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Abstract

In segmentation models, the number of
change-points is typically chosen using a pe-
nalized cost function. In this work, we pro-
pose to learn the penalty and its constants in
databases of signals with weak change-point
annotations. We propose a convex relaxation
for the resulting interval regression problem,
and solve it using accelerated proximal gra-
dient methods. We show that this method
achieves state-of-the-art change-point detec-
tion in a database of annotated DNA copy
number profiles from neuroblastoma tumors.

1. Introduction

Segmentation and change-point detection problems
arise in many scientific domains such as climatology,
econometrics, molecular biology, machine learning or
signal processing (Bai & Perron, 2003; Braun et al.,
2000; Venkatraman & Olshen, 2007; Vert & Bleakley,
2010; Harchaoui & Levy-Leduc, 2008; Tibshirani &
Wang, 2008; Gillet et al., 2007). When the data to
segment y ∈ Rd are a 1-dimensional series of length
d and the errors are normally distibuted, maximum
likelihood inference is constrained least squares:

ŷk = arg min
µ∈Rd

||y − µ||22 ,

subject to

d−1∑
j=1

1µj 6=µj+1
≤ k − 1.

(1)
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For a given number of segments k there are several
efficient algorithms that recover the optimal segmen-
tation (Auger & Lawrence, 1989; Bai & Perron, 2003;
Jackson et al., 2005; Rigaill, 2010; Killick et al., 2011).

However in most applications the number of segments
k is not known in advance and needs to be deter-
mined from the data. To solve this critical problem,
many penalty functions specifically adapted to change-
point models have been proposed. For example, there
are many different variants of the BIC (Yao, 1988;
Lee, 1995; Zhang & Siegmund, 2007), the model se-
lection theory of Birgé and Massart suggests another
penalty (Birgé & Massart, 2007; Lavielle, 2005; Lebar-
bier, 2005), and Baraud et al. (2009) proposed an-
other criterion. The formula of these penalties depend
on assumptions such as Gaussianity or independence.
These assumptions are often violated in real data,
which can lead to selection of a suboptimal model.

Hocking et al. (2012) proposed a different approach
for selecting the number of segments k: first create
a database of change-point annotations, then select
a scalar penalty constant that minimizes the change-
point detection error. In this article we generalize that
approach by learning a multivariate penalty function
that agrees with the change-point annotations.

Our method proceeds in essentially two steps. In the
first step, we pre-process the signals to obtain the best
segmentation (1) for several model sizes k, then cal-
culate a function Ei that maps the penalty value to
the annotation error. In the second step, we learn a
function f that predicts penalty values which mini-
mize the annotation error Ei. Since explicitly learn-
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ing this function involves an intractable optimization,
we instead treat it as an interval regression problem
and propose a convex relaxation. We solve the result-
ing non-smooth optimization problem using accelated
proximal gradient methods, which permit efficient in-
ference of the support and constants in the penalty
function. For a new un-annotated signal, the learned
penalty function can predict the optimal number of
segments k.

2. The penalty learning problem

Assume we have a set of n annotated training signals.
For every training signal i ∈ {1, . . . , n}, let yi ∈ Rdi be
the noisy signal sampled at positions pi ∈ Ndi , a vector
of positive integers sorted such that pi1 < · · · < pi,di .
As shown in the left panel of Figure 1, the positions pi
may not be evenly spaced. Since the points sampled
per signal di is variable, the p1 ∈ Nd1 , . . . , pn ∈ Ndn
vectors are not the same size.

We use pruned dynamic programming (DP) to calcu-
late a segmented signal ŷki ∈ Rdi as the solution of (1)
for each model size k ∈ {1, . . . , kmax} (Rigaill, 2010).
The indices where ŷki changes are

Jki =
{
j ∈ {1, . . . , di − 1} | ŷkij 6= ŷki,j+1

}
, (2)

and as shown with vertical black lines in the left panel
of Figure 1, change-point positions are estimated using

P̂ ki = {b(pij + pi,j+1)/2c | j ∈ Jki }. (3)

