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Learning the Structure for Structured Sparsity
Nino Shervashidze and Francis Bach

Abstract—Structured sparsity has recently emerged in statistics,
machine learning and signal processing as a promising paradigm
for learning in high-dimensional settings. All existing methods for
learning under the assumption of structured sparsity rely on prior
knowledge on how to weight (or how to penalize) individual subsets
of variables during the subset selection process, which is not avail-
able in general. Inferring group weights from data is a key open
research problem in structured sparsity. In this paper, we pro-
pose a Bayesian approach to the problem of group weight learning.
We model the group weights as hyperparameters of heavy-tailed
priors on groups of variables and derive an approximate inference
scheme to infer these hyperparameters. We empirically show that
we are able to recover the model hyperparameters when the data
are generated from the model, and we demonstrate the utility of
learning weights in synthetic and real denoising problems.

Index Terms— Structured sparsity, probabilistic modeling,
Bayesian statistics, super-Gaussian prior, Gaussian scale mixture,
variational inference.

I. INTRODUCTION

H IGH-DIMENSIONAL prediction problems are more and
more common in many application domains, including

computational biology, signal processing, computer vision and
natural language processing. To handle this high-dimension-
ality, one usually resorts to linear modeling and regularization
with sparsity-inducing norms, such as the -norm. This type of
regularization results in sparse models, meaning that the model
is described by relatively few parameters. Besides making pa-
rameter learning consistent in high-dimensional settings, the
sparsity assumption has the appealing property of yielding more
interpretable models. As an example, consider the problem of
explaining a particular phenotype of patients, e.g., the disease
state, based on the genome sequence of each patient. Sparse
linear approaches try to find a handful of genetic loci that govern
the disease state, rather than a model involving the whole se-
quence. The -regularized sparse linear models, such as the
LASSO [1] or basis pursuit [2], are well studied by now, with a
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solid body of theoretical results, efficient algorithms and appli-
cations in diverse fields (see, e.g., [3] and references therein).
However, in practice, we often know that there is more struc-
ture in the problem at hand, which cannot be captured by simple
sparse modeling and -regularization, and which, if exploited,
can improve the estimation of parameters as well as the inter-
pretability of the estimates (see [4]–[6] and references therein).
In our example, we could expect the genetic loci that influence
the disease to be part of a small number of connected patterns
in a gene-gene interaction network [7], [8]. In other words, we
could be looking for a small number of possibly overlapping
subsets of variables such that each subset corresponds to a con-
nected subgraph in a given gene network, and the combination
of variables in each subset influences the phenotype.
Given prior knowledge about the relevance of each con-

sidered group of variables, several methods exist for learning
sparse models guided by this prior knowledge. These methods
achieve different kinds of structured sparsity by regularization
(penalization, weighting) with appropriate sparsity-inducing
norms, that often correspond to convex relaxations of com-
binatorial penalties on the support (i.e., the set of indices
of non-zero components) of the parameter vector. After the
group LASSO [9], a number of convex penalties have been
proposed, generalizing the group LASSO penalty to the cases
of overlapping groups [10]–[13], including tree-structured
groups [14], [15]. See [6], [16] for a more detailed review of
sparsity-inducing norms.
While most of these norms induce intersection-closed sets

of non-zero patterns, Jacob et al. [11] and Obozinski and
Bach [17] introduce a different, latent formulation of spar-
sity-inducing norms that yields union-closed sets of non-zero
patterns, meaning that the parameter vector is represented
as a sum of latent vectors , identically zero at indices not in
for a subset of indices. If several such sets of indices are

considered, then the support of (i.e., the set of indices for
which is non-zero) is included in the union of such sets (see
Fig. 1 for illustration with three sets , and ).
In order to quantify the intuition above, Obozinski and

Bach [17] consider the following function on the support
of :

(1)

that is, is the minimum-weight cover of
with the subsets in the family . The weights express
our prior belief in the subset being relevant: If a group is
irrelevant, then . Using the function as a regu-
larizer (essentially the approach of [5]) will encourage the sup-
port of weight vectors to be a union of subsets with
finite .

1053-587X © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



SHERVASHIDZE AND BACH: LEARNING THE STRUCTURE FOR STRUCTURED SPARSITY 4895

Fig. 1. The coefficient vector is covered by latent variables supported on
subsets , and : .

