite dimension, and if so, she also knows the dimension
d. In this paper, we argue that she should run a second-order iteration with time-dependent
weights

(1.3)

x0v = \xi v , x1v = a0
\sum 

w:w\sim v

Wv,wx
0
w + b0x

0
v ,

xt+1
v = at

\sum 
w:w\sim v

Wv,wx
t
w + btx

t
v  - ctx

t - 1
v , t \geqslant 1 ,

where the recurrence weights at, bt, ct are given by the formulas

(1.4)

a0 =
d+ 4

2(2 + d)
, b0 =

d

2(2 + d)
,

at =
(2t+ d/2 + 1)(2t+ d/2 + 2)

2(t+ 1 + d/2)2
, bt =

d2(2t+ d/2 + 1)

8(t+ 1 + d/2)2(2t+ d/2)
,

ct =
t2(2t+ d/2 + 2)

(t+ 1 + d/2)2(2t+ d/2)
, t \geqslant 1 .

The motivation for these choices of weights at, bt, ct is not obvious at first sight. It follows
from a polynomial-based point of view on gossip algorithms: it consists in seeing the iterations
(1.1), (1.2), and (1.3) as sequences P0, P1, P2, . . . of polynomials in the gossip matrix W . The
correspondence is given by the relation xt = Pt(W )\xi where xt = (xtv)v\in V and \xi = (\xi v)v\in V .
This approach is inspired by similar work done in the resolution of linear systems [12] and
on the load balancing problem [9]. The choice of an iteration is reframed as the choice of
a sequence of polynomials, and the performance of the resulting gossip method depends on
the spectrum of W . As the dimension of the graph gives the rate of decrease of the spectral
density near the edge of the spectrum, it suggests the sequence of polynomials one should
take: we choose a parametrized sequence of polynomials called Jacobi polynomials that is
well known in the literature on orthogonal polynomials (see Definition SM2.2 of the Jacobi
polynomials). This actually leads to the iteration (1.3), which we call the Jacobi polynomial
iteration.

The Jacobi polynomial iteration (1.3) improves the convergence of the gossip method in
the transitive phase t < 1/

\surd 
\gamma but loses the optimal rate of convergence of second-order gossip

because it does not use the spectral gap \gamma . We argue that in most applications of gossip
methods, the asymptotic rate of convergence is not of practical importance, especially if the
transient time is long. However, we also build a gossip iteration that uses both parameters
d and \gamma and achieves both the efficiency in the nontransitive regime and the fast rate of
convergence.

This resolution of the gossip problem with inner-product free polynomial-based iterations
is new, and could lead to other interesting algorithms on other types of graphs. Here, the
phrase ``inner-product free"" comes from the literature on polynomial-based iterations for linear
systems [12] and refers to the fact that recurrence coefficients at, bt, ct are computed without
using the gossip matrix W (but parametrized using the knowledge of d). Indeed, as the
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knowledge of the gossip matrix W is distributed across the graph, it would be a challenging
distributed problem to compute the recurrence coefficients if they depended on W .

Although our work is inspired by iterative methods for linear systems, the Jacobi iteration
that we developed for gossip can be transposed into a new idea in this literature which can
be useful for the distributed resolution of Laplacian systems over multiagent networks.

Outline of the paper. Section 2 sets some notation used in the remainder of the paper.
In section 3, we give simulations in different types of networks of dimensions 2 and 3. We show
that the recursion (1.3) brings important benefits over existing methods in the nonasymptotic
regime, i.e., when the observations are far from being fully mixed in the graph.

In sections 4--5, we develop the derivation of the Jacobi polynomial iteration. Section 4
describes an optimal way to design polynomial-based gossip algorithms, following the lines of
[12, 9], and discusses its feasibility. Section 5 uses the notion of spectral dimension of a graph
to inspire the practical Jacobi polynomial iteration (1.3).

In section 6, we present the adaptation of the Jacobi polynomial iteration to the case
where the spectral gap \gamma of W is given to improve the asymptotic rate of convergence.

In section 7, we describe the parallel between gossip methods and iterative methods for lin-
ear systems and discuss the contributions that our work can bring to the distributed resolution
of Laplacian systems over networks.

Code. The code that generated the simulations is available online [4].

2. Problem setting. A network of agents is modeled by an undirected finite graph G =
(V,E), where V is the set of vertices of the graph, or agents, and E the set of edges, or
communication links. We assume each agent v holds a real value \xi v. Our goal is to design
an iterative algorithm that quickly gives each agent the average \=\xi = (1/n)

\sum 
v\in V \xi v, where

n = | V | is the number of agents. A fundamental operation to estimate the average \=\xi consists
in averaging the observations of neighbors in the network. We formalize this notion using a
gossip matrix.

Definition 2.1. A gossip matrix W = (Wv,w)v,w\in V on the graph G is a matrix with entries
indexed by the vertices of the graph satisfying the following properties:

\bullet W is nonnegative: for all v, w \in V , Wv,w \geqslant 0.
\bullet W is supported by the graph G: for all distinct vertices v, w such that Wv,w > 0, \{ v, w\} 
must be an edge of G.

\bullet W is normalized: for all v \in V ,
\sum 

w\in V Wv,w = 1.
\bullet W is symmetric: for all v, w \in V , Wv,w = Ww,v.

If W is a gossip matrix and x = (xv)v\in V is a set of values stored by the agents v, the
product Wx is interpreted as the computation by each agent v of a weighted average of the
values xw of its neighbors w in the graph (and of its own value xv). This average is computed
simultaneously for all agents v; indeed, in this paper we deal only with synchronous gossip.
Note that we do not need the symmetry assumption on W to interpret W as an averaging
operation. This assumption is usual in gossip frameworks as it allows one to use the spectral
theory for W , on which our analysis relies heavily. It appears, for instance, in the works
[6, 7, 25].

In a d-regular graph G (\forall v,deg v = d), a typical gossip matrix is W = A(G)/d =
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(1\{ \{ v,w\} \in E\} /d)v,w\in V , where A(G) is the adjacency matrix of the graph. More generally, if
the graph has all vertices of degree bounded by some quantity d\mathrm{m}\mathrm{a}\mathrm{x}, then a natural gossip
matrix is

(2.1) W = I +
1

d\mathrm{m}\mathrm{a}\mathrm{x}
(A - D) ,

where D is the degree matrix, which is the diagonal matrix such that Dv,v = deg v.
Note that any gossip matrix W is an operator on \BbbR V bounded by 1. Indeed, if x \in \BbbR V ,

by Jensen's inequality,

\| Wx\| 22 =
\sum 
v\in V

x2v =
\sum 
v\in V

\biggl( \sum 
w\in V

Wv,wxw

\biggr) 2

\leqslant 
\sum 
v\in V

\sum 
w\in V

Wv,wx
2
w =

\sum 
w\in V

x2w = \| x\| 22 .

Definition 2.2 (spectral gap). Denote by 1 \geqslant \lambda 1 \geqslant \lambda 2 \geqslant . . . \geqslant \lambda n \geqslant  - 1 the real eigenvalues
of the symmetric matrix W . As W is normalized, W1 = 1; we can take \lambda 1 = 1, which
corresponds to the eigenvector 1 = (1, . . . , 1). We define

1. the spectral gap \gamma = 1 - \lambda 2 as the distance between the two largest eigenvalues of W ;
2. the absolute spectral gap \~\gamma = min(1 - \lambda 2, \lambda n + 1) as the difference between the moduli

of the two largest eigenvalues of W in magnitude.

