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Francis Bach
Sierra project, INRIA - Ecole Normale Superieure

it FEEEA
.I_.{f.fr’_’l’:fnll-::'_.l.\l_.l '-J-;I'ir'i";?;.'r.-l.}
A g =+ 1 A
| e i i
AN il @Eq e
"’{:'J,r.-_fﬂ'f’; X W, W
¥ ;

.-:'.ﬂ.rﬁf}"f’f'd"f'-’-’/ff:.-’.-’/ﬁ"f’.-’/{z"r".-"/fz".:_"f.-"f/z".
W o
;| e
s " o M i v T
i, S L S 5
_‘.:\\ % b 111'."-%'.'.!."1'\-":"\ ._.?,'-""'?_;
2N e W 2
= 2 \ -\:-_._\ . i oy ,-J
i & o et
i /A ]{ v i Thty] " 1'."" I E{fﬁ _?
A | e N ‘;‘ S
st LETTRES oW oW SCIENCES
"';E::‘.'f.r"} : A i . l"‘-' CELU R ITTTRL (N N 55 . ¢ S
. e T

‘ | ECOLE NORMALE SUPERIEURE ‘

CVML Summer School, Paris, July 2011



Machine learning

Supervisedearning

Application to many problems and data types:

{ Computer vision
{ Bioinformatics
{ Text processing
{ etc.

Speci ty: exchanges betweetlmeory / algorithms / applications



Machine learning for computer vision

Multiplication of digital media

Many di erent tasksto be solved

{ Associated with di erentmachine learningproblems
{ Massive datao learn from



Image retrieval
) Classi cation, ranking, outlier detection
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Image retrieval
Classi cation, ranking, outlier detection
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Image retrieval
Classi cation, ranking, outlier detection
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Image annotation
Classi cation, clustering







Personal photos
) Classi cation, clustering, visualization
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Machine learning for computer vision

Multiplication of digital media

Many di erent tasksto be solved

{ Associated with di erentmachine learningproblems
{ Massive datao learn from

Similar situations in many elds (e.g., bioinformatics)

10



Machine learning for bioinformatics (e.g., proteins)

1. Many learning tasks on proteins

Classi cation into functional or structural classes
Prediction of cellular localization and interactions

2. Massive data

11



Machine learning for computer vision

Multiplication of digital media

Many di erent tasksto be solved

{ Associated with di erentmachine learningproblems
{ Massive datao learn from

Similar situations in many elds (e.g., bioinformatics)

) Machine learning for high-dimensional data

12



Supervised learning and regularization

Minimize with respect to functiorf 2 F :

X

“(yis £ (%)) + Sk k?
i=1
Error on data + Regularization
Loss & function space ? Norm ?

Two theoretical/algorithmic issues:

{ Loss
{ Function space / norm

13



Course outline

1. Losses for particular machine learning tasks

Classi cation, regression, etc...

2. Reqgularization by Hilbertian norms (kernel methods)

Kernels and representer theorem

Convex duality, optimization and algorithms
Kernel methods

Kernel design

3. Regularization by sparsity-inducing norms

“1-norm regularization
Multiple kernel learning
Theoretical results
Learning on matrices
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Losses for regression(Shawe-Taylor and Cristianini, 2004)

Response y 2 R, prediction$ = f (x),

{ quadratic (square) loss(y;f (x)) = %(y f (x))?
{ Not many reasons to go beyond square loss!

n —square

15



Losses for regression(Shawe-Taylor and Cristianini, 2004)
Response y 2 R, prediction$ = f (x),

{ quadratic (square) loss(y;f (x)) = 5(y f (x))?

{ Not many reasons to go beyond square loss!

Other convex losses \with added bene ts"

{ "-insensitive loss(y;f (X)) =(jy fX)] ")«
{ Haber loss (mixed quadratic/linear): robustness to ow@is

n —square
—e-insensitive
—Huber

3k

2k




Losses for classi cation (Shawe-Taylor and Cristianini, 2004)

Label : y2f 1;1g, predictiony = signf (x))

{ loss of the form' (y: f (x)) = (Y (X))
{ \True" cost: \(yf (x))=1 yf (x)<0

{ Usualconvexcosts:
5

— 0-1

4 — hinge
square
logistic

1 R
N

. . 1 . A
-3 -2 -1 0 1 2 3 4

Di erences between hinge and logistic loss: di erentiabil ity/sparsity
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Image annotation ) multi-class classi cation

18



Losses for multi-label classi cation (Scheolkopf and
Smola, 2001; Shawe-Taylor and Cristianini, 2004)

Two main strategies for k classes (with unclear winners)

1. Using existing binary classi ers (e cient code!) + voting@emes
{ \one-vs-rest" : learnk classi ers on the entire data
{ \one-vs-one" : learnk(k 1)=2 classi ers on portions of the data

19



Losses for multi-label classi cation - Linear predictors

Using binary classi ers (left: \one-vs-rest", right: \ones-one")

20



Losses for multi-label classi cation (Scheolkopf and
Smola, 2001; Shawe-Taylor and Cristianini, 2004)

Two main strategies for k classes (with unclear winners)

1. Using existing binary classi ers (e cient code!) + voting@emes
{ \one-vs-rest" : learnk classi ers on the entire data
{ \one-vs-one" : learnk(k 1)=2 classi ers on portions of the data
2. Dedicated loss functions for prediction us'gzlgg maX; ot 1.k g Ti(X)

{ Softmax regression: loss :IJog(efy(X): ik:1 Fi ()

{ Multi-class SVM - 1: loss = ., (1 + fi(x) fy(x)).
{ Multi-class SVM - 2: loss =maX;s 1.k g(1 + fi(X) fy(X))+

Strategies do not consider same predicting functions

21



Losses for multi-label classi cation - Linear predictors

Using binary classi ers (left: \one-vs-rest", right: \ones-one")

><1
- \
Dedicated loss function

-/
-
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Image retrieval )

ranking
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Image retrieval ) outlier/novelty detection

24



Losses for ther tasks

Outlier detection (Schelkopf et al., 2001; Vert and Vert,026)

{ one-class SVM: learn only with positive examples

Ranking

{ simple trick: transform into learning on pairs (Herbrich et.,a
2000), I.e., predicttx >y gorfx 6 yg
{ More general \structured output methods" (Joachims, 2002)

General structured outputs

{ Very active topic in machine learning and computer vision
{ see, e.qg., Taskar (2005)

25



Dealing with asymmetric cost or unbalanced data in
binary classi cation

Two cases with similar issues:

{ Asymmetric cost (e.g., spam lterting, detection)
{ Unbalanced data, e.g., lots of positive examples (example

detection)

One number is not enough to characterize the asymmetric
properties

{ ROC curves (Flach, 2003) { cf. precision-recall curves

Training using asymmetric losses (Bach et al., 2006)

X X
min  C.  (yif(x))+ C “(yif (xi) + kf K

f 2F _ .
Ly =1 Ly = 1
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ROC curves
ROC plang(u; V)
u = proportion of false positivess P(f (x)=1j)y = 1)
v = proportion of true positives= P(f (x) =1y =1)
Plot a set of classierd (x) for 2 R

VA
1

true positives

0 false positives 1 U
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Course outline

1. Losses for particular machine learning tasks

Classi cation, regression, etc...