2.1. Change-point annotations define a
non-convex error function

As shown in Figure 1, for every signal i, we have a
set of regions Ri and corresponding annotations Ai.
Every annotation a ∈ Ai is a set that specifies the ex-
pected number of changes in the corresponding region

r ∈ Ri. The annotation error ei : {1, . . . , kmax} → R+

compares the estimated number of changes in each re-
gion |P̂ ki ∩ r| to the annotated number of changes a
using the zero-one loss:

ei(k) =
∑

(r,a)∈(Ri,Ai)

1|P̂k
i ∩r|6∈a

. (4)

For every signal i, we define the optimal number of
segments as

k∗i (g) = arg min
k∈{1,...,kmax}

||yi − ŷki ||22 + g(ŷki , xi), (5)

where the penalty g is a function of the segmentaton
ŷki and some features xi ∈ Rm such as signal size or
estimated variance. The problem we tackle in this ar-
ticle is to use the n annotated signals to learn the best
penalty g for change-point detection, defined as:

min
g

n∑
i=1

ei [k∗i (g)] . (6)

We will consider penalty functions g that factorize as
a model complexity term h(ŷki , xi) that is given, and a
smoothing term λ = exp f(xi) that we want to learn:
g(ŷki , xi) = h(ŷki , xi) exp f(xi). The exponential forces
the smoothing term to be positive. Many existing
penalties can be written in this form (see Table 1),
and it allows efficient learning by first calculating an
exact representation of

k̂i(λ) = arg min
k∈{1,...,kmax}

||yi − ŷki ||22 + λh(ŷki , xi). (7)

The function k̂i : R+ → {1, . . . , kmax} is used to select
the number of segments for signal i. In the right panel
of Figure 1, we show one function k̂i, and its corre-
sponding annotation error Ei : R+ → R+, defined as

Ei(λ) = ei

[
k̂i(λ)

]
. (8)
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Figure 1. Left: black points show one signal (pi, yi) with its annotated regions Ri. Counts of allowed change-points
a ∈ Ai are shown as sets. A consistent model ŷ7i is drawn in green and its change-points P̂ 7

i are shown as vertical black
lines. Right: the optimal number of segments k̂i and annotation error Ei. The limits Li < Li of the target interval are
drawn in green, with a vertical dashed line to indicate the complexity of the model ŷ7i plotted on the left.
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Note that k̂i and Ei are non-convex, piecewise con-
stant functions that can be efficiently calculated prior
to learning, using Algorithm 1 in Section 4.1.

By definition, for a given model complexity term h,
we have the following relation between the annotation
error functions:

ei [k∗i (g)] = ei

[
k̂i
(

exp f(xi)
)]

(9)

= Ei [exp f(xi)] . (10)

Rewriting learning problem (6) using Ei, we obtain

min
f

n∑
i=1

Ei [exp f(xi)] . (11)

2.2. Affine smoothing functions

We need to specify what kind of smoothing function
f : Rm → R we will learn. Although non-parametric
models such as k-nearest neighbors could be used,
there are several interesting penalties defined by sup-
posing that f is affine, f(xi) = w′xi + β. This results
in the following model selection criterion:

k̂i
[
ef(xi)

]
= arg min

k
||yi − ŷki ||22 + eβ+w

′xih(ŷki , xi).

(12)
In Table 1, we compare several model selection criteria
that are special cases of (12).

For example, the well-known BIC due to Schwarz
(1978) uses h(ŷki , xi) = k log di as a complexity term,
and the smoothing term exp f(xi) = 1 contains no
parameters to learn. Instead, we can use a difference-
based estimator of signal variance σi (Hall et al., 1990),
and take xi = log σi. Then we can learn α,w1 in the
corresponding smoothing term exp f(xi) = ασw1

i .

A similar criterion was suggested by Lebarbier (2005),
and its complexity is k log(2 log(di/k) + 5). Again we
can learn a smoothing term that depends on the noise
σi, which corresponds to choosing xi = log σi.

As another example, Zhang & Siegmund (2007) pro-
posed a modified BIC (mBIC) which has a model com-
plexity term of the form

∑
r log(nr) + (2k− 1) log(di),

where nr is the length of a segment. A default smooth-
ing term with no parameters to learn is implemented
in the uniseg function of R package cghseg (Picard
et al., 2012). Our approach can also be used with
model complexity terms of this form. If we take
two features xi =

[
log σi log di

]
, that implies a

smoothing term λ = ασw1
i dw2

i .