We now discuss different iterations for the gossip problem.

Simple gossip. Simple gossip is a natural algorithm solving the gossip problem that
consists in repeatedly averaging values in the graph [6]. More precisely, we choose a gossip
matrix W on the graph G, initialize x0 = \xi = (\xi v)v\in V , and, at each communication round t,
compute

(2.2) xt+1 = Wxt .

Note that the latter equation is simply a compact rewriting of (1.1). We can rewrite this
iteration as xt = W t\xi . Note that in this last equation, we used the notation .t to denote both
the index of x and the power of the square matrix W . We will frequently make use of the
indexation .t when vectors indexed by the vertices (or the edges) also depend on time.

We describe the speed of convergence of this method using ideas from [6].

Proposition 2.3. Let \xi be an arbitrary family of initial observations and xt the iterates of
simple gossip defined by (2.2). Denote by \~\gamma the absolute spectral gap of W . Then

lim sup
t\rightarrow \infty 

\bigm\| \bigm\| xt  - \=\xi 1
\bigm\| \bigm\| 1/t
2

\leqslant 1 - \~\gamma .

Moreover, the upper bound is reached if and only if there exists an eigenvector u of W , corre-
sponding to an eigenvalue of magnitude 1 - \~\gamma , such that \langle \xi , u\rangle \not = 0.

Proof. Let u1 = 1/
\surd 
n, u2, . . . , un be the eigenvectors of W associated to the eigenvalues
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\lambda 1, . . . , \lambda n, normalized such that \| ui\| 2 = 1. Then

\| xt  - \=\xi 1\| 22 = \| W t\xi  - \=\xi 1\| 22 =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

\lambda t
i\langle \xi , ui\rangle ui  - \langle \xi , u1\rangle u1

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

2

=

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=2

\lambda t
i\langle \xi , ui\rangle ui

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

2

\leqslant 
n\sum 

i=2

\bigm\| \bigm\| \lambda t
i\langle \xi , ui\rangle ui

\bigm\| \bigm\| 2
2
=

n\sum 
i=2

\lambda 2t
i \langle \xi , ui\rangle 2 \leqslant (1 - \~\gamma )2t

n\sum 
i=2

\langle \xi , ui\rangle .

Shift-register gossip. Several acceleration schemes of gossip [7, 25] store some past
iterates to compute higher-order recursions (that thus depend on powers of W ). For instance,
the shift-register iteration of [7] is of the form

x0 = \xi , x1 = W\xi , xt+1 = \omega Wxt + (1 - \omega )xt - 1 ,(2.3)

where \omega is a parameter that needs to be tuned.

Proposition 2.4 (from [16, Theorem 2]). Let \xi be an arbitrary family of initial observations
and xt the iterates of shift-register gossip defined in (2.3) with parameter

\omega = 2
1 - 

\sqrt{} 
\~\gamma (1 - \~\gamma /4)

(1 - \~\gamma /2)2
,

where \~\gamma is the absolute spectral gap of the gossip matrix W . Then

lim sup
t\rightarrow \infty 

\| xt  - \=\xi 1\| 1/t2 \leqslant 1 - 2

\sqrt{} 
\~\gamma (1 - \~\gamma /4) - \~\gamma /2

1 - \~\gamma 
.

Moreover, the upper bound is reached if and only if there exists an eigenvector u of W , corre-
sponding to an eigenvalue of magnitude 1 - \~\gamma , such that \langle \xi , u\rangle \not = 0.

The important consequence of this result is that the rate of convergence of the shift-register
method behaves like 1  - 2

\surd 
\~\gamma + o(

\surd 
\~\gamma ) as \~\gamma \rightarrow 0. This differs from simple gossip where the

rate of convergence behaves like 1 - \~\gamma . This means that in graphs with a small spectral gap,
shift-register enjoys a much better rate of convergence than simple gossip: this is why we say
that shift-register enjoys an accelerated rate of convergence as opposed to simple gossip which
has a diffusive or unaccelerated rate. This effect on the asymptotic rate of convergence can
be seen in Figures 2 and 3.

Polynomial gossip. More abstractly, we define a polynomial gossip method as any
method combining the past iterates of the simple gossip method:

(2.4) xt = Pt(W )\xi ,

where Pt is a polynomial of degree smaller than or equal to t satisfying Pt(1) = 1. The
constraint Pt(1) = 1 ensures that xt = \=\xi 1 if all initial observations are the same, i.e., \xi = \=\xi 1.
The constraint degPt \leqslant t ensures that the iterate xt can be computed in t time steps. Simple
gossip corresponds to the particular case of the polynomial Pt(\lambda ) = \lambda t. Shift-register gossip
is a polynomial gossip method whose corresponding polynomials can be expressed using the
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(a) Grid (b) Percolation bond (c) Random geometric graph

Figure 1. The three types of 2D graphs considered in simulations.

Chebyshev polynomials (see Proposition SM8.4). The method (1.3) will be derived as the
polynomial iteration corresponding to some Jacobi polynomials.

In this paper, we design polynomial gossip methods whose polynomials Pt, t \geqslant 0, satisfy
a second-order recursion. This key property ensures that the resulting iterates xt = Pt(W )\xi 
can be computed recursively.

3. Simulations: Comparison of simple gossip, shift-register gossip, and the Jacobi
polynomial iteration. In this section, we run our methods on grids, percolation bonds, and
random geometric graphs; the latter is a widely used model for real-world networks [23,
section 1.1]. In each case, we consider both the two-dimensional (2D) structure and its three-
dimensional (3D) counterpart. We refer the reader to Figure 1 for visualizations of the 2D
structures and to section SM1 for details about the parameters used.

We compare our Jacobi polynomial iteration (1.3) with the simple gossip method (1.1)
and the shift-register algorithm (1.2). We found experimentally that the behavior of the
shift-register algorithm was typical of methods based on the spectral gap such as the splitting
algorithm of [25] and the Chebyshev polynomial acceleration scheme [2, 27]; to avoid redun-
dancy we do not present the similar behavior of these methods. We also compare with local
averaging, which is given by the formula

xtv =
1

| Bt(v)| 
\sum 

w\in Bt(v)

\xi w ,

where | Bt(v)| denotes the ball in G, centered in v, of radius t, for the shortest path distance.
Note that local averaging does not correspond in general to any computationally cheap it-
eration, as opposed to the algorithms we present here. Thus it should not be considered as
a gossip method, but rather as a lower bound on the performance achievable by any gossip
method. (This is made fully rigorous in the statistical gossip framework of section SM7.)

In our simulations, we change the graph G that we run our algorithms on, but we always
sample \xi v \sim i.i.d. \scrN (0, 1), v \in V , and measure the performance of gossip methods through the
quantity \| xt - \=\xi 1\| 2/

\surd 
n. Thus the performance of the algorithms is random because the initial

values \xi v are random, and also because percolation bonds and random geometric graphs are
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random. The results we present here are averaged over 10 realizations of the graph and the
initial values, which is sufficient to give stable results.

Tuning. The optimal tuning of the shift-register gossip method as a function of the
spectral gap was determined in [16, Theorem 2]; it is given by the formula (2.4); this is the
tuning that we use in our simulations. The Jacobi polynomial iteration is tuned by choosing
d = 2 in the 2D grid, 2D percolation bonds, and 2D random geometric graphs, and d = 3 for
their 3D analogues.