2. Reqgularization by Hilbertian norms (kernel methods)

Kernels and representer theorem

Convex duality, optimization and algorithms
Kernel methods

Kernel design

3. Regularization by sparsity-inducing norms

“1-norm regularization
Multiple kernel learning
Theoretical results
Learning on matrices
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Regularizations

Main goal: avoid over tting (see, e.g. Hastie et al., 2001)

Two main lines of work:

1. UseHilbertian (RKHS) norms
{ Non parametric supervised learning and kernel methods
{ Well developped theory (Schelkopf and Smola, 2001; Shawe
Taylor and Cristianini, 2004; Wahba, 1990)
2. Use\sparsity inducing"” norms P
{ main example: ;-norm kwk; = I, jw]
{ Perform model selection as well as regularization
{ Theory \in the making"

Goal of (this part of) the course: Understand how and when
to use these di erent norms

29



Kernel methods for machine learning

De nition : given a set of objects, a positive de nite kernelis
a symmetric functionk(x;x% such that for all nite sequences of
pointsx; 2 X and ; 2 R,

P
i i jk(xi;xj)>0
(1.e., the matrix (k(X;;X;)) Is symmetric positive semi-de nite)

Main example:k(x;x% = h( x); ( x9i

30



Kernel methods for machine learning

De nition : given a set of objects<, a positive de nite kernelis
a symmetric functionk(x;x9 such that for all nite sequences of
pointsx; 2 X and ; 2 R,

i i jk(xi;xj)>o
(I.e., the matrix (k(xi; X;)) Is symmetric positive semi-de nite)

Aronszajn theorem (Aronszajn, 1950): k Is a positive de nite
kernel if and only if there exists a Hilbert spaée and a mapping
. X 7!'F such that

8(x;xY9 2 X 2 k(x;x9 = h( x);: ( xYi
X =\linput spacé, F =\ feature spacé =\ feature mag

Functional view:reproducing kernel Hilbert spaces

31



Classical kernels: kernels on vectorsx 2 R¢

Linearkernelk(x;y) = X~y
{ (X)=X

Polynomialkernelk(x;y) = (L + x> y)¢

{ ( xX)= monomials

Gaussiarkernelk(x;y) =exp(  kx yk?)

{ (x)=?7?

PROOF

32



Reproducing kernel Hilbert spaces

Assumek Is apositive de nite kernelon X X

Aronszajn theorem (1950): there exists a Hilbert space and a
mapping : X 7! F such that

8(x;xY9 2 X 2 k(x;x9 = h( x);: ( xXYiny

X =\input spacé, F =\ feature spacé =\ feature mag

RKHS: particular instantiation of as afunction space

{ (x)=Kk(;x)

{ function evaluation f (x) = h; ( x)i

{ reproducing propertyk(x;y) = hk( ;Xx);k( ;y)I

Notations : f (x) = Hf; ( x)i = > ( x), kf k> = H;f i

33



Classical kernels: kernels on vectorsx 2 R¢

Linearkernelk(x;y) = X~y

{ Linear functions

Polynomialkernelk(x;y) = (L + x> y)¢

{ Polynomial functions

Gaussiarkernelk(x;y) =exp(  kx yk?)

{ Smooth functions

34



Classical kernels: kernels on vectorsx 2 R¢

Linearkernelk(x;y) = X~y

{ Linear functions

Polynomialkernelk(x;y) = (L + x> y)¢

{ Polynomial functions

Gaussiarkernelk(x;y) =exp(  kx yk?)

{ Smooth functions

Parameter selection? Structured domain?

35



Regularization and representer theorem

Data: x; 2X,Vyi 2Y,1=1;:::;n, kernelk (with RKHS F)

P
Minimize with respect tof : ][gan inzl (i 7 (X)) + sk k?

No assumptions on cost or n

Representer theorem (Kimeldorf and Wahba, 1971). optimum Iis
reached for vi:t,e|ghts of the forlgp

f= 0 i (x)= 4 ikGx)

PROOF
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Regularization and representer theorem

Data: xi 2 X,y;2Y,1=1;:::;n, kernelk (with RKHS F)

P
Minimize with respect tof : frrgan i":l (yis 7 (O xp)) + skf k?

No assumptions on cost or n

Representer theorem (Kimeldorf and Wahba, 1971). optimum Iis
reached for vi5e|ghts of the forlgp

f= a0 i (x)=" 4 ik(x)

2 R" dual parametersK 2 R" " kernel matrix
Kii = ( xi)” ( x;) = k(Xi; %)

P
Equivalent problem; min ,rn _; “(Vi;(K )i)+ 5 “K

37



Kernel trick and modularity

Kernel trick any algorithm for nite-dimensional vectors that only
uses pairwise dot-products can be applied in the feature spac

{ Replacing dot-products by kernel functions
{ Implicit use of (very) large feature spaces
{ Linear to non-linear learning methods

38



Kernel trick and modularity

Kernel trick any algorithm for nite-dimensional vectors that only
uses pairwise dot-products can be applied in the feature spac

{ Replacing dot-products by kernel functions
{ Implicit use of (very) large feature spaces
{ Linear to non-linear learning methods

Modularity of kernel methods

1. Work on new algorithms and theoretical analysis
2. Work on new kernels for speci ¢ data types

39



Representer theorem and convex duality

The parameters 2 R" may also be interpreted asagrange
multipliers

Assumption: cost function isonvex ' ;(uij) = (Vi; Ui)

P
Primal problem: frr%an L i(fT (xi) + sk k2

What about the constant termo? replace( x) by (( X);c), clarge

(i)
LS regression %(yi U;)?
Logistic o
regression log(1 +exp( yiui)

SVM (1 vyiui)+

40



Representer theorem and convex duality
Proof

Primal problem:| min in:1 i(fT (O xp)) + ke k?

f 2F
Dene (v = ma%)é2 viui ' i(uj) as theFenchel conjugatef ' ;

Ui
Main trick: introduce constraintu; = f~ ( Xj) and associated

Lagrange multipliers ;

X X

LagrangianL (;f )= " i(ui) + Sk k* + (Ui 7 (%))
i=1 i=1

{ Maximize with respect tay; ) tern?:,of the form  i( i)

{ Maximize with respecttd ) f = . (X

41



Representer theorem and convex duality

Assumption: cost function igonvex' ;(u;) = “(yi; u;)

P
Primal problem:| min = L, " i(f > ( xi)) + 5kf k?

f 2F
I lem: P g
Dual problem: n;%( =1 il i) » K
where ;(vi) =maxy2rVili ' i(u;j) Is the Fenchel conjugate of;

Strong duality

Relationship between prin[yull and dual variables (at optimjum
f= L i(x)
P

NB: adding constant termb, add constraints ., ;=0

42



\Classical" kernel learning (2-norm regularization)
Primal problem mins o (T (xi) + Siif e
P
Dual problem max ,gn (1) 5 7K

P
Optimality conditions f = _, i ( X;)

Assumptions on loss;:

{ " i(u) convex
{ i(v) Fenchel conjugate df;(u), i.e., (V) = max 2r(vu "' i(u))

"i(ui) (V)
LS regression Ly up)? L2 + vy,
Logistic oy | (Tt vyi)log(l+ vyi)
regression log(1 +exp( yith)) vyilog( vyi)

SVM (1 vyiui)- Vi 1 w20

43



Particular case of the support vector machine

=

Primal problem: 1:rgan

P - 5
-1 (1 yit 7 (X5))+ + zkfk

Dual problem:| max
2 RN

X

i Yi

1

>
i¥i2[0;1] E K

Dual problem (by change of variable

Diag(y) andC =1=):

Mmax
2R"; 06 6C

P

n
1=1

1
2

~ Diag(y)K Diag(y)

44



Particular case of the support vector machine

P
Primal problem: frrgan @ yif T (x)+ + kK3

Dual problem:

|'3
: 1 >y -
L L Diag(y)K Diag(y)

]




Particular case of the support vector machine

P
Primal problem:| min =~ L, (1 vif > ( x;))+ + 5kf k?

f 2F

Dual problem:

P

"3

maxXx

1
2RN: 06 6C -

1 |

~ Diag(y)K Diag(y)

What about the traditional picture?
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Course outline

1. Losses for particular machine learning tasks

Classi cation, regression, etc...