Moreover, Obozinski and Bach [17] computed a convex re-
laxation of the function defined above, leading to the fol-
lowing norm:

(2)

However, generally we do not have this prior knowledge about
the relevance of individual groups: The problem of automat-
ically choosing appropriate weights for groups of variables,

, is an important open research problem in structured
sparsity. Assuming that we have several learning problems
with similar structure (the relevance of a given group is largely
shared across individual problems), in this paper we propose a
framework for learning group relevances from data. Note that
learning the structure is naturally a multi-task problem, as it is
impossible to estimate the prior on a vector of parameters if we
only observe one particular instance of it. To come back to our
example, we could assume that we have several phenotypes
that can be explained by groups of loci whose relevance is
largely shared across phenotypes.
An approach to learning group relevances from data using

probabilistic modeling has been recently proposed in [18]. How-
ever, this work only considers learning relevances of pairs of
variables and does not make the link with sparsity-inducing
norms. Let us also mention that probabilistic modeling for struc-
tured sparsity has also been explored in [19] and [20] in the
context of learning Gaussian graphical models, and in [21] for
multi-task learning with structure on tasks.
We approach the problem using probabilistic modeling with

a broad family of heavy-tailed priors and derive a variational
inference scheme to learn the parameters of these priors. Our
model follows the pattern of sparse Bayesianmodels ([22], [23]
among others), that we take two steps further: First, we pro-
pose a more general formulation, suitable for structured sparsity
with any family of groups; Second, we learn the prior parame-
ters from data. We show that prior parameter estimation with
classical variational inference does not always lead to reason-
able estimates in these models, and find a way of regularizing
that works well in practice. Moreover, we propose a greedy al-
gorithm that makes this inference scalable to settings in which
the number of groups to consider is large. In our experiments,
we show that we are able to recover the model parameters when
the data are generated from the model, and we demonstrate the
utility of learning penalties in image denoising.

II. A PROBABILISTIC MODEL FOR STRUCTURED SPARSE
LINEAR REGRESSION

In this section, we formally describe our model and a suitable
approximate inference scheme.

A. Model Definition

We consider linear regression problems with design ma-
trices and response vectors for

. For each and , we assume the classical
Gaussian linear model with i.i.d. noise with variance , that is,

(3)

Let be the set of indices of variables . For a
family of subsets of , we assume

(4)

where, for each ,
• is a vector in such that all its components
with indices in are zero (in other words, it is sup-
ported on ),

• are jointly independent, and
• has an isotropic density with inverse scale
parameter

(5)

where is a heavy-tailed distribution that only de-
pends on through its cardinality, . We specify in
Section II-B.

We regard the inverse scale parameter as a measure of
relevance of the group of variables 1: If a group of variables
is irrelevant, then should equal infinity. We are interested
in priors such that for each task indexed by only a handful
of can be significantly away from zero.
Here it is important to stress the link between the expres-

sion of our isotropic prior (5) and the norm (2) from [17], in-
troduced in Section I: The log-likelihood of parameter vectors

with respect to will (up to a constant) be equal
to the term , which very closely
resembles the norm (2). If is the generalized Gaussian dis-
tribution (cf. Section II-D), the two expressions match exactly.
Thus, learning with our prior is a natural probabilistic counter-
part of learning with the sparsity-inducing norm (2).
Given data and such a model for the prior,

our goal will be to infer the parameters by maximizing the
likelihood with respect to ,

(6)

where the parameters are marginalized over.

1Abusing notation, we will call “group ” the subset of variables indexed by
elements of throughout the paper.
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B. Super-Gaussian Priors
We assume that is a scale mixture of Gaussians, i.e.,

for somemixing density . Themain reasonwhywe choose
to work with the family of scale mixtures of zero-mean Gaus-
sians is that it contains distributions that are heavy-tailed and
therefore suitable for modeling sparsity; One such distribution is
Student’s which we use in our experiments. The inverse scale
parameter of the distribution on , , captures the rele-
vance of the group : the smaller , the more relevant the
group, that is, the larger the values is likely to take. Note that
even if the group is relevant, not all have to
be large. In fact, if the parameters are drawn
from a heavy-tailed distribution with small , then only a
fraction of themwill be significantly away from zero. Moreover,
as we show in Section II-C, learning in such models is amenable
to variational optimization with closed-form updates and leads
to an approximate Gaussian posterior on .
In general, the integral in (6) is intractable for Gaussian scale

mixtures, therefore one has to resort to sampling or approximate
inference to learn parameters in such models. The fact that is
a Gaussian scale mixture implies that it is also super-Gaussian,
that is, the logarithm of is convex in and non-in-
creasing [22]2. It therefore admits a representation of the fol-
lowing form by convex conjugacy