Interpretation of the results. The results of the simulations are exposed in Figure
2. The qualitative picture remains the same across different graphs. Simple gossip performs
better than shift-register gossip in a first phase, but in a large t asymptotic, simple gossip con-
verges slowly whereas shift-register gossip converges quickly. The Jacobi polynomial iteration
enjoys the quick diffusion of simple gossip in the first phase and reaches the full mixing be-
fore shift-register gossip. As a consequence, the Jacobi polynomial iteration gets considerably
closer to the local averaging optimal bound, especially in very regular structures like grids.

These results should be mitigated with the large t asymptotic: in Figure 3, we show the
comparison of gossip methods on a longer time scale, in linear and log-scale y-axis. We only
present the results on the 2D grid as they are typical of the behavior on other structures. We
observe that shift-register gossip enjoys a much better asymptotic rate of convergence than
simple gossip and the Jacobi polynomial iteration.

Methods that use the spectral gap are designed to achieve the best possible asymptotic
(see [7], [25]); thus the above observation is not surprising. These methods, however, fail in
the nonasymptotic regime, where they are outperformed by the Jacobi polynomial iteration
and simple gossip. We believe that in applications where a high precision on the average
is not needed, the Jacobi polynomial iteration brings important improvements over existing
methods, let alone the fact that it is considerably easier to tune. However, in section 6, we
present a Jacobi polynomial iteration that uses the spectral gap of the gossip matrix to obtain
the accelerated convergence rate.

4. Design of best polynomial gossip iterations. We now turn to the design of efficient
polynomial iterations of the form xt = Pt(W )\xi . An important result of this section is that
the best iterates of this form can be computed in an online fashion as they result from a
second-order recurrence relation.

The approach presented in this section is similar to [9, section 3.3], although therein it is
applied to the slightly different problem of load balancing. We repeat here the derivations as
we take a slightly different approach: here we derive the best polynomial Pt with fixed W and
\xi , while in [9] the matrix W is fixed, but a polynomial Pt efficient uniformly over \xi is sought.
We then discuss why the resulting recursion may be impractical. The next section introduces
some approximation of the impractical scheme that leads to the practical iteration (1.3).

Our measure of performance of a polynomial gossip iteration is the sum of squared errors
over the agents of the network:

\scrE (Pt) =
\sum 
v\in V

(xtv  - \=\xi )2 = \| xt  - \=\xi 1\| 22 = \| Pt(W )\xi  - \=\xi 1\| 22 .

Denote by \lambda 1, \lambda 2, . . . , \lambda n the real eigenvalues of the symmetric matrix W and by u1, u2, . . . , un
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(b) 3D grid
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(c) 2D percolation bond
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(d) 3D percolation bond
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(e) 2D random geometric graph
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(f) 3D random geometric graph

Figure 2. Performance of different gossip algorithms running on graphs with an underlying low-dimensional
geometry, as measured by \| xt  - \=\xi \bfone \| 2/

\surd 
n.

the associated eigenvectors, normalized such that \| ui\| 2 = 1. The diagonalization of W gives
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Figure 3. Performance of different gossip algorithms running on the 2D grid.

the new expression of the error

(4.1) \scrE (Pt) =

n\sum 
i=2

\langle \xi , ui\rangle 2Pt(\lambda i)
2 =

\int 1

 - 1
Pt(\lambda )

2d\sigma (\lambda ) , d\sigma (\lambda ) =

n\sum 
i=2

\langle \xi , ui\rangle 2\delta \lambda i
,

where \langle ., .\rangle denotes the canonical scalar product on \BbbR n and \delta \lambda is the Dirac mass at \lambda .
The polynomial \pi t minimizing the error \scrE (Pt) must be chosen as

(4.2) \pi t \in argmin
P (1)=1, \mathrm{d}\mathrm{e}\mathrm{g}P\leqslant t

\int 1

 - 1
P (\lambda )2d\sigma (\lambda ) .

We now show that the sequence of best polynomials \pi 0, \pi 1, \pi 2, . . . can be computed as
the result of a second-order recursion, which leads to a second-order gossip method, whose
coefficients depend on \sigma . As noted in [7], having iterates xt that satisfy a low-order recurrence
relation is valuable as it ensures that they can be computed online with limited memory cost.
In order to prove this property for our iterates, we use that these polynomials are orthogonal
with respect to (w.r.t.) some measure \tau .

Definition 4.1 (orthogonal polynomials w.r.t. \tau ). Let \tau be a measure on \BbbR with finite
moments. Endow the set of polynomials \BbbR [X] with the scalar product

\langle P,Q\rangle \tau =

\int 
\BbbR 
P (\lambda )Q(\lambda )d\tau (\lambda ) .

Denote by T \in \BbbN \cup \{ \infty \} the cardinal of the support of \tau . Then there exists a family
\pi 0, \pi 1, . . . , \pi T - 1 of polynomials, such that for all t < T , \pi 0, \pi 1, . . . , \pi t form an orthogonal
basis of (\BbbR t[X], \langle ., .\rangle \tau ), where \BbbR t[X] denotes the set of polynomials of degree smaller than or
equal to t. In other words, for all s, t < T ,

deg \pi t = t , \langle \pi s, \pi t\rangle \tau = 0 if s \not = t .
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\pi 0, \pi 1, . . . , \pi T - 1 is called a sequence of orthogonal polynomials w.r.t. \tau . Moreover, the family
of orthogonal polynomials \pi 0, \pi 1, . . . , \pi T - 1 is unique up to a rescaling of each of the polyno-
mials.

An extensive reference on orthogonal polynomials is the book [29]. An introduction from
the point of view of applied mathematics can be found in [13]. In section SM2, we recall
the results from the theory of orthogonal polynomials that we use in this paper. The next
proposition states that the optimal polynomials sought in (4.2) are orthogonal polynomials.

Proposition 4.2. Let \sigma be some finite measure on [ - 1, 1], and let T \in \BbbN \cup \{ \infty \} be the
cardinal of Supp\sigma  - \{ 1\} . For 0 \leqslant t \leqslant T  - 1, the minimizer \pi t of

min
P (1)=1,\mathrm{d}\mathrm{e}\mathrm{g}P\leqslant t

\int 1

 - 1
P (\lambda )2d\sigma (\lambda )

is unique. Moreover, \pi 0, . . . , \pi T - 1 is the unique sequence of orthogonal polynomials w.r.t.
d\tau (\lambda ) = (1 - \lambda )d\sigma (\lambda ) normalized such that \pi t(1) = 1.

This result is well known and usually stated without proof [21, sections 3, 4.1], [22, section
2]; we give the short proof in section SM4. In the following, the phrase ``the orthogonal
polynomials w.r.t. \tau "" will refer to the unique family of orthogonal polynomials w.r.t. \tau and
normalized such that \pi t(1) = 1.

Remark 4.3. When T is finite and t \geqslant T , finding a minimizer of
\int 1
 - 1 P (\lambda )2d\sigma (\lambda ) over the

set of polynomials such that P (1) = 1, degP \leqslant t is trivial. Indeed, one can consider the
polynomial

\pi T (\lambda ) =

\prod 
\lambda \prime \in \mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}\sigma  - \{ 1\} (\lambda  - \lambda \prime )\prod 
\lambda \prime \in \mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}\sigma  - \{ 1\} (1 - \lambda \prime )

which is of degree T , satisfies \pi T (1) = 1, and
\int 1
 - 1 \pi T (\lambda )

2d\sigma (\lambda ) = \sigma (\{ 1\} ). This is the best
value that a polynomial P of any degree, such that P (1) = 1, can get.