2. Reqgularization by Hilbertian norms (kernel methods)

Kernels and representer theorem

Convex duality, optimization and algorithms
Kernel methods

Kernel design

3. Regularization by sparsity-inducing norms

“1-norm regularization
Multiple kernel learning
Theoretical results
Learning on matrices
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Kernel ridge regression (a.k.a. spline smoothing) - |

Least-squares
minl><1 (yi f(x)?+ kfk?
f2F N _ Yi ! F

P
View 1: representer theorem f = inzl K( 5 Xi)

{ equivalent to
mn = (yi (K ))*+ 7K

{ Solution equalto =(K +nl ) y+ " with K" =0
{ Unique solutionf

48



Kernel ridge regression (a.k.a. spline smoothing) - I

Links with spline smoothing (Wahba, 1990)

Other view:F 2 R4, 2 Rn d

min }ky wk? +  kwk?
w2Rd N

Solution equaltow=( > + nl ) 1 >y

Note thatw= ~( ~+nl ) ly

{ Using matrix inversion lemma

w equal toK

49



Kernel ridge regression (a.k.a. spline smoothing) - Il

Dual view:

>

~K

<
N

{ dual problem:max ,rn %k k2
{ solution: =(K + | ) 1y

Warning: same solution obtained from di erent point of views

50



Losses for classi cation

Usualconvexcosts:

5
— 0-1

4 — hinge

square

logisti
3 ogistic
2_
1
0 . . N\ A
-3 -2 -1 0 1 2 3 4

Di erences between hinge and logistic loss: di erentiabil ity/sparsity
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Support vector machine or logistic regression?

Predictive performance is similar

Only true di erence Is numerical

{ SVM: sparsity in

{ Logistic: di erentiable loss function
Which one to use?

{ Linear kernel) Logistic + Newton/Gradient descent
{ Linear kernel - Large scale Stochastic gradient descent
{ Nonlinear kerne) SVM + dual methods or simpleSVM

52



Algorithms for supervised kernel methods

Four formulations

1

2.
3.
4.

P
Dual: max 2rp i i) 5 7K
Primal: mingor ;" i(F7 (X)) + 5iif ji?
Primal + Representer: min g ' (K )i)+ 5 K

Convex programming

Best strategy depends on loss (di erentiable or not) and ker nel
(linear or not)

53



Dual methods

P
Dual problem:max ;gn i i) 5 7K

Main method: coordinate descent (a.k.a. sequential minima
optimization - SMO) (Platt, 1998; Bottou and Lin, 2007; Jo&ums,

1998)

{ E cient when loss is piecewise quadratic (i.e., hinge = SVM)
{ Sparsity may be used in the case of the SVM

Computational complexity: between guadratic and cubicnn

Works for all kernels

54



Primal methods

P
Primal problem:mins o ' i(f~ ( X)) + gjjfjj2
Only works directly if ( xX) may be built explicitly and has small
dimension

{ Example: linear kernel in small dimensions

Di erentiable loss: gradient descent or Newton's methodeavery
e cient in small dimensions

Larger scale

{ stochastic gradient descent (Shalev-Shwartz et al., 2086ttou

and Bousqguet, 2008)
{ See leon Bottou's course
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Primal methods with representer theorems

P
Primal problemin : min 2gn ;" i((K )i)+ 5 7K

Direct optimization in  poorly conditioned K has low-rank) unless
Newton method is used (Chapelle, 2007)

General kernels: use incomplete Cholesky decompositiame (&nd
Scheinberg, 2001; Bach and Jordan, 2002) to obtain a squaret r

K= GG

GT

G of sizen m,
wherem N

K G

{ \Empirical input space" of sizan obtained using rows oG
{ Running time to computeG: O(m?n)

56



Direct convex programming

Convex programming toolboxes ) very ine cient!

May use special structure of the problem

{ e.g., SVM and sparsity in

Active set method for the SVMSimpleSVM (Vishwanathan et al.,
2003; Loosli et al., 2005)

{ Cubic complexity in the number of support vectors

Full regularization path for the SVM (Hastie et al., 2005; Baet al.,
20006)

{ Cubic complexity in the number of support vectors
{ May be extended to other settings (Rosset and Zhu, 2007)

57



Code

SVM and other supervised learning techniques
www.shogun-toolbox.org

nttp://gaelle.loosli.fr/research/tools/simplesvm.ht ml
nttp://www.kyb.tuebingen.mpg.de/bs/people/spider/ma In.html
nttp://ttic.uchicago.edu/ ~shai/code/index.html

“1l-penalization:

{ SPAMS (SPArse Modeling Software)
http://www.di.ens.fr/willow/SPAMS/

Multiple kernel learning:
asl.insa-rouen.fr/enseignants/ ~arakotom/code/mklindex.html

www.stat.berkeley.edu/ ~gobo/SKMsmo.tar
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Course outline

1. Losses for particular machine learning tasks

Classi cation, regression, etc...

2. Reqgularization by Hilbertian norms (kernel methods)

Kernels and representer theorem

Convex duality, optimization and algorithms
Kernel methods

Kernel design

3. Regularization by sparsity-inducing norms

“1-norm regularization
Multiple kernel learning
Theoretical results
Learning on matrices
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Kernel methods - |

Distances in the \feature space"
de(%y)? = k(x) (ki = k(xx)+ k(y;y)

Nearest-neighbor classi cation/regression

2K(X;y)

60



Kernel methods - Il
Simple discrimination algorithm

Data X1;:::;Xn 2 X, classes/1;.::;yn 2 1,19
Compare distances to mean of each class

Equivalent to classifying using the sign of
1 X 1 X

: K(X; X :
#fl;yizlgi;yi:1 (i) #ILY; = 1gi;Yi:

Proof...

Geometric interpretation of Parzen windows

1

K(X; X;)
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Kernel methods - Il
Data centering

kernel matrixK 2 R", Ky = K(Xi;Xj) = h( Xi); ( Xj)i

Kernel matrlixgJ of centered dat&; = h( X;) ; ( X;) i

where =31 . ( x)

Formula: K = K ,wth =1, % and E constant matrix
equal to 1.

Proof...

NB: Is not of the form ( z), z 2 X (cf. preimage problem)

62



Kernel PCA

Linear principal component analysis

w> "w var(w> X )
max = max
W2RP W~ W W2RP W~ W

{ wis largest eigenvector of
{ Denoising, data representation

{ View 1. mZan var(f;{(v>>\<N); wi) View 2: |]:nZaF1x VaL(ff Ig< )
w F
{ Solution: fw =, ik(;xj) and rst eigenvector of K =

K
n n
{ Interpretation in terms of covariance operators
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Denoising with kernel PCA (From Scheolkopf, 2005)

64



Canonical correlation analysis

A A

Y
Y

Given two multivariate random variables, and x,, nds the pair of
directions 1, » with maximum correlation:

IC
12
(X1;X2) = max corr( { X1; 5 X2) = max 1 ~12 2 _
1; 2 2 TC 1=2 TC 1=2
1 v~11 1 2 22 2
Generalized eigenvalue problem:
0 Cop 1 Cin O 1

C21 0 2 0 C22 2

65



Canonical correlation analysis in feature space

]

( X1) fq

Y

f2

A

]

( X2)