(7)

where is convex in . Note that the expression inside
the supremum in (7) has a unique maximizer. In this work we
only consider for which this maximizer has an analytical
simple form. Combining (5) and (7), we get the following vari-
ational representation for :

(8)

For a particular choice of the prior , wemeasure the relevance
of the group of variables by the expectation of (which
amounts to the sum of the variances of the individual compo-
nents of ),

where is the expectation of under the stan-
dardized distribution on . In fact, as we have

2Note that the converse is not true: complete monotonicity of the log-density
is a necessary and sufficient condition for the existence of a Gaussian scale mix-
ture representation [22, Section 3].

Fig. 2. The graphical representation of our model.

given our independence assumption, the expected value of
allows us to measure the contribution of the group with

respect to . We somewhat abusively call
the signal variance in our experiments, as opposed to ,
the noise variance. Fig. 2 represents the graphical model cor-
responding to our assumptions. Note that we have explicitly
incorporated the variational parameter into the graphical
model: In fact, the same parameter can also be interpreted as the
scale parameter of the Gaussian in the Gaussian scale mixture
representation of [22].

C. Inference
Our model described above, namely the combination of the

density of (3) and the variational representation of the prior
density on (8), leads to the following variational bound on
the marginal distribution of :

where is a matrix of dimension that ensures
where is the concatenation of all elements in-

dexed by elements of in , and and are square
diagonal matrices of size whose diagonals consist of

and respectively, replicated times, for each
(see [24, Appendix], for a detailed derivation of this bound).
Thus, as an approximation to minimizing the negative log-like-
lihood, we would like to minimize the following overall bound
with respect to and for all and :

(9)

In its form given by (9), the bound is difficult to optimize. How-
ever, we recognize parts of it as minima of convex functions,
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which allows us to design an iterative algorithm with analytic
updates, finding a local minimum (see [24, Appendix], for de-
tails). Our optimization problem becomes

(10)

and the closed-form updates are

(11)

iterated until convergence.
Remark 2.1: Note that the only update that depends

on the specific prior distribution is that for the varia-
tional parameter , all others apply to all super-Gaussian
priors.
Remark 2.2: It can be shown that the updates (11) exactly cor-

respond to the updates yielded by mean-field variational infer-
ence in the special case of Gaussian scale mixtures [22]. How-
ever, the approach presented here is more general, as it also ap-
plies to super-Gaussian priors that are not Gaussian scale mix-
tures.
Remark 2.3: Using the matrix inversion lemma, the update

for can be rewritten in such a way that we avoid the expen-
sive inversion of a matrix and we only
have to invert a or matrix instead, which can
even be diagonal in certain cases (see [24], Appendix, for de-
tails). When it is not diagonal, matrix inversions can be avoided
by making an extra diagonal assumption on the covariance ma-
trix of the Gaussian posteriors of all .
Remark 2.4: While we do provide an update equation for

for completeness, in general it is customary to assume the noise
level known, which we also do in all our experiments.

D. Special Cases
The family of super-Gaussian distributions includes Stu-

dent’s and generalized Gaussian distributions among many
others. We here give the densities of these distributions, as well
as the expressions for the quantities in our model and inference
that depend on the particular prior on .
Student’s : The density of this distribution is given by

(12)

where is a parameter governing the shape of the distribution.
The smaller , the heavier-tailed the distribution (for ,
there is no finite variance). For this distribution,

(13)

and, therefore, the update for is written as

(14)

The variance of a Student’s -distributed random variable, if
, is , and therefore

. Student’s has a natural representation as a Gaussian
scale mixture with the inverse Gamma as the mixing distribu-
tion. All our experiments are carried out using Student’s .
Generalized Gaussian: The density is given by

(15)

[25]. Consequently, we have

(16)

(17)

and .