A fundamental result on orthogonal polynomials states that they follow a second-order
recursion.

Proposition 4.4 (three-term recurrence relation, from [29, Theorem 3.2.1]). Let \pi 0, . . . , \pi T - 1

be a sequence of orthogonal polynomials w.r.t. some measure \tau . There exist three sequences
of coefficients (at)1\leqslant t\leqslant T - 2, (bt)1\leqslant t\leqslant T - 2, and (ct)1\leqslant t\leqslant T - 2 such that, for 1 \leqslant t \leqslant T  - 2,

\pi t+1(\lambda ) = (at\lambda + bt)\pi t(\lambda ) - ct\pi t - 1(\lambda ) .

The classical proof of this proposition is given in section SM2.1. Taking \sigma to be the
spectral measure of (4.1) in Proposition 4.2, we get that the best polynomial gossip algorithm
is a second-order method whose coefficients are determined by the graph G, the gossip matrix
W , and the vertex v. Indeed, as \pi 0, . . . , \pi T - 1 is a family of orthogonal polynomials, there
exist coefficients at, bt, ct such that

\pi t+1(\lambda ) = (at\lambda + bt)\pi t(\lambda ) - ct\pi t - 1(\lambda ) ,
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and thus

\pi t+1(W ) = atW\pi t(W ) + bt\pi t(W ) - ct\pi t - 1(W ) .

Decomposing \pi 1(\lambda ) = a0\lambda + b0 and applying the previous relation in \xi gives the second-order
recursion for the best polynomial estimators xt = \pi t(W )\xi :

x0 = \xi , x1 = a0W\xi + b0\xi , xt+1 = atWxt + btx
t  - ctx

t - 1 .(4.3)

Note that the dependence of the gossip method on the graph G, the gossip matrix W , and
the vertex v is entirely hidden in the coefficients at, bt, ct. Thus the choice of the coefficients
is central. In [9], it is argued that the coefficients can be computed in a ``preprocessing
step."" Indeed, the coefficients can be computed in a centralized or decentralized manner, at
the cost of extra communication steps. The gossip method that consists in computing the
optimal coefficients at, bt, ct and running (4.3) will be referred to as parameter-free polynomial
iteration, as it does not require any tuning of parameters, by analogy with the terminology
used in polynomial methods for the resolution of linear systems (see [12, section 6]). It
corresponds to the optimal polynomial iteration. For a detailed exposition on the parameter-
free polynomial iteration and a discussion of its practicability, see section SM5.

However, in dynamic networks that are constantly changing, it is not a valid option to keep
repeating the preprocessing step to update the coefficients at, bt, ct. Our approach consists in
observing that there are sequences of coefficients like (1.4) that, despite not being optimal,
work reasonably well on a large set of graphs. This implies that even if the details of the
graph are not known to the algorithmic designer, she can make a choice of coefficients that
have a fair performance.

More formally, we approximate the true spectral measure \sigma of the graph with a simpler
measure \~\sigma , whose associated polynomials have known recursion coefficients at, bt, ct. We show
that in some cases, substituting the orthogonal polynomials w.r.t. \sigma with the ones orthogonal
to \~\sigma does not worsen the efficiency of the gossip method much. In the next sections, we argue
for two choices of the approximating measure \~\sigma . The first uses only the spectral dimension
d of the network and gives the Jacobi polynomial iteration (1.3). The second uses both the
spectral dimension d and the spectral gap \gamma of W and gives the Jacobi polynomial iteration
with spectral gap.

Figure 4 reproduces Figure 3 and adds the performance of the parameter-free polynomial
iteration and the Jacobi polynomial iteration with spectral gap. It shows that in linear
scale, the performance of the parameter-free polynomial iteration is indistinguishable from
the performance of the Jacobi polynomial iterations with or without spectral gap, which are
obtained through approximations of the spectral measure \sigma . However, the figure in log-scale
shows that the asymptotic convergence of the methods depends on the coarseness of the
approximation. The relevance of this asymptotic convergence to the practice depends on the
application.

Remark 4.5. The shift-register iteration xt = Pt(W )\xi defined in (2.3) can be seen as a best
polynomial gossip iteration with some approximating measure. Indeed, the polynomials Pt,
t \geqslant 0, are the orthogonal polynomials w.r.t. some measure whose support is strictly included
in [ - 1, 1] (see Proposition SM8.5).
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Figure 4. Performance of different gossip algorithms running on the 2D grid.

5. Design of polynomial gossip algorithms for graphs of given spectral dimension.

5.1. The dimension \bfitd and the rate of decrease of the spectral measure near 1. We
now assume that we are given a graph G on which we would like to run the optimal polynomial
gossip algorithm (4.3). However, we do not know the spectral measure \sigma or the coefficients
at, bt, ct. In this section, we give a heuristic motivating an approximation \~\sigma of the spec-
tral measure \sigma using only the dimension d of the graph. The heuristic is supported by the
simulations of section 3 and some rigorous theoretical support in section SM7.

Our approximation is given by the following nonrigorous intuition:

(5.1) the graph G is of dimension d \leftrightarrow \sigma ([1 - \Lambda , 1]) \approx C\Lambda d/2 as \Lambda \ll 1 ,

for some constant C. Of course, we have neither defined the dimension of a graph nor given
a rigorous signification of the symbols \approx and \ll . We come back to these questions in section
5.3, but for now we assume that the reader has an intuitive understanding of these notions
and finish drawing the heuristic picture.

Intuition (5.1) describes the repartition of the mass of \sigma near 1. This mass near 1 challenges
the design of polynomial methods as the gossip polynomials P are constrained to satisfy
P (1) = 1 while minimizing

\int 
P 2d\sigma . Moreover, eigenvalues of a graph close to 1 are known to

describe the large-scale structure of the graph and thus must be central in the design of gossip
methods. The traditional design of gossip algorithms considered the spectral gap \gamma between
1 and the second largest eigenvalue, a quantity that typically gets very small in large graphs.
Intuition (5.1) also describes the behavior of the spectrum near 1, but on a larger scale than
the spectral gap. It describes how the set of the largest eigenvalues is distributed around 1.

5.2. The Jacobi iteration for graphs of given dimension. When a spectral measure sat-
isfies the edge estimate (5.1), we approximate it with a measure satisfying the same estimate,



ACCELERATED GOSSIP IN NETWORKS OF GIVEN DIMENSION 37

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00
−0.2

0.0

0.2

0.4

0.6

0.8

1.0 λ6

π(1, 0)
6 (λ)

Figure 5. Comparison of the Jacobi polynomial \pi 
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6 (\lambda ) with the polynomial of simple gossip \lambda 6.

namely
d\~\sigma (\lambda ) = (1 - \lambda )d/2 - 11\{ \lambda \in ( - 1,1)\} d\lambda .

Note that we do not elaborate on the normalization of the approximate measure d\~\sigma as it is only
used to define an orthogonality relation between polynomials, in which the normalization does
not matter. The orthogonal polynomials w.r.t. the modified spectral measure (1 - \lambda )d\~\sigma (\lambda ) =
(1  - \lambda )d/21\{ \lambda \in ( - 1,1)\} d\lambda and their recursion coefficients are known as they correspond to the
well-studied Jacobi polynomials [29, Chapter IV]:

(5.2)

a
(d)
0 =

d+ 4

2(2 + d)
, b

(d)
0 =

d

2(2 + d)
,

a
(d)
t =

(2t+ d/2 + 1)(2t+ d/2 + 2)

2(t+ 1 + d/2)2
, b

(d)
t =

d2(2t+ d/2 + 1)

8(t+ 1 + d/2)2(2t+ d/2)
,

c
(d)
t =

t2(2t+ d/2 + 2)

(t+ 1 + d/2)2(2t+ d/2)
.