—
-

Given two random variablex; and x, and two RKHS F; and
F>, nds the pair of functionsf, fo, with maximum regularized

correlation:

max

cov(f1(X1);f2(X2))

fuf22F (Var(fo(X1))+ nkfikg )1=2(var(fo(X2)) +  nkfokg )1=2

Criteria for independence (NB: independer@&euncorrelation)
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Kernel Canonical Correlation Analysis

Analogous derivation as Kernel PCA

K1, K>, Gram matrices of x,g and f x,g

T'K1K
max 1ININ2 2

o< N (((KE+ Kq) 1)72( J(KE+ K p) )12

Maximal generalized eigenvalue of

0 KiK> 1 Kf+ K1 0]
KoKy 0 : 0 Ks+ K2
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ly transform datehsto get

linear

Mixtures

IS

Kernel CCA

Application to ICA (Bach & Jordan, 2002)

Sources

Independent component analys

Independent variables

y2

Projections

ICA

‘>
PR

Whitened
Mixtures

68



Empirical results - Kernel ICA

Comparison with other algorithms: FastICA (Hyvarinen,$99Jade
(Cardoso, 1998), Extended Infomax (Lee, 1999)

Amari error : standard ICA distance from true sources
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e BN . B B == 0

10.3
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r 0.1
0

0.3

3 10.1
mem BN s l . 0

3 ' ' ' ' ' ' 10.3

Random I 0.2

pdfs

10.1

—— . . - [ | .
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Course outline

1. Losses for particular machine learning tasks

Classi cation, regression, etc...

2. Reqgularization by Hilbertian norms (kernel methods)

Kernels and representer theorem

Convex duality, optimization and algorithms
Kernel methods

Kernel design

3. Regularization by sparsity-inducing norms

“1-norm regularization
Multiple kernel learning
Theoretical results
Learning on matrices
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Kernel design
Principle: kernel on X = space of functions on X + norm

Two main design principles

1. Constructing kernels from kernels by algebraic operation
2. Using usual algebraic/numerical tricks to perform e cierkernel
computation with very high-dimensional feature spaces

Operations:ki(X;y)=h 1(x); 1(V)i, k2(X;y)=h 2(x); 2(y)i

{ Sum = concatenation of feature spaces
D E

GOGY) + ka(y) = ) )

{ Product = tensor product of feature spaces
kKi(;y)ka(xy) = 1(X) 2(x)7; a(y) 2(y)”
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Classical kernels: kernels on vectorsx 2 R¢

Linearkernelk(x;y) = X~y

{ Linear functions

Polynomialkernelk(x;y) = (L + x> y)¢

{ Polynomial functions

Gaussiarkernelk(x;y) =exp(  kx yk?)

{ Smooth functions

Data are not always vectors!
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E cient ways of computing large sums

XP
Goal: ( x) 2 RP high-dimensional, compute i(X) i(y) in o(p)
i=1

Sparsity: many (x) equal to zero (example: pyramid match kernel)
Factorization and recursivity : replace sums of many products by

product of few sums (example: polynomial kernel, graph k§rne

X d

1+ x7y) = . (X1y1) * (Xkyk) X
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Kernels over (labelled) sets of points

Common situation in computer vision (e.g., interest points

Simple approach: compute averages/histograms of certaatufees

{ valid kernels Icg)ver histogrants and h° (Hein and Bolgsquet, 2004)

n92
{ intersection : . min(h;; h?), chi-square: exp i (hh'i+hh'?)
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Kernels over (labelled) sets of points

Common situation in computer vision (e.g., interest points

Simple approach: compute averages/histograms of certaatufees

{ valid kernels IoDver histogrants and h® (Hein and Bolgsquet, 2004)
_ 2
{ Intersection : | min(h;; h?), chi-square: exp i (hh'i+hh%

Pyramid match (Grauman and Darrell, 2007). e ciently intiducing
localization

{ Form a regular pyramid on top of the image
{ Count the number of common elements in each bin
{ Give a weight to each bin
{ Many bins but most of them are empty
) use sparsity to compute kernel e ciently
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Pyramid match kernel
(Grauman and Darrell, 2007; Lazebnik et al., 2006)

Two sets of points

Counting matches at several scales: 7, 5, 4




Kernels from segmentation graphs

Goal of segmentation: extract objects of interest

Many methods available, ....

{ ... but, rarely nd the object of interest entirely

Segmentation graphs

{ Allows to work on \more reliable" over-segmentation
{ Going to alarge square grid (millions of pixeldp a small graph
(dozens or hundreds of regions)

How to build a kernel over segmenation graphs?

{ NB: more generally, kernelizing existing representatidns
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Segmentation by watershed transform (Meyer, 2001)

image gradient watershed

287 segments 64 segments 10 segments
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Segmentation by watershed transform (Meyer, 2001)

image gradient watershed

287 segments 64 segments 10 segments
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Image as a segmentation graph

Labelled undirected graph

{ Vertices connected segmented regions
{ Edges between spatially neighboring regions
{ Labels region pixels
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Image as a segmentation graph

Labelled undirected graph

{ Vertices connected segmented regions
{ Edges between spatially neighboring regions
{ Labels region pixels

Di culties

{ Extremely high-dimensional labels
{ Planar undirected graph
{ Inexact matching

Graph kernels (Gartner et al., 2003; Kashima et al., 2004; Harchaoui
and Bach, 2007) provide an elegant and e cient solution
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Kernels between structured objects
Strings, graphs, etc... (Shawe-Taylor and Cristianini, 2004)

Numerous applications (text, bio-informatics, speech,iomg

Common design principle:enumeration of subparts (Haussler,
1999; Watkins, 1999)

{ E cient for strings

{ Possibility of gaps, partial matches, very e cient algohims

Most approaches fails for general graplieven for undirected trees!)

{ NP-Hardness results (Ramon and Gartner, 2003)
{ Need specic set of subparts
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Paths and walks

Given a graplG,

{ A pathis a sequence dlistinct neighboring vertices
{ A walkis a sequence of neighboring vertices

Apparently similar notions
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Walk kernel (Kashima et al., 2004; Borgwardt et al., 2005)

W & (resp. W[)) denotes the set of walks of lengthin G (resp. H)
Givenbasis kernebn labelsk(™; ™9

p-th order walk kernel X
kb, (G;H) = K(a(ri); n(si)):
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Dynamic programming for the walk kernel
(Harchaoui and Bach, 2007)

Dynamic programming irO(pdgdyngny)
kiy, (G;H;r;s) = sum restricted to walks starting ar ands

recursion betweemp 1-th walk and g(—th walk kernel
ki (G H;1;8)=K(a(r); " H(s)) kP, H(G;H;r%sH:
r°2 Ng(r)
sV2 N H(S)

—_— e —— — T
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Dynamic programming for the walk kernel
(Harchaoui and Bach, 2007)

Dynamic programming irO(pdg dyngny)
kiy, (G;H;r;s) = sum restricted to walks starting ar ands

recursion betweep 1-th walk andp-th walk kernel

X
kP (G;H;rs)= k(a(r); u(s)) kb, H(G;H;r%sY
r°2 Ng(r)
s°2 N H(S)

. X .
Kernel obtained ak}y (G;H) = k¥ (G;H;r;s)
rZVG;SZVH
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Extensions of graph kernels

Main principle: compare all possible subparts of the graphs

Going from paths to subtrees

{ Extension of the concept of walk$ tree-walks (Ramon and
Gartner, 2003)

Similar dynamic programming recursions (Harchaoui and B&&007)

Need to play around with subparts to obtain e cient recursis

{ Do we actually need positive de niteness?
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Performance on Corell4 (Harchaoui and Bach, 2007)

Corell4: 1400 natural images withl4 classes
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Performance on Corell4 (Harchaoui & Bach, 2007)
Error rates

Performance comparison on Corell4

0.12F
Histogram kernelsKl) o1l &= _
Walk kernels (V) - O
5 0.09 , —
Tree-walk kernelsTW) 3 008/ N H
. -
. 0.07} .
Weighted tree-walks - :
(WTW ) 0.06} e
0.05/ o
MKL (M) H W W WTW M

Kernels



Kernel methods - Summary

Kernels and representer theorems

{ Clear distinction between representation/algorithms

Algorithms

{ Two formulations (primal/dual)
{ Logistic or SVM?