However, inferring the optimal weights w and inter-
cept β in all these models involves an intractable op-
timization. Since the annotation error Ei is piecewise
constant, the minimization in problem (11) can only
be accomplished via exhaustive search. For one or two
features this may be feasible using grid search. But for
multivariate models, grid search is very inefficient. So
instead of minimizing the annotation error Ei directly,
we propose a convex relaxation in the next section that
yields an efficient interval regression algorithm for find-
ing the optimal model parameters.

3. A convex relaxation of the
annotation error

In this section, we develop a surrogate loss li that is
a convex relaxation of the annotation error Ei. In
particular, we propose to make learning problem (11)
tractable using these two modifications:

• Instead of minimizing Ei(λ) directly, we define
a target interval of λ values, yielding an interval
regression problem.

• We replace the non-convex annotation error Ei
with a margin-based convex surrogate loss li.

3.1. The interval regression problem

Recall that the goal is to learn exp f(xi) = λ to mini-
mize the annotation error Ei(λ), which is a piecewise
constant function that can be calculated exactly us-
ing Algorithm 1. So a perfect function f would verify
exp f(xi) = arg minλEi(λ) for all signals i. Thus we
define the target interval (Li, Li) as the largest interval
such that λ∗ = arg minλEi(λ) for all log λ∗ ∈ (Li, Li).
The target interval may be closed as shown in the right

Penalty Complexity term Smoothing term Learned parameters Features xi
h(ŷki , xi) λ = exp f(xi)

BIC k log di ασw1
i α ∈ R+, w1 ∈ R log σi

Lebarbier k(c1 log(di/k) + c2) ασw1
i α ∈ R+, w1 ∈ R log σi

mBIC
∑
r log(nr) + (2k − 1) log(di) ασw1

i dw2
i α ∈ R+, w1 ∈ R, w2 ∈ R log σi, log di

Lavielle k ασw1
i dw2

i α ∈ R+, w1 ∈ R, w2 ∈ R log σi, log di
General h(ŷki , xi) exp{x′iw + β} β = logα ∈ R, w ∈ Rm xi ∈ Rm

Table 1. Some penalties that we can learn using affine smoothing functions f .
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panel of Figure 1, or open (Li = −∞ or Li = ∞), as
shown in the top 2 functions in Figure 3.

In summary, for every signal i, f(xi) ∈ (Li, Li) implies
that exp f(xi) = arg minλEi(λ). This is an interval
regression problem since predicting any value in the
target interval has the same minimal error.

There is an equivalent geometric interpretation of the
learning problem in terms of the target interval. In the
middle panel of Figure 3 we plot the target intervals
(Li, Li) as a function of one feature, a variance esti-
mate xi = log σi. Geometrically, the learning problem
corresponds to finding a line f that intersects each of
the target intervals.

Another interpretation is shown in the bottom panel
of Figure 3, where we plot just the limits Li, Li of the
target interval. The learning problem corresponds to
finding a line f that separates the two classes of points.

3.2. Maximum margin regression line for
separable data

If there are few data as in Figure 2, then it may be
possible to find a regression function f(xi) = w′xi + β
such that Li < f(xi) < Li for all signals i. In this case
the data are separable, and in fact there are infinitely
many functions f that satisfy these criteria. However,
for learning it is best to use the max margin separator:

maximize
β∈R,w∈Rm,µ∈R+

µ (13)

subject to ∀i, if Li > −∞, w′xi + β − Li ≥ µ
∀i, if Li <∞, Li − w′xi − β ≥ µ.