These coefficients are derived in section SM6.2. This approximation of the spectral measure
gives the practical recursion

(5.3) x0 = \xi , x1 = a
(d)
0 W\xi + b

(d)
0 \xi , xt+1 = a

(d)
t Wxt + b

(d)
t xt  - c

(d)
t xt - 1 ,

which only depends on d. It is just a rewriting of the Jacobi polynomial iteration (1.3) given in

the introduction of this paper. The Jacobi polynomial \pi 
(d/2,0)
t (\lambda ) such that xt = \pi 

(d/2,0)
t (W )\xi 

is plotted in Figure 5 with d = 2 and t = 6, along with the polynomial \lambda 6 associated with
simple gossip. The Jacobi polynomial is smaller in magnitude near 1.

5.3. Spectral dimension of a graph. In this section, we discuss the meaning of intuition
(5.1). There are several definitions of the dimension of a graph.

When referring to the dimension of a graph, many authors actually refer to some quan-
tity d that has been used in the construction of the graph. An example is the d-dimension
grid \{ 1, . . . , n\} d. Another example consists in removing edges in \BbbZ d with probability 1  - p,
independently of one another. The resulting graph G is called a percolation bond [14]. It
is natural to consider that this graph is of dimension d. A more complicated example is the
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random geometric graph: choose d \geqslant 1, sample n points uniformly in the d-dimensional cube
[0, 1]d, and connect with an edge all pairs of points closer than some chosen distance r > 0.
It is natural to say that this random geometric graph is d-dimensional as it is the dimension
of the surface it is built on.

Mathematicians have developed more intrinsic definitions of the dimension of a graph [11];
here we use the notion of spectral dimension. This definition is of interest only for infinite
graphs G = (V,E). Here, we consider only locally finite graphs, meaning that each node has
only a finite number of neighbors. As with Definition 2.1, one can define a gossip matrix W
with entries indexed by V \times V . If G is infinite, W is a doubly infinite array, but with only a
finite number of nonzero elements in each line and column as the graph is locally finite.

The spectral dimension of a graph G is defined using a random walk on the graph---
typically the simple random walk on G---but here we consider the lazy random walk with
transition matrix \~W = (I + W )/2. (We take the lazy random walk to avoid periodicity
issues.)

Definition 5.1 (spectral dimension). Denote by pt the probability that the lazy random walk,
when started from v, returns at v at time t. The spectral dimension of the graph, if it exists
and is finite, is the limit

ds = ds(G,W, v) =  - 2 lim
t\rightarrow \infty 

ln pt
ln t

.

If the graph is connected and W is the transition matrix of the simple random walk, this
definition does not depend on the choice of the vertex v. Motivations for this definition are
as follows.

Proposition 5.2. The spectral dimension of
\bigl( 
\BbbZ d,W

\bigr) 
with W = A(\BbbZ d)/d is d.

Proof. The return probability pt of the lazy random walk on \BbbZ d is equivalent to C/td/2

for some constant C. It is, for instance, a consequence of the local central limit theorem for
random walks on \BbbZ d [15, Theorem 2.1.1]. Thus the spectral dimension of \BbbZ d is d.

The spectral dimension of a graph is related to the decay of the spectrum of W near 1.

Definition 5.3 (spectral measure of a possibly infinite graph). Let G be a graph and W its
gossip matrix. Fix v \in V . As W is an auto-adjoint operator, bounded by 1, acting on \ell 2(V ),
there exists a unique positive measure \sigma = \sigma (G,W, v) on [ - 1, 1], called the spectral measure,
such that for all polynomial P ,

\langle ev, P (W )ev\rangle \ell 2(V ) =

\int 1

 - 1
P (\lambda )d\sigma (\lambda ) .

For a deeper presentation of spectral graph theory, see [19] and references therein. Note
that when the graph G is finite, it is easy to check that the spectral measure is the discrete
measure \sigma (G,W, v) =

\sum n
i=1(u

i
v)

2\delta \lambda i
where \lambda 1, . . . , \lambda n are the eigenvalues of W and u1, . . . , un

are the associated normalized eigenvectors. However, when the graph G is infinite, the spec-
trum may exhibit a continuous part w.r.t. the Lebesgue measure.

Proposition 5.4 (the spectral dimension is the spectral decay). Let G be a graph, W a gossip
matrix on G, and v a vertex. We denote by ds = ds(G,W, v) the spectral dimension and by



ACCELERATED GOSSIP IN NETWORKS OF GIVEN DIMENSION 39

\sigma = \sigma (G,W, v) the spectral measure. Then the limit lim\Lambda \rightarrow 0 ln\sigma ([1 - \Lambda , 1])/ ln \Lambda exists and is
finite if and only if ds exists and is finite. In that case,

lim
\Lambda \rightarrow 0

ln\sigma ([1 - \Lambda , 1])

ln\Lambda 
=

ds
2
.

This proposition gives a rigorous equivalent to intuition (5.1). It uses the spectral dimen-
sion of the graph, which is an intrinsic property of the graph and turns out to coincide with
our intuition of the dimension of a graph in examples of interest. Note that in section 4, the
spectral measure \sigma is defined as d\sigma (\lambda ) =

\sum 
\langle \xi , ui\rangle 2\delta \lambda i

, whereas in this section it is defined for
finite graphs as d\sigma (\lambda ) =

\sum 
(uiv)

2\delta \lambda i
. Roughly speaking, intuition (5.1) is valid for the former

if \xi projects evenly on all eigenvectors ui. This is the case if \xi has random i.i.d. components,
for instance; this is used in section SM7.

Proof of Proposition 5.4. We first assume that l = lim\Lambda \rightarrow 0 ln\sigma ([1 - \Lambda , 1])/ ln \Lambda exists and
is finite. We show that ds exists and that l = ds/2. To this end, we define

ds =  - 2 lim sup
t\rightarrow \infty 

ln pt
ln t

, \=ds =  - 2 lim inf
t\rightarrow \infty 

ln pt
ln t

,

where pt is defined as in Definition 5.1. Note that

(5.4) pt =

\Biggl\langle 
ev,

\biggl( 
I +W

2

\biggr) t

ev

\Biggr\rangle 
(\mathrm{D}\mathrm{e}fi\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n} 5.3)

=

\int \biggl( 
1 + \lambda 

2

\biggr) t

d\sigma (\lambda ) .

Proof that \=ds/2 \leqslant l. Consider l+ > l. Then there exists constants c1, c2 > 0 such that for
all \Lambda \in [0, 2],

\sigma ([1 - \Lambda , 1]) \geqslant c1\Lambda 
l+ = c2\sigma 

(l+ - 1,0)([1 - \Lambda , 1]) ,

where \sigma (l+ - 1,0)(d\lambda ) = (1 - \lambda )l+ - 1d\lambda . Then

pt
(5.4)
=

\int 
[ - 1,1]

\biggl( 
1 + \lambda 

2

\biggr) t

d\sigma (\lambda )
(\mathrm{L}\mathrm{e}\mathrm{m}\mathrm{m}\mathrm{a} \mathrm{S}\mathrm{M}3.1)

\geqslant c2

\int 1

 - 1

\biggl( 
1 + \lambda 

2

\biggr) t - 1

(1 - \lambda )l+ - 1d\lambda 

(u=(1+\lambda )/2)
= c3

\int 1

0
ut(1 - u)l+ - 1du = c3B (t+ 1, l+)

(\mathrm{S}\mathrm{M}3.2)\sim 
t\rightarrow \infty 

c4
tl+

for some constant c3, c4 > 0. Thus lim inft\rightarrow \infty 
\mathrm{l}\mathrm{n} pt
\mathrm{l}\mathrm{n} t \geqslant  - l+, i.e., \=ds/2 \leqslant l+. This being true for

all l+ > l, this proves \=ds/2 \leqslant l.