Kernel design

{ Very large feature spaces with e cient kernel evaluations
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Course outline

1. Losses for particular machine learning tasks

Classi cation, regression, etc...

2. Reqgularization by Hilbertian norms (kernel methods)

Kernels and representer theorem

Convex duality, optimization and algorithms
Kernel methods

Kernel design

3. Regularization by sparsity-inducing norms

“1-norm regularization
Multiple kernel learning
Theoretical results
Learning on matrices

93



Supervised learning and regularization

Minimize with respect to functiorf : X !'Y

X

“(yis £ (%)) + Sk k?
i=1
Error on data + Regularization
Loss & function space ? Norm ?

Two theoretical/algorithmic issues:

1. Loss
2. Function space / norm

94



Regularizations

Main goal: avoid over tting

Two main lines of work :

1. Euclideanand Hilbertian norms (i.e., ,-norms)
{ Possibility of non linear predictors
{ Non parametric supervised learning and kernel methods
{ Well developped theory and algorithms (see, e.g., Wahb&(019
Schelkopf and Smola, 2001; Shawe-Taylor and Cristiank004)
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Regularizations

Main goal: avoid over tting

Two main lines of work :

1. Euclideanand Hilbertian norms (i.e., ,-norms)

{ Possibility of non linear predictors

{ Non parametric supervised learning and kernel methods

{ Well developped theory and algorithms (see, e.g., Wahb&(019

Schelkopf and Smola, 2001; Shawe-Taylor and Cristiank004)

2. Sparsity-inducinghorms

{ Usually restricted to linear preogctors on vectdrgx) = w” X

{ Main example: ;-norm kwk; = P, jw;j

{ Perform model selection as well as regularization

{ Theory and algorithms \in the making"
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“>-nOrm vsS. {-horm

“1-norms lead to interpretable models

“2-norms can be run implicitly with very large feature spaces

Algorithms :

{ Smooth convex optimization vs. nhonsmooth convex optimiaat

Theory:

{ better predictive performance?
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AN

> VS. 1 - Gaussian hare vs. Laplacian tortoise

First-order methods (Fu, 1998; Wu and Lange, 2008)
Homotopy methods (Markowitz, 1956; Efron et al., 2004)
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Lasso - Two main recent theoretical results

1. Support recovery condition (Zhao and Yu, 2006; Wainwright, 2006;
Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consisiéaind
only if

kQ JFC)JQJJlsign(wJ)kl 6 1.

whereQ =1limn +1 = .; XiXj 2 RP P andJ = Supp(w)
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Lasso - Two main recent theoretical results

1. Support recovery condition (Zhao and Yu, 2006; Wainwright, 2006;
Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consisiéaind
only if

kQ JFC)JQJJlsign(wJ)kl 6 1.

whereQ =1limn +1 = .; XiXj 2 RP P andJ = Supp(w)

2. Exponentially many irrelevant variables (Zhao and Yu, 2006;
Wainwright, 2006; Bickel et al., 2009; Lounici, 2008; Memagisen
and Yu, 2008): under appropriate assumptions, consistaa@ossible
as long as

logp = O(n)
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Going beyond the Lasso

“1-norm for linear feature selection irhigh dimensions

{ Lasso usually not applicable directly
Non-linearities
Dealing with exponentially many features

Sparse learning on matrices
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Why " ;-norm constraints leads to sparsity?

Example: minimize quadratic functio@(w) subject tokwk; 6 T.

{ coupled softthresholding

Geometric interpretation

{ NB : penalizing is \equivalent" to constraining
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“1-norm regularization (linear setting)

Minimize with respect tdoadings/weightsw 2 RP:

X

J(w) = (i W X))+ kwki
i=1
Error on data + Regularization

Including a constant ternb? Penalizing or constraining?

square losg basis pursuitin signal processing (Chen et al., 2001),
Lassoin statistics/machine learning (Tibshirani, 1996)
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First order methods for convex optimization on RP
Smooth optimization

Gradient descent: Wi+, = W; r J (W)

{ with line search: search for a decent (not necessarily best)
{ xed diminishing step size, e.g., = a(t + b) 1

Convergence of (w;) tof =min oref (W) (Nesterov, 2003)

{ f convex andM -Lipschitz: f(w) f =0 M:pf
{ and, di erentiable withL-Lipschitz gradient:f (w;) f = O L=t
{ and,f -strongly convex: f(w) f =0 Lexp( 4ty)

— = condition number of the optimization problem

Coordinate descent: similar properties

NB: \optimal scheme"f (w;) f = O L minfexp( 4tp =L ):t °g
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First-order methods for convex optimization on RP
Non smooth optimization

First-order methods fonon di erentiable objective

{ Subgradient descentw;+; = W; (0, with gt 2 @Jwy)
with exact line search: not always convergent (see countel
example)
diminishing step size, e.g.,; = a(t + b) !: convergent

{ Coordinate descent: not always convergent (show counterraple)

Convergence rated (convex andM -Lipschitz): f (wy) f = O #&
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Counter-example
Coordinate descent for nonsmooth objectives
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Counter-example (Bertsekas, 1995)
Steepest descent for nonsmooth objectives

5(9x% + 16x35)172 if x1 > jXyj

AXTX2) = oy 16ix0) 172 if X1 6 jXo]

Steepest descent starting from any such that x; > |jxp] >
(9=16)%jx]

7
l

\

my
.
\

\
A
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Regularized problems - Proximal methods

Gradient descent as a proximal method (di erentiable furucis)

. L
{ Werr =arg min J(Wy) + (W wy)™r J(Wy)+=kw  w;k3
w2 RP 2

{ Wi = w21 J(wy)

Problems of the form] min L(w) + ( w)
w2 RP

{ Wiep =arg min L(w))+(w w7 r L(w)+ ( w)+ L Wi k3
w2 RP 2

{ Thresholded gradient descent

Similar convergence rates than smooth optimization

{ Acceleration methods (Nesterov, 2007; Beck and Teboul@)9
{ depends on the condition number of the loss
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Second order methods

Di erentiable case

{ Newton: wis1 = Wy H, ‘o
Traditional: =1, but non globally convergent
globally convergent with line search for (see Boyd, 2003)
O(loglog(1=")) (slower) iterations

{ Quasi-newton methods (see Bonnans et al., 2003)

Non di erentiable case (interior point methods)

{ Smoothing of problem + second order methods
See example Iater and (Boyd, 2003)
TheoretlcaIIyO( pP) Newton steps, usuall{p(1) Newton steps
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First order or second order methods for machine
learning?

objecive de ned as average (i.e., up to 1%): no need to optimize
up to 10 11

{ Second-order: slower but worryless
{ First-order: faster but care must be taken regarding conwsice
Rule of thumb

{ Small scale second order
{ Large scalg rst order
{ Unless dedicated algorithm using structure (like for the @)z

See Bottou and Bousquet (2008) for further details
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Piecewise linear paths

0 01 02 03 04 05 06
regularization parameter

111



Algorithms for “;-norms (square loss):
Gaussian hare vs. Laplacian tortoise

Coordinate descentO(pn) per iterations for ; and >

\Exact" algorithms: O(kpn) for “1 vs. O(p?n) for *»
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Additional methods - Softwares

Many contributions in signal processing, optimization, ofmane
learning

{ Extensions to stochastic setting (Bottou and Bousquet, 3)0

Extensions to other sparsity-inducing norms

{ Computing proximal operator

{ Seenttp://www.di.ens.fr/ ~fbach/opt_book.pdf
Softwares

{ Many available codes
{ SPAMS (SPArse Modeling Software)
http://www.di.ens.fr/willow/SPAMS/
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Course outline

1. Losses for particular machine learning tasks

Classi cation, regression, etc...