Since the objective and the constraints are linear, this
is a linear program (LP), so any LP solver can be used.
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Figure 2. The maximum margin interval regression line
f(xi) is found by solving problem (13), and is drawn as a
dashed line. The limits Li, Li of target intervals are drawn
using points for a small data set that is linearly separa-
ble using the variance estimate feature xi = log σi. The
horizontal margin µ is drawn for the 3 border points.
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Figure 3. Top: the surrogate loss li from Equation (14) in
black along with the annotation error Ei in color, for 4 sig-
nals i. The quadratic tails of the convex surrogate loss are
not shown. Middle: for several more signals i, we show
only the target interval (Li, Li), plotted using a variance
estimate feature xi = log σi on the vertical axis. The re-
gression line is found by minimizing the average surrogate
loss over all signals (16). Bottom: only the minimum Li

and maximum Li of each target interval is shown.
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The regression function found by solving problem (13)
for a small separable data set with 1 feature is shown in
Figure 2. It is important to note that the geometric in-
terpretation of the margin is not the same as the usual
Support Vector Machine for binary classification. In
fact, the margin is the distance along the log λ axis be-
tween the regression line and the closest limits Li, Li.

However, any sizable real data set will not be separa-
ble. So in the next section, we develop a surrogate loss
for interval regression on non-separable data sets.

3.3. Surrogate loss for non-separable data

We relax the annotation error Ei in the L = log λ
space, and consider the class of surrogate loss functions
li : R→ R+ defined by

li(L) = ϕ

(
L− Li
δ

)
+ ϕ

(
Li − L
δ

)
, (14)

where the binary classification surrogate loss function
ϕ : R → R+ is a convex upper bound of the zero-one
loss. The parameter δ > 0 controls the size of the
margin, and we used δ = 1 since that worked well in
the data we analyzed. Using the hinge loss for ϕ results
in a surrogate loss similar to the ε-insensitive loss used
for Support Vector Regression (Vapnik et al., 1997).
Some other choices for ϕ include log and Huber losses,
but we used the squared hinge loss since it exhibited
the best empirical performance:

ϕ(L) =

{
(L− 1)2 if L ≤ 1

0 if L ≥ 1.
(15)

Note that li is convex since it is the sum of two con-
vex functions. This convex relaxation can clearly be
seen in the top panel of Figure 3, where we plot the
surrogate loss li along with the annotation error Ei for
several signals i. Let the average surrogate loss be

L(β,w) =
1

n

n∑
i=1

li(w
′xi + β). (16)

For each signal i we have features xi ∈ Rm. When
m is large we can encourage a sparse weight vector w
by using an `1 penalty, which yields the optimization
problem

minimize
β∈R,w∈Rm

γ||w||1 + L(β,w), (17)

where γ ∈ R+ is a fixed value that controls the degree
of regularization. Note that the `1 norm encourages
some entries of w to be exactly zero, which has the ef-
fect of selecting which features are used in the penalty
function f(xi) = w′xi + β.

4. Algorithms

Recall that using pruned DP we obtain ŷki for k ∈
{1, . . . , kmax}, and we use (4) to calculate the anno-
tation error ei(k). For every signal i we then need to

recover the functions k̂i and Ei so we can calculate the
target intervals (Li, Li) and the surrogate loss li. First

we discuss how to calculate the exact functions k̂i, Ei,
then we discuss surrogate loss optimization.

4.1. Exact annotation error as a function of λ

For a given signal i, number of segments k and model
complexity h, critki (λ) = ||yi − ŷki ||22 + λh(ŷki , xi) is an

affine function of λ. Thus k̂i(λ) = arg mink critki (λ) is
the minimum of a finite set of affine functions, which
we calculate exactly using path-following Algorithm 1.
The result is a list of λ values for which there is a
change in the optimal number of segments k̂i.

We use the following Lemma to exclude some model
sizes k′ that will never be selected using k̂i.

Lemma 1. If k′ < k and h(ŷki , xi) ≤ h(ŷk
′

i , xi) then

for all λ ≥ 0, we have k̂i(λ) 6= k′.

Proof. The squared error ||yi − ŷki ||22 is a decreasing

function of k, so critki (λ) < critk
′

i (λ) for all λ ≥ 0.

Thus k′ 6= arg mink critki (λ) = k̂i(λ).