Proof that ds/2 \geqslant l. Consider l - < l. Then there exist constants C1, C2 such that for all
\Lambda \in [0, 2],

\sigma ([1 - \Lambda , 1]) \leqslant C1\Lambda 
l - = C2\sigma 

(l -  - 1,0)([1 - \Lambda , 1]) ,

where \sigma (l -  - 1,0)(d\lambda ) = (1 - \lambda )l -  - 1d\lambda . Then

pt
(5.4)
=

\int 
[ - 1,1]

\biggl( 
1 + \lambda 

2

\biggr) t

d\sigma (\lambda )
(\mathrm{L}\mathrm{e}\mathrm{m}\mathrm{m}\mathrm{a} \mathrm{S}\mathrm{M}3.1)

\leqslant C2

\int 1

 - 1

\biggl( 
1 + \lambda 

2

\biggr) t

(1 - \lambda )l -  - 1d\lambda 

(u=(1+\lambda )/2)
= C3

\int 1

0
ut(1 - u)l -  - 1du = C3B (t+ 1, l - ) \sim 

t\rightarrow \infty 

C4

tl - 
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for some constants C3, C4. Thus lim supt\rightarrow \infty 
\mathrm{l}\mathrm{n} pt
\mathrm{l}\mathrm{n} t \leqslant  - l - , which implies ds/2 \geqslant l - . This being

true for all l - < l, this proves ds/2 \geqslant l.

Finally, we have proven l \leqslant ds/2 \leqslant \=ds/2 \leqslant l. Thus the limit ds =  - 2 limt\rightarrow \infty ln pt/ ln t
exists and is equal to 2l.

Conversely, we assume now that ds exists and is finite. We show that l = lim\Lambda \rightarrow 0 ln\sigma ([1 - 
\Lambda , 1])/ ln \Lambda exists and that l = ds/2. To this end, we define

l = lim inf
\Lambda \rightarrow 0

ln\sigma ([1 - \Lambda , 1])

ln\Lambda 
, \=l = lim sup

\Lambda \rightarrow 0

ln\sigma ([1 - \Lambda , 1])

ln\Lambda 
.

Proof that l \geqslant ds/2. For any t \in \BbbN , we have

1\{ \lambda \geqslant 1 - \Lambda \} \leqslant 

\biggl( 
1 - \Lambda 

2

\biggr)  - t\biggl( 1 + \lambda 

2

\biggr) t

;

thus, by integrating against d\sigma (\lambda ),

\sigma ([1 - \Lambda , 1]) \leqslant 

\biggl( 
1 - \Lambda 

2

\biggr)  - t \int \biggl( 1 + \lambda 

2

\biggr) t

\sigma (d\lambda ) ,

ln\sigma ([1 - \Lambda , 1])

ln\Lambda 
\geqslant 

ln
\int \bigl( 

1+\lambda 
2

\bigr) t
\sigma (d\lambda )

ln t

ln t

ln \Lambda 
 - 

t ln
\bigl( 
1 - \Lambda 

2

\bigr) 
ln \Lambda 

.

We choose t(\Lambda ) = \lfloor \Lambda  - 1\rfloor . Then we get

l = lim inf
\Lambda \rightarrow 0

ln\sigma ([1 - \Lambda , 1])

ln\Lambda 
\geqslant  - ds

2
( - 1) - 0 =

ds
2
.

Proof that \=l \leqslant ds/2. For any t \in \BbbN , we have ((1 + \lambda )/2)t  - (1  - \Lambda /2)t \leqslant 1\{ \lambda \geqslant 1 - \Lambda \} ; thus,
by integrating against d\sigma (\lambda ),\int \biggl( 

1 + \lambda 

2

\biggr) t

d\sigma (\lambda ) - 
\biggl( 
1 - \Lambda 

2

\biggr) t

\leqslant \sigma ([1 - \Lambda , 1]) .

Let d > ds. There exists a constant c > 0 such that
\int 
((1 + \lambda )/2)td\sigma (\lambda ) \geqslant c/td/2. Then

ln

\Biggl( 
c

td/2
 - 
\biggl( 
1 - \Lambda 

2

\biggr) t
\Biggr) 

\leqslant ln\sigma ([1 - \Lambda , 1]) .

Let \alpha > 1. We choose t(\Lambda ) = \lceil \Lambda  - \alpha \rceil . Then\biggl( 
1 - \Lambda 

2

\biggr) t(\Lambda )

= exp

\biggl( 
t(\Lambda ) ln

\biggl( 
1 - \Lambda 

2

\biggr) \biggr) 
\leqslant exp

\biggl( 
 - t(\Lambda )\Lambda 

2

\biggr) 
\leqslant exp

\biggl( 
 - 1

2
\Lambda 1 - \alpha 

\biggr) 
decreases superpolynomially fast as \Lambda \rightarrow 0. Since ct(\Lambda ) - d/2 \sim 

\Lambda \rightarrow 0
c\Lambda \alpha d/2, it yields

\=l = lim sup
\Lambda \rightarrow 0

ln\sigma ([1 - \Lambda , 1])

ln\Lambda 
\leqslant 

\alpha d

2
.

As this is true for all \alpha > 1, d > ds, we have \=l \leqslant ds/2.

Finally, we have proven that ds/2 \leqslant l \leqslant \=l \leqslant ds/2. Then the limit l = lim\Lambda \rightarrow 0 ln\sigma ([1  - 
\Lambda , 1])/ ln \Lambda exists and l = ds/2.
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Proposition 5.4 allows us to prove the following generalization of Proposition 5.2.

Proposition 5.5 (spectral dimension of the supercritical percolation cluster). Let G0 be a
supercritical percolation bond in \BbbZ d with edge probability p \in (pc, 1]; i.e., a.s., there is an
infinite connected component G in G0. Endow G with the gossip matrix W = I+(A - D)/(2d),
where A and D are, respectively, the adjacency and the degree matrices of G. Fix v \in \BbbZ d.
Then a.s. on the event \{ v \in G\} , ds(G,W, v) = d.

This proposition suggests that the spectral dimension is unrelated to the small-scale struc-
ture of the graph.

Proof of Proposition 5.5. The return probabilities of the random walk on the supercritical
percolation cluster have rather been studied in continuous time. The continuous-time random
walk is defined as follows: the random walk at w waits at an exponential time of parameter 1
before picking a site w\prime out of the 2d neighboring sites uniformly randomly. If there is an edge
in the percolation configuration between w and w\prime , the random walk jumps to w\prime ; otherwise
it stays in w and starts again. Denote by Xt the continuous-time random walk and by \BbbP w the
probability w.r.t. this random walk when it is started from some vertex w.

Lemma 5.6. There exist two constants c = c(d, p), C = c(d, p) > 0 such that, a.s. on the
set \{ v \in G\} , there exists a random time t0 such that for t \geqslant t0,

c

td/2
\leqslant \BbbP v(Xt = v) \leqslant 

C

td/2
.