2. Reqgularization by Hilbertian norms (kernel methods)

Kernels and representer theorem

Convex duality, optimization and algorithms
Kernel methods

Kernel design

3. Regularization by sparsity-inducing norms

“1-norm regularization
Multiple kernel learning
Theoretical results
Learning on matrices
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Theoretical results - Square loss

Main assumption: data generated from a certain sparse

Three main problems:

1. Reqgular consistency. convergence ofestimator w to w, i.e.,
kw wk tends to zero whem tends tol
2. Model selection consistency:. convergence of theparsity pattern

of W to the patternw
3. E cilency : convergence opredictionswith W to the predictions

with w, i.e., TkX W X wk3 tends to zero

Main results:

{ Condition for model consistency (support recovery)
{ High-dimensional inference
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Model selection consistency (Lasso)

Assumew sparse and denoté = f]; w; 6 0g the nonzero pattern

Support recovery condition (Zhao and Yu, 2006; Wainwright, 2006;
Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consisiéaind

only If .
y Q3 Q,;'Sign(Wa)ks 6 1

whereQ =1im 1 +1 %.- . XiX7 2 RP P andJ = Supp(w)
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Model selection consistency (Lasso)

Assumew sparse and denoté = f]; w; 6 0g the nonzero pattern

Support recovery condition (Zhao and Yu, 2006; Wainwright, 2006;
Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consisiéaind

only if .
y kaQulslgn(WJ)kl 6 1

whereQ =1im 1 +1 %.- . XiX7 2 RP P andJ = Supp(w)

Condition depends ow andJ (may be relaxed)

{ may be relaxed by maximizing osign(w) or J
Valid in low and high-dimensional settings

Requires lower-bound on magnitude of nonzerp
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Model selection consistency (Lasso)

Assumew sparse and denoté = f]; w; 6 0g the nonzero pattern

Support recovery condition (Zhao and Yu, 2006; Wainwright, 2006;
Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consisiéaind

only If .
y Q3 Q,;'Sign(Wo)ks 6 1

whereQ =1im 1 +1 %.- . XiXx7 2 RP P andJ = Supp(w)

The Lasso Is usually not model-consistent

{ Selects more variables than necessary (see, e.g., Lv andZe49)

{ Fixing the Lasso: adaptive Lasso (Zou, 2006), relaxed
Lasso (Meinshausen, 2008), thresholding (Lounici, 2008)
Bolasso (Bach, 2008a), stability selection (Meinshausend a
Bahlmann, 2008), Wasserman and Roeder (2009)
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Adaptive Lasso and concave penalization

Adaptive Lasso (Zou, 2006; Huang et al., 2008)

{ Weighted ;-norm: min L(w) + X JWj J
' " W2RP i joj

{ W estimator obtained from, or 1 regularization

Reformulation in terms of concave penalization

. >@ . . A _z
min L (w) + . g(w; ) '

>

{ Example:g(jw;j) = jw;j'= or logjw;j. Closer to the o penalty

{ Concave-convex procedure: replaggw;|) by a ne upper bound

{ Better sparsity-inducing properties (Fan and Li, 2001; Zand LI,
2008; Zhang, 2008b)
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High-dimensional inference (Lasso)

Main result: we only neek logp = O(n)

{ If w Is su ciently sparse

{ and input variables are not too correlated
Precise conditions on covariance matx= X~ X .

{ Mutual incoherence (Lounici, 2008)

{ Restricted eigenvalue conditions (Bickel et al., 2009)
{ Sparse eigenvalues (Meinshausen and Yu, 2008)

{ Null space property (Donoho and Tanner, 2005)

Links with signal processing and compressed sensing (€arahd
Wakin, 2008)

Assume thatQ has unit diagonal
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Mutual incoherence (uniform low correlations)

Theorem (Lounici, 2008):

{yy=w’Xx;+ ", " Li.d. normal with mean zero and variani;e2
{ Q = X~ X=n with unit diagonal andcross-terms less tham
{ if kwko 6 k, andA2 > 8, then, with = A " nlogp
| 1= _
P kit wk, 6 5A %) > 1 pt A%
'
logp

Model consistency by thresholding ||‘n|QO jwjj>C —
Wi

Mutual incoherence condition depenggongly on k

Improved result by averaging over sparsity patterns (Gasdnd Plan,
2009)
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Alternative sparse methods
Greedy methods

Forward selection
Forward-backward selection

Non-convex method

{ Harder to analyze
{ Simpler to implement
{ Problems of stability

Positive theoretical results (Zhang, 2009, 2008a)

{ Similar su cient conditions than for the Lasso
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Comparing Lasso and other strategies for linear
regression

Compared methods to reach the least-square solution

{ Ridge regressionmin ky XWK5 + —kwk3

w2 RP 2 2
{ Lasso min ky XWks +  kwkq
W2 RP 2

{ Forward greedy
Initialization with empty set
Sequentially add the variable that best reduces the squass |

Each method builds a path of solutions from O to ordinary least
sguares solution

Regularization parameters selected on the test set
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Simulation results

1.I.d. Gaussian design matrik, =4, n =64, p2 [2;256] SNR =1
Note stability to non-sparsity and variability

0.9r |—L1 8 0.9
—L2
0.8 —greedy 0.8
0.7l oracle 0.7
5 5
o 0.6f o 0.6f
() )
© 0.5 © 0.5
@ a
= 0.4r c 0.4r
Q Q
€ 0.3f £ 0.3
0.2 0.2
0.1r 0.1
0 0

2 4 6 8
09,(p)

Rotated (non sparse)
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Summary
“1-norm regularization

“1-norm reqgularization leads taonsmooth optimization problems
{ analysis through directional derivatives or subgradients
{ optimization may or may not take advantage of sparsity

“1-norm regularization allowsigh-dimensional inference

Interesting problems for;-regularization

{ Stable variable selection

{ Weaker su cient conditions (for weaker results)

{ Estimation of regularization parameter (all bounds depeml the
unknown noise variance?)
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Extensions

Sparse methods are not limited to the square loss

{ logistic loss: algorithms (Beck and Teboulle, 2009) andahe(Van
De Geer, 2008; Bach, 2009)

Sparse methods are not limited to supervised learning

{ Learning the structure of Gaussian graphical models (Meamsen
and Behlmann, 2006; Banerjee et al., 2008)
{ Sparsity on matrices (last part of the tutorial)

Sparse methods are not limited to variable selection in a lin ear
model

{ See next part of the tutorial
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1. Losses for particular machine learning tasks

Classi cation, regression, etc...