The complexity of Algorithm 1 is O(k2max). First, the
initial set of plausibleK is defined using Lemma 1.
Each iteration of the while loop finds the smallest λ for
which k ∈ plausibleK is preferred over the current kc.
The result is an exact representation of the piecewise
constant function k̂i via its breakpoints k, λ. We then

Algorithm 1 Exact recovery of k̂i

Input: ||yi − ŷki ||22, h(ŷki , xi),∀k ∈ {1, . . . , kmax}.
kc ← max{plausibleK}
plausibleK← plausibleK \ kc
while plausibleK 6= ∅ do

nextλ← +∞, nextK← 0
for k ∈ plausibleK do

hit time← ||yi − ŷ
kc
i ||22 − ||yi − ŷki ||22

h
(
ŷki , xi

)
− h

(
ŷkci , xi

)
if nextλ > hit time then

nextλ← hit time, nextK← k
end if

end for
kc ← nextK, Save kc,nextλ
plausibleK← plausibleK \ {k | k ≥ kc}

end while
Output: k̂i represented by breakpoints kc,nextλ.
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use definition (8) to recover the annotation error Ei.

4.2. Surrogate loss optimization using FISTA

The learning problem (17) is to find the affine func-
tion f(xi) = w′xi + β that minimizes the sum of a
non-smooth convex penalty and a smooth convex sur-
rogate loss. So we can solve it using proximal gradient
methods such as FISTA, a Fast Iterative Shrinkage-
Thresholding Algorithm (Beck & Teboulle, 2009). We
need the partial derivatives of the surrogate loss:

∂

∂ β
li [f(xi)] = ϕ′ [f(xi)− Li]− ϕ′

[
Li − f(xi)

]
(18)

∂

∂ wj
li [f(xi)] = xij

(
ϕ′ [f(xi)− Li]− ϕ′

[
Li − f(xi)

])
,

(19)
where the derivative of the squared hinge loss is

ϕ′(L) =

{
2(L− 1) if L ≤ 1

0 if L ≥ 1.
(20)

The proximal operator pη : Rm+1 → Rm+1 is

pη(β,w) =


β − 1

η
∂
∂ βL(β,w)

sγ/η

(
w1 − 1

η
∂

∂ w1
L(β,w)

)
...

 (21)

where sλ is the soft-thresholding function and η is
a Lipschitz constant of the smooth loss (Beck &
Teboulle, 2009). We use a constant η = m+

√
m which

is heuristic but worked well on the data we analyzed.
Importantly, the assumptions of FISTA are satisfied,
since the squared hinge loss is indeed Lipschitz contin-
uous (Flamary et al., 2012).

After each application of the proximal operator, we
check for approximate subdifferential optimality:∣∣∣∣ ∂∂ βL(β,w)

∣∣∣∣ ≤ ε, (22)

and for every feature j ∈ {1, . . . ,m},
∣∣∣ ∂
∂ wj
L(β,w)− γ

∣∣∣ ≤ ε if wj < 0(∣∣∣ ∂
∂ wj
L(β,w)

∣∣∣− γ)
+
≤ ε if wj = 0∣∣∣ ∂

∂ wj
L(β,w) + γ

∣∣∣ ≤ ε if wj > 0

(23)

for some positive constant ε > 0 that controls how far
we are from an optimal solution. For learning it is not
necessary to take a very small ε (Bottou & Bousquet,
2008), and we found that ε = 10−3 is sufficient.

5. Results and discussion

We analyzed 3 data sets of annotated neuroblastoma
DNA copy number profiles (Table 2). These data come
from a set of 575 chromosomal copy number profiles
of tumors taken from children when they were diag-
nosed. In these data, accurate change-point detection
is crucial in order to precisely characterize the genetics
of these tumors.

We defined model complexity as the number of seg-
ments h(ŷki , xi) = k, which corresponds to a Lavielle
penalty (Table 1). We used Algorithm 1 to calculate
target intervals for 3 annotation data sets based on the
neuroblastoma data, and for our annotation of some
simulated data. In Figure 4, the scatterplots of target
intervals show a clear dependence on the estimated
noise σi, which is not modeled using the state-of-the-
art cghseg.k model (Hocking et al., 2012).

Figure 4. Algorithm 1 was used to calculate the limits Li, Li of the target interval, which are plotted against a variance
estimate feature xi = log σi for all signals i in four annotated data sets. The original data are taken from R package
neuroblastoma, and the high and low density data sets are two other annotations of the neuroblastoma data. The
simulation data are a simulated set of signals with Gaussian noise, annotated by expert visual inspection.