Proof. The upper bound is proved in [17, Theorem 1.2]. As noted in [5, Lemma 5.1], the
lower bound can be proved using a central limit theorem on Xt; we repeat the argument here
as our random walk differs slightly from theirs. As Xt is reversible w.r.t. the uniform measure
on G,

\BbbP v(X2t = v) =
\sum 
w\in G

\BbbP v(Xt = w)\BbbP w(Xt = v) =
\sum 
w\in G

\BbbP v(Xt = w)2 .

By the Cauchy--Schwarz inequality,

\BbbP v(\| Xt  - v\| 2 \leqslant 
\surd 
t)2 =

\Bigl( \sum 
x\in G

1\{ \| x - v\| 2\leqslant 
\surd 
t\} \BbbP v(Xt = x)

\Bigr) 2
\leqslant 
\bigm| \bigm| \bigm| \{ \| x \in G : x - v\| 2 \leqslant 

\surd 
t\} 
\bigm| \bigm| \bigm| \Bigl( \sum 

w\in G
\BbbP v(Xt = w)2

\Bigr) 
\leqslant C1t

d/2\BbbP v(X2t = v)

for some constant C1. Now, using [1, Theorem 1.1(a)], there exists a deterministic variance \sigma 2

such that the law of (Xt  - v)/
\surd 
t converges a.s. on the event \{ v \in G\} to a centered Gaussian

with variance \sigma 2. Thus there exist a deterministic constant c1 > 0 and a random time t1 such
that for t \geqslant t1, \BbbP t(\| Xt  - v\| 2 \leqslant 

\surd 
t)2 \geqslant c1. This finishes the proof of the lower bound.

We now finish the proof of the proposition using Lemma 5.6. If \mu t denotes the law of Xt,
we have \mathrm{d}

\mathrm{d}t\BbbE 
\bigl[ 
\mu t
\bigr] 
= (W  - I)\mu t. This yields \mu t = et(W - I)\mu 0, which implies

\BbbP v(Xt = v) = \langle \delta v, \mu t\rangle = \langle \delta v, et(W - I)\delta v\rangle 
(\mathrm{D}\mathrm{e}fi\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n} 5.3)

=

\int 
et(\lambda  - 1)d\sigma (\lambda ) .
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As a consequence, Lemma 5.6 translates into bounds on the Laplace transform of \sigma : a.s. on
\{ v \in G\} , for t large enough,

c

td/2
\leqslant 
\int 

et(\lambda  - 1)d\sigma (\lambda ) \leqslant 
C

td/2
.

Some bounds on the spectral density of \sigma near 1 easily follow (see [20, Lemma 4.5]): there
exist constants c\prime , C \prime > 0 such that a.s. on \{ v \in G\} , for \Lambda small enough,

c\prime \Lambda d/2 \leqslant \sigma ([1 - \Lambda , 1]) \leqslant C \prime \Lambda d/2 .

The proof is finished using Proposition 5.4.

In section SM7, we prove some performance guarantees of the Jacobi polynomial iteration
(1.3) under the assumption that the graph has spectral dimension d. As a corollary, we get
performance results on two types of infinite graphs: the d-dimensional grid \BbbZ d and supercritical
percolation bonds in dimension d. This supports that the iteration (1.3) is robust to local
perturbations of a graph.

6. The Jacobi polynomial iteration with spectral gap. In this section, we adapt the
Jacobi polynomial iteration to the case where the spectral gap \gamma of the gossip matrix W is
given. This allows us to obtain accelerated asymptotic rates of convergence, which compete
with the state-of-the-art accelerated algorithms for gossip.

We assume that we are given the spectral dimension d of the graph, which determines the
density of eigenvalues near 1, and the spectral gap \gamma = 1 - \lambda 2(W ), the distance between the
largest and the second largest eigenvalues. Given these parameters, we can approximate the
spectral measure of W with

d\~\sigma (\lambda ) = ((1 - \gamma ) - \lambda )d/2 - 11\{ \lambda \in ( - 1,1 - \gamma )\} d\lambda .

Following the recommendation of Proposition 4.2, this means that we should consider the
polynomial iteration associated with the orthogonal polynomials w.r.t. (1  - \lambda )d\~\sigma (\lambda ) = (1  - 
\lambda )((1 - \gamma ) - \lambda )d/2 - 11\{ \lambda \in ( - 1,1 - \gamma )\} d\lambda . We do not know how to compute the recurrence formula
for this measure; thus we used the orthogonal polynomials w.r.t. ((1 - \gamma ) - \lambda )d\~\sigma (\lambda ) = ((1 - 
\gamma ) - \lambda )d/21\{ \lambda \in ( - 1,1 - \gamma )\} d\lambda , which is a rescaled version of a Jacobi measure. The corresponding
polynomial method is called the Jacobi polynomial iteration with spectral gap.

A recursive formula for orthogonal polynomials w.r.t. ((1  - \gamma )  - \lambda )d\~\sigma (\lambda ) is derived in
section SM6.3. Taking \alpha = d/2 and \beta = 0 in equations (SM6.3), and using the coefficients
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a
(d)
t , b

(d)
t , c

(d)
t defined in (5.2), we get the recursion

(6.1)

xt =
yt

\delta t
,

y0 = \xi , \delta 0 = 1 ,

y1 = a
(d,\gamma )
0 W\xi + b

(d,\gamma )
0 \xi , \delta 1 = a

(d,\gamma )
0 + b

(d,\gamma )
0 ,

yt+1 = a
(d,\gamma )
t Wyt + b

(d,\gamma )
t yt  - c

(d,\gamma )
t yt - 1 , t \geqslant 1 ,

\delta t+1 =
\Bigl( 
a
(d,\gamma )
t + b

(d,\gamma )
t

\Bigr) 
\delta t  - c

(d,\gamma )
t \delta t - 1 , t \geqslant 1 ,

a
(d,\gamma )
t = a

(d)
t

\Bigl( 
1 - \gamma 

2

\Bigr)  - 1
, b

(d,\gamma )
t = b

(d)
t +

\gamma 

2

\Bigl( 
1 - \gamma 

2

\Bigr)  - 1
a
(d)
t , t \geqslant 0 ,

c
(d,\gamma )
t = c

(d)
t , t \geqslant 1 .

Theorem 6.1 (asymptotic rate of convergence). Let \gamma > 0 be a lower bound on the spectral
gap of the gossip matrix W , and let d be any positive real. Let \xi = (\xi tv)v\in V be any family
of initial observations and xt = (xtv)v\in V be the sequence of iterates generated by the Jacobi
polynomial iteration with spectral gap (6.1). Then

lim sup
t\rightarrow \infty 

\| xt  - \=\xi 1\| 1/t2 \leqslant 
1 - \gamma /2

(1 +
\sqrt{} 
\gamma /2)2

.

This shows that the Jacobi polynomial iteration with spectral gap enjoys linear conver-
gence. The asymptotic rate of convergence is equivalent to 1  - 

\surd 
2\gamma as \gamma \rightarrow 0. This justifies

that we obtain an accelerated asymptotic rate of convergence that compares with the state-
of-the-art accelerated gossip methods (see Figure 4).