E. Learning With all Groups
While our model and the associated inference algorithm de-

scribed earlier are valid for any set of groups , including
, the algorithm is impractical when is large: Indeed, even

if we only have 20 variables and 1000 tasks, learning with
implies that the number of variational parameters

will exceed a billion. To avoid working with a prohibitively
large number of groups at once, one can leverage an active
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set-type heuristic that maintains a list of relevant groups and
iteratively updates it. Algorithm 1, which we discuss in detail
in the following, describes one way to do this. It requires set-
ting the maximal allowed cardinality of , and the number

of groups to be discarded in each active set update. We start
by learning with singletons only (steps 1 and 2); After ranking
the groups in according to their relevance measured by
into the sequence (step 3), we determine the ad-
ditional groups to be considered, , by taking the first sets
from the sequence

, ignoring groups that have been considered in the past
and making sure we do not add the same group more than once;
In steps 5–11 we repeatedly (a) learn with , (b) rank
the groups, (c) update and . In step 8 we choose not to
discard the singletons just to make sure that always covers

. The stopping criterion (step 5) may be that we have
no more groups to consider (if is small enough), or that we
have reached a predefined maximal number of iterations.

Algorithm 1: Greedily discover relevant groups

Parameters: ,
1: Let and
2:
3: Rank all according to their relevance
4: Determine (make sure )
5: while stopping condition not met do
6:
7: Rank according to their relevance
8: Add to the least relevant non-singletons in
9:
10: Determine (make sure )
11: end while

III. APPROXIMATION QUALITY AND REGULARIZATION
The goal of this section is to experimentally study the be-

havior of our approximate inference scheme in terms of estima-
tion quality and to clarify how we can control it. As we empir-
ically show below, the variational approximation scheme from
Section II-C tends to overestimate the variance of the prior dis-
tribution (i.e., underestimate the inverse scale parameter )
when this variance is smaller than , the noise variance. This
is undesirable, as we would like to tend to infinity for ir-
relevant groups of variables. To circumvent this problem, we
use an improper hyperprior of the form to
encourage to go to infinity when the variance of
is smaller than . Consequently, the regularization term

with is added to the objective function
(10), and the only update that changes is that for :

(18)

Thus, we substitute the approximate type-II maximum likeli-
hood estimation of by approximate (also “type-II”) max-
imum a posteriori estimation. In Sections III-A and III-B we

Fig. 3. Recovery of the variance of the univariate Student’s distribution with
added Gaussian noise of known variance with grid search and the variational
method, with different levels of regularization. The x and y axes represent the
variance based on the true and on the estimated parameter values, respectively.

empirically study the effect of the parameter on the approxi-
mation quality.

A. Scale Parameter Inference With Only One Variable

In this experiment, we evaluate the performance of the vari-
ational method described in Section II-C in recovering the un-
known scale parameter of the prior in the simplest, 1-dimen-
sional case (note that in this subsection we omit the subscripts
as ). More specifically, our goal here is to an-

swer the following questions: Given an i.i.d. sample drawn from
a univariate Student’s with shape and inverse scale parame-
ters and , corrupted by Gaussian noise, and supposing we
know both the noise variance and the shape parameter , can
we precisely estimate the inverse scale parameter using the
variational method from Section II-C? In the settings where we
cannot, does regularization improve our estimates?
Experimental setup. We consider 10,000 tasks with one

variable and one observation each ( , for all , and
for all equal to 1). Data are generated from the model with
Student’s prior on with parameters set to 1.5 and
varying in the set of 14 values between 0.02 and 50 taken
roughly uniformly on the logarithmic scale, and Gaussian noise
with variance set to 1. We compare the performance of the
variational method with that of a grid search over ,
where we use the trapezoidal rule to numerically solve the
intractable integral in (6). The grid search, feasible in this
basic setting, provides the best available approximation to the
regularized maximum likelihood solution. To reduce the effect
of random fluctuations, we repeat all experiments 5 times with
different random seeds and report averaged results.
Results. Fig. 3 summarizes the results. For three values of the

parameter , we plot (on the logarithmic scale) the estimated
against the true variance for the considered range of the pa-
rameter (recall that the variance of a Student’s -distributed
random variable with parameters and equals ). In
all figures, we also plot the variance of the Gaussian noise .
We observe that in the absence of regularization and
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Fig. 4. On the left, the singletons are the relevant groups. On the right, the pair
is the relevant group.

when the signal is not much stronger than noise, the variational
method overestimates the signal variance while the grid search
does not. As we add regularization, this effect gradually goes
away and the signal variance estimate is set to 0 (i.e., the es-
timate of , , goes to infinity) if the true signal variance is
smaller than a certain threshold. When the regularization is too
strong , the estimated signal variance drops to 0 even
when the signal is stronger than the noise, and the variance of
the signal is heavily underestimated. With the right amount of
regularization ( in this case) we observe the desired
behavior: The variational method recovers the signal when it
is stronger than noise, and sets to infinity otherwise. In all
cases, variational estimates are close to the maximum likelihood
estimates obtained by the grid search when the signal is much
stronger than the noise.