Learning Sparse Penalties for Change-point Detection using Max Margin Interval Regression

5.1. Annotation protocols

Our penalty learning algorithms rely on the quality of
the annotations, which come from either prior knowl-
edge or expert visual inspection. We consider four
annotation data sets (Table 2), constructed using two
protocols for expert visual annotation:

• (Systematic) For the “original” annotations, a
set of regions was defined, then the expert system-
atically examined and annotated these regions on
each signal i.

• (Any) For the other annotation data sets, the
expert was asked to browse all signals and draw
rectangles around any regions where she was sure
of the annotation.

We include these details because we conjecture that
the ability of the learning algorithm may be limited
by the annotation protocol.

5.2. Accuracy of annotations in simulations

To assess the quality of the visual annotations, we sim-
ulated Gaussian signals with different segment length,
noise and change size, and annotated them using the
Any protocol. By comparing the latent signal in the
simulation with the manual annotations, we observed
the following results:

• Out of 697 regions annotated to have 1 change-
point, 24 contained 2–4 changes.

• Out of 147 regions annotated to have no change-
points, 27 contained 1–2 changes.

• These false-negative changes had a low signal to
noise ratio, so they are not detected in any case
using maximum likelihood segmentation.

One may fear that the Any protocol would result in
a database of “easy” annotated changes with a high
signal-to-noise ratio. However, we did not observe that

when comparing the distribution of annotated changes
to the distribution of all changes (t-test, KS-test, and
Wilcoxon test). So we concluded that visual annota-
tions are indeed useful for recovering significant, de-
tectable change-points.

5.3. Learned penalty functions

We learned penalty functions on each of the four data
sets (Table 2) using four models (Table 3). Recall the
Lavielle model from Table 1:

f(xi) = β + w1 log σi + w2 log di. (24)

We compared 3 un-regularized versions of this model,
and one `1-regularized model with 117 features.

The cghseg.k model uses 0 features, takes w1 = 0 and
w2 = 1, then learns β by solving (11) with grid search
(Hocking et al., 2012).

The log.d model uses 1 feature log di, takes w1 = 0,
and learns w2 and β by minimizing the un-regularized
surrogate loss (16).

The log.s.log.d model uses 2 features log di, log σi and
learns w1, w2, β by minimizing the un-regularized sur-
rogate loss. We report the coefficients learned in this
model in Table 2, and it is interesting to note that the
coefficients are clearly not the same across data sets.

In Table 2 the optimal penalty for the original data
contains a d0.96i term. This is in agreement with the
observation that the cghseg.k model has a d1i term and
works well in these data (Hocking et al., 2012).

In Table 2 it is clear that w1 6= 2, which means the
penalties do not contain the σ2

i term that is suggested
by model selection theory. This is evidence that the-
oretical arguments are not sufficient for good change-
point detection in real data, as measured by visual
annotations.

L1-reg constructs a feature vector xi ∈ R117 consist-
ing of features such as variance estimates, signal size
measurements (di, log di, ...), model RSS and MSE,
and indicator variables for each chromosome. We use

n anns pro. noise σi points di noise w1 points w2 intercept β
original 3418 3418 Sys. 0.03 – 0.66 66 – 5937 1.01± 0.03 0.96± 0.02 −2.66± 0.10

high.density 204 210 Any 0.17 – 0.46 1948 – 5937 3.16± 0.38 0.08± 0.26 6.54± 2.38
low.density 3542 4171 Any 0.03 – 0.76 25 – 657 1.30± 0.02 0.93± 0.02 −2.00± 0.13
simulation 377 844 Any 0.01 – 1.00 1000 – 2000 1.76± 0.07 1.20± 0.16 −5.33± 1.20

Table 2. Several features of the four annotation data sets. We show the number of signals n, the number of annotations
(anns), and the annotation protocol as explained in Section 5.1. The ranges of noise estimates σi and signal sizes di are
shown along with the coefficients of the log.s.log.d model (24), which were estimated by minimizing (16). Signals were
split into 10 folds, and we report the mean and standard deviation of coefficients over 10 training sets of size 9n/10.
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V -fold cross-validation to pick the regularization γ.
For each training set we first form the standardized
features X ∈ Rn×m to solve problem (17) with a small
γ > 0. After finding an optimal solution, we increase
γ and use a warm restart to find the next optimal so-
lution in the path. We stop after finding a γ for which
all coefficients wj = 0. The model that gives mini-
mal annotation error on test fold v is saved as γ̂v, and
finally we take the mean across folds:

∑V
v=1 γ̂v/V .