2. Reqgularization by Hilbertian norms (kernel methods)

Kernels and representer theorem
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Kernel methods

Kernel design

3. Regularization by sparsity-inducing norms

“1-norm regularization
Multiple kernel learning
Theoretical results
Learning on matrices
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Penalization with grouped variables
(Yuan and Lin, 2006)

L P NN
Penalization by imzl kwg ko, often called 1- 2 norm

Induces group sparsity

{ Some groups entirely set to zero
{ no zeros within groups

In this tutorial:

{ Groups may have in nite siz¢ MKL
{ Groups may overlap structured sparsity (Jenatton et al., 2009)
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Linear vs. non-linear methods

All methods In this tutorial ardinear in the parameters

By replacingx by features ( x), they can be madeaon linear In
the data

Implicit vs. explicit features

{ "1-norm: explicit features

{ "2-norm: representer theorem allows to consider implicit fe@as if
their dot products can be computed easily (kernel methods)
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Kernel methods: regularization by ,-norm

{ Predictorf (x) = w” ( x) linear in the features

Optimization problem:

min

X

w2 RP

“(yisw” (%)) + Ekag
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Kernel methods: reqgularization by

{ Predictorf (x) = w” ( x) linear in the features

X

Optimization problem: min

w2 RP

(yiwT (O xi)+ §ka%

Representer theore|g1 (Kimeldorf and Wahba, 1971): so
(%)

be of the formw =~ .,

{ Equivalent to solving:

X
min
2R

(Yis (K )i+ > K

{ Kernel matrixK = k(xi;x;)= ( xi)” ( Xj)

“>-norm

ution must
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Multiple kernel learning (MKL)
(Lanckriet et al., 2004b; Bach et al., 2004a)

Sparse methods are linear!

Sparsity with non-linearities

P
{ replacef (x) = P_; W x; with x 2 R” andw; 2 R

P

{byf(x)=" . w j(x)withx2X, ;(x)2F;anw; 2F;
P

Replace the';-norm °_; jw;j by \block™ “1-norm P_; kw; k>

Remarks

{ Hilbert space extension of the group Lasso (Yuan and Lin,&00
{ Alternative sparsity-inducing norms (Ravikumar et al.,08)
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Multiple kernel learning

Learning combinations of kernel& ( ) = jm:1 iKi; >0

{ Summing kernels concatenating feature spaces
{ Assumeki(x;y)=h 1(x); 1(Y)i, ka(xy)=h 2(x); 2(y)]

b (x) (y) E
. . — X .
ka(cy) +ke(y) = oy
Summing kernels generalized additive models

Relationships with sparse additive models (Ravikumar et 2008)

133



Multiple kernel learning (MKL)
(Lanckriet et al., 2004b; Bach et al., 2004a)

Multiple feature maps / kernels ox 2 X :

{ Predictor: f (x) = w1 1(X)+ + wp~ p(X)

1(X)” wy
% : &
X | i(x)” wp bowr () + +wg p(X)
& : i %
()™ wp

{ Generalized additive models (Hastie and Tibshirani, 1990)
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Regularization for multiple features

1(X)” wy
% : P &
X | i(x)” wip bowg a(x)+ +wy p(X)
& : ;%
p(X)” Wy

L P . . . P
Regularization by _; kw;k3 is equivalent to usin& = °_; K;

{ Summing kernels is equivalent to concatenating feature gsac
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Regularization for multiple features

1(X)” wa
% : &
X | i(x)” w bowg () + +wy p(X)
& : %
p(X)” Wp
L P 5 . . _ Py
Regularization by ;_; kw; k5 Is equivalent to usind< = K;

j=1
P
Regularization by J!Ozl kw;j ko Imposes sparsity at the group level

Main questions when reqgularizing by block ";-norm:

1. Algorithms

2. Analysis of sparsity inducing propertigRavikumar et al., 2008;
Bach, 2008c)

3. Does it correspond to a speci ¢c combination of kernels?
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General kernel learning

Proposition (Lanckriet et al, 2004, Bach et al., 2005, Micchelli and
Pontil, 2005):

P

G(K) = min * Ly "(yiiw” (X)) + phwid
— Pn D >
= mzan<n -1 i i) % 7K

IS aconvex function of the kernel matrixK

Theoretical learning bounds (Lanckriet et al., 2004, Sreland Ben-
David, 2006)

{ Less assumptions than sparsity-based bounds, but slowesra
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Equivalence with kernel learning (Bach et al., 2004a)

Block ";-norm problem:

X
EwD i)+ W p(xi) + o (kwike + o+ kwpko)®
=1

Proposition: Block ";-norm regularization piS equivalent to
minimizing with respect to the optimal valueG(" {_; ;Kj)

(sparse) weights obtained from optimality conditions
p

dual parameters optimal forK = 7_; jKj,

Single optimization problem for learning both and
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Proof of equivalence

X XP X 2
min Vii o wo(xi) + kw; Kz
W1, W p . .
i=1 j=1 ] =1
. X X X 2
= min  pmin Yis Wj> j(xi) + kwj ko= |
Wl ..... w p ] J —1 |:1 J :1 J :1
_ : X < X 1=2 . > X 2 \pgi 1=2
= pmin  min yii 5w j(xi) + kw ka with wy = w;
j =1 wniwp . -
i=1 j=1 J=1
_ X N > 1=2 1=2
= pmin min Vi W (xi) + kwk;with  (x)=( 17 12(X);::5; 577 plx
.o =1 W
) i=1

Pp _ Pp
We have:  (x)> (x9= [, jk(xx)with ¥, ;=1 (and > 0)
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Algorithms for the group Lasso / MKL

Group Lasso

{ Block coordinate descent (Yuan and Lin, 2006)
{ Active set method (Roth and Fischer, 2008; Obozinski et 2009)
{ Nesterov's accelerated method (Liu et al., 2009)

MKL

{ Dual ascent, e.g., sequential minimal optimization (Bach a.,
2004a)

{ -trick + cutting-planes (Sonnenburg et al., 2006)

{ -trick + projected gradient descent (Rakotomamonjy et a008)

{ Active set (Bach, 2008Db)
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Applications of multiple kernel learning

Selection of hyperparameters for kernel methods
Fusion from heterogeneous data sources (Lanckriet et al., 2004a)

Two strategies for kernel combinations:

{ Uniform combination, ,-norm

{ Sparse combination {-norm

{ MKL always leads to more interpretable models

{ MKL does not always lead to better predictive performance
In particular, with few well-designed kernels
Be careful with normalization of kernels (Bach et al., 2004b)
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Applications of multiple kernel learning

Selection of hyperparameters for kernel methods
Fusion from heterogeneous data sources (Lanckriet et al., 2004a)

Two strategies for kernel combinations:

{ Uniform combination, ,-norm

{ Sparse combination {-norm

{ MKL always leads to more interpretable models

{ MKL does not always lead to better predictive performance
In particular, with few well-designed kernels
Be careful with normalization of kernels (Bach et al., 2004b)

Sparse methods. new possibilities and new features
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Course outline

1. Losses for particular machine learning tasks

Classi cation, regression, etc...

2. Reqgularization by Hilbertian norms (kernel methods)

Kernels and representer theorem

Convex duality, optimization and algorithms
Kernel methods

Kernel design

3. Regularization by sparsity-inducing norms

“1-norm regularization
Multiple kernel learning
Theoretical results
Learning on matrices
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Learning on matrices - Image denoising
Simultaneously denoise all patches of a given image

Example from Mairal, Bach, Ponce, Sapiro, and Zisserman @00
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Learning on matrices - Collaborative ltering

Givenny \movies" x 2 X andny \customers'"y 2Y,
predict the \rating" z(x;y) 2 Z of customery for moviex

Training data: largenx ny incomplete matrixZ that describes the
known ratings of some customers for some movies

Goal: complete the matrix.

.