B. Structured Sparsity With Two Variables

In this section, we empirically study the most basic case of
the group relevance learning problem. Suppose that in each task
we only have 2 variables, and therefore 3 possible groups,

. Let be the identity matrix in each task.
In this basic setting, and supposing that the data come from the
model, can our inference algorithm distinguish the case where
the data are generated by the group of variables

from the opposite case, where the relevant groups are the
two singletons and ?
These two settings differ in fact significantly in the case of a

heavy-tailed prior on : We have ;
If {1, 2} is relevant and {1} and {2} are not, then and
will have to be close to zero for all , however, will be
significantly far from zero for some . As the prior on only
depends on through its norm, these can be anywhere
on the circle with radius with the same probability
and therefore can also be anywhere on the circle with radius

. In contrast, when {1, 2} is irrelevant and {1} and {2}
are relevant, the rare events of and both being signifi-
cantly away from zero will not occur at the same time for most ,
and therefore the with a large norm will tend to be concen-
trated along the axes. This behavior (using Student’s prior with
parameter on ) is illustrated in Fig. 4, where we have
plotted the data for in both settings.
Experimental setup. We consider 5,000 tasks with
and for all equal to 2, with the set of groups

. The data are generated from the model
with Student’s prior on with parameters set to 1.5 and

Fig. 5. A dark gray (light gray) square means that the estimate of the singleton
(group) variance is larger than the estimate of the group (singleton) variance
for the corresponding true singleton and pair variances indicated by the axes.
A black square means that both singleton and pair variances are under , the
noise variance.

each varying in a set of 14 values between 0.01 and 25
taken roughly uniformly on the logarithmic scale ( and

always equal each other), and Gaussian noise with
variance set to 1.
Results. Fig. 5 summarizes the results for three values of the

regularization parameter ( corresponds to the absence
of regularization). We report when the estimated pair variance

dominates (light gray) or is dominated (dark gray)
by the estimated singleton variance ,
provided that one of them is larger than the noise variance, .
We see that when we do not regularize, the variational method
explains everything with the singletons. As we add regulariza-
tion, the pair explains more and more variance, however in such
a way that the pair also explains the signal coming from single-
tons. Nonetheless, there is a regime where a strong
signal coming from both the singletons and the pair is identified
correctly. If we regularize too strongly , the entire
signal is explained by the pair, regardless of its source.

IV. EXPERIMENTS

In our experiments, we consider two different instances of the
denoising problem andwe empirically evaluate the performance
of our approach in recovering both the signal and the structure.

A. Structured Sparsity in the Context of Denoising
In this section, we study toy multi-task structured sparse de-

noising problems. Our goal is to answer the following questions:
Given data , generated from the model, and as-
suming that we know the true shape parameter of the Student’s
and the noise variance , (a) can we recover the structure (i.e.,
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TABLE I
MEAN SQUARED ERROR WITH 95%-CONFIDENCE ERROR BARS

the relevant groups and their weights), and (b) if we use the cor-
rect structure, is our denoising more accurate than when using
a different structure?
Experimental setup. To this end, we consider 10,000 tasks

with and for all equal to 10, with the set of groups
. Each signal is

generated using Student’s with parameters set to and
set to 0.2 or to 200, depending on whether is consid-

ered relevant or irrelevant: In this fashion, the variance of the
signal coming from relevant is (re-
spectively, for irrelevant ). For each task , is a
perturbed version of the signal with additive Gaussian noise
of variance .
We consider three different ways of generating data:
• Singletons: Here, only are relevant, all other
groups in are irrelevant.

• One group: Only {1,2,3,4,5} is relevant.
• Overlapping groups: The groups {1}, {1,2}, ,
{1,2,3,4,5} are relevant.

For the three cases, we choose so that the total noise variance
equals the total signal variance in each case.