Proof of Theorem 6.1. In this section, we use the notation of section SM6.3. As xt =

\pi 
(d/2,0,\gamma )
t (W )\xi , we have

(6.2) \| xt  - \=\xi 1\| 22 =
n\sum 

i=2

\langle \xi , ui\rangle 2\pi (d/2,0,\gamma )
t (\lambda i)

2 \leqslant \| \xi  - \=\xi 1\| 22
\Bigl( 

sup
\lambda \in [ - 1,1 - \gamma ]

| \pi (d/2,0,\gamma )
t (\lambda )| 

\Bigr) 2
,

where \lambda 2, . . . , \lambda n are the eigenvalues of W different from 1 that lie in [ - 1, 1 - \gamma ] by definition
of \gamma , and u2, . . . , un are the corresponding normalized eigenvectors.

sup
\lambda \in [ - 1,1 - \gamma ]

| \pi (d/2,0,\gamma )
t (\lambda )| \leqslant 1

| P (d/2,0,\gamma )
t (1)| 

sup
\lambda \in [ - 1,1 - \gamma ]

| P (d/2,0,\gamma )
t (\lambda )| 

=
1

| \pi (d/2,0)
t (\varphi  - 1

\gamma (1))| 
sup

\lambda \in \varphi  - 1
\gamma ([ - 1,1 - \gamma ])

| \pi (d/2,0)
t (\lambda )| 

=
1\bigm| \bigm| \bigm| \pi (d/2,0)

t

\Bigl( 
1+\gamma /2
1 - \gamma /2

\Bigr) \bigm| \bigm| \bigm| sup
\lambda \in [ - 1,1]

| \pi (d/2,0)
t (\lambda )| 

=
1\bigm| \bigm| \bigm| P (d/2,0)

t

\Bigl( 
1+\gamma /2
1 - \gamma /2

\Bigr) \bigm| \bigm| \bigm| sup
\lambda \in [ - 1,1]

| P (d/2,0)
t (\lambda )| ,(6.3)
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where P
(\alpha ,\beta )
t is the Jacobi polynomial; see section SM6.2. By Proposition SM2.6,

(6.4) sup
\lambda \in [ - 1,1]

| P (d/2,0)
t (\lambda )| =

\biggl( 
t+ d/2

t

\biggr) 
\sim 

t\rightarrow \infty 
td/2 ,

and by Proposition SM2.9 applied in x = 1+\gamma /2
1 - \gamma /2 , there exists c > 0 such that

(6.5) P
(d/2,0)
t

\biggl( 
1 + \gamma /2

1 - \gamma /2

\biggr) 
\sim 

t\rightarrow \infty 
ct - 1/2

\biggl( 
(1 +

\sqrt{} 
\gamma /2)2

1 - \gamma /2

\biggr) t

.

Combining (6.3), (6.4), and (6.5), we get that there exists a constant C such that

sup
\lambda \in [ - 1,1 - \gamma ]

| \pi (d/2,0,\gamma )
t (\lambda )| \leqslant Ct(d+1)/2

\biggl( 
1 - \gamma /2

(1 +
\sqrt{} 
\gamma /2)2

\biggr) t

,

and we conclude using (6.2).

Note that the asymptotic rate of convergence does not depend on d. However, the choice
of d may have an important effect during the nonasymptotic phase t < 1/

\surd 
\gamma . In this phase,

the spectral gap \gamma can be neglected in the approximation of the spectral measure, and it
is important that the densities of eigenvalues of \sigma and \~\sigma match near the upper edge of the
spectrum. This is why one should choose d as the spectral dimension of the graph.

In sections 5 and 6, we have used the polynomial point of view to build gossip algorithms
suited to our priors on the graph structure (spectral dimension and spectral gap). In the sup-
plementary material (section SM9), we reverse-engineer the message passing gossip iteration
of [18] through the polynomial point of view. We show that this algorithm can be interpreted
as an inner-product free polynomial iteration corresponding to a tree prior. This point of view
allows us to derive convergence rates of the message passing gossip on regular graphs. This
suggests that the polynomial point of view can be used more generally to analyze existing
gossip algorithms.

7. The parallel between the gossip methods and distributed Laplacian solvers. There
is a natural parallel between gossip methods and iterative methods that solve linear systems.
Loosely speaking, simple gossip corresponds to gradient descent on the quadratic minimization
problem associated to the linear system, shift-register gossip to Polyak's heavy-ball method,
and the parameter-free polynomial iteration to the conjugate gradient algorithm (see [12] or
[24] for references on these subjects). In this parallel, the fact that we can reach perfect gossip
in n steps (see Remark 4.3) translates into the finite convergence of the conjugate gradient
algorithm in a number of iterations equal to the dimension of the ambient space. In the
distributed resolution of linear systems, the problem that the recursion coefficients at, bt, ct
cannot be computed in a centralized manner has also appeared, and it has motivated the
development of inner-product free iterations.

The Jacobi polynomial iterations presented above were motivated by the facts that (a) the
parameter-free polynomial iteration is not feasible in the distributed setting of gossip, and (b)
the gossip matrix W exhibits a structure due to the low-dimensional manifold on which the
agents live. Interestingly, the literature on multiagent systems deals with some minimization
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problems with the same properties. Examples are given by the estimation of quantities on
graphs from relative measurements, in which the agents v \in V try to estimate some quantity
xv, v \in V , defined over the graph, from noisy relative measurements over the edges of the
graph:

\xi v,w = xv  - xw + \eta v,w , \{ v, w\} \in E .

This problem has applications in network localization, where the xv are the positions of the
agents and the \xi v,w come from measurements of the distances and directions between the
neighbors. It also has similar applications in time synchronization of clocks over networks,
where xv is the offset of the clock of node v, and to motion consensus, where xv is the
speed of agent v. For an introduction to estimation on graphs from relative measurements
and its applications, see [3] and references therein. Note that the quantities xv can only be
determined up to a global constant from the measurements; either we seek the true solution
up to a constant only, or we assume that some agents know their true value.

A natural approach to solving the problem is to determine estimates yv of xv that minimize

1
2

\sum 
v,w Wv,w (\xi v,w  - (yv  - yw))

2 ,

where Wv,w are some weights on the edges of the graph. Indeed, this corresponds to finding
the maximum likelihood estimator if the noise \eta v,w is i.i.d. Gaussian and Wv,w is the inverse
variance of \eta v,w. The above minimization problem is a quadratic problem whose covariance
matrix is the Laplacian I  - W . It can be solved using gradient descent or spectral gap based
accelerations like the heavy-ball method. However, the conjugate gradient algorithm cannot
be applied here as it involves centralized computations. The Jacobi polynomial iterations
developed in this paper can be adapted to this situation to develop accelerations exploiting
the structure of the Laplacian I  - W . Experimenting with how this performs in real-world
situations is left for future work.

8. Conclusion. Gossip methods based on the spectral gap were designed to improve the
slow convergence rate of simple gossip. However, these methods are paradoxically bad at
averaging locally in the intermediate regime before consensus is reached. In this paper, we
propose another acceleration of simple gossip based on (i) the polynomial-based point of view,
which designs iterations that are efficient at all times, and (ii) the Jacobi approximation,
which uses prior information on the spectral dimension of the graph, a more natural property
than the spectral gap.

It would be interesting for future work to better understand the Jacobi polynomial itera-
tion in the asynchronous setting, i.e., when a randomized gossip matrix is used, as this setting
is closer to practical cases.

In general, this paper advocates for the use of the polynomial point of view to design a
gossip algorithm, as it allows us to use different types of prior information about the graph
(spectral gap, spectral dimension, tree-like structure, etc.) and gives tools to prove the con-
vergence of the designed algorithms.
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