LL.III"EE
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Learning on matrices - Source separation

Single microphone (Benaroya et al., 2006; Fevotte et alQ(®)
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Learning on matrices - Multi-task learning

k linear prediction tasks on same covariate® RP

{ k weight vectorsw; 2 RP

Classical application
{ Multi-category classi cation (one task per class) (Amit et., 2007)

Share parameters between tasks

Joint variable selection (Obozinski et al., 2009)

{ Select variables which are predictive for all tasks

Joint feature selection (Pontil et al., 2007)

{ Construct linear features common to all tasks
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Matrix factorization

- Dimension reduction

Given data matrixX = (Xq;:::;Xp) 2 RP "
{ Principal component analysis :
+ +
+ +
++ 7t
+++"_'|_++
+ +
&+
+
+
{ K-means: |x; dx) X = DA
+ H
P : ++++ '
Fr+ N
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Two types of sparsity for matrices M 2 R" P
| - Directly on the elements of M

Many zero elementsM ;; =0

M

M|
|
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Two types of sparsity for matrices M 2 R" P
Il - Through a factorization of M = UV ~

Matrix M = UV >, U2 R" KandV 2 RP K

Sparse decomposition: U sparse

Low rank: m small

0



Structured sparse matrix factorizations

Matrix M = UV >, U 2 R" KandV 2 RP X

Structure on U and/or V

{ Low-rank: U andV have few columns

{ Dictionary learning / sparse PCAJ has many zeros

{ Clustering k-means):U 210;1g" ™, Ul =1

{ Pointwise positivity: non negative matrix factorization (4F)
{ Speci c patterns of zeros (Jenatton et al., 2010)

{ Low-rank + sparse (Cances et al., 2009)

{ etc.

Many applications

Many open questions (Algorithms, identi abllity, etc.)
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Multi-task learning

Joint variable selection (Obozinski et al., 2009)

{ Penalize by the sum of the norms of rows \&f (group Lasso)
{ Select variables which are predictive for all tasks
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Multi-task learning

Joint variable selection (Obozinski et al., 2009)

{ Penalize by the sum of the norms of rows \&f (group Lasso)
{ Select variables which are predictive for all tasks

Joint feature selection (Pontil et al., 2007)

{ Penalize by the trace-norm (see later)
{ Construct linear features common to all tasks

Theory: allows number of observations which is sublineartha
number of tasks (Obozinski et al., 2008; Lounici et al., 2p09

Practice: more interpretable models, slightly improvedfoemance
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| ow-rank matrix factorizations
Trace norm

Given a matrixM 2 R" P

{ Rank ofM Is the minimum sizen of all factorizations ofM Into
M=UV~,U2R" MandV 2RP ™

{ Singular value decompositionM = U Diag(s)V~ whereU and
V have orthonormal columns ansl2 R are singular values

Rank ofM equal to the number of non-zero singular values
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| ow-rank matrix factorizations
Trace norm

Given a matrixM 2 R" P

{ Rank ofM is the minimum sizen of all factorizations ofM into
M=UV~,U2R" MandV 2 RP M

{ Singular value decompositionM = U Diag(s)V~ whereU and
V have orthonormal columns angl2 RT' are singular values

Rank of M equal to the number of non-zero singular values
Trace-norm (a.k.a. nuclear norm) = sum of singular values
Convex function, leads to a semi-de nite program (Fazel et aD01)

First used for collaborative ltering (Srebro et al., 2005)
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Sparse principal component analysis

{ Analysis view: nd the projection d 2 RP of maximum variance
(with de ation to obtain more components)

{ Synthesis view: nd the basisdi;:::;dx such that allx; have
low reconstruction error when decomposed on this basis

For regular PCA, the two views are equivalent
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Sparse principal component analysis

{ Analysis view: nd the projection d 2 RP of maximum variance
(with de ation to obtain more components)

{ Synthesis view: nd the basisd;:::;dx such that allx; have
low reconstruction error when decomposed on this basis

For regular PCA, the two views are equivalent

Sparse extensions

{ Interpretability
{ High-dimensional inference
{ Two views are di erents
For analysis view, see d'Aspremont, Bach, and ElI Ghaoui 200
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Sparse principal component analysis
Synthesis view

x o X 2 X ,
min X, (i)jd; = min X; D ; 2is small
_ i2 RM _ _ i2 RM
i=1 j=1 2 =1
{ LookforA =( 1;:::; o) 2 RK "andD =(dq;:::;dy) 2 RP K

such thatD is sparse and&X DA k2 is small
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Sparse principal component analysis
Synthesis view

X XK 2. X 5
min X (i)d; = min X; D ; 2is small
_ i2 RM _ _ i2 RM
1=1 ] =1 2 =1
{ LookforA =( q1;:::; o) 2 RK "andD =(dq;:::;dy) 2 RP K

such thatD is sparse andX DA kg is small

Sparse formulation (Witten et al., 2009; Bach et al., 2008)

{ Penalize/constraind; by the "1-norm for sparsity
{ Penalize/constrain ; by the ,-norm to avoid trivial solutions

X0 XK
min KX D |k% + kdj ki s.t. 8k kx6 1
i=1 j=1
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Sparse PCA vs. dictionary learning

Sparse PCA: x; D j, D sparse

+ +
+ 1 + +
+ T ot +

++
+"'"':|:++ - L+ +
&+ &+

+ +
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Sparse PCA vs. dictionary learning

Sparse PCA: x; D j, D sparse

+ +
&+ ¥ &+ ¥
+ +
Dictionary learning : x; D , | sparse
++ T
+
+F
++ N
+ +
+ +I+ ++++ -::l-+
+ ¥
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Structured matrix factorizations (Bach et al., 2008)

X XK
min  kx; D ki+ kdik- s.t. 8i;k ik 61
D;A
] j=1
Ig]lg] KX D ik%+ k ik s.t. 8j; kdj ko 6 1
Ci=l i=1

Optimization by alternating minimization (non-convex)

i decomposition coe cients(or \code"), d; dictionary elements

Two related/equivalent problems:

{ Sparse PCA = sparse dictionary ( 1-norm ond;)
{ Dictionary learning = sparse decompositions (" ;-norm on ;)
(Olshausen and Field, 1997; Elad and Aharon, 2006; Lee et a

2007)
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Dictionary learning for image denoising

% = @ iz

measurements  qginal image  NOise
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Sparse methods for machine learning
Why use sparse methods?

Sparsity as a proxy to interpretability
{ Structured sparsity (Jenatton et al., 2009)

Sparsity for high-dimensional inference

{ In uence on feature design
Sparse methods are not limited to least-squares regression
Faster training/testing

Better predictive performance?

{ Problems are sparse if you look at them the right way
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Conclusion - Interesting questions/issues

Implicit vs. explicit features

{ Can we algorithmically achievdogp = O(n) with explicit
unstructured features?

Norm design

{ What type of behavior may be obtained with sparsity-indugin
norms?

Over tting convexity

{ Do we actually need convexity for matrix factorization proimg??
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Course outline

1. Losses for particular machine learning tasks

Classi cation, regression, etc...

2. Reqgularization by Hilbertian norms (kernel methods)

Kernels and representer theorem

Convex duality, optimization and algorithms
Kernel methods

Kernel design

3. Regularization by sparsity-inducing norms

“1-norm regularization
Multiple kernel learning
Theoretical results
Learning on matrices
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Conclusion - Interesting problems
Machine learning for computer vision

Kernel design for computer vision

{ Bene ts of \kernelizing" existing representations
{ Combining kernels

Sparsity and computer vision

{ Going beyond image denoising

Large numbers of classes

{ Theoretical and algorithmic challenges
Structured output

Semi-supervised learning
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