We consider four models of increasing complexity for infer-
ence:
• LASSO-like: In this simplest model, we only use
the singletons, , and more-
over, we force to be constant across ; In
order to do so, we change the update for to

. This mimics

the behavior of the LASSO, as the prior (that we are
learning here) is the same for each coefficient.

• Weighted LASSO-like: The usual model with equal to
.

• Structured: The usual model with equal to
.

• Structured (active set): The model where we also learn
using Algorithm 1 (with parameters , ,

and 5 active set updates).
We examine each of the 12 combinations of data generation and
learning models. In each case, we use half of the tasks to find
the optimal in terms of the mean squared prediction error (i.e.,
the mean squared difference between the true and the learned
signals ) from a predefined range of 7 values, and the other
half to learn with this and evaluate the test error.
Results. We begin by examining the performance of each of

the four models in signal recovery: In Table I we report the
mean squared error on the 5,000 test tasks with 95%-confidence
error bars for each combination of data generation and learning
models. The usage of boldface indicates that the corresponding
method significantly outperforms the others, as measured using

Fig. 6. For each group of variables on the y axis, the intensity of gray indicates
the percentage of total explained variance per .

a -test at the level 0.05. For all three regimes for data genera-
tion, the LASSO-like model performs far worse than the three
others in recovery. This is due to the fact that this model learns
the same prior for all variables, although not all variables have
the same marginal variance. In the first and third data genera-
tion regimesW.LASSO performs slightly better than Structured
in signal recovery, while Structured has an advantage when a
single group is relevant. The performance of Structured(AS) is
systematically close to, or on a par with that of the best-per-
forming model.
In terms of structure recovery, for all three data generation

regimes, we find one or more values of that lead to the re-
covery of the relevant groups by Structured and Structured(AS),
with either the same or a slightly different value leading to the
smallest error in signal recovery. Fig. 6 illustrates the percentage
of total explained signal variance by each group for the One
group and Overlapping regimes and for the Structured model,
for all considered regularization parameters: With no regular-
ization, the model explains the signal with both the relevant
group(s) and the singletons included in the relevant group(s),
however with more and more regularization, the signal vari-
ance explained by smaller groups is taken over by larger ones.
The groups containing elements from , not shown
in the plot, explain no variance in no regularization regime,
with the exception of the largest group that explains
the weak signal coming from the irrelevant groups (recall that
we have non-zero signal variance for the irrelevant
groups ) in weak and moderate regularization regimes and
takes over the whole signal variance when the regularization is
too strong.
In summary, the performance in denoising does not change

drastically depending on the amount of regularization, unless
it is too strong; However, a small amount of regularization is
likely to better capture the structure than no regularization; If
there is a strong group structure among the variables, regular-
ization may also lead to better recovery. A formal criterion to
set the value of the hyperparameter would be to maximize its
likelihood, as is customary in Bayesian methods.

B. Image Denoising With Wavelets
In this section, we consider the image denoising problem

using wavelets. The Haar wavelet basis for 2-dimensional im-
ages [26] can naturally be arranged in three rooted directed
quad-trees (corresponding to horizontal, vertical and diagonal
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TABLE II
MEAN SQUARED ERROR WITH 95%-CONFIDENCE ERROR BARS

directions), which can be connected to form one tree by at-
taching the three roots to an artificial parent node; The struc-
tured sparsity-inducing norms with non-zero groups that are
paths from the root in this tree have shown improvements over
the norm [15]. Our goal is to find out whether, in this task,
(a) a value of that leads to good recovery for a set of images
is also close to optimal for another set of images of roughly the
same size, at least when the noise level is unchanged (stability
of the hyperparameter); (b) learning a non-uniform prior on sin-
gletons improves recovery with respect to using a uniform prior
(importance of learning a non-uniform prior); (c) learning the
group structure helps beyond learning a non-uniform prior on
singletons (importance of learning group relevances).
Experimental setup. In order to denoise a large grayscale

image, we cut it into possibly overlapping patches of 32 32
pixels, which compose the multiple 1024-dimensional signals
that we denoise simultaneously by learning the appropriate
(structured) prior. We use four well-known images, Barbara,
Fingerprint, Lena (512 512 pixels each), and House (256