5.4. Change-point detection accuracy

We used cross-validation to compare the four mod-
els, and the test annotation error is shown in Table 3.
First, the standard BIC and mBIC model selection cri-
teria do not use the change-point annotations, so yield
error rates much higher than the other models. The
only exception is the mBIC in the simulated data set,
which is expected since the theoretical conditions of
the mBIC are perfectly met in that case.

The log.d model that minimizes the surrogate loss
shows comparable performance to cghseg.k, which uses
grid search to directly minimize the non-convex an-
notation error Ei. Both of these methods ignore the
noise σi, so in general yield sub-optimal change-point
detection. The only exception is the high.density data
set, in which all learning methods perform about the
same, since the noise is relatively uniform (Figure 4
and Table 2).

Table 3 also shows that the 117-feature L1-reg
model performs comparably to the 2-feature log.s.log.d
model. This suggests that the signal noise σi and num-
ber of points di are sufficient to learn a penalty for
optimal change-point detection in these data sets.

However, training the L1-reg model is very time-
consuming since an internal cross-validation loop is
used to select the degree of regularization γ. So to
quickly learn a penalty for data like these, we suggest
learning the log.s.log.d model (24) by minimizing the
un-regularized surrogate loss (16).

6. Conclusions

We proposed a method to learn an optimal penalty
function for change-point detection in databases of
annotated signals. Our approach can accomodate
most existing model complexity terms (Table 1), and
chooses the smoothing term by minimizing a margin-
based convex surrogate loss using FISTA. Using our
method, one uses an annotation database to tune the
parameters of his favorite model selection criterion,
yielding penalty terms which are different from those
motivated using theoretical arguments (Table 2).

We showed that learning the penalty function using
this method results in state-of-the-art change-point de-
tection in several databases of annotated DNA copy
number profiles. In particular, standard criteria such
as BIC ignore the annotation data so perform much
worse than the models we learned (Table 3).

For even better performance, one could use grid search
on the support of w found with the L1-reg model to
directly optimize the annotation error Ei rather than
the surrogate loss li. Also, it should be straightforward
to apply the kernel trick to learn a penalty which is
a non-linear function of the input features. Finally,
we may be able to derive efficient algorithms by ex-
ploring the duals of the separable and non-separable
max-margin interval regression problems.

For future work, we are considering more general
penalty functions. For example, Lebarbier (2005) pro-
posed k(c1 log(di/k) + c2) and calibrated c1 = 2 and
c2 = 5 using a large set of simulated signals. It is rea-
sonable to think that these values of c1 and c2 are not
optimal for real data and one would like to learn these
c1, c2 from a database of annotated signals. To learn
these more general penalties we are exploring multi-
dimensional interval regression.

Acknowledgements: This work was supported by
grants DIGITEO-BIOVIZ-2009-25D, SIERRA-ERC-
239993, SMAC-ERC-280032, ANR-09-BLAN-0051-04.

model features m original high.density low.density simulation
BIC 0 7.99± 0.00 19.52± 0.00 13.64± 0.00 11.97± 0.00

mBIC 0 40.99± 0.00 70.00± 0.00 36.88± 0.00 2.25± 0.00
cghseg.k 0 2.19± 0.82 6.64± 3.99 6.49± 1.16 11.85± 3.52

log.d 1 2.40± 1.00 7.59± 6.43 6.21± 1.01 13.13± 4.14
log.s.log.d 2 1.90± 0.77 8.12± 5.62 4.72± 0.54 1.50± 1.63

L1-reg 117 1.81± 0.58 7.66± 5.72 4.70± 0.88 1.28± 1.47

Table 3. Change-point detection error of models was estimated using 10-fold cross-validation. Means and standard devi-
ations are shown for 4 annotation data sets (columns) and 6 models (rows). The modified Bayesian information criterion
(mBIC) and BIC do not use the annotation data, and are defined in Section 2.2. The other models use the annotation
data and the indicated number of features to predict model complexity.
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