256 pixels). Each signal is formed by the wavelet co-
efficients of one 32 32 patch. For each of the
tasks (841 for House) we form by adding Gaussian noise
of variance along each dimension. As in the
previous section, we examine the performance of four in-
stances of our model: the model with a uniform factorized
sparse prior (LASSO-like), a non-uniform factorized sparse
prior (W.LASSO-like), the structured norms on all descending
(equivalently, ascending) paths in the rooted tree (Structured),
and the structured norms on groups that we discover in the
process of learning, with 2 active set updates (Structured(AS)).
We consider a predefined range of 6 values for the regular-
ization hyperparameter , and 3 values (0.5, 1.1, 1.5) for the
shape parameter of Student’s . We compare the behavior of
our methods with that of existing algorithms based on spar-
sity-inducing norms, which are not designed to learn group
weights from data. From the family of such approaches, we
choose the “Tree- ” structured norm proposed by Jenatton et
al. [15], and the classical LASSO [1] on the wavelet coeffi-
cients. (We would like to stress here that “Tree- ” does need
group weights to be specified, but does not provide a system-
atic way to learn them. They are usually set by introducing a
group-weighting parameter so that is the weight of all
groups at the depth in the tree, and then optimizing over
a predefined range of values using cross-validation.) Since
Jenatton et al. [15] already compared favorably the convex
relaxation over the non-convex penalty of [5], we do not con-
sider the latter in our experiments. We run these methods on
each set of small images with the regularization parameter
and the group-weighting parameter (only for Tree- )

varying over predefined ranges of 75 and 7 values respec-
tively, and report the smallest error. To train the LASSO and
learn with the Tree- norm, we use the “proximal” toolbox
of the software package SPAMS [15].
Results. Table II shows the best performance in terms of

the mean squared error of each method on each image (which
corresponds to a set of small images) with 95%-confidence
error bars for each combination of data generation and learning
models. The usage of boldface indicates that the corresponding
method significantly outperforms all others, as measured using a
-test at the level 0.05. Each number is divided by 1000 for read-
ability. The values in the parentheses for our proposed methods
indicate the value of corresponding to the minimal error. The
performance of our proposed methods with respect to the shape
parameter is systematically slightly better for larger , and
all reported results correspond to . According to these
results, (a) the performance of a given value of in signal re-
covery indeed seems to be stable across images (note that we
have also observed that the performance on a given image is ro-
bust to small changes of the value of the hyperparameter); (b)
the fact that the LASSO and our LASSO-like model are sys-
tematically outperformed by models that weight each variable
confirms the intuition that learning how to weight individual
variables should boost the estimation quality; (c) it seems that
learning a prior on joint relevances of variables can lead to im-
proved performance, as shown in the column corresponding to
Fingerprint, although this is not always the case: on House and
Lena, the performance of methods that learn group relevances
is not significantly different from that of Tree- , and in the case
of Barbara they perform worse. Inspecting the relevances of dif-
ferent groups (paths in the wavelet tree) learned by Structured,
we see that the groups explaining the bulk of the variance are
overlapping groups of 2, 3, or 4 elements, mostly descending
from the roots of the three quad-trees. In contrast, the relevant
groups selected by Structured(AS) tend to consist of one to three
roots of the three wavelet quad-trees and one or two wavelets
of higher frequency, suggesting that paths in the wavelet tree
may not always be the most natural groups in this problem. At
last, let us stress that while “Tree- ” is applicable in problems
where variables can be structured in a tree given in advance,
our proposed approach applies to any known or unknown group
structure.
The Matlab code used in our experiments is available at

http://cbio.ensmp.fr/~nshervashidze/code/LLSS.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a flexible and general proba-
bilistic model and an associated inference scheme for automat-
ically learning the weights of possibly overlapping groups in
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the context of structured sparse multi-task linear regression. We
have shown that the classical variational inference scheme is not
well adapted for learning with this model, and have proposed a
regularization method that closes this gap. This has allowed us
to investigate the effect of learning group weights in denoising
problems, leading to the conclusion that learning penalties can
significantly improve prediction quality, as well as the inter-
pretability of the models, in this context. We have furthermore
devised a greedy active-set procedure that makes the inference
with our model scalable to settings with large and a large
number of potential groups in .
In our future work, we may consider different likelihood

models to handle settings different from linear regression, such
as binary classification. Learning group relevances for classi-
fication is indeed crucial, e.g., in the context of genome-wide
association studies with binary phenotypes in computational
biology, or for image segmentation in computer vision